Skip to main content

Diabetes Care in the Oncologic Population

  • Chapter
  • First Online:
Diabetes Management in Hospitalized Patients

Part of the book series: Contemporary Endocrinology ((COE))

  • 297 Accesses

Abstract

Diabetes and cancer commonly co-exist, and there are several facets to the management of patients with cancer and diabetes based on their underlying malignancy, tumor burden, choice of cancer treatment, exposure to concomitant medications such as corticosteroids, nutritional state, and goals of care. Glycemic targets for the hospitalized patient aimed for a blood glucose range of 140–180 mg/dL in most critically ill and non-critically ill patients may not be relevant to the oncologic population. In this chapter, we review diabetes care in patients with cancer focusing on the management of glucocorticoid-induced hyperglycemia or glucocorticoid-associated diabetes, chemotherapy-mediated hyperglycemia, immunotherapy-mediated diabetes mellitus, and paraneoplastic hyperglycemia. Many patients with cancer struggle with anorexia at some point or throughout their disease course, and the nutritional status of these patients should also be incorporated in their diabetes management. Finally, diabetes care at the end of life is another focus of this chapter as it pertains to much of the oncologic population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vulichi SR, Runthala A, Begari N, Rupak K, Chunduri VR, Kapur S, et al. Type-2 diabetes mellitus-associated cancer risk: in pursuit of understanding the possible link. Diabetes Metab Syndr. 2022;16(9):102591.

    Article  CAS  PubMed  Google Scholar 

  2. Chowdhury TA, Jacob P. Challenges in the management of people with diabetes and cancer. Diabet Med. 2019;36(7):795–802.

    Article  CAS  PubMed  Google Scholar 

  3. Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: the DCCT/EDIC study 30-year follow-up. Diabetes Care. 2016;39(5):686–93.

    Google Scholar 

  4. Siraj ES, Rubin DJ, Riddle MC, Miller ME, Hsu FC, Ismail-Beigi F, et al. Insulin dose and cardiovascular mortality in the ACCORD trial. Diabetes Care. 2015;38(11):2000–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) group. Lancet. 1998;352(9131):837–53.

    Google Scholar 

  6. Kim DS, Scherer PE. Obesity, diabetes, and increased cancer progression. Diabetes Metab J. 2021;45(6):799–812.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harvie M, Hooper L, Howell AH. Central obesity and breast cancer risk: a systematic review. Obes Rev. 2003;4(3):157–73.

    Article  CAS  PubMed  Google Scholar 

  8. Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev. 2015;95(3):727–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.

    Article  PubMed  Google Scholar 

  10. Ren HB, Yu T, Liu C, Li YQ. Diabetes mellitus and increased risk of biliary tract cancer: systematic review and meta-analysis. Cancer Causes Control. 2011;22(6):837–47.

    Article  PubMed  Google Scholar 

  11. Huang W, Ren H, Ben Q, Cai Q, Zhu W, Li Z. Risk of esophageal cancer in diabetes mellitus: a meta-analysis of observational studies. Cancer Causes Control. 2012;23(2):263–72.

    Article  PubMed  Google Scholar 

  12. Friberg E, Orsini N, Mantzoros CS, Wolk A. Diabetes mellitus and risk of endometrial cancer: a meta-analysis. Diabetologia. 2007;50(7):1365–74.

    Article  CAS  PubMed  Google Scholar 

  13. Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer. 2007;121(4):856–62.

    Article  CAS  PubMed  Google Scholar 

  14. Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst. 2005;97(22):1679–87.

    Article  PubMed  Google Scholar 

  15. Larsson SC, Wolk A. Diabetes mellitus and incidence of kidney cancer: a meta-analysis of cohort studies. Diabetologia. 2011;54(5):1013–8.

    Article  CAS  PubMed  Google Scholar 

  16. Harding JL, Shaw JE, Peeters A, Cartensen B, Magliano DJ. Cancer risk among people with type 1 and type 2 diabetes: disentangling true associations, detection bias, and reverse causation. Diabetes care 2015;38:264-270. Diabetes Care. 2015;38(4):734–5.

    PubMed  Google Scholar 

  17. Zendehdel K, Nyrén O, Ostenson CG, Adami HO, Ekbom A, Ye W. Cancer incidence in patients with type 1 diabetes mellitus: a population-based cohort study in Sweden. J Natl Cancer Inst. 2003;95(23):1797–800.

    Article  PubMed  Google Scholar 

  18. Shu X, Ji J, Li X, Sundquist J, Sundquist K, Hemminki K. Cancer risk among patients hospitalized for type 1 diabetes mellitus: a population-based cohort study in Sweden. Diabet Med. 2010;27(7):791–7.

    Article  CAS  PubMed  Google Scholar 

  19. Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL, et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA. 2008;300(23):2754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM. Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults. Diabetes Care. 2012;35(9):1835–44.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cheung YM, Hughes M, Harrod J, Files J, Kirkner G, Buckley L, et al. The effects of diabetes and glycemic control on cancer outcomes in individuals with metastatic breast cancer. J Clin Endocrinol Metab. 2022;107(9):2511–21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lin CC, Wu MF, Chang YL, Sheu WH, Liou WS. Glycemic control was associated with nonprostate cancer and overall mortalities in diabetic patients with prostate cancer. J Chin Med Assoc. 2022;85(3):331–40.

    Article  CAS  PubMed  Google Scholar 

  23. Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R, et al. 6. Glycemic targets: standards of medical Care in Diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S83–s96.

    Google Scholar 

  24. Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, et al. American Association of Clinical Endocrinology Clinical Practice guideline: developing a diabetes mellitus comprehensive care Plan-2022 update. Endocr Pract. 2022;28(10):923–1049.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schäcke H, Döcke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther. 2002;96(1):23–43.

    Article  PubMed  Google Scholar 

  26. Brooks D, Schulman-Rosenbaum R, Griff M, Lester J, Low Wang CC. Glucocorticoid-induced hyperglycemia including dexamethasone-associated hyperglycemia in COVID-19 infection: a systematic review. Endocr Pract. 2022;28:1166.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Perez A, Jansen-Chaparro S, Saigi I, Bernal-Lopez MR, Miñambres I, Gomez-Huelgas R. Glucocorticoid-induced hyperglycemia. J Diabetes. 2014;6(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  28. Blackburn D, Hux J, Mamdani M. Quantification of the risk of corticosteroid-induced diabetes mellitus among the elderly. J Gen Intern Med. 2002;17(9):717–20.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu XX, Zhu XM, Miao Q, Ye HY, Zhang ZY, Li YM. Hyperglycemia induced by glucocorticoids in nondiabetic patients: a meta-analysis. Ann Nutr Metab. 2014;65(4):324–32.

    Article  CAS  PubMed  Google Scholar 

  30. Healy SJ, Nagaraja HN, Alwan D, Dungan KM. Prevalence, predictors, and outcomes of steroid-induced hyperglycemia in hospitalized patients with hematologic malignancies. Endocrine. 2017;56(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  31. Gulliford MC, Charlton J, Latinovic R. Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care. 2006;29(12):2728–9.

    Article  CAS  PubMed  Google Scholar 

  32. Movahedi M, Beauchamp ME, Abrahamowicz M, Ray DW, Michaud K, Pedro S, et al. Risk of incident diabetes mellitus associated with the dosage and duration of Oral glucocorticoid therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2016;68(5):1089–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roberts A, James J, Dhatariya K. Management of hyperglycaemia and steroid (glucocorticoid) therapy: a guideline from the joint British diabetes societies (JBDS) for inpatient care group. Diabet Med. 2018;35(8):1011–7.

    Article  CAS  PubMed  Google Scholar 

  34. Aberer F, Hochfellner DA, Sourij H, Mader JK. A practical guide for the Management of Steroid Induced Hyperglycaemia in the hospital. J Clin Med. 2021;10(10).

    Google Scholar 

  35. Shah P, Kalra S, Yadav Y, Deka N, Lathia T, Jacob JJ, et al. Management of glucocorticoid-induced hyperglycemia. Diabetes Metab Syndr Obes. 2022;15:1577–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clore JN, Thurby-Hay L. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15(5):469–74.

    Article  PubMed  Google Scholar 

  37. Paragliola RM, Papi G, Pontecorvi A, Corsello SM. Treatment with synthetic glucocorticoids and the hypothalamus-pituitary-adrenal Axis. Int J Mol Sci. 2017;18(10).

    Google Scholar 

  38. Johannsson G, Nilsson AG, Bergthorsdottir R, Burman P, Dahlqvist P, Ekman B, et al. Improved cortisol exposure-time profile and outcome in patients with adrenal insufficiency: a prospective randomized trial of a novel hydrocortisone dual-release formulation. J Clin Endocrinol Metabol. 2012;97(2):473–81.

    Article  CAS  Google Scholar 

  39. Umpierrez GE, Smiley D, Zisman A, Prieto LM, Palacio A, Ceron M, et al. Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes (RABBIT 2 trial). Diabetes Care. 2007;30(9):2181–6.

    Article  CAS  PubMed  Google Scholar 

  40. Hirsch IB, Juneja R, Beals JM, Antalis CJ, Wright EE. The evolution of insulin and how it informs therapy and treatment choices. Endocr Rev. 2020;41(5):733–55.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Heise T, Mathieu C. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes Obes Metab. 2017;19(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  42. Jonassen I, Havelund S, Hoeg-Jensen T, Steensgaard DB, Wahlund PO, Ribel U. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm Res. 2012;29(8):2104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heise T, Piras de Oliveira C, Juneja R, Ribeiro A, Chigutsa F, Blevins T. What is the value of faster acting prandial insulin? Focus on ultra rapid lispro. Diabetes Obes Metab. 2022;24(9):1689–701.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wilson LM, Castle JR. Recent advances in insulin therapy. Diabetes Technol Ther. 2020;22(12):929–36.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wong EY, Kroon L. Ultra-rapid-acting insulins: how fast is really needed? Clin Diabetes. 2021;39(4):415–23.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304–5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Suissa S, Azoulay L. Metformin and the risk of cancer: time-related biases in observational studies. Diabetes Care. 2012;35(12):2665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kanadiya MK, Gohel TD, Sanaka MR, Thota PN, Shubrook JH Jr. Relationship between type-2 diabetes and use of metformin with risk of colorectal adenoma in an American population receiving colonoscopy. J Diabetes Complicat. 2013;27(5):463–6.

    Article  Google Scholar 

  49. He XK, Su TT, Si JM, Sun LM. Metformin is associated with slightly reduced risk of colorectal cancer and moderate survival benefits in diabetes mellitus: a meta-analysis. Medicine (Baltimore). 2016;95(7):e2749.

    Article  CAS  PubMed  Google Scholar 

  50. Jian-Yu E, Graber JM, Lu SE, Lin Y, Lu-Yao G, Tan XL. Effect of metformin and statin use on survival in pancreatic cancer patients: a systematic literature review and meta-analysis. Curr Med Chem. 2018;25(22):2595–607.

    Article  CAS  PubMed Central  Google Scholar 

  51. Goodwin PJ, Chen BE, Gelmon KA, Whelan TJ, Ennis M, Lemieux J, et al. Effect of metformin vs placebo on invasive disease-free survival in patients with breast cancer: the MA.32 randomized clinical trial. JAMA. 2022;327(20):1963–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hershey DS, Bryant AL, Olausson J, Davis ED, Brady VJ, Hammer M. Hyperglycemic-inducing neoadjuvant agents used in treatment of solid tumors: a review of the literature. Oncol Nurs Forum. 2014;41(6):E343–54.

    Article  PubMed  Google Scholar 

  53. Lane JT, Dagogo-Jack S. Approach to the patient with new-onset diabetes after transplant (NODAT). J Clin Endocrinol Metabol. 2011;96(11):3289–97.

    Article  CAS  Google Scholar 

  54. Tanimura J, Nakagawa H, Tanaka T, Kikuchi A, Osada S, Tanaka Y, et al. The clinical course and potential underlying mechanisms of everolimus-induced hyperglycemia. Endocr J. 2019;66(7):615–20.

    Article  CAS  PubMed  Google Scholar 

  55. Xu KY, Shameem R, Wu S. Risk of hyperglycemia attributable to everolimus in cancer patients: a meta-analysis. Acta Oncol. 2016;55(9–10):1196–203.

    Article  CAS  PubMed  Google Scholar 

  56. Blow T, Hyde PN, Falcone JN, Neinstein A, Vasan N, Chitkara R, et al. Treating Alpelisib-induced hyperglycemia with very Low carbohydrate diets and sodium-glucose co-transporter 2 inhibitors: a case series. Integr Cancer Ther. 2021;20:15347354211032283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40.

    Article  PubMed  Google Scholar 

  58. Di Leo A, Johnston S, Lee KS, Ciruelos E, Lønning PE, Janni W, et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19(1):87–100.

    Article  PubMed  Google Scholar 

  59. Bowman C, Abramson V, Wellons M. Ketoacidosis with Canagliflozin prescribed for phosphoinositide 3-kinase inhibitor-induced hyperglycemia: a case report. J Investig Med High Impact Case Rep. 2017;5(3):2324709617725351.

    PubMed  PubMed Central  Google Scholar 

  60. Ekanayake PS, Gerwer J, McCowen K. ALPELISIB—induced hyperglycemia. Acta Endocrinol (Buchar). 2022;18(1):115–7.

    Article  CAS  PubMed  Google Scholar 

  61. Nguyen P, Musa A, Samantray J. Alpelisib-induced diabetic ketoacidosis. Cureus. 2021;13(5):e14796.

    PubMed  PubMed Central  Google Scholar 

  62. Hopkins BD, Pauli C, Du X, Wang DG, Li X, Wu D, et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature. 2018;560(7719):499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Akturk HK, Kahramangil D, Sarwal A, Hoffecker L, Murad MH, Michels AW. Immune checkpoint inhibitor-induced type 1 diabetes: a systematic review and meta-analysis. Diabet Med. 2019;36(9):1075–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Byun DJ, Braunstein R, Flynn J, Zheng J, Lefkowitz RA, Kanbour S, et al. Immune checkpoint inhibitor-associated diabetes: a single-institution experience. Diabetes Care. 2020;43(12):3106–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Senarathne UD, Dayanath B, Punchihewa R, Gunasena B. Patient with respiratory distress, facial oedema and refractory hypokalaemia. BMJ Case Rep. 2021;14(5).

    Google Scholar 

  67. Gapp J, Anwar MF, Parekh J, Griffin T. New onset hyperglycemia attributed to renal cell carcinoma. Intractable Rare Dis Res. 2018;7(2):134–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ishay A, Touma E, Vornicova O, Dodiuk-Gad R, Goldman T, Bisharat N. Ectopic Cushing’s syndrome in a patient with metastatic Merkel cell carcinoma: a case report. World J Clin Cases. 2022;10(22):7989–93.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Soundarrajan M, Zelada H, Fischer JV, Kopp P. ECTOPIC ADRENOCORTICOTROPIC HORMONE SYNDROME DUE TO METASTATIC PROSTATE CANCER WITH NEUROENDOCRINE DIFFERENTIATION. AACE Clin Case Rep. 2019;5(3):e192–e6.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wannasri T, Luvira V, Pairojkul C. Dramatic disappearance of hyperglycemia and abnormal neurologic symptoms after resection of duodenal gastrointestinal stromal tumor. Clin J Gastroenterol. 2022;15(6):1067–71.

    Article  PubMed  Google Scholar 

  71. Korytkowski MT, Salata RJ, Koerbel GL, Selzer F, Karslioglu E, Idriss AM, et al. Insulin therapy and glycemic control in hospitalized patients with diabetes during enteral nutrition therapy: a randomized controlled clinical trial. Diabetes Care. 2009;32(4):594–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Angelo M, Ruchalski C, Sproge BJ. An approach to diabetes mellitus in hospice and palliative medicine. J Palliat Med. 2011;14(1):83–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contributions of Marcia Kalin, MD, Amy Heistand, RN, Ritika Chitkara, PA, Ruben Diaz, NP, Samantha Fazio, RN, and the diabetes team at Memorial Sloan Kettering Cancer Center, whose generous support has allowed us to write this chapter. We are also grateful to Jay Shubrook, DO (Diabetologist, Touro University, California), for his perspective and critical review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubaina S. Presswala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Presswala, L.S., Farooki, A., Flory, J. (2023). Diabetes Care in the Oncologic Population. In: Schulman-Rosenbaum, R.C. (eds) Diabetes Management in Hospitalized Patients. Contemporary Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-44648-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44648-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44647-4

  • Online ISBN: 978-3-031-44648-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics