Skip to main content

Catalase-Like Nanozymes and Their Applications in Alleviating Tumor Hypoxia for the Therapeutic Enhancement

  • Conference paper
  • First Online:
9th International Conference on the Development of Biomedical Engineering in Vietnam (BME 2022)

Abstract

Cancer has been globally acknowledged as one of the most dangerous health problems. Although current therapies have shown promising results, they cannot eliminate all tumor cells and prevent the recurrence of these cells in the long term. The aggressive progress of a tumor can be triggered when the cancer is suffered from oxygen depletion or so-called hypoxia. Previously, researchers primarily utilized catalase's enzymatic activity to convert the endogenous hydrogen peroxide in cancer cells into oxygen, alleviating intracellular hypoxia. However, using natural enzymes has faced limitations, such as low stability and uneasy and costly production, making it hard to commercialize this method. To tackle the problem, synthetic nanomaterials, which could mimic enzyme-like activity, are utilized and named nanozyme. The ability of nanozymes mostly comes from the redox reaction of cations of high-Z metals, such as manganese, iron, cerium, and iridium. This review will offer readers an overview of the synergistic effect of nanozyme-based delivery models with the ability to generate oxygen to attenuate tumor hypoxia and enhance the therapeutic outcome. Based on the literature search, each type of nanozymes possesses both pros and cons; however, they all perform well in suppressing tumor hypoxia and improving therapeutic efficacy. Though, more studies must be conducted to guarantee these catalase-mimicking nanozymes’ long-term safety before the clinical application. Besides, solving the problem of hypoxia also opens up new paths for potential applications in 3D in-vitro cancer cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/CAAC.21660

    Article  Google Scholar 

  2. Jing, X., et al.: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18(1), 1–15 (2019). https://doi.org/10.1186/s12943-019-1089-9

    Article  Google Scholar 

  3. Sun, Y.: Tumor microenvironment and cancer therapy resistance. Cancer Lett. 380(1), 205–215 (2016). https://doi.org/10.1016/j.canlet.2015.07.044

    Article  MathSciNet  Google Scholar 

  4. Quail, D.F., Joyce, J.A.: Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19(11), 1423–1437 (2013). https://doi.org/10.1038/nm.3394

    Article  Google Scholar 

  5. Tanaka, K., et al.: MiR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis 36(8), 894–903 (2015). https://doi.org/10.1093/CARCIN/BGV067

    Article  Google Scholar 

  6. Özdemir, B.C., et al.: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6), 719–734 (2014). https://doi.org/10.1016/j.ccr.2014.04.005

    Article  Google Scholar 

  7. Rhim, A.D., et al.: Stromal elements act to restrain, rather than support. Pancreatic Ductal Adenocarcinoma. Cancer Cell 25(6), 735–747 (2014). https://doi.org/10.1016/j.ccr.2014.04.021

    Article  Google Scholar 

  8. Duluc, C., et al.: Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol. Med. 7(6), 735–753 (2015). https://doi.org/10.15252/emmm.201404346

    Article  Google Scholar 

  9. Erez, N., Truitt, M., Olson, P., Hanahan, D.: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17(2), 135–147 (2010). https://doi.org/10.1016/j.ccr.2009.12.041

    Article  Google Scholar 

  10. Erez, N., Glanz, S., Raz, Y., Avivi, C., Barshack, I.: Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochem. Biophys. Res. Commun. 437(3), 397–402 (2013). https://doi.org/10.1016/j.bbrc.2013.06.089

    Article  Google Scholar 

  11. Nagasaki, T., Hara, M., Nakanishi, H., Takahashi, H., Sato, M., Takeyama, H.: Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour–stroma interaction. Br. J. Cancer 110(2), 469–478 (2014). https://doi.org/10.1038/bjc.2013.748

    Article  Google Scholar 

  12. Zhang, X.H.-F., et al.: Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154(5), 1060–1073 (2013). https://doi.org/10.1016/j.canlet.2015.07.044

    Article  Google Scholar 

  13. Song, T., et al.: TIMP-1 activated carcinoma-associated fibroblasts inhibit tumor apoptosis by activating SDF1/CXCR4 signaling in hepatocellular carcinoma. Oncotarget 6(14), 12061–12079 (2015). https://doi.org/10.18632/oncotarget.3616

    Article  Google Scholar 

  14. Qiu, G.Z., Jin, M.Z., Dai, J.X., Sun, W., Feng, J.H., Jin, W.L.: Reprogramming of the tumor in the hypoxic niche: the emerging concept and associated therapeutic strategies. Trends Pharmacol. Sci. 38(8), 669–686 (2017). https://doi.org/10.1016/j.tips.2017.05.002

    Article  Google Scholar 

  15. Schito, L., Semenza, G.L.: Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2(12), 758–770 (2016). https://doi.org/10.1016/j.trecan.2016.10.016

    Article  Google Scholar 

  16. Majmundar, A.J., Wong, W.J., Simon, M.C.: Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40(2), 294–309 (2010). https://doi.org/10.1016/j.molcel.2010.09.022

    Article  Google Scholar 

  17. Roma-Rodrigues, C., Mendes, R., Baptista, P.V., Fernandes, A.R.: Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 20(4), 840 (2019). https://doi.org/10.3390/ijms20040840

    Article  Google Scholar 

  18. Wang, B., et al.: Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J. Exp. Clin. Cancer Res. 40(1), 1–16 (2021). https://doi.org/10.1186/s13046-020-01820-7

    Article  Google Scholar 

  19. Noman, M.Z., et al.: Improving cancer immunotherapy by targeting the hypoxic tumor microenvironment: new opportunities and challenges. Cells 8(9), 1083 (2019). https://doi.org/10.3390/cells8091083

    Article  Google Scholar 

  20. Zhang, R., et al.: Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials 138, 13–21 (2017). https://doi.org/10.1016/j.biomaterials.2017.05.025

    Article  Google Scholar 

  21. Phua, S.Z.F., et al.: Catalase-integrated hyaluronic acid as nano carriers for enhanced photodynamic therapy in solid tumor. ACS Nano 13(4), 4742–4751 (2019). https://doi.org/10.1021/acsnano.9b01087

    Article  MathSciNet  Google Scholar 

  22. Alfonso-Prieto, M., Biarnés, X., Vidossich, P., Rovira, C.: The molecular mechanism of the catalase reaction. J. Am. Chem. Soc. 131(33), 11751–11761 (2009). https://doi.org/10.1021/ja9018572

    Article  Google Scholar 

  23. Chelikani, P., Fita, I., Loewen, P.C.: Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 61(2), 192–208 (2004). https://doi.org/10.1007/s00018-003-3206-5

    Article  Google Scholar 

  24. Liang, M., Yan, X.: Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140

    Article  Google Scholar 

  25. Jiang, D., Ni, D., Rosenkrans, Z.T., Huang, P., Yan, X., Cai, W.: Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48(14), 3683–3704 (2019). https://doi.org/10.1039/c8cs00718g

    Article  Google Scholar 

  26. Zhang, Y., Jin, Y., Cui, H., Yan, X., Fan, K.: Nanozyme-based catalytic theranostics. RSC Adv. 10(1), 10–20 (2020). https://doi.org/10.1039/c9ra09021e

    Article  Google Scholar 

  27. Gao, L., Yan, X.: Nanozymes: an emerging field bridging nanotechnology and biology. Sci. China Life Sci. 59(4), 400–402 (2016). https://doi.org/10.1007/s11427-016-5044-3

    Article  MathSciNet  Google Scholar 

  28. Maji, S.K., Mandal, A.K., Nguyen, K.T., Borah, P., Zhao, Y.: Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl. Mater. Interfaces 7(18), 9807–9816 (2015). https://doi.org/10.1021/acsami.5b01758

    Article  Google Scholar 

  29. Meng, L., et al.: Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects. ACS Nano 12(8), 8308–8322 (2018). https://doi.org/10.1021/acsnano.8b03590

  30. Salim, S. A., Salaheldin, T. A., Elmazar, M. M., Abdel-Aziz, A. F., Kamoun, E. A.: Smart biomaterials for enhancing cancer therapy by overcoming tumor hypoxia: a review. RSC Adv. 12(52), 33835–33851 (2022). https://doi.org/10.1039/d2ra06036a

  31. Sahu, A., Kwon, I., Tae, G.: Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials 228, 119578 (2020). https://doi.org/10.1016/j.biomaterials.2019.119578

    Article  Google Scholar 

  32. Meng, L., et al.: Facile deposition of manganese dioxide to albumin-bound paclitaxel nanoparticles for modulation of hypoxic tumor microenvironment to improve chemoradiation therapy. Mol. Pharm. 15(2), 447–457 (2018). https://doi.org/10.1021/acs.molpharmaceut.7b00808

    Article  Google Scholar 

  33. Elzoghby, A.O., Samy, W.M., Elgindy, N.A.: Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 157(2), 168–182 (2012). https://doi.org/10.1016/j.jconrel.2011.07.031

    Article  Google Scholar 

  34. Milas, L., Hunter, N.R., Mason, K.A., Kurdoglu, B., Peters, L.J.: Enhancement of tumor radioresponse of a murine mammary carcinoma by paclitaxel. Cancer Res. 54(13), 3506–3510 (1994). PMID: 7912167

    Google Scholar 

  35. Safran, H., et al.: Paclitaxel and concurrent radiation for locally advanced pancreatic and gastric cancer: a phase I study. J. Clin. Oncol. 15(3), 901–907 (1997). https://doi.org/10.1200/JCO.1997.15.3.901

    Article  Google Scholar 

  36. Rich, T., et al.: Phase II study of external irradiation and weekly paclitaxel for nonmetastatic, unresectable pancreatic cancer: RTOG-98–12. Am. J. Clin. Oncol. Cancer Clin. Trials 27(1), 51–56 (2004). https://doi.org/10.1097/01.coc.0000046300.88847.BF

  37. Mikhail, A.S., Allen, C.: Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J. Control. Release 138(3), 214–223 (2009). https://doi.org/10.1016/j.jconrel.2009.04.010

    Article  Google Scholar 

  38. Minchinton, A.I., Tannock, I.F.: Drug penetration in solid tumours. Nat. Rev. Cancer 6(8), 583–592 (2006). https://doi.org/10.1038/nrc1893

    Article  Google Scholar 

  39. Chen, Q., et al.: Intelligent Albumin–MnO2 Nanoparticles as pH-/H2O2-Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. Adv. Mater. 28(33), 7129–7136 (2016). https://doi.org/10.1002/adma.201601902

    Article  Google Scholar 

  40. Tang, L., Gabrielson, N.P., Uckun, F.M., Fan, T.M., Cheng, J.: Size-dependent tumor penetration and in vivo efficacy of monodisperse drug-silica nanoconjugates. Mol. Pharm. 10(3), 883–892 (2013). https://doi.org/10.1021/mp300684a

    Article  Google Scholar 

  41. Popović, Z., et al.: A Nanoparticle size series for in vivo fluorescence imaging. Angew. Chemie 122(46), 8831–8834 (2010). https://doi.org/10.1002/ange.201003142

    Article  Google Scholar 

  42. Yuan, F., et al.: Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55(17), 3752–3756 (1995). ISSN:0008-5472

    Google Scholar 

  43. Jain, R.K.: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706), 58–62 (2005). https://doi.org/10.1126/science.1104819

    Article  Google Scholar 

  44. Perrault, S.D., Walkey, C., Jennings, T., Fischer, H.C., Chan, W.C.W.: Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9(5), 1909–1915 (2009). https://doi.org/10.1021/nl900031y

    Article  Google Scholar 

  45. Stowe, D.F., Camara, A.K.S.: Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid. Redox Signal. 11(6), 1373–1414 (2009). https://doi.org/10.1089/ars.2008.2331

    Article  Google Scholar 

  46. Kavčič, N., Pegan, K., Vandenabeele, P., Turk, B.: Comparative study of the differential cell death protecting effect of various ROS scavengers. Biol. Chem. 400(2), 149–160 (2019). https://doi.org/10.1515/hsz-2017-0317

    Article  Google Scholar 

  47. Moloney, J.N., Cotter, T.G.: ROS signaling in the biology of cancer. Semin. Cell Dev. Biol. 80, 50–64 (2018). https://doi.org/10.1016/j.semcdb.2017.05.023

    Article  Google Scholar 

  48. Kiesslich, T., Plaetzer, K., Oberdanner, C.B., Berlanda, J., Obermair, F.J., Krammer, B.: Differential effects of glucose deprivation on the cellular sensitivity towards photodynamic treatment-based production of reactive oxygen species and apoptosis-induction. FEBS Lett. 579(1), 185–190 (2005). https://doi.org/10.1016/j.febslet.2004.11.073

    Article  Google Scholar 

  49. Hall, M.D., Hambley, T.W.: Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord. Chem. Rev. 232(1–2), 49–67 (2002). https://doi.org/10.1016/S0010-8545(02)00026-7

    Article  Google Scholar 

  50. Homolya, Váradi, A., Sarkadi, B.: Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 17(1–4), 103–114 (2003). https://doi.org/10.1002/biof.5520170111

  51. Mellish, K., Kelland, L., Harrap, K.: In vitro platinum drug chemosensitivity of human cervical squamous cell carcinoma cell lines with intrinsic and acquired resistance to cisplatin. Br. J. Cancer 68(2), 240–250 (1993). https://doi.org/10.1038/bjc.1993.322

    Article  Google Scholar 

  52. Liu, P., Xie, X., Liu, M., Hu, S., Ding, J., Zhou, W.: A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm. Sin. B 11(3), 823–834 (2021). https://doi.org/10.1016/j.apsb.2020.07.021

    Article  Google Scholar 

  53. Zhang, H., Grüner, G., Zhao, Y.: Recent advancements of graphene in biomedicine. J. Mater. Chem. B 1(20), 2542–2567 (2013). https://doi.org/10.1039/c3tb20405g

    Article  Google Scholar 

  54. Liu, Y., Yang, G., Jin, S., Xu, L., Zhao, C.-X.: Development of high-drug-loading nanoparticles. ChemPlusChem 85(9), 2143–2157 (2020). https://doi.org/10.1002/cplu.202000496

    Article  Google Scholar 

  55. Zhou, Z., et al.: Ping: overcoming chemotherapy resistance using pH-sensitive hollow MnO2 nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma. J. Nanobiotechnology 19(1), 157 (2021). https://doi.org/10.1186/s12951-021-00901-9

  56. Li, Y., Shi, J.: Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv. Mater. 26(20), 3176–3205 (2014). https://doi.org/10.1002/adma.201305319

    Article  Google Scholar 

  57. Cheng, M., et al.: Monodisperse hollow MnO2 with biodegradability for efficient targeted drug delivery. ACS Biomater. Sci. Eng. 6(9), 4985–4992 (2020). https://doi.org/10.1021/acsbiomaterials.0c00507

    Article  Google Scholar 

  58. Wu, M., et al.: Manganese dioxide nanosheets: from preparation to biomedical applications. Int. J. Nanomedicine 14, 4781–4800 (2019). https://doi.org/10.2147/IJN.S207666

    Article  Google Scholar 

  59. Zhao, M., Huang, Y., Peng, Y., Huang, Z., Ma, Q., Zhang, H.: Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 47(16), 6267–6295 (2018). https://doi.org/10.1039/c8cs00268a

    Article  Google Scholar 

  60. Liu, Z., et al.: Theranostic 2D ultrathin MnO2 nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation. Biomaterials 155, 54–63 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.015

    Article  Google Scholar 

  61. Gao, S., Lin, H., Zhang, H., Yao, H., Chen, Y., Shi, J.: Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 6(3), 1801733 (2019). https://doi.org/10.1002/advs.201801733

    Article  Google Scholar 

  62. Finkel, T., Serrano, M., Blasco, M.A.: The common biology of cancer and ageing. Nature 448(7155), 767–774 (2007). https://doi.org/10.1038/nature05985

    Article  Google Scholar 

  63. Wang, J., et al.: Inorganic nanozyme with combined self-oxygenation/degradable capabilities for sensitized cancer immunochemotherapy. Nano-Micro Lett. 11(1), 1–18 (2019). https://doi.org/10.1007/s40820-019-0305-x

    Article  Google Scholar 

  64. Liu, X., et al.: Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors. Nano Res. 13(3), 653–660 (2020). https://doi.org/10.1007/s12274-020-2668-1

    Article  Google Scholar 

  65. He, C., et al.: A solid lipid coated calcium peroxide nanocarrier enables combined cancer chemo/chemodynamic therapy with O2/H2O2 self-sufficiency. Acta Biomater. 122, 354–364 (2021). https://doi.org/10.1016/j.actbio.2020.12.036

    Article  Google Scholar 

  66. Pham, A.L.T., Lee, C., Doyle, F.M., Sedlak, D.L.: A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol. 43(23), 8930–8935 (2009). https://doi.org/10.1021/es902296k

    Article  Google Scholar 

  67. Mamat, M., et al.: CaO2/Fe3O4 nanocomposites for oxygen-independent generation of radicals and cancer therapy. Colloids Surf. B 204, 111803 (2021). https://doi.org/10.1016/j.colsurfb.2021.111803

    Article  Google Scholar 

  68. Korsvik, C., Patil, S., Seal, S., Self, W.T.: Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 10, 1056–1058 (2007). https://doi.org/10.1039/b615134e

    Article  Google Scholar 

  69. Pirmohamed, T., et al.: Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46(16), 2736–2738 (2010). https://doi.org/10.1039/b922024k

    Article  Google Scholar 

  70. Zeng, L., et al.: In vivo regenerable cerium oxide nanozyme-loaded pH/H2O2-responsive nanovesicle for tumor-targeted photothermal and photodynamic therapies. ACS Appl. Mater. Interfaces 13(1), 233–244 (2021). https://doi.org/10.1021/acsami.0c19074

    Article  Google Scholar 

  71. Fan, Y., et al.: A smart photosensitizer-cerium oxide nanoprobe for highly selective and efficient photodynamic therapy. Inorg. Chem. 58(11), 7295–7302 (2019). https://doi.org/10.1021/acs.inorgchem.9b00363

    Article  Google Scholar 

  72. Wei, C., et al.: Iridium/ruthenium nanozyme reactors with cascade catalytic ability for synergistic oxidation therapy and starvation therapy in the treatment of breast cancer. Biomaterials 238, 119848 (2020). https://doi.org/10.1016/j.biomaterials.2020.119848

    Article  Google Scholar 

  73. Feng, L., et al.: Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials 181, 81–91 (2018). https://doi.org/10.1016/j.biomaterials.2018.07.049

    Article  Google Scholar 

  74. Yuan, X., et al.: Iridium oxide nanoparticles mediated enhanced photodynamic therapy combined with photothermal therapy in the treatment of breast cancer. J. Colloid Interface Sci. 605, 851–862 (2022). https://doi.org/10.1016/j.jcis.2021.07.136

    Article  Google Scholar 

  75. Armstrong, F.A.: Why did Nature choose manganese to make oxygen? Philos. Trans. R. Soc. B Biol. Sci. 363(1494), 1263–1270 (2008). https://doi.org/10.1098/rstb.2007.2223

    Article  Google Scholar 

  76. De Witt Hamer, P.C., et al.: The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 27(14), 2091–2096 (2008). https://doi.org/10.1038/sj.onc.1210850

  77. Sharifi, S., Behzadi, S., Laurent, S., Forrest, M.L., Stroeve, P., Mahmoudi, M.: Toxicity of nanomaterials. Chem. Soc. Rev. 41(6), 2323–2343 (2012). https://doi.org/10.1039/c1cs15188f

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by International University (Grant no: T2020-01-BT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Truc Nguyen .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, D.N., Nguyen, K.T. (2024). Catalase-Like Nanozymes and Their Applications in Alleviating Tumor Hypoxia for the Therapeutic Enhancement. In: Vo, V.T., Nguyen, TH., Vong, B.L., Le, N.B., Nguyen, T.Q. (eds) 9th International Conference on the Development of Biomedical Engineering in Vietnam. BME 2022. IFMBE Proceedings, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-031-44630-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44630-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44629-0

  • Online ISBN: 978-3-031-44630-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics