Skip to main content

Iron Oxide-Based Nanozymes and Their Applications

  • Chapter
  • First Online:
Iron Oxide-Based Nanocomposites and Nanoenzymes

Abstract

In the past ten years, interest in nanozymes, which are nanomaterials with inherent enzyme-like capabilities, has skyrocketed because of their potential to overcome the drawbacks of conventional enzymes, such as their low stability, high cost, and difficult storage. Iron oxide-based nanozymes, among other forms of nanozymes, have magnetic properties (superparamagnetic), are biocompatible, and are stable. Iron oxide-based nanozymes are frequently used for many biomedical applications because of the aforementioned features. The basic concepts of iron oxide-based nanozymes and their biological applications are the main emphasis of this chapter. Also briefly covered are recent findings and the outlook for iron oxide-based nanozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li Z, Lin Z (2017) Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ Sci 10:402–434. https://doi.org/10.1039/c6ee02265k

    Article  Google Scholar 

  2. Ray C, Pal T (2017) Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures. J Mater Chem A 5:9465–9487. https://doi.org/10.1039/c7ta02116j

    Article  Google Scholar 

  3. Korotcenkov G, Cho BK (2017) Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens Actuators B Chem 244:182–210. https://doi.org/10.1016/j.snb.2016.12.117

    Article  Google Scholar 

  4. Zhong BL, Hu J, Liang H et al (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431. https://doi.org/10.1002/adma.200600504

    Article  Google Scholar 

  5. Song H, Zhang L, He C et al (2011) Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J Mater Chem 21:5972–5977. https://doi.org/10.1039/c0jm04331a

    Article  Google Scholar 

  6. Ventola CL, Bharali DJ, Mousa SA (2010) The nanomedicine revolution: part 1: emerging concepts. Pharm Ther 128:512–525

    Google Scholar 

  7. Roco MC, Bainbridge WS (2005) Societal implications of nanoscience and nanotechnology: maximizing human benefit. J Nanopart Res 7:1–13. https://doi.org/10.1007/s11051-004-2336-5

    Article  Google Scholar 

  8. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346. https://doi.org/10.1016/S0958-1669(03)00068-5

    Article  PubMed  Google Scholar 

  9. Li M, Zhang H, Hou Y et al (2020) State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nanoscale Horiz 5:202–217. https://doi.org/10.1039/c9nh00577c

    Article  Google Scholar 

  10. Sutrisno L, Hu Y, Hou Y et al (2020) Progress of iron-based nanozymes for antitumor therapy. Front Chem 8:1–9. https://doi.org/10.3389/fchem.2020.00680

    Article  Google Scholar 

  11. Shi C, Li Y, Gu N (2020) Iron-based nanozymes in disease diagnosis and treatment. ChemBioChem 21:2722–2732. https://doi.org/10.1002/cbic.202000094

    Article  PubMed  Google Scholar 

  12. Korschelt K, Tahir MN, Tremel W (2018) A step into the future: applications of nanoparticle enzyme mimics. Chemistry 24:9703–9713. https://doi.org/10.1002/chem.201800384

    Article  PubMed  Google Scholar 

  13. Ragg R, Tahir MN, Tremel W (2016) Solids go bio: inorganic nanoparticles as enzyme mimics. Eur J Inorg Chem 2016:1906–1915. https://doi.org/10.1002/ejic.201501237

    Article  Google Scholar 

  14. Shang Y, Liu F, Wang Y et al (2020) Enzyme mimic nanomaterials and their biomedical applications. ChemBioChem 21:2408–2418. https://doi.org/10.1002/cbic.202000123

    Article  PubMed  Google Scholar 

  15. Cheng H, Zhang L, He J et al (2016) Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem 88:5489–5497. https://doi.org/10.1021/acs.analchem.6b00975

    Article  PubMed  Google Scholar 

  16. Jiang B, Duan D, Gao L et al (2018) Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 13:1506–1520. https://doi.org/10.1038/s41596-018-0001-1

    Article  PubMed  Google Scholar 

  17. Chen Z, Yin J, Zhou Y et al (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 4001–4012

    Google Scholar 

  18. Dong H, Fan Y, Zhang W et al (2019) Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug Chem 30:1273–1296. https://doi.org/10.1021/acs.bioconjchem.9b00171

    Article  PubMed  Google Scholar 

  19. Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res 52:2190–2200. https://doi.org/10.1021/acs.accounts.9b00140

    Article  PubMed  Google Scholar 

  20. Sun H, Zhou Y, Ren J, Qu X (2018) Kohlenstoff-Nanozyme: Enzymatische Eigenschaften, Katalysemechanismen und Anwendungen. Angew Chem 130:9366–9379. https://doi.org/10.1002/ange.201712469

    Article  Google Scholar 

  21. Alizadeh N, Salimi A (2021) Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering. J Nanobiotechnol 1–31. https://doi.org/10.1186/s12951-021-00771-1

  22. Duygu Y, Gökçal B, Büber E et al (2021) A new nanozyme with peroxidase-like activity for simultaneous phosphoprotein isolation and detection based on metal oxide affinity chromatography: monodisperse-porous cerium oxide microspheres. Chem Eng J 403. https://doi.org/10.1016/j.cej.2020.126357

  23. Wang X, Guo W, Hu Y et al (2016) Metal oxide-based nanomaterials for nanozymes

    Google Scholar 

  24. Liu Q, Zhang A, Wang R et al (2021) A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Springer Singapore

    Google Scholar 

  25. Natalio F, André R, Hartog AF et al (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7:530–535. https://doi.org/10.1038/nnano.2012.91

    Article  PubMed  Google Scholar 

  26. Herget K, Hubach P, Pusch S et al (2017) Haloperoxidase mimicry by CeO2−x nanorods combats biofouling. Adv Mater 29:1–8. https://doi.org/10.1002/adma.201603823

    Article  Google Scholar 

  27. Wang L, Hou J, Liu S et al (2019) CuO nanoparticles as haloperoxidase-mimics: chloride-accelerated heterogeneous Cu-Fenton chemistry for H2O2 and glucose sensing. Sens Actuators B Chem 287:180–184. https://doi.org/10.1016/j.snb.2019.02.030

    Article  Google Scholar 

  28. Karim MN, Singh M, Weerathunge P et al (2018) Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Appl Nano Mater 1:1694–1704. https://doi.org/10.1021/acsanm.8b00153

    Article  Google Scholar 

  29. Gao L, Fan K, Yan X (2017) Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7:3207–3227. https://doi.org/10.7150/thno.19738

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vallabani NVS, Vinu A, Singh S, Karakoti A (2020) Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J Colloid Interface Sci 567:154–164. https://doi.org/10.1016/j.jcis.2020.01.099

    Article  PubMed  Google Scholar 

  31. Mansur AAP, Mansur HS, Carvalho SM (2022) Engineered hybrid nanozyme catalyst cascade based on polysaccharide-enzyme-magnetic iron oxide nanostructures for potential application in cancer therapy. Catal Today 388–389:187–198. https://doi.org/10.1016/j.cattod.2020.06.083

    Article  Google Scholar 

  32. Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997. https://doi.org/10.1039/c4cs00370e

    Article  PubMed  Google Scholar 

  33. Cai Y, Cao C, He X et al (2015) Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size. Int J Nanomed 10:2619–2634. https://doi.org/10.2147/IJN.S80025

    Article  Google Scholar 

  34. Wang C, Yang J, Dong C, Shi S (2020) Glucose oxidase-related cancer therapies. Adv Ther 3:1–29. https://doi.org/10.1002/adtp.202000110

    Article  Google Scholar 

  35. Tibbitt MW, Dahlman JE, Langer R (2016) Emerging frontiers in drug delivery. J Am Chem Soc 138:704–717. https://doi.org/10.1021/jacs.5b09974

    Article  PubMed  Google Scholar 

  36. Lockwood DJ. Nanozymology

    Google Scholar 

  37. Hu M, Korschelt K, Daniel P et al (2017) Fibrous nanozyme dressings with catalase-like activity for H2O2 reduction to promote wound healing. ACS Appl Mater Interfaces 9:38024–38031. https://doi.org/10.1021/acsami.7b12212

    Article  PubMed  Google Scholar 

  38. Hosta-Rigau L (2019) Engineering and regenerative medicine

    Google Scholar 

Download references

Acknowledgements

All authors appreciatively acknowledge the Centurion University of Technology and Management (CUTM), Odisha, India, for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shraban Kumar Sahoo or Gagan Kumar Panigrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, S.K. et al. (2024). Iron Oxide-Based Nanozymes and Their Applications. In: Sahoo, H., Sahoo, J.K. (eds) Iron Oxide-Based Nanocomposites and Nanoenzymes. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-44599-6_3

Download citation

Publish with us

Policies and ethics