
Ernst Denert Award for
Software Engineering 2022

Eric Bodden · Michael Felderer
Wilhelm Hasselbring · Paula Herber
Heiko Koziolek · Carola Lilienthal
Florian Matthes · Lutz Prechelt
Bernhard Rumpe · Ina Schaefer Eds.

Practice Meets
Foundations

Ernst Denert Award for
Software Engineering 2022

Eric Bodden • Michael Felderer •
Wilhelm Hasselbring • Paula Herber •
Heiko Koziolek • Carola Lilienthal •
Florian Matthes • Lutz Prechelt •
Bernhard Rumpe • Ina Schaefer
Editors

Ernst Denert Award for
Software Engineering 2022
Practice Meets Foundations

Editors
Eric Bodden
Secure Software Engineering, Heinz Nixdorf
Institut der Universität Paderborn
Paderborn University and Fraunhofer IEM
Paderborn, Germany

Wilhelm Hasselbring
Software Engineering
Christian-Albrechts-Universität Kiel
Kiel, Germany

Heiko Koziolek
ABB Corporate Research
Ladenburg, Germany

Florian Matthes
Software Engineering of Business Information
Systems, Department of Computer Science (CS)
Technical University of Munich
Garching bei München, Germany

Bernhard Rumpe
Software Engineering
RWTH Aachen
Aachen, Germany

Michael Felderer
Institute for Software Technology
German Aerospace Center (DLR),
University of Cologne
Cologne, Germany

Paula Herber
Embedded Systems Group
University of Münster
Münster, Germany

Carola Lilienthal
WPS - Workplace Solutions GmbH
Hamburg, Germany

Lutz Prechelt
Institut für Informatik
Freie Universität Berlin
Berlin, Germany

Ina Schaefer
Testing, Validation and Analysis of
Software-Intensive Systems (TVA)
Institute for Information Security
and Dependability (KASTEL)
Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

ISBN 978-3-031-44411-1 ISBN 978-3-031-44412-8 (eBook)
https://doi.org/10.1007/978-3-031-44412-8

This work was supported by the Gerlind & Ernst Denert-Stiftung.

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Cover illustration: © 2020 Ernst Denert, all rights reserved.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-44412-8
https://doi.org/10.1007/978-3-031-44412-8
https://doi.org/10.1007/978-3-031-44412-8
https://doi.org/10.1007/978-3-031-44412-8
https://doi.org/10.1007/978-3-031-44412-8
https://doi.org/10.1007/978-3-031-44412-8
https://doi.org/10.1007/978-3-031-44412-8
https://doi.org/10.1007/978-3-031-44412-8
https://doi.org/10.1007/978-3-031-44412-8
https://doi.org/10.1007/978-3-031-44412-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Contents

Ernst Denert Software Engineering Award 2022 . 1
Eric Bodden, Michael Felderer, Wilhelm Hasselbring, Paula Herber,
Heiko Koziolek, Carola Lilienthal, Florian Matthes, Lutz Prechelt,
Bernhard Rumpe, and Ina Schaefer

Conditional Statements in Requirements Artifacts: Logical
Interpretation, Use Cases for Automated Software Engineering,
and Fine-Grained Extraction . 9
Jannik Fischbach and Andreas Vogelsang

From Design to Reality: An Overview of the MontiThings
Ecosystem for Model-Driven IoT Applications . 45
Jörg Christian Kirchhof

Security Compliance in Model-Driven Software Development 73
Sven Peldszus

Model-Driven Engineering of Microservice Architectures—The
LEMMA Approach . 105
Florian Rademacher, Philip Wizenty, Jonas Sorgalla, Sabine Sachweh,
and Albert Zündorf

Usefulness of Automatic Static Analysis Tools: Evidence from
Four Case Studies . 149
Alexander Trautsch

v

Ernst Denert Software Engineering
Award 2022

Eric Bodden, Michael Felderer, Wilhelm Hasselbring, Paula Herber,
Heiko Koziolek, Carola Lilienthal, Florian Matthes, Lutz Prechelt,
Bernhard Rumpe, and Ina Schaefer

E. Bodden
Secure Software Engineering, Heinz Nixdorf Institut der Universitát Paderborn, Paderborn
University and Fraunhofer IEM, Paderborn, Germany
e-mail: eric.bodden@uni-paderborn.de

M. Felderer
Institute for Software Technology, German Aerospace Center (DLR), University of Cologne,
Cologne, Germany
e-mail: michael.felderer@uni-koeln.de

W. Hasselbring
Software Engineering, Christian-Albrechts-Universität Kiel, Kiel, Germany
e-mail: hasselbring@email.uni-kiel.de

P. Herber
Embedded Systems Group, University of Münster, Münster, Germany
e-mail: paula.herber@uni-muenster.de

H. Koziolek
ABB Corporate Research, Ladenburg, Germany
e-mail: heiko.koziolek@de.abb.com

C. Lilienthal
WPS - Workplace Solutions GmbH, Hamburg, Germany
e-mail: carola.lilienthal@wps.de

F. Matthes
Software Engineering of Business Information Systems, Department of Computer Science (CS),
Technical University of Munich, Garching bei München, Germany
e-mail: matthes@in.tum.de

L. Prechelt
Institut für Informatik, Freie Universität Berlin, Berlin, Germany
e-mail: prechelt@inf.fu-berlin.de

B. Rumpe (�)
Software Engineering, RWTH Aachen, Aachen, Germany
e-mail: rumpe@se-rwth.de

I. Schaefer
Testing, Validation and Analysis of Software-Intensive Systems (TVA), Institute for Information
Security and Dependability (KASTEL), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany
e-mail: ina.schaefer@kit.edu

© The Author(s) 2024
E. Bodden et al. (eds.), Ernst Denert Award for Software Engineering 2022,
https://doi.org/10.1007/978-3-031-44412-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44412-8protect T1	extunderscore 1&domain=pdf

 885 17861 a 885 17861 a

mailto:eric.bodden@uni-paderborn.de
mailto:eric.bodden@uni-paderborn.de
mailto:eric.bodden@uni-paderborn.de
mailto:eric.bodden@uni-paderborn.de

 885 22842 a 885 22842 a

mailto:michael.felderer@uni-koeln.de
mailto:michael.felderer@uni-koeln.de
mailto:michael.felderer@uni-koeln.de
mailto:michael.felderer@uni-koeln.de

 885
26716 a 885 26716 a

mailto:hasselbring@email.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de

 885 30591 a 885 30591 a

mailto:paula.herber@uni-muenster.de
mailto:paula.herber@uni-muenster.de
mailto:paula.herber@uni-muenster.de
mailto:paula.herber@uni-muenster.de

 885 34465
a 885 34465 a

mailto:heiko.koziolek@de.abb.com
mailto:heiko.koziolek@de.abb.com
mailto:heiko.koziolek@de.abb.com
mailto:heiko.koziolek@de.abb.com

 885 38340 a 885 38340
a

mailto:carola.lilienthal@wps.de
mailto:carola.lilienthal@wps.de
mailto:carola.lilienthal@wps.de

 885 43321 a 885 43321 a

mailto:matthes@in.tum.de
mailto:matthes@in.tum.de
mailto:matthes@in.tum.de

 885 47195 a 885 47195 a

mailto:prechelt@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de

 885
51070 a 885 51070 a

mailto:rumpe@se-rwth.de
mailto:rumpe@se-rwth.de
mailto:rumpe@se-rwth.de

 885
57158 a 885 57158 a

mailto:ina.schaefer@kit.edu
mailto:ina.schaefer@kit.edu
mailto:ina.schaefer@kit.edu
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1
https://doi.org/10.1007/978-3-031-44412-8_1

2 E. Bodden et al.

Abstract The Ernst Denert Award is already existing since 1992, which does not
only honor the award winners but also the software engineering field in total.
Software engineering is a vivid and intensively extending field that regularly
spawns new subfields such as automotive software engineering, research software
engineering, or quantum software engineering, covering specific needs but also
generalizing solutions, methods, and techniques when they become applicable. This
is the introductory chapter of the book on the Ernst Denert Software Engineering
Award 2022. It provides an overview of the five nominated PhD theses.

1 Introduction

Software-based products, apps, systems, or other services are influencing all areas
of our daily life. They are the basis and central driver for digitization and all kinds
of innovation. This makes software engineering a core discipline to drive technical
and societal innovations in the age of digitization [4].

As of 2023, software engineering operates in many new or significantly changed
application domains, such as the Internet of Things (IoT), smart manufactur-
ing, autonomous systems, machine learning, artificial intelligence (AI), and even
quantum computing. Surveys argue that more than 90% of research projects
use software for gaining new insights, managing their results, understanding the
research topic, controlling the physical gadgets, etc. Researchers of nearly all
domains are significantly developing software within their research. Model-driven
software and systems engineering approaches nowadays support handling the ever-
growing complexity of modern systems. Sophisticated static analysis tools identify
more and more faults in the code and can mitigate the rising cyber-security
challenges by identifying security vulnerabilities early or monitoring the system
during runtime for a safe, reliable, robust, and secure operation.

A rather strong recent trend, which affects software engineering practices, is the
advent of generative AI, thanks to large language models (LLMs) based on the
transformer architecture [10]. These models were popularized in recent months by
publicly available, easy-to-use tools (e.g., GitHub CoPilot, ChatGPT, Bard). Such
tools can generate source code based on natural language queries but can also
interpret, fix, or document existing code. Trained with a vast data set including
many popular libraries, such LLMs can potentially relieve software engineers from
many accidental complexities and focus on the essential complexities of solving
computing problems. Early experiments at Microsoft Research demonstrated a 55%
developer productivity increase from using GitHub CoPilot for web programming,
signifying promising potential for advancing software development practices [7].

While some authors already pro-claim “the end of programming” [9], the
technology is still under development. LLMs sometimes find very helpful sentences
and programs but sometimes only hallucinate. Generated source code thus may
be partially semantically incorrect or doing something completely wrong. We will

Ernst Denert Software Engineering Award 2022 3

have to evaluate the new technology carefully. It will affect software engineering
research to utilize generative AI for the development of programs, models, and the
understanding of requirements to the fullest. It may be that the new approaches will
leverage methods from psychology, where intelligent interrogation allows to reveal
how an AI really works.

We see a forthcoming challenging and very interesting future for software
engineering research, not only for the application of AI models for software
development but also for specific upcoming domains, such as research software
engineering [5] or quantum computing [8].

It is important to recall that the IEEE Standard Glossary of Software Engineering
Terminology [6] defines software engineering as follows:

(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application
of engineering to software.

(2) The study of approaches as in (1).

It defines software engineering as an engineering discipline (“application of
engineering to software”) with its own methodology (“systematic, disciplined, quan-
tifiable approach”) applied to all phases of the software life cycle (“development,
operation, and maintenance of software”). The two-part structure of the definition
of software engineering also makes the tight integration of software engineering (1)
and software engineering research (2) explicit.

Therefore, the Ernst Denert Software Engineering Award specifically rewards
researchers who value the practical impact of their work and aim to improve
current software engineering practices [3]. Creating tighter feedback loops between
professional practitioners and academic researchers is essential to make research
ideas ready for industry adoption. Researchers who demonstrate their proposed
methods and tools on nontrivial systems under real-world conditions in various
phases of the software life cycle shall be supported so that the gap between research
and practice can be decreased.

Overall, five PhD theses that were defended between September 1, 2021, and
October 31, 2022, were nominated and finally presented during the Software
Engineering Conference SE 2023.

All submissions fulfill the ambitious selection criteria of the award defined in
detail in the book for the Ernst Denert Software Engineering Award 2019 [2].
These criteria include, among others, practical applicability, usefulness via tools,
theoretical or empirical insights, currentness, and contribution to the field. In a
nutshell, “The best submissions are those that will be viewed as important steps
forward even 15 years from now.” [3].

In this introductory chapter, we give an overview of the nominated five PhD
theses, present the work of the award winner, and outline the structure of the book.

4 E. Bodden et al.

2 Overview of the Nominated PhD Theses

As previously mentioned, the Ernst Denert Software Engineering Award 2022
committee identified five worthy nominations for PhD theses that were eligible to
receive the Ernst Denert Award. These theses encompass a wide range of research
in the field of software engineering, highlighting its diverse applications across
various domains. They also demonstrate the vibrancy and diversity of the field
through the utilization of different research methods, including formal methods,
design science, and quantitative and qualitative empirical methods. Furthermore,
these theses address various activities in the software life cycle, such as analysis,
design, programming, testing, deployment, operation, and maintenance. This sec-
tion provides a brief overview of the nominated PhD theses. They will be presented
in alphabetical order based on the names of the respective nominees, accompanied
by a concise summary of the chapters contributed by each thesis to this book.

The chapter of Jannik Fischbach and Andreas Vogelsang entitled “Conditional
Statements in Requirements Artifacts: Logical Interpretation, Use Cases for Auto-
mated Software Engineering, and Fine-Grained Extraction” provides readers with
an understanding of (1) the notion of conditionals in RE artifacts, (2) how to extract
them in fine-grained form, and (3) the added value that the extraction of conditionals
can provide to RE. Jannik Fischbach is the winner of the Ernst Denert Software
Engineering Award 2022, and we present his work in more detail in the next section.

The chapter of Jörg Christian Kirchhof entitled “From Design to Reality: An
Overview of the MontiThings Ecosystem for Model-Driven IoT Applications”
proposes a model-driven process for rapid development of IoT applications. The
chapter gives an overview of how to develop, deploy and analyze distributed
IoT applications using MontiThings. MontiThings demonstrates the benefits of a
model-driven development approach not only in the initial conceptualization of the
application but also in later development phases (e.g., deployment), leading to an
app store concept that separates hardware from software development.

The chapter of Sven Peldszus entitled “Security Compliance in Model-Driven
Development of Software Systems in Presence of Long-Term Evolution and
Variants” provides an approach for tracing and verifying security requirements
in the model-driven development of software-intensive systems. Early security
considerations based on the principle of security by design are part of many modern
development processes, but to ensure the security of the final product, which
may even comprise an entire product line, it is essential to check each individual
product for compliance with the planned security design. To this end, the thesis
investigates the systematic traceability of security requirements throughout the
software development life cycle and how this traceability can be used for automated
security compliance checking. The individual solutions were validated against 18
objectives, and the overall approach was demonstrated on two open-source case
studies.

The chapter of Florian Rademacher et al., entitled “Model-Driven Engineering of
Microservice Architectures: The LEMMA Approach”, investigates the application

Ernst Denert Software Engineering Award 2022 5

of model-driven engineering (MDE) to the design, development, and operation of
software systems that are based on microservice architecture (MSA). From a set
of well-known challenges in MSA engineering as well as real-world microservice
architectures and approaches to the modeling of service-oriented architectures,
Rademacher et al. derive a set of integrated, stakeholder-oriented MSA modeling
languages. Furthermore, they accompany these languages with a framework for the
implementation of model processors that is oriented toward technology-savvy MSA
stakeholders without an MDE background. Finally, Rademacher et al. present and
discuss the application of their MSA modeling languages and framework for the
(i) extensible generation of microservice code; (ii) microservice architecture recon-
struction; (iii) quality assessment of microservices; (iv) microservice architecture
defect resolution; and (v) establishment of a common architecture understanding
among distributed MSA teams.

Finally, the chapter of Alexander Trautsch entitled “Usefulness of Automatic
Static Analysis Tools: Evidence from Four Case Studies” presents results from
multiple empirical studies in the context of software engineering research. The
studies explore an automated static analysis tool and its impact on quality in a broad
overview from multiple perspectives. The chapter contains studies that focus on
the evolution of static analysis warnings, static analysis warnings in the context of
software defects, as well as the context of developer intent.

3 The Work of the Award Winner

We congratulate Jannik Fischbach, his advisor Andreas Vogelsang, and his alma
mater, Universität zu Köln, for winning the Ernst Denert Software Engineering
Award 2022 for the PhD thesis “Why and How to Extract Conditional Statements
From Natural Language Requirements.” Dr. Jannik Fischbach focuses on condi-
tionals (e.g., “If the system detects an error, an error message shall be shown”)
in requirements and highlights why and how requirements engineering can benefit
from the automated extraction of conditionals. Specifically, he makes the following
contributions:

1. He presents empirical results on the prevalence and logical interpretation of
conditionals in RE artifacts. Jannik Fischbach found that conditionals in require-
ments mainly occur in explicit, marked form and may include up to three
antecedents and two consequents. Hence, the extraction approach must under-
stand conjunctions, disjunctions, and negations to fully capture the relation
between antecedents and consequents. He also found that conditionals are a
source of ambiguity, and there is not just one way to interpret them formally.
This affects any automated analysis that builds upon formalized requirements
(e.g., inconsistency checking) and may also influence guidelines for writing
requirements.

6 E. Bodden et al.

2. Jannik Fischbach presents his tool-supported approach CiRA capable of detect-
ing conditionals in NL requirements and extracting them in fine-grained form.
For the detection, CiRA uses syntactically enriched BERT embeddings com-
bined with a softmax classifier and outperforms existing methods. His experi-
ments show that a sigmoid classifier built on RoBERTa embeddings is best suited
to extract conditionals in fine-grained form. CiRA is available at http://www.cira.
bth.se/demo/.

3. He highlights how extracting conditionals from requirements can help cre-
ate acceptance tests automatically. Specifically, Jannik Fischbach shows how
extracted conditionals can be mapped to a Cause-Effect-Graph from which
test cases can be derived automatically. He demonstrates the feasibility of his
approach in a case study with three industry partners. In his study, out of 578
manually created test cases, 71.8% can be generated automatically. Furthermore,
his approach discovered 80 relevant test cases missed in manual test case design.

His findings prove that automated conditional extraction can contribute to
implementing automatic acceptance test creation. However, he does not achieve full
automation of acceptance test generation mainly due to (1) incomplete requirements
and (2) errors of his approach in interpreting conditionals that contain three or
more consequents. Hence, Jannik Fischbach suggests using CiRA to supplement
the existing manual creation process to make test designers aware of all test cases
that should be tested from a combinatorial point of view. He hypothesizes that this
will help reduce the risk of missed negative test cases significantly. The work of
Jannik Fischbach is presented in more detail in Chapter “Conditional Statements in
Requirements Artifacts: Logical Interpretation, Use Cases for Automated Software
Engineering, and Fine-Grained Extraction” of this book.

4 Structure of the Book

The remainder of the book is structured into five chapters, one for the work of each
nominee listed above. Each nominee presents in his chapter

• an overview and the key findings of the work,
• its relevance and applicability to practice and industrial software engineering

projects,
• additional information and findings that have only been discovered afterwards,

e.g., when applying the results in industry or when continuing research.

The chapters of the nominees are based on their PhD theses and arranged in
alphabetic order.

As already highlighted in the introductory book chapter of the Ernst Denert
Software Engineering Award 2019 [3] and by Prof. Denert’s reflection on the
field [1], software engineering is teamwork. Outstanding research with high impact

http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/

Ernst Denert Software Engineering Award 2022 7

is also always teamwork, which somewhat conflicts with the requirement that a
doctoral thesis must be the work of a single author.

4.1 Thanks

We again thank Professor Ernst Denert for all his help in making this award a success
and the Gerlind & Ernst Denert-Stiftung for the kind donation of the first price and
the overall support. We thank the team of the Software Engineering Conference
SE 2023, which was organized by Gregor Engels, Stefan Sauer, Regina Hebig and
Matthias Tichy at Paderborn University, to host the presentations of the nominees
and the award ceremony. We also thank the German, Austrian, and Swiss computer
science societies, i.e., the GI, the OCG, and the SI, respectively, for their support
in making the Ernst Denert Software Engineering Award 2022 a success. Finally,
we thank all the people that helped in its organization, including Christian Kirchhof
and Florian Rademacher (both RWTH Aachen University), who supported in the
organization of this book.

References

1. Denert, E.: Software engineering. In: Ernst Denert Award for Software Engineering 2019, pp.
11–17. Springer, Berlin (2020)

2. Felderer, M., Hasselbring, W., Koziolek, H., Matthes, F., Prechelt, L., Reussner, R., Rumpe, B.,
Schaefer, I.: Ernst Denert Award for Software Engineering 2019: Practice Meets Foundations
(2020)

3. Felderer, M., Hasselbring, W., Koziolek, H., Matthes, F., Prechelt, L., Reussner, R., Rumpe,
B., Schaefer, I.: Ernst denert software engineering awards 2019. In: Ernst Denert Award for
Software Engineering 2019, pp. 1–10. Springer, Berlin (2020)

4. Felderer, M., Reussner, R., Rumpe, B.: Software Engineering und Software-Engineering-
Forschung im Zeitalter der Digitalisierung. Informatik Spektrum 44(2), 82–94 (2021)

5. Felderer, M., Goedicke, M., Grunske, L., Hasselbring, W., Lamprecht, A.L., Rumpe, B.:
Toward Research Software Engineering Research (2023). https://doi.org/10.5281/zenodo.
8020525

6. IEEE: IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990
pp. 1–84 (1990)

7. Peng, S., Kalliamvakou, E., Cihon, P., Demirer, M.: The impact of AI on developer productiv-
ity: Evidence from github copilot (2023). Preprint arXiv:2302.06590

8. Schaefer, I.: Quantum software engineering - quo vadis? In: Engels, G., Hebig, R., Tichy,
M. (eds.) Software Engineering 2023, Fachtagung des GI-Fachbereichs Softwaretechnik, 20–
24. Februar 2023, Paderborn, LNI, vol. P-332, pp. 19–20. Gesellschaft für Informatik e.V.,
Luxembourg (2023). https://dl.gi.de/20.500.12116/40069

9. Welsh, M.: The end of programming. Commun. ACM 66(1), 34–35 (2022)
10. Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Zhang, K., Ji, C., Yan, Q., He, L., et al.: A

comprehensive survey on pretrained foundation models: A history from bert to chatgpt (2023).
Preprint arXiv:2302.09419

https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.8020525
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069
https://dl.gi.de/20.500.12116/40069

8 E. Bodden et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Conditional Statements in Requirements
Artifacts: Logical Interpretation, Use
Cases for Automated Software
Engineering, and Fine-Grained
Extraction

Jannik Fischbach and Andreas Vogelsang

Abstract This thesis constitutes the first work in the RE community that studies
the potential of extracting conditional statements from requirements. It is intended
to stimulate further engagement of researchers and practitioners in the field of
conditionals in RE artifacts. In essence, we present fundamental research on the
notion of conditionals in requirements as well as methods for their fine-grained
extraction. We show that conditionals are prevalent in requirements and mainly
occur in explicit, marked form. Further, we reveal that conditionals are a source of
ambiguity, and there is not just one way to interpret them formally. This affects any
automated analysis that builds upon formalized requirements (e.g., inconsistency
checking) and may also influence guidelines for writing requirements. We also
present our tool-supported approach CiRA, capable of detecting conditionals in NL
requirements and extracting them in fine-grained form. We evaluate our approach
in a case study with three industry partners, namely, Allianz Deutschland AG
(insurance), Ericsson (telecommunication), and Leopold Kostal GmbH & Co.
KG (automotive), and highlight that automated conditional extraction facilitates
automated acceptance test creation. CiRA is available at http://www.cira.bth.se/
demo/.

J. Fischbach (�)
Netlight Consulting GmbH and fortiss GmbH, Munich, Germany
e-mail: jafi@netlight.com

A. Vogelsang
University of Cologne, Köln, Germany
e-mail: vogelsang@cs.uni-koeln.de

© The Author(s) 2024
E. Bodden et al. (eds.), Ernst Denert Award for Software Engineering 2022,
https://doi.org/10.1007/978-3-031-44412-8_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44412-8protect T1	extunderscore 2&domain=pdf
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/

 885 52970
a 885 52970 a

mailto:jafi@netlight.com
mailto:jafi@netlight.com

 885
56845 a 885 56845 a

mailto:vogelsang@cs.uni-koeln.de
mailto:vogelsang@cs.uni-koeln.de
mailto:vogelsang@cs.uni-koeln.de
mailto:vogelsang@cs.uni-koeln.de
https://doi.org/10.1007/978-3-031-44412-8_2
https://doi.org/10.1007/978-3-031-44412-8_2
https://doi.org/10.1007/978-3-031-44412-8_2
https://doi.org/10.1007/978-3-031-44412-8_2
https://doi.org/10.1007/978-3-031-44412-8_2
https://doi.org/10.1007/978-3-031-44412-8_2
https://doi.org/10.1007/978-3-031-44412-8_2
https://doi.org/10.1007/978-3-031-44412-8_2
https://doi.org/10.1007/978-3-031-44412-8_2
https://doi.org/10.1007/978-3-031-44412-8_2
https://doi.org/10.1007/978-3-031-44412-8_2

10 J. Fischbach and A. Vogelsang

1 Introduction

Functional requirements often describe system behavior by relating events to each
other, e.g., “If the system detects an error (. e1), an error message shall be shown
(. e2).” Such conditionals consist of two parts: the antecedent (see . e1) and the
consequent (. e2), which convey strong, semantic information about the intended
behavior of a system. Automatically extracting this embedded knowledge enables
several analytical disciplines and is already used for question answering [1],
event prediction [2–4], emergency management [5], medical text mining [6–8],
and information retrieval [9]. For example, Doan et al. [10] extract conditionals
from Twitter messages to identify factors causing stress, insomnia, and headache.
Radinsky et al. [11] propose an approach capable of identifying conditionals in
news articles to predict future events that certain events can cause. We argue that
automated conditional extraction can also provide added value to requirements
engineering (RE) by automating two RE tasks for which sufficient methods and
tools are not yet available: “acceptance test creation” (� Use Case 1) and “depen-
dency detection between requirements” (� Use Case 2). However, the potential of
extracting conditionals has not yet been leveraged for RE. We are convinced that
this has two principal reasons:

Problem 1: Missing Understanding of the Notion of Conditional Statements
in Requirements Artifacts

The extent, form, and complexity of conditional statements in requirements artifacts
are poorly understood. We lack empirical evidence on conditionals in traditional RE
artifacts (e.g., requirements documents) and agile RE artifacts (e.g., acceptance cri-
teria). Further, we do not know how authors of requirements formulate conditionals
and in which complexity the conditionals usually occur: do they tend to specify
only the dependency of a single antecedent and consequent, or do conditionals in
RE artifacts include multiple interdependent events? We also do not know whether
conditionals in RE artifacts typically occur in marked or unmarked form. This
lack of knowledge hinders the development of approaches capable of extracting
conditionals from requirements artifacts. Even more importantly, we do not know
how RE practitioners logically interpret conditional statements. For example,
we still lack insight into whether RE practitioners perceive antecedents only as
sufficient or also necessary for the consequents. However, reliable knowledge
about the logical interpretations of conditionals by RE practitioners is vital since
conditionals need always be associated with a formal meaning to process them
automatically. Otherwise, we choose a formalization that does not reflect how
practitioners interpret conditional sentences, rendering downstream activities error-
prone. We would likely derive incomplete test cases or interpret dependencies
between the requirements incorrectly.

Conditional Statements in Requirements Artifacts 11

Problem 2: Missing Tool-Supported Approach for Fine-Grained Extraction
of Conditional Statements

The fine-grained extraction of conditionals is necessary to bridge the gap between
requirements and test cases. Specifically, we need to consider the combinatorics
between antecedents and consequents and split them into more fine-granular
text fragments (e.g., variable and condition), making the extracted conditionals
suitable for automatic test case derivation and dependency detection. However,
existing approaches cannot extract conditional clauses from Natural Language (NL)
requirements in fine-grained form (illustrated by Table 1). Some approaches [12–14]
extract antecedents and consequents only on word level (see extracted conditionals
. c1 and . c2). Consequently, valuable information about the conditional statement is
lost (e.g., the conditions of “input A,” “input B,” and “the system” are ignored).
Recent approaches [15–20] address this problem and identify conditionals on the
phrase level. Nevertheless, they only extract antecedent-consequent pairs, whereby
the combinatorics between the antecedents and consequents get lost during the
extraction (see . c3 and . c4). We must extract the entire embedded conditional state-
ment to make it usable for test case derivation and dependency detection between
requirements (see . c5). Thus, we require a new conditional extraction approach
to implement our described use cases. This approach should be accompanied by
adequate tool support to be easily integrated into testing processes in practice.
Building on the two outlined problems, we formulate the following problem
statement:

� Problem Statement:

We need (1) a better understanding of the notion of conditionals in require-
ments artifacts and (2) a comprehensive method and tool support to extract
conditionals in fine-grained form.

We contribute to both areas and establish an understanding of (1) the notion of
conditionals in RE artifacts, (2) how to extract them in fine-grained form, and
(3) the added value that the extraction of conditionals can provide to RE. The
remainder of this chapter is structured as follows: Sect. 2 presents the fundamentals
that are needed to comprehend the content of this work. In Sect. 3, we present
empirical results on the prevalence and logical interpretation of conditionals in RE
artifacts. Section 4 presents our tool-supported approach CiRA, capable of detecting
conditionals in NL requirements and extracting them in fine-grained form. CiRA is
available at http://www.cira.bth.se/demo/. In Sect. 5, we highlight how extracting
conditionals from requirements can help create acceptance tests automatically.
Specifically, we show how extracted conditionals can be mapped to a Cause-Effect-
Graph from which test cases can be derived automatically. We demonstrate the

http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/

12 J. Fischbach and A. Vogelsang

Ta
bl

e
1

E
xi
st
in
g
te
ch
ni
qu
es
 f
or
 c
on
di
tio

na
l e
xt
ra
ct
io
n
fr
om

 N
L

St
at

e
of

 t
he

 a
rt

 (
ex

ce
rp

t)
E

xa
m

pl
e:

 I
f

an
te
ce
de
nt
1

︷
︸
︸

︷

in
pu
t A

va
ri
ab
le

is
 tr
ue

co
nd

iti
on

 an
d ∧

an
te
ce
de
nt
2

︷
︸
︸

︷

in
pu
t B

va
ri
ab
le

is
 f
al
se

co
nd

iti
on

 ,

co
ns
eq
ue
nt
1

︷
︸
︸

︷

th
e
sy
st
em

va
ri
ab
le

sh
al
l s
ho
w
 a
n
er
ro
r
m
es
sa
ge

co
nd

iti
on

.

Word

C
ha
ng
 a
nd
 C
ho
i [
12
],

an
te
ce
de
nt

1
=

tr
ue
, c
on
se
qu
en
t 1
 =

 m
es
sa
ge

c 1

R
in
k
et
 a
l.
[1
3]
, K

ho
o
et
 a
l.
[7
]

an
te
ce
de
nt

2
=

fa
ls
e,
 c
on
se
qu
en
t 1
 =

 m
es
sa
ge

c 2

Phrase

D
as
gu

pt
a
et
 a
l.
[1
5]
,

an
te
ce
de
nt

1
=

in
pu
t A

 is
 tr
ue
, c
on
se
qu
en
t 1
 =

 th
e
sy
st
em

 s
ha
ll
 s
ho
w
 a
n
er
ro
r
m
es
sa
ge

c 3

L
i e
t a
l.
[1
6]
, G

ir
ju
 [
1]

an
te
ce
de
nt

2
=

in
pu
t B

 is
 fa

ls
e,
 c
on
se
qu
en
t 1
 =

 th
e
sy
st
em

 s
ha
ll
 s
ho
w
 a
n
er
ro
r
m
es
sa
ge

c 4

Full

O
ur
 S
co
pe

an
te
ce
de
nt

1
=

in
pu
t A

 is
 tr
ue

∧
an
te
ce
de
nt

2
=

in
pu
t B

 is
 fa

ls
e,

c 5

co
ns
eq
ue
nt

1
=

th
e
sy
st
em

 s
ha
ll
 s
ho
w
 a
n
er
ro
r
m
es
sa
ge

Conditional Statements in Requirements Artifacts 13

feasibility of our approach in a case study with three industry partners. This chapter
is based on ten peer-reviewed publications [21–30] and the PhD thesis [31] of the
first author.

2 Theoretical Foundation

Subject of Interest: Conditional Statements
Conditional statements (e.g., “If A and B, then C”) are integral to everyday
discourse because they allow us to express conditions and their consequences.
A conditional statement is a grammatical structure consisting of two parts: an
adverbial clause, often referred to as the antecedent, and a main clause, also
known as the consequent [32]. The semantics of conditionals has been intensively
discussed in the last decades and has received notable attention in studies of various
disciplines, e.g., in psychology [33], linguistics [34–36], and philosophy [37]. These
studies demonstrate that conditionals are a complex linguistic pattern that can
occur in a variety of forms (e.g., explicit/implicit conditionals, marked/unmarked
conditionals). For example, Conditional 1.1 (see below) is marked since the cue
phrases “if” and “then” indicate the dependence between the antecedent and the
consequent. The same relation can also be expressed as an unmarked conditional:
“A and B occur. C evaluates to true.” This conditional is semantically identical to
its marked form. Still, it spans two sentences and does not contain a cue phrase that
signals the relationship of the antecedent and consequent. Both Conditional 1.1
and Conditional 1.2 are explicit. Specifically, they contain information about the
antecedent and the consequent. Conditional 1.3 is implicit because the consequent
that C evaluates to true is not explicitly stated. Rather, the interaction of the
antecedent and consequent is encoded in the predicate (i.e., “leads to” implies that
A and B are the triggers for C to occur).

• Cond. 1.1: If A and B occur, then C evaluates to true. (marked and explicit)
• Cond. 1.2: A and B occur. C evaluates to true. (unmarked and explicit)
• Cond. 1.3: The occurrence of A and B leads to C. (marked and explicit)

In everyday language, conditionals like “If A, then B” are often conceived as
causal relations. Specifically, antecedents are usually understood as causes (see “A”)
and consequents as effects (“B”). Hence, the terms conditionals and causation are
often used interchangeably, although they represent completely different concepts.
A conditional is a linguistic pattern that describes a dependence between an
antecedent and a consequent. In other words, the antecedent and consequent are
associated [38]. Causation is more specific and represents a distinctive form of
association. To turn an association into a causal relationship, three constraints must
be satisfied [39, 40]:

• Constraint 1: The causing event (cause) must be both sufficient and necessary
for the caused event (effect) [41]. Consequently, the connection between cause

14 J. Fischbach and A. Vogelsang

and effect is counterfactual: If the cause did not occur, then the effect could not
have occurred either [42].

• Constraint 2: The effect occurs either simultaneously with or after the
cause [43].

• Constraint 3: The cause must occur independently (i.e., no confounder influ-
ences the cause and effect and incorrectly implies causation) [44].

One sees immediately that a conditional describes any relationship between an
antecedent and a consequent. At the same time, causation is a specific type of
relationship for which several constraints must be met. Hence, we can conclude
that a conditional does not imply causation: conditionals can arise in the presence
(i.e., “A” causes “B”) or absence (i.e., “A” and “B” have a common cause) of a
causal relationship [45]. It is, therefore, misleading to always interpret antecedents
as causes and consequents as effects when analyzing the meaning of a conditional.
We explicitly do not deal with causation in the context of our work but rather more
fundamentally with conditionals in RE artifacts. However, we argue that causation
is often the main focus when formulating conditionals in RE artifacts [22]. As a
requirements author, I want to formulate the system behavior precisely by defining
an antecedent as both the sufficient and necessary reason for the occurrence of a
consequent (see Constraint 1). In other words, if “A” occurs, “B” should also
occur, and if “A” does not evaluate to true, then “B” should also not occur. In
practice, it is common to formulate several requirements that describe the same
consequent (e.g., “When C occurs, then B”). In this context, we assume that each
requirement describes a separate case in which the consequent should occur and
link their antecedents with disjunctions (i.e., A ∨ C ⇔ B).

Logical Interpretation of Conditional Statements
As outlined in the previous section, there are many ways to express conditional
statements in NL. Hence, the syntax can vary greatly among conditionals. Multiple
studies [46–48] demonstrate that conditionals can also be associated with different
semantic meanings, which makes them a source of ambiguity. We investigate
the logical interpretations of conditionals by RE practitioners concerning two
dimensions: necessity and temporality. This section demarcates both dimensions
and introduces suitable formal languages that can be used to formalize the interpre-
tations appropriately. We use the following conditional as a running example: “If
the system detects an error (e1), an error message shall be shown (e2).”

Necessity The relationship between an antecedent and consequent can be inter-
preted logically in two different ways. First, through an implication as e1 ⇒ e2,
in which e1 is a sufficient condition for e2. Interpreting the running example as an
implication requires the system to display an error message if e1 is true. However, it
is not specified what the system should do if e1 is false. The implication allows both
the occurrence of e2 and its absence if e1 is false. In contrast, the relationship of
antecedent and consequent can also be understood as a logical equivalence, where
e1 is both a sufficient and necessary condition for e2 (i.e., e1 ⇔ e2). Interpreting
the running example as an equivalence requires the system to display an error

Conditional Statements in Requirements Artifacts 15

message if and only if it detects an error. Consequently, if e1 is false, then e2
should also be false. Interpreting conditionals as an implication or equivalence
significantly influences further development activities. For example, a test designer
who interprets conditionals rather as implications than equivalences might only add
positive test cases to a test suite. This may lead to a misalignment of tests and
requirements if the business analyst intended to express an equivalence.

Temporality The temporal relation between an antecedent and consequent can be
interpreted in three different ways: (1) the consequent occurs simultaneous with
the antecedent, (2) the consequent occurs immediately after the antecedent, and (3)
the consequent occurs at some indefinite point after the antecedent. Propositional
logic (PL) does not consider the temporal ordering of events and is therefore not
expressive enough to model temporal relationships. In contrast, we require temporal
logic (e.g., LTL), which considers temporal ordering by defining the behavior σ of
a system as an infinite sequence of states 〈s0, . . . 〉, where sn is a state of the system
at “time” n [49]. Accordingly, requirements are understood as constraints on σ . The
desired system behavior is defined as an LTL formula F , where next to the usual
PL operators, also temporal operators like � (always), ♦ (eventually), and � (next
state) are used.

Formalization Matrix To distinguish the logical interpretations of practitioners
and their formalization, we constructed a formalization matrix (see Fig. 1). It
defines a conditional statement of F and G along the two dimensions (Necessity
and Temporality), each divided on a nominal scale. Specifically, the dimension
Necessity has two levels: F is only sufficient or also necessary for G. The dimension
Temporality has four levels: during, next state, eventually, and temporal ordering
is not relevant. Each 2-tuple of characteristics can be mapped to an entry in the
formalization matrix. For example, the LTL formula �(F ⇒ �G) formalizes a
conditional statement, in which F is only sufficient and G occurs in the next state.
To define F as both sufficient and necessary for G, we replace the implication by
equivalence and rephrase the LTL formula as follows: �(F ⇔ �G). However,
the equivalence operator is inadequate in cases where G will be caused eventually.
Specifically, the formula �(F ⇔ ♦G) would define that as soon as F evaluates

Necessity

Temporality
Temporal Ordering Relevant

Temporal Ordering
Not Relevant

G is caused
during F is true

G will be caused
in the next state

G will be
caused eventually

F is
only sufficient

F is
also necessary

III.

I.

IV. V.

II.

VI.

Fig. 1 Formalization matrix defining a conditional of F and G along the two dimensions,
Necessity and Temporality

16 J. Fischbach and A. Vogelsang

to false, G is locked permanently. We argue that this formula does not represent
the behavior we want to express since there may also be scenarios in which F
is initially false but turns true at a later state and leads to the occurrence of G.
Therefore, we want to specify that as soon as G occurs, F must have occurred
concurrently or at a previous state (i.e., F is a necessary condition for an occurrence
of G). To this end, we build on the precedence relation introduced by Dwyer et
al. [50]: ♦G ⇒ (¬G U (F ∧ ¬G)). The core element of the precedence relation
is the until U operator. Literally, the precedence relation can be interpreted as “If
G occurs eventually, then G has been false until the state in which F occurs without
G occurring concurrently.” Hence, in its original form, the precedence relation
defines F as a necessary pre-condition of G. Since the eventually operator allows
that G and F occur simultaneously, we adapt the precedence relation as follows:
♦G ⇒ (¬G U F).

3 Understanding of Conditional Statements in Requirements
Artifacts

We conduct two empirical studies to address the first problem of the thesis, namely,
“the missing understanding of the notion of conditionals in RE artifacts.” In the first
study (see Sect. 3.1), we analyze the extent, form, and complexity of conditionals
in requirements rooted in 14,983 sentences and emerging from 53 requirement
documents. In the second study (see Sect. 3.2), we study how 104 RE practitioners
interpret 12 different conditional clauses in requirements.

3.1 Prevalence, Form, and Complexity of Conditionals in
Requirements Artifacts

Reliable knowledge about the distribution of conditionals in requirements artifacts is
necessary to develop efficient approaches for their automated extraction. However,
empirical evidence on conditionals in requirements artifacts is presently still weak.
We address this research gap and analyze conditional statements’ prevalence, form,
and complexity in requirements artifacts. Based on the terminology introduced in
Sect. 2, we investigate the following research questions (RQ):

• RQ 1: To which degree do conditionals occur in requirement documents?
• RQ 2: How often do the relations cause, enable, and prevent occur?
• RQ 3: In which form do conditional statements occur in requirement docu-

ments?

– RQ 3a: How often do marked and unmarked conditionals occur?
– RQ 3b: How often do explicit and implicit conditionals occur?

Conditional Statements in Requirements Artifacts 17

– RQ 3c: Which cue phrases are used? Are they mainly ambiguous or non-
ambiguous?

• RQ 4: At which complexity do conditional statements occur in requirement
documents?

– RQ 4a: How often do multiple antecedents occur?
– RQ 4b: How often do multiple consequents occur?
– RQ 4c: How often do two-sentence conditionals occur?
– RQ 4d: How often do event chains occur?

• RQ 5: Is the distribution of labels in all categories domain-independent?

3.1.1 Study Design

Study Objects We created a new large gold standard corpus of requirements [22]
by collecting publicly available requirements specifications employing a web
search. We queried Google and libraries as Everyspec to retrieve documents from
different domains. We only considered documents in PDF format, have at least
ten pages, are written in English, and do contain requirements. We conducted a
brief manual review of each document to verify the latter. After pre-processing,
our data set contains 212,186 complete sentences.1 To the best of our knowledge,
this data set is currently the most extensive collection of requirements available to
the research community. We randomly selected 53 documents from the data set to
analyze the prevalence of conditionals in RE artifacts. Hence, our study focuses on
14,983 sentences from 18 domains.

Data Annotation We annotate the sentences in our data set concerning eight
categories: � Conditional Present , � Explicit , � Marked , � Single Sentence ,
� Single Antecedent , � Single Consequent , � Event Chain , and � Relationship .
To answer RQ 5, we perform a stratified analysis for each category using the
domains as strata. Due to the imbalanced data set concerning the domains the
requirements sentences originate from, we formulate the following null hypothesis
for each category X: “sentences from different domains have the same distribution
of values in category X.”

3.1.2 Study Results

Figure 2 presents the analysis results for each labeled category. When interpreting
the values, it is important to note that we analyze entire requirement documents in
our study. Consequently, our data set contains records with different contents that

1 Available at https://figshare.com/s/725309c06b9dc82aa4a1. Due to the terms of use of some
sources, we can only share the URLs of the collected documents. We attached a script to download
the data set automatically.

https://figshare.com/s/725309c06b9dc82aa4a1
https://figshare.com/s/725309c06b9dc82aa4a1
https://figshare.com/s/725309c06b9dc82aa4a1
https://figshare.com/s/725309c06b9dc82aa4a1
https://figshare.com/s/725309c06b9dc82aa4a1

18 J. Fischbach and A. Vogelsang

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2 Annotation results per category. The Y axis of the bar plot for the category
� Conditional Present refers to the total number of analyzed sentences. The other bar plots
are only related to the sentences that contain a conditional. (a) Conditional present. (b) Explicit.
(c) Marked. (d) Single sentence. (e) Single antecedent. (f) Single consequent. (g) Event chain. (h)
Relationship

do not represent all functional requirements. For example, requirement documents
also contain non-functional requirements, phrases for content structuring, purpose
statements, etc. Hence, the results of our analysis do not only refer to functional
requirements but in general to the content of requirement documents.

Answer to RQ 1 Figure 2 highlights that conditional statements occur in require-
ment documents. About 28% of the analyzed sentences contain a conditional.
Therefore, conditionals are a major linguistic element of requirement documents
since almost one-third of all sentences describe a dependence between an antecedent
and consequent.

Answer to RQ 2 The majority (56%) of conditionals contained in requirement
documents express an enable relationship between certain events. Only about 10%
of the conditionals indicate a prevent relationship. Cause relationships are found in
about 34% of the annotated data.

Conditional Statements in Requirements Artifacts 19

Answer to RQ 3a Figure 2 shows that the majority of conditionals contain one
or more cue phrases to indicate the relationship between certain events. Unmarked
conditionals occur only in about 15% of the analyzed sentences.

Answer to RQ 3b Most conditionals are explicit, i.e., they contain information
about both the antecedent and the consequent. Only about 10% of conditionals in
the investigated requirements documents are implicit.

Answer to RQ 3c To assess the ambiguity of a cue phrase x, we formulate a binary
classification task: consider all sentences as the sample space. The conditionals of
that sample space represent the relevant elements. The precision of cue phrase x as
a selection criterion for conditionals is the conditional probability that a sentence
from the sample space contains a conditional given that it contains cue phrase x and
hence reflects the ambiguity of the cue phrase. A high precision value indicates a
non-ambiguous cue phrase, i.e., the occurrence of the cue phrase in a sentence is
a strong indicator for the sentence containing a conditional. In contrast, low values
indicate strongly ambiguous cue phrases. Our analysis demonstrates that several
different cue phrases are used to express conditionals in requirement documents.
Not surprisingly, cue phrases like “if,” “because,” and “therefore” show precision
values of more than 90%. However, a variety of cue phrases indicate conditionals
in some sentences but also occur in other contexts. This is especially evident in
the case of pronouns. Relative sentences can indicate conditionals, but not in every
case, which is reflected by the low precision value of, for example, “which.” A
similar pattern emerges concerning the used verbs. Only a few verbs (e.g., “leads
to, degrade,” and “enhance”) show a high precision value. Consequently, most used
pronouns and verbs do not necessarily indicate a conditional if they are present in a
sentence.

Answer to RQ 4a Figure 2 illustrates that a conditional in requirement documents
often includes only a single antecedent. Multiple antecedents occur in only 19.1% of
analyzed conditionals. The exact number of antecedents was not documented during
the annotation process. However, the participating annotators reported consistently
that in the case of complex conditional statements, two to three antecedents were
usually included. More than three antecedents were rare.

Answer to RQ 4b Interestingly, the distribution of consequents is similar to that
of antecedents. Likewise, single consequents occur significantly more often than
multiple consequents. According to the annotators, the number of consequents
in case of complex conditionals is limited to two consequents. Three or more
consequents occur rarely.

Answer to RQ 4c Most conditionals can be found in single sentences. Relations
where antecedent and consequent are distributed over several sentences occur only
in about 7% of the analyzed data. The annotators reported that most often, the cue
phrase “therefore” was used to express two-sentence conditionals.

20 J. Fischbach and A. Vogelsang

Fig. 3 Distribution of conditional statements among domains

Answer to RQ 4d Figure 2 shows that event chains are rarely used in requirement
documents. Most conditionals contain isolated relations between antecedent and
consequent and only a few event chains.

Answer to RQ 5 Figure 3 visualizes the distribution of conditionals among all
domains represented with more than 100 sentences. As conditionals’ percentages
range from 17.8% up to 44.4%, we can assume that conditional statements occur in
all eligible domains. Our Chi-squared test suggests rejecting the null hypothesis for
domain-independence for 10 out of 14 eligible domains considering the Bonferroni-
corrected significance level. We can conclude that conditionals are a phenomenon
observable independent of the domain from which requirements originate, but the
extent to which conditionals occur differs with statistical significance.

The Chi-squared test of independence does not suggest rejecting the null
hypothesis for the categories � Single Antecedent and � Event Chain , but the
distribution of two out of the eligible nine domains in the category � Marked and
� Single Sentence is significantly different. We can conclude that the distribution of
values in all categories is domain-independent to a certain degree. While the com-
plexity of conditionals is mostly domain-independent, the distribution of marked
conditionals and conditionals contained in single sentences differs significantly for
about a fourth of the eligible domains.

Our stratified analysis for RQ 3c shows considerable differences in the usage
of cue phrases in the domains but also a degree of overlap: the cue phrase “if” is
among the five most frequent cue phrases in all domains, closely followed by the cue
phrases “when” and “where”. Our stratified frequencies lead to the assumption that
the distribution of cue phrases is mostly domain independent. When looking at the
most precise cue phrases per domain and the least precise cue phrases per domain,
the cue phrases also reflect the findings from the overall distribution: precise cue
phrases like “if”, “when”, and “because” as well as infrequent but precise causative
verbs are equally represented in the domains just as imprecise cue phrases like “for”

Conditional Statements in Requirements Artifacts 21

or “by”. Despite slight domain-specific variations, the results for RQ 3c are also
domain-independent.2

3.1.3 Concluding Discussion

Conditionals are prevalent in requirements artifacts and therefore matter in require-
ments engineering, which motivates the necessity of an effective and reliable
approach for the automatic extraction of conditionals in requirements. The com-
plexity of conditional statements is confined since they usually consist of a single
antecedent and consequent relationship in all observed, eligible domains. However,
for an approach that aims to extract conditionals to be applicable in practice, it
needs to comprehend also more complex relations containing at least two to three
and at best an arbitrary number of antecedents and consequents. Understanding
conjunctions, disjunctions, and negations is consequently imperative to fully capture
the relationships between antecedents and consequents and ensure the applicability
of a detection and extraction approach. Two-sentence conditionals and event chains
occur only rarely. Thus, both aspects can initially be neglected in developing the
approaches and preserve coverage of more than 92% of the analyzed sentences. The
dominance of explicit over implicit conditionals in the observed sentences simplifies
the detection and extraction of conditionals. The information about both antecedent
and consequent is embedded directly in the sentences so that an approach requires
little or no implicit knowledge. The analysis of the precision values reveals that most
of the used cue phrases are ambiguous. Consequently, automatic extraction methods
require a deep understanding of language, as certain cue phrases are insufficient to
indicate conditionals. Instead, a combination of the sentence’s syntax and semantics
must be considered to detect conditional statements reliably.

3.2 Logical Interpretation of Conditionals in Requirements
Artifacts

The interpretation of the semantics of conditionals affects all activities carried out
based on documented requirements such as manual reviews, implementation, or test
case generations. Even more, a correct interpretation is essential for all automatic
analyses of requirements that consider the semantics of sentences, for instance,
automatic quality analysis like smell detection [51], test case derivation [21, 52], and
dependency detection [22]. Consequently, conditionals should always be associated
with a formal meaning to process them automatically. However, determining a
suitable formal interpretation is challenging because conditional statements in NL

2 More extensive tables reporting on the frequency and precision of cue phrases in eligible domains
are included in our replication package: https://doi.org/10.5281/zenodo.5596668.

https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668

22 J. Fischbach and A. Vogelsang

tend to be ambiguous. We aim to understand and (logically) formalize the interpre-
tation of conditionals in requirements by RE practitioners in software development
projects. To this end, we conducted a survey following the guidelines by Ciolkowski
et al. [53]. The expected outcome of our survey is a better understanding of how
practitioners logically interpret conditional clauses in requirements. Further, we
aim to determine which elements in our formalization matrix (introduced in Sect. 2)
match their logical interpretations. We derived three research questions (RQ) from
our survey goal.

• RQ 1: How do practitioners logically interpret conditionals in requirements?
• RQ 2: Which factors influence the logical interpretation of conditionals in

requirements?
• RQ 3: Which (if any) cue phrases promote (un)ambiguous interpretation?

3.2.1 Study Design

Target Population and Sampling The selection of survey participants was driven
by a purposeful sampling strategy [54] along with the following criteria: (a) they
elicit, maintain, implement, or verify requirements, and (b) they work in industry
and not exclusively in academia. Each author prepared a list of potential participants
using their personal or second-degree contacts (convenience sampling [55]). From
this list, the research team jointly selected suitable participants based on their
adequacy for the study. To increase the sample size further, we asked each
participant for other relevant contacts after the survey (snowball sampling). Our
survey was started by 168 participants, of which 104 completed the survey. All
figures in this section refer to the 104 participants that completed the survey.

Study Objects To conduct the survey and answer the RQs, we used three data sets
(DS), each from a different domain. DS 1 contains conditionals from a requirements
document describing the behavior of an automatic door in the automotive domain.
We argue that all participants understand how an automatic car door is expected
to work, so all participants should have the required domain knowledge. DS 2
contains conditionals from Aerospace systems. We hypothesize that no or only
a few participants have deeper knowledge in this domain, making DS 2 well
suited for analyzing the impact of domain knowledge on logical interpretations.
DS 3 contains abstract conditionals (e.g., “If event A and event B, then event
C”). Thus, they are free from any domain-induced interpretation bias. To address
RQ 3, we focused on four cue phrases in the conditionals: “if”, “while”, “after”, and
“when”. To avoid researcher bias, we created the data sets by randomly extracting
conditionals from existing practice requirement documents. The conditionals in
DS 1 are taken from a requirements document written by Mercedes-Benz Passenger
Car Development [56]. The conditionals contained in DS 2 originate from three

Conditional Statements in Requirements Artifacts 23

Q1: F does not occur. What happens consequently?

• R1.1: G occurs nevertheless. (sanity check)
• R1.2: G does not occur. (II)
• R1.3: Not defined in the statement. (I)

Q2: When does G occur?

• R2.1: Simultaneously with F . (III)
• R2.2: Immediately after F . (IV)
• R2.3: At some indefinite point after F . (V)
• R2.3: Temporal ordering is irrelevant in the statement. (VI)

Fig. 4 Questionnaire template. The note after each answer option (e.g., → IV) indicates the
matching characteristic in the formalization matrix. If a participant selects R1.2, for example, they
implicitly interpret F as necessary for G. The notes were not included in the questionnaire

requirements documents published by NASA and one by ESA.3 The conditionals in
DS 3 are syntactically identical to those in DS 1, except that we replace the names
of the events with abstract names. DS 1–3 contain 4 conditionals each, resulting in
12 study objects. Each cue phrase occurs exactly once in each DS.

Questionnaire Design We chose an online questionnaire as our data collection
instrument to gather quantitative data on our research questions. Since our research
goal is descriptive, most questions are closed-ended. We designed three questions
(Q) addressing the two dimensions and prepared a distinct set of responses (R),
among which the participants can choose. Each of these responses can be mapped
to a characteristic in the formalization matrix and thus allows us to determine
which characteristic the practitioners interpret as being reflected by a conditional.
We build the questionnaire for each study object (e.g., “If F then G”) according
to a predefined template (see Fig. 4). The template is structured as follows: The
first question (Q 1) investigates the dimension of Necessity: if event G cannot
occur without event F , then F is not only sufficient, but also necessary for G.
We add “nevertheless” as a third response option (see R1.1 in Fig. 4) to perform
a sanity check on the answers of the respondents. We argue that interpreting that the
consequent should occur although the antecedent does not occur indicates that the
sentence has not been read carefully. The second question (Q 2) covers the temporal
ordering of the events. In this context, we explicitly ask for the three temporal
relations eventually, always, and next state described in Sect. 2. Should a participant
perceive temporal ordering as irrelevant for interpreting a certain conditional, we
can conclude that PL is sufficient for its formalization. We ask Q 1–2 for each of the
12 study objects, resulting in 24 questions. To get an overview of the background

3 We retrieved these documents from our gold standard corpus of requirements presented in
Sect. 3.1. We are referring to the documents: REQ-DOC-22, REQ-DOC-26, REQ-DOC-27, and
REQ-DOC-30.

24 J. Fischbach and A. Vogelsang

Fig. 5 Heatmaps visualizing the interpretations of the participants

of our respondents, we also integrated five demographic questions. In total, our
final questionnaire consists of 29 questions and can also be found in our replication
package.4

3.2.2 Study Results

3.2.3 RQ 1: How Do Practitioners Logically Interpret Conditionals in
Requirements?

To answer RQ 1, we first look at the total number of answers for each dimension
across all data sets. Secondly, we analyze the ratings distribution based on our
constructed heatmaps (see Fig. 5).

4 Our replication package contains (1) our final questionnaire, (2) the survey protocol, and (3) the
survey responses. It can be found at https://doi.org/10.5281/zenodo.5070235.

https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235

Conditional Statements in Requirements Artifacts 25

Necessity Our participants did not have a clear tendency whether an antecedent
is only sufficient or also necessary for the consequent. Among the total of 1,248
answers, 2.1% correspond to the level “nevertheless,” 46.9% to “also necessary,”
and 51% for “only sufficient”. That means that more than half of the respondents
stated that the conditional does not cover how the system is expected to work if the
antecedent does not occur (i.e., the negative case is not specified).

Temporality We found that time plays a major role in the interpretation of
conditionals in requirements. Among the 1,248 answers, only 13% were “temporal
ordering is irrelevant” for the interpretation. This indicates that conditionals in
requirements require temporal logics for a suitable formalization. For some study
objects, the exact temporal relationship between antecedent and consequent was
ambiguous. For S3, 34 participants selected “during,” 43 “next state,” and 19
“eventually”. Similarly, we observed divergent temporal interpretations for S2, S5,
S7, S10, S11, and S12. In contrast, the respondents widely agreed on the temporal
relationship of S1 (67 survey answers for “next state”), S4 (84 survey answers
for “during”), S6 (73 survey answers for “during”), S8 (67 survey answers for
“eventually”), and S9 (83 survey answers for “eventually”). Across all study objects,
29.8% of survey answers were given for the level “during”, 20.1% for “next state,”
and 37.1% for “eventually”.

Agreement Our heatmaps illustrate that there are only a few study objects for
which more than half of the respondents agreed on a 2-tuple (see Fig. 5). This trend
is evident across all data sets. The presence or absence of domain knowledge does
not seem to have an impact on a consistent interpretation. The greatest agreement
was achieved in the case of S1 (48 survey answers for . 〈necessary, next state. 〉), S6
(49 survey answers for . 〈necessary, during. 〉), S8 (53 survey answers for . 〈sufficient,
eventually. 〉), and S9 (56 survey answers for . 〈sufficient, eventually. 〉). However, for
the majority of study objects, there was no clear agreement on a specific 2-tuple.
For S5, two 2-tuples were selected equally often, and for S10, the two most frequent
2-tuples differed by only two survey answers.

Generally Valid Formalization? Mapping the most frequent 2-tuples in the
heatmaps to our constructed formalization matrix reveals that all study objects
cannot be formalized in the same way. The most frequent 2-tuples for each study
object yield the following six patterns:

• Pattern 1: . 〈necessary, next state. 〉: S1, S3
• Pattern 2: . 〈necessary, irrelevant. 〉: S2
• Pattern 3: . 〈necessary, during. 〉: S6, S10, S11
• Pattern 4: . 〈necessary, eventually. 〉: (S5)
• Pattern 5: . 〈sufficient, eventually. 〉: (S5), S7, S8, S9
• Pattern 6: . 〈sufficient, during. 〉: S4, S12

One sees immediately that it is not possible to derive a formalization for
conditionals in general. Especially the temporal interpretations differed between the

26 J. Fischbach and A. Vogelsang

conditionals and the used cue phrases. However, it can be concluded that, except for
S2, the interpretations of all study objects can be represented by LTL.

3.2.4 RQ 2: Which Factors Influence the Logical Interpretation of
Conditional Clauses in Requirements?

This section reports the results of our chi-square tests. In our contingency tables, no
more than 20% of the expected counts are . <5. Hence, we satisfy the assumption of
enough observations per category for the chi-square test [57]. In the following, we
explain the relationships where the chi-square test indicated a dependency between
the logical interpretation and a factor.

The Logical Interpretation Regarding Temporality Depends on RE Experience
In the group with less than 1 year of experience, there is a tendency to perceive
the temporal relationship between the events as “during” (36.4%). In the group
of participants with 4–10 years of experience, most of the respondents rated
the temporal relationship as “eventually” (41.3%). The . χ2 test reveals that the
distribution of ratings differs between the experience levels. The calculated . Θ value
indicates that the strength of the relationship is low.

The Logical Interpretation Regarding Temporality Is Dependent on How a
Practitioner Interacts With Requirements Our contingency table reveals that
the distribution of ratings differs between the interaction levels. Practitioners who
implement requirements fluctuate mainly between “during” and “eventually,” while
they rarely selected the other two Temporality levels. A different pattern emerges for
practitioners who maintain and verify requirements. Across all study objects, they
choose the levels “during”, “next state,” and “eventually” equally often. A . χ2 test
indicates a dependency between both variables. The calculated . φ value indicates
that the strength of the relationship is high.

The Logical Interpretation Regarding Necessity Is Dependent on Domain
Knowledge The disagreement about whether an antecedent is only sufficient or
also necessary holds regardless of domain knowledge. However, the trend differs
between the data sets with respect to the Necessity levels. In the case of DS 1
(domain knowledge assumed), more answers were given for “also necessary”
(54.3%) than for “only sufficient” (45%). In contrast, more ratings were given for
“only sufficient” in the case of DS 2 (53.1%) and DS 3 (55%). The slight difference
in the distribution of the ratings regarding Necessity is supported by the . χ2 test.
However, the strength of the relationships is low.

The Logical Interpretation Regarding Temporality Is Dependent on Domain
Knowledge Our contingency table shows that the distribution of ratings regarding
Temporality differs between the data sets. In the case of DS 1, ratings were mainly
given for “during” (32.9%) and “next state” (31.3%). In the case of the unknown
domain (DS 2), ratings were mainly assigned to “eventually” (46.2%), while only
20.7% were given to “next state” and 22.4% to “during.” In DS 3, where no domain

Conditional Statements in Requirements Artifacts 27

knowledge is necessary for the understanding of the conditionals, most ratings were
given to “during” (34.1%) and “eventually” (47.1%). A . χ2 test shows that there
is a statistically significant dependency between both variables. According to the
calculated . φ value, the strength of the relationship is medium.

3.2.5 RQ 3: Which (if Any) Cue Phrases Promote (Un)Ambiguous
Interpretation?

Our analysis reveals that the logical interpretation regarding Temporality depends
on the cue phrase used to express a conditional. For study objects containing
“while” (S4, S6, and S12), the respondents largely agreed that the consequent
occurs simultaneously with the antecedent. In contrast, almost no respondent
associated simultaneous events in the study objects with the cue phrase “after”.
Instead, the respondents vacillated between the temporal levels “next state” and
“eventually”. The largest disagreement, though, was found in the interpretations of
the conditionals “if” or “when”. Especially in the case of “when”, there was no clear
agreement across S3, S5, and S11 on whether antecedent and consequent are in a
“during”, “next state,” or “eventually” temporal relationship. Regarding Necessity,
we observe that the practitioners, irrespective of the used cue phrase, disagree
whether the antecedent is only sufficient or also necessary for the consequent. We
found one outlier in our histograms (S8), where an 80% agreement for the level
“sufficient” could be achieved. For the remaining study objects, however, there is a
balanced number of survey answers for both levels.

3.2.6 Concluding Discussion

We show that conditionals are interpreted ambiguously by RE practitioners. In
particular, there is disagreement (1) about whether an antecedent is only sufficient or
also necessary for a consequent and (2) about the temporal occurrence of antecedent
and consequent when different cue phrases (such as “when” or “if”) are used.
Thus, a generic formalization of conditionals will inevitably fail at least some
practitioner’s interpretation. We see two immediate implications in practice:

Implications for Automatic Methods Especially (if not limited) for automated
test case generation, it is vital to understand which behavior is desired if the
antecedent does not occur. The evidence presented in this chapter refutes the pre-
vailing assumption (cf. [22, 58]) that antecedents can always be treated as necessary
conditions. Hence, we propose that future methods should display the automatically
generated positive and negative test cases to practitioners and explicitly verify
the following: “Is the negative case of your conditional also valid?” This will
foster the discussion within project teams about the expected system behavior and
enables to resolve misunderstandings at an early stage. We consider this finding

28 J. Fischbach and A. Vogelsang

when developing our approach for the automatic generation of acceptance tests and
integrated it into the User Interface of our tool (see Sect. 4.2).

Implications for Requirements Authors It should be incorporated into RE
writing guidelines that it does matter which cue phrase is used for the formulation
of a conditional. “While” is interpreted consistently, but “if” and “when” cause
misunderstandings about the temporal interpretation of antecedent and consequent.
This poses a problem especially in the implementation of requirements and even-
tually leads to discrepancies between actual and expected system behavior. Project
teams should therefore agree early on how they want to interpret the different cue
phrases to avoid ambiguities. Additionally, our findings provide empirical evidence
for the claim by Berry et al. [59] and Rosadini et al. [60] that requirements authors
should always specify the negative case (e.g., by using an else-statement) to prevent
confusion about the necessity of antecedents.

4 Extracting Conditionals from Requirements Artifacts

This section addresses the second problem of the thesis, namely, “the missing
method and tool support to extract conditionals in fine-grained form”. We present
our tool-supported approach named CiRA (Conditionals in Requirements Artifacts),
capable of detecting conditionals in NL requirements and extracting them in fine-
grained form.

4.1 The CiRA Pipeline

CiRA consists of two steps: It first detects whether an NL requirement contains a
conditional. Second, it extracts the conditional in fine-grained form. Specifically,
CiRA considers the combinatorics between antecedents and consequents and splits
them into more granular text fragments (e.g., variable and condition), making
the extracted conditionals suitable for automatic test case derivation. We have
implemented and compared different methods for both steps and incorporated the
best-performing methods into the pipeline of CiRA. We describe the functionality
of CiRA using the following requirement: “If A is valid and B is false, then C is
true.”

Step 1: Detection of Conditionals Our experiments showed that enriching input
sequences with dependency tags leads to a better performance of our conditional
detection approach. Therefore, in the first step, we use spaCy to assign dependency
tags to the individual tokens in the sentence. This allows our conditional classifier
to take into account not only the content of the tokens themselves but also the gram-
matical structure of the sentence when categorizing a sentence into the two classes
� Conditional Present and � Conditional Not Present . In the case of our exemplary

Conditional Statements in Requirements Artifacts 29

requirement, the token “If” is assigned the dependency tag mark, indicating that
“If” introduces a clause subordinate to another clause. After allocating appropriate
dependency tags to each token in the sentence, the sentence is decomposed using
the WordPiece tokenizer and enriched with additional synthetic tokens such as the
CLS token. Finally, we feed each token into the BERT model to generate word
embeddings. Since we perform conditional detection at the sentence level, we only
pass the CLS token into the softmax classifier, which computes the probability
of whether the input sequence contains a conditional. The classifier calculates a
confidence of 91% that our exemplary requirement contains a conditional. With
only 9% confidence, our classifier assumes that the input sequence does not contain
a conditional. Our approach selects the category with the highest confidence and
classifies our example correctly as � Conditional Present . The detected conditional
is passed to the next step of the pipeline.

Step 2: Fine-grained Extraction of Conditionals In the second step, we utilize
the Byte-Pair Encoding (BPE) tokenizer to convert the detected conditional state-
ment into a form that can be processed by RoBERTa. After decomposing the input
sequence into individual tokens, we pass each token into the RoBERTa model to
create word embeddings. Since we perform conditional extraction at the token level,
we feed the embeddings of all tokens into our sigmoid classifier. Our classifier
calculates the probability for each class whether a given token should be assigned
to that class. Since we differentiate between twelve classes, the sigmoid classifier
calculates twelve probabilities accordingly. We select the classes with a probability
.≥0.5 as the final classification result. In the case of our exemplary requirement,
the “If” token is classified as � Not Relevant with the confidence of 99.6%. The
token “A” is assigned to two classes: On the bottom annotation layer, “A” is
correctly marked as a � Variable . On the top annotation layer, “A” is identified as
belonging to � Antecedent 1 . The synthetically added tokens by the BPE tokenizer
like “<s>” and “<pad>” are correctly identified as � Not Relevant . We follow the
classifications of our sigmoid classifier and assign the corresponding labels to each
token of the input sequence. The output of the CiRA pipeline thus represents a list
of top-layer and bottom-layer labels, allowing us to annotate the conditional in fine-
grained form.

4.2 Tool Support

We implemented a corresponding tool support to facilitate easy interaction with
CiRA. We invite fellow researchers and interested practitioners to employ CiRA
at www.cira.bth.se/demo/. Our tool does not only allow the use of CiRA for
the fine-grained extraction of conditionals from NL sentences, but also enables
the automatic derivation of acceptance tests based on the extracted conditionals.
Specifically, our tool realizes � Use Case 1 by combining CiRA withCause-Effect-
Graphing to create acceptance tests automatically. As shown in Fig. 6, we produce

www.cira.bth.se/demo/
www.cira.bth.se/demo/
www.cira.bth.se/demo/
www.cira.bth.se/demo/
www.cira.bth.se/demo/

30 J. Fischbach and A. Vogelsang

Fig. 6 Overview of our approach consisting of three steps: (1) detection of conditionals, (2) fine-
grained extraction of conditionals, and (3) CEG creation. Processed REQ: “If A is valid and B is
false, then C is true ”

a CEG based on the extracted antecedents and consequents by CiRA.Our web
application is built as a restful node.js server utilizing the Express framework. The
backend’s main purpose is executing a Python script, which is a wrapper around
our conditional classifier and conditional extraction algorithm. Our tool-supported
approach consists of four components: (1) detection of conditionals, (2) extraction
of conditionals, (3) creation of cause-effect graph, and (4) creation of acceptance
test. We outline all four components below and use the following requirement as
our running example: “If the temperature change is requested, then the determine
heating/cooling mode process is activated and makes a heating/cooling request.”

Detection of Conditionals The UI provides a text input field in which an arbitrary
NL sentence can be entered. Upon pressing the “classify”-button, the sentence is
sent to the backend, where it is processed by the aforementioned wrapped condi-
tional classifier. On return of the REST call, the classification and confidence of the
model are rendered in the UI. The user may confirm or correct the classifier’s choice.
The entered sentence and the optional user confirmation or correction are then stored
in the backend to (1) display the five most recently entered sentences, (2) provide
preliminary insight into the performance of the classifier on unseen sentences, and
(3) preserve sentences for future training of the classifier. At this point, we support
batch learning and plan to implement an online learning algorithm in future research
to leverage the collected data directly for enhancing our conditional classifier. Our
exemplary requirement is classified as � Conditional Present with confidence of
98.72%. After confirming this correct classification, the user is forwarded to the
second step.

Extraction of Conditionals In the second step, our pre-trained binary-file con-
ditional extractor is loaded and used to annotate the entered sentence according
to our fine-grained labeling scheme (see Fig. 7). The predicted labels per token
are rendered in the UI. We explain each label at the bottom of the UI to inform
users about the meaning of the labels. For example, the expression “the temperature
change is requested” is labeled as � Antecedent 1 . On the lower annotation
layer, “the temperature” is labeled as � Variable and “is requested” is labeled as
� Condition . Further, our extractor has correctly detected that � Consequent 1 and
� Consequent 2 are connected by a conjunction. In total, CiRA assigned nine labels
to the entered sentence.

Conditional Statements in Requirements Artifacts 31

Fig. 7 Overview of the user interface provided by CiRA

Creation of Cause-Effect Graph In the third step, we create a CEG based on the
annotated conditional. Specifically, we represent antecedents as cause nodes and
consequents as effect nodes and relate them to each other using edges. Creating
the CEG is not a trivial, potentially error-prone task. We integrated a model editor
into the tool to enable the user to correct potential errors manually or to modify the
CEG for other reasons. This allows users to add new nodes using simple drag and
drop or to adjust existing nodes and their edges. Pressing the DEL key can remove
elements from the CEG. The auto-layout function supports the user in arranging
the nodes to ensure clarity of the CEG. In the simplest case, antecedents and
consequents encompass both a variable and condition in the lower annotation layer.
We then fill the created cause and effect nodes with the corresponding information.
If either of the two labels is missing, we need to extract the information from the
nearest referent to correct incomplete nodes. In the given example, the variable
of � Consequent 2 is not included in the entered sentence. Hence, we enrich its
corresponding effect node with the variable of � Consequent 1 .

Creation of Acceptance Test In the last step, we automatically derive the mini-
mum number of test cases required to fully check the entered requirement from the
created CEG. For this purpose, we consider the findings of our study on the logical
interpretation of conditionals by RE practitioners. The user can choose whether s/he

32 J. Fischbach and A. Vogelsang

perceives antecedents to be both sufficient and necessary conditions for consequents
or not (see checkbox below the test case specification). Depending on the selection,
we filter the derived test cases and display the acceptance test corresponding to
the user’s interpretation. In the given example, we perceive the antecedent as a
necessary condition for both consequents. Accordingly, our approach derived two
test cases from the created CEG.

5 Industrial Application: Leveraging Conditional Extraction
for Automatic Acceptance Test Creation

We aim to investigate whether our approach is suitable for the automatic generation
of acceptance tests in practice. Specifically, we study the following research
questions (RQ):

• RQ 1: Can our automated approach create the same test cases as the manual
approach?

• RQ 2: What are the reasons for deviating test cases?

RQ 1 and RQ 2 inspect the impact of our approach: does it achieve the status quo
or even lead to an improvement of the manual test case derivation? To this end,
we conduct a case study with three industry partners in an exploratory fashion and
compare automatically created test cases with existing, manually created test cases.
For our study, we follow the guidelines by Runeson and Höst [61] for conducting
case study research.

5.1 Study Design

Case Sampling and Study Objects We apply purposive case sampling augmented
with convenience sampling [62]. Specifically, we approached some of our industry
contacts inquiring whether they are interested in exploring the potential of CiRA.
We were provided with data from three companies operating in different domains:
Allianz Deutschland AG (insurance), Ericsson (telecommunication), and Leopold
Kostal GmbH & Co. KG (automotive). Since the data is subject to non-disclosure
agreements, we are unable to share the provided requirements and test cases.

Allianz Data We analyze 219 Acceptance Criteria (ACC) describing the func-
tionality of a business information system used for vehicle insurance. 127 of
these ACC contain conditionals and are therefore suitable for assessing CiRA.
The remaining ACC specify the expected functionality based on process flows
(16 criteria) or in a static way (76 criteria). We analyze the acceptance tests
that were manually created for each of the ACC including conditionals. In total,
309 test cases were designed, which corresponds to about 2.43 test cases per
acceptance test.

Conditional Statements in Requirements Artifacts 33

Ericsson Data We analyze 109 requirements derived from five Business Use
Cases (BUCs), which are feature-level units of development at Ericsson. The
BUCs originate from different functional topics. 49 of these 109 requirements
contain conditionals, while the remaining requirements are expressed in a static
way. In total, 65 test cases were manually generated for the 49 requirements con-
taining conditionals, which corresponds to about 1.33 test cases per acceptance
test.

Kostal Data We analyze a requirements specification describing a plug interlock
function, which prevents a charging plug from being disconnected during an
active charging process of an electric car. The specification includes 135 func-
tional requirements. 79 of these functional requirements contain conditionals,
while 56 requirements describe the functional behavior in a static way: “The
signal signalName shall be set to InitValue”. In our case study, we
focus only on the acceptance tests that were manually created for the 79
requirements that contain conditionals. In total, 204 test cases were designed,
which corresponds to about 2.58 test cases per acceptance test.

We pass all study objects through our pipeline and compare the automatically
created acceptance tests with the manually created acceptance tests (see Fig. 8).
Specifically, we investigate five different categories of test cases:

• Identical: A test case created manually by the test designer and automatically by
our approach.

• .AA ∧ rel: A test case that has been missed in manual test design and should be
included in the acceptance test.

• .AA ∧ ¬ rel: A superfluous test case that is correctly not included in the manually
created acceptance test.

• .MA ∧ rel: A test case that has been missed by our approach and should be
included in the acceptance test.

• .MA ∧ ¬ rel: A superfluous test case that is correctly not included in the
automatically created acceptance test.

76.1% 22.3% 15.2% 3.5%
1.6%

63.1% 36.9% 15.4% 56.9%

68.1% 27.5%
4.4%

11.3% 3.9%

71.8% 25.8%
2.4%

13.8% 9.7%

Fig. 8 Case study results. Comparison of manually and automatically created test cases

34 J. Fischbach and A. Vogelsang

5.2 Study Results

5.2.1 RQ 1: Can CiRA Create the Same Test Cases as the Manual
Approach?

Findings at Allianz CiRA detected 90.55% of the conditionals in the acceptance
criteria. Consequently, no test cases were created for the 12 missed criteria contain-
ing conditionals. For the correctly classified criteria, our approach generated 314 test
cases. This corresponds to about 2.73 test cases per acceptance test. We were able
to draw a one-to-one relationship between 224 manually and automatically created
test cases. Additionally, we observed a one-to-many relationship between eleven
manually created test cases and 32 automatically created test cases. Thus, 76.05%
of the manually created test cases could be automatically generated. However, 74
test cases were not created by our approach, of which 27 test cases are related to
criteria that were incorrectly identified as � Conditional Not Present . According to
the test designers, the remaining 47 MA test cases can be classified as follows: 42
are necessary to fully test the system functionality, while 5 test cases are superfluous.
A comparison of the automatically created test cases with the manually created test
cases highlights that 58 test cases have not yet been considered in the manual test
design. According to the test designer, these 58 AA test cases can be clustered as
follows: 47 are indeed relevant, while 11 should not be included in the acceptance
test.

Findings at Ericsson CiRA correctly classified 79.6% of the conditionals in
requirements but failed to do so for ten requirements. 91 test cases were auto-
matically generated based on these identified requirements, which corresponds to
about 2.33 test cases per acceptance test. 28 manual test cases were automatically
created by our approach in a one-to-one, 13 more in a one-to-many relationship,
resulting in an automatic generation of 41 of 65 test cases (63.1%). However, 24
test cases were not created by our approach, of which 7 test cases are related to
criteria that were incorrectly identified as � Conditional Not Present . According to
the test designer, the remaining 17 MA test cases are all necessary to fully test the
system’s functionality. A comparison of the automatically created test cases with the
manually created test cases highlights that 47 test cases have not yet been considered
in the manual test design. According to the test designer, these 47 AA test cases can
be clustered as follows: 10 are indeed relevant, while 37 should not be included in
the acceptance test.

Findings at Kostal CiRA correctly assigned the label � Conditional Present to
72 requirements. However, it failed to identify the remaining seven requirements
containing conditionals. Hence, no test cases were ultimately created for these
requirements. Regarding the correctly classified requirements, CiRA produced 194
test cases. This corresponds to about 2.69 test cases per acceptance test. We found a
one-to-one relationship between 122 manually and automatically created test cases.
In addition, we could draw a one-to-many relationship between 17 manual test cases

Conditional Statements in Requirements Artifacts 35

and 41 automatically created test cases. Thus, 68.14% of the manually created test
cases could be created automatically. Nevertheless, 65 manually created test cases
are not included in the automated test cases. Sixteen of these exclusively manually
created test cases refer to the conditionals in requirements that CiRA missed. In the
case of the other 49 test cases, we ask test designers at Kostal about their relevance.
In fact, 81.63% of the exclusively manually created test cases are deemed relevant.
According to the test designers, nine test cases are superfluous and can be removed
from the test set. Examining the automatically created test cases, we observe that 31
test cases have not been considered in the manual creation so far. Interestingly, the
test designers confirmed that 74.19% of these test cases were indeed missed in the
manual process. However, eight exclusively automatically created test cases are not
relevant and thus correctly not included in the manual set.

� Answer to RQ 1:

Across all case companies, our approach automatically created 71.8% of
the 578 manually created test cases. Our approach further identified 136 test
cases missed in manual test design. In fact, 58.8% of these exclusively auto-
matically generated test cases are indeed relevant and should be included in
the acceptance test. We conclude that our approach can automatically create
a significant amount of relevant (known and new) test cases.

5.2.2 RQ 2: What Are the Reasons for Deviating Test Cases?

Incomplete Requirements We found that the main reason for test cases that
could not be created automatically lies in the poor information available in the
requirements. The interviewed test designers confirmed that domain knowledge is
often required to determine all relevant test cases. In the case of Kostal, 19 out of 79
requirements were incomplete. We found that our approach could not generate 37
.MA ∧ rel test cases due to lack of information in these requirements. At Allianz, 16
out of 127 conditionals in acceptance criteria lack information. Our analysis shows
that our approach could not generate 31 .MA ∧ rel test cases due to incomplete
acceptance criteria. At Ericsson, 17 .MA ∧ rel test cases could not be generated
due to underspecified or missing requirements.

Incorrect Combinatorics We noticed that some of the exclusively manually
created test cases are superfluous—they can be merged or are already covered by
other test cases. The interviews revealed that in these cases, the combinatorics
of the input and output parameters were interpreted incorrectly. According to the
test designers, this stems mainly from the fact that test cases are often not created
systematically but rather based on past experience. Unsystematic test design may
not only result in superfluous test cases but can also lead to necessary test cases
being ignored. We observed that test designers tend to create positive cases and

36 J. Fischbach and A. Vogelsang

neglect negative cases. At Kostal, 21 of the 23 AA ∧ rel test cases were actually
negative cases. Only two positive cases were overlooked in the manual process. At
Allianz, 36 of the 47 AA ∧ rel test cases were actually negative cases. 11 positive
cases were missed by the test designers. In the case of Ericsson, all ten AA ∧ rel
test cases were overlooked negative test cases.

Infeasible Test Cases Our analysis shows that some of the exclusively automati-
cally created test cases cannot occur in practice. According to the test designers, this
problem arises mainly for negative test cases where certain scenarios are tested that
can only occur theoretically. For example, some parameters cannot take the value
false at the same time, even if this case should be checked from a combinatorial
point of view. In the case of Kostal, we found that three of the eight AA ∧ ¬ rel
test cases cannot be checked in practice. At Allianz, five of the eleven AA ∧ ¬ rel
test cases can only occur theoretically. At Ericsson, 28 of 37 AA ∧ ¬ rel test cases
fell into this category.

Errors in Our Pipeline Our approach produced not only errors in the detection of
the conditionals but also failed in some cases to extract and translate them into the
CEG. At Kostal, our approach failed to generate three MA ∧ rel test cases and
instead created five AA ∧ ¬ rel test cases, because the generated CEG reflected
a wrong conditional statement. In the case of Allianz, we failed to create eleven
MA ∧ rel test cases and instead generated six AA ∧ ¬ rel test cases. In the case
of Ericsson, our approach produced nine AA ∧ ¬ rel test cases due to incorrect
interpretation of the conditional. We found that these errors occurred mainly when
the conditionals contained three or more consequents.

� Answer to RQ 2:

In our setting, we observed four reasons for deviating test cases: incomplete
requirements, incorrect combinatorics, infeasible test cases, and errors in
our pipeline. We found that incomplete requirements are the main reason
for test cases that our approach could not create automatically.

5.3 Concluding Discussion

Our case study demonstrates that our approach is able to support practitioners in
deriving relevant test cases from conditionals. Across all industry partners, our
approach automatically generates more than 70% of the manually created test cases.
However, our approach does not achieve full automation of acceptance test creation,
mainly due to incomplete requirements. Our approach is heavily dependent on the
information contained in the requirements and consequently unable to create test
cases for which additional domain knowledge is required. Thus, our case study

Conditional Statements in Requirements Artifacts 37

confirms the findings of Mendez et al. [63] that incompleteness is still a major
problem in practice and hinders the automatic processing of requirements.

� 1. Key Take-away:

In fact, our approach can help to generate acceptance tests automatically.
However, our approach does not substitute a test designer since domain
knowledge is often necessary to identify all required test cases.

According to the test designers, the main benefit of our approach is its ability
to create test cases automatically based on heuristics. Hence, it is independent of
human bias and able to identify test cases that may be missed in the manual process.
We argue that our approach should always be used as a supplement to the existing
manual process to highlight all test cases that should be tested from a combinatorial
point of view, in particular negative test cases that were proportionally more often
overlooked than positive test cases. The automatically generated set of test cases
may then be manually extended by test cases that require domain knowledge. At
Ericsson, we observed that a large amount of automatically generated test cases
were irrelevant since they can only occur theoretically. Hence, when utilizing our
approach as a supplement to manual test design, test designers need to filter the
automatically generated test cases. However, we argue that it is easier to discard
infeasible test cases than to manually identify undetected relevant test cases.

� 2. Key Take-Away:

Our approach is particularly useful for automatically identifying negative
test cases, which are often overlooked in the manual creation process.
However, not all test cases created by our approach are necessarily rele-
vant, requiring subsequent manual review of the automatically created test
specifications.

Since CiRA decomposes each sentence using subword tokenization and labels each
token individually, it is much more robust against grammar errors and is also able
to process Out-Of-Vocabulary (OOV) words. Nevertheless, studies [64] reveal that
language models such as BERT show significant performance degradation with
increasing amounts of noisy data. As a result, we hypothesize that the robustness
of CiRA against grammatical mistakes is limited to a few errors in a sentence. We
therefore propose to combine CiRA with requirements smell checkers [65] in the
future to automatically verify the linguistic quality of requirements before passing
them into the CiRA pipeline.

38 J. Fischbach and A. Vogelsang

� 3. Key Take-Away:

Fully automated acceptance test generation is difficult to achieve because
requirements often suffer from poor quality. RE teams should therefore first
check the quality of the requirements before processing them with cira.

CiRA is limited to single-sentence conditionals and is not able to extract conditional
statements that span multiple sentences. However, two-sentence conditionals may
arise in practice (e.g., indicated by “therefore”, “hence”), requiring us to extend
CiRA in future work. According to the test designers, a further challenge in
the extraction of conditionals relates to the handling of event chains (i.e., linked
requirements, in which the consequent of a conditional represents a antecedent
in another conditional). In such cases, it is no longer sufficient to create a single
CEG. Rather, we must create several Cause-Effect Graphs and connect them to each
other. Currently, CiRA only allows the creation of acceptance tests for requirements
that contain conditionals. For full automation of test case design, however, we also
require approaches capable of processing static requirements and process flows.

� 4. Key Take-Away:

So far, the feasibility of cira is limited to conditionals that span a single
sentence. As a consequence, we still need to develop methods for the
automatic generation of test cases from static requirements and process
flows.

Our case study focuses on a quantitative comparison between manually and
automatically created test cases. However, several other metrics are available to
benchmark test cases [66]. For example, structural criteria like test understandability
investigate whether a test is easy to understand in terms of its internal and external
descriptions. We plan to extend our study to obtain further insights into the quality
of the test cases generated by CiRA.

6 Summary and Outlook

Authors of requirements often use conditionals to specify the desired system
behavior. Therefore, conditionals contain rich semantic information about potential
system inputs and expected system outputs. Automatically extracting conditionals
bears a high potential for requirements engineering as it contributes to an increased
automation of specific RE tasks. Our study with three industry partners proved that
automated conditional extraction can help extract acceptance tests automatically.
Further, besides assisting in automating RE tasks, automatic conditional extraction
helps identify and reduce misunderstandings in project teams. Since conditionals are

Conditional Statements in Requirements Artifacts 39

interpreted differently by RE practitioners, teams must decide whether they consider
antecedents to be only sufficient or also necessary for the consequent. We argue that
automatically extracting conditionals from requirements and explicitly displaying
corresponding positive and negative test cases to users can help foster the discussion
among practitioners.

Automated extraction of conditionals is not a trivial task. Shallow rule-based
systems are not suitable for extracting conditionals as they can be expressed in many
different forms that are difficult to cover with patterns. Our studies proved that ML-
based and TL-based approaches are better suited for determining conditionals in NL
sentences and extracting them in fine-gained form. However, simply using ML and
TL does not automatically lead to a solution of an NLP problem. Rather, the choice
of an adequate ML and TL model is dependent on the context and the complexity of
the problem that needs to be solved. This is particularly evident in our comparison
of ML and TL models for the detection of conditionals. We did not observe a
great deviation in performance between the best ML model and our best TL model
in solving this binary classification problem. The benefits of Transfer Learning
were most noticeable when dealing with the considerably more complex problem
of conditional extraction. Owing to pre-training on large corpora, the TL models
acquired a strong language understanding and are therefore capable of reliably
extracting conditionals in fine-grained form. Our tool-supported approach CiRA
combines our best-performing TL models and is capable of detecting conditionals
in NL requirements and extracting them in fine-grained form. CiRA is available at
http://www.cira.bth.se/demo/.

References

1. Girju, R.: Automatic detection of causal relations for question answering. In: Proceedings of
the ACL 2003 Workshop on Multilingual Summarization and Question Answering - Volume
12, MultiSumQA ’03, (USA), pp. 76–83. Association for Computational Linguistics, Toronto
(2003)

2. Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining causal
structures. Data Mining Knowl. Discovery 4, 163–192 (2000)

3. Riaz, M., Girju, R.: Another look at causality: Discovering scenario-specific contingency
relationships with no supervision. In: 2010 IEEE Fourth International Conference on Semantic
Computing, pp. 361–368 (2010)

4. Hashimoto, C., Torisawa, K., Kloetzer, J., Sano, M., Varga, I., Oh, J.-H., Kidawara, Y.: Toward
future scenario generation: Extracting event causality exploiting semantic relation, context,
and association features. In: Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), (Baltimore, Maryland), pp. 987–997.
Association for Computational Linguistics, Toronto (2014)

5. Qiu, J., Xu, L., Zhai, J., Luo, L.: Extracting causal relations from emergency cases based on
conditional random fields. Procedia Comput. Sci. 112, 1623–1632 (2017). Knowledge-Based
and Intelligent Information & Engineering Systems: Proceedings of the 21st International
Conference, KES-20176-8 September 2017, Marseille, France

6. Bui, Q.-C., Nualláin, B.Ó., Boucher, C.A., Sloot, P.M.: Extracting causal relations on hiv drug
resistance from literature. BMC Bioinformat. 11, 101 (2010)

http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/

40 J. Fischbach and A. Vogelsang

7. Khoo, C.S.G., Chan, S., Niu, Y.: Extracting causal knowledge from a medical database
using graphical patterns. In: Proceedings of the 38th Annual Meeting on Association for
Computational Linguistics, ACL ’00 (USA), pp. 336–343. Association for Computational
Linguistics, Toronto (2000)

8. Mihăilă, C., Ananiadou, S.: Semi-supervised learning of causal relations in biomedical
scientific discourse. BioMed. Eng. OnLine 13, S1 (2014)

9. Khoo, C.S., Myaeng, S.H., Oddy, R.N.: Using cause-effect relations in text to improve
information retrieval precision. Informat. Process. Manag. 37(1), 119–145 (2001)

10. Doan, S., Yang, E.W., Tilak, S.S., Li, P.W., Zisook, D.S., Torii, M.: Extracting health-related
causality from twitter messages using natural language processing. BMC Med. Informat.
Decision Making 19, 71–77 (2019)

11. Radinsky, K., Davidovich, S., Markovitch, S.: Learning causality for news events prediction.
In: Proceedings of the 21st International Conference on World Wide Web, WWW ’12, (New
York, NY, USA), pp.. 909–918. Association for Computing Machinery, New York (2012)

12. Chang, D.-S., Choi, K.-S.: Causal relation extraction using cue phrase and lexical pair
probabilities. In: Natural Language Processing – IJCNLP 2004, Su, K.-Y., Tsujii, J., Lee, J.-H.,
Kwong, O.Y. (eds.), pp. 61–70. Springer, Berlin (2004)

13. Rink, B., Harabagiu, S.: UTD: Classifying semantic relations by combining lexical and
semantic resources. In: Proceedings of the 5th International Workshop on Semantic Evaluation,
(Uppsala, Sweden), pp. 256–259. Association for Computational Linguistics, Toronto (2010)

14. Khoo, C.S.G., Kornfilt, J., Oddy, R.N., Myaeng, S.H.: Automatic extraction of cause-effect
information from newspaper text without knowledge-based inferencing. Literary Linguistic
Comput. 13(4), 177–186 (1998)

15. Dasgupta, T., Saha, R., Dey, L., Naskar, A.: Automatic extraction of causal relations from text
using linguistically informed deep neural networks. In: Proceedings of the 19th Annual SIGdial
Meeting on Discourse and Dialogue, (Melbourne, Australia), pp. 306–316. Association for
Computational Linguistics, Toronto (2018)

16. Li, Z., Li, Q., Zou, X., Ren, J.: Causality extraction based on self-attentive BiLSTM-CRF with
transferred embeddings. CoRR vol. abs/1904.07629 (2019)

17. Cui, S., Sheng, J., Cong, X., Li, Q., Liu, T., Shi, J.: Event causality extraction with event
argument correlations. In: Proceedings of the 29th International Conference on Computational
Linguistics, (Gyeongju, Republic of Korea), pp. 2300–2312. International Committee on
Computational Linguistics, New York (2022)

18. Tran Phu, M., Nguyen, T.H.: Graph convolutional networks for event causality identification
with rich document-level structures. In: Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, (Online), pp. 3480–3490. Association for Computational Linguistics, Toronto
(2021)

19. Zuo, X., Cao, P., Chen, Y., Liu, K., Zhao, J., Peng, W., Chen, Y.: Improving event causality
identification via self-supervised representation learning on external causal statement. In:
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, (Online),
pp. 2162–2172. Association for Computational Linguistics, Toronto (2021)

20. Cao, P., Zuo, X., Chen, Y., Liu, K., Zhao, J., Chen, Y., Peng, W.: Knowledge-enriched
event causality identification via latent structure induction networks. In: Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
(Online), pp. 4862–4872. Association for Computational Linguistics, Toronto (2021)

21. Fischbach, J., Vogelsang, A., Spies, D., Wehrle, A., Junker, M., Freudenstein, D.: Specmate:
Automated creation of test cases from acceptance criteria. In: 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST), pp. 321–331 (2020)

22. Fischbach, J., Hauptmann, B., Konwitschny, L., Spies, D., Vogelsang, A.: Towards causality
extraction from requirements. In: 2020 IEEE 28th International Requirements Engineering
Conference (RE), pp. 388–393 (2020)

Conditional Statements in Requirements Artifacts 41

23. Fischbach, J., Femmer, H., Mendez, D., Fucci, D., Vogelsang, A.: What makes agile test
artifacts useful? an activity-based quality model from a practitioners’ perspective. In: Proceed-
ings of the 14th ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), ESEM ’20, (New York, NY, USA). Association for Computing
Machinery, New York (2020)

24. Fischbach, J., Frattini, J., Spaans, A., Kummeth, M., Vogelsang, A., Mendez, D., Unterkalm-
steiner, M.: Automatic detection of causality in requirement artifacts: The cira approach. In:
Requirements Engineering: Foundation for Software Quality, Dalpiaz, F., Spoletini, P. (eds.),
pp. 19–36. Springer International Publishing, Cham (2021)

25. Fischbach, J., Frattini, J., Mendez, D., Unterkalmsteiner, M., Femmer, H., Vogelsang, A.:
How do practitioners interpret conditionals in requirements?. In: Product-Focused Software
Process Improvement, Ardito, L., Jedlitschka, A., Morisio, M., Torchiano, M. (eds.), pp. 85–
102. Springer International Publishing, Cham (2021)

26. Fischbach, J., Springer, T., Frattini, J., Femmer, H., Vogelsang, A., Mendez, D.: Fine-
grained causality extraction from natural language requirements using recursive neural tensor
networks. In: 2021 IEEE 29th International Requirements Engineering Conference Workshops
(REW), pp. 60–69 (2021)

27. Frattini, J., Fischbach, J., Mendez, D., Unterkalmsteiner, M., Vogelsang, A., Wnuk, K.:
Causality in requirements artifacts: prevalence, detection, and impact. Requirem. Eng. 28(1),
49–74 (2023)

28. Wiecher, C., Fischbach, J., Greenyer, J., Vogelsang, A., Wolff, C., Dumitrescu, R.: Integrated
and iterative requirements analysis and test specification: A case study at kostal. In: 2021
ACM/IEEE 24th International Conference on Model Driven Engineering Languages and
Systems (MODELS), pp. 112–122 (2021)

29. Jadallah, N., Fischbach, J., Frattini, J., Vogelsang, A.: Cate: Causality tree extractor from
natural language requirements. In: 2021 IEEE 29th International Requirements Engineering
Conference Workshops (REW), pp. 77–79 (2021)

30. Fischbach, J., Frattini, J., Vogelsang, A., Mendez, D., Unterkalmsteiner, M.,Wehrle, A., Henao,
P.R., Yousefi, P., Juricic, T., Radduenz, J., Wiecher, C.: Automatic creation of acceptance tests
by extracting conditionals from requirements: Nlp approach and case study. J. Syst. Softw. 197,
111549 (2023)

31. Fischbach, J.: Why and How to Extract Conditional Statements From Natural Language
Requirements. PhD Thesis, Universität zu Köln (2022)

32. Bhatt, R., Pancheva, R.: Conditionals, Ch. 16, pp. 638–687. Wiley, Hoboken (2006)
33. Johnson-Laird, P., Byrne, R.M.J.: Conditionals: A theory of meaning, pragmatics, and

inference. Psychol. Rev. 109(4), 646–678 (2002)
34. Fintel, K.: Exceptive conditionals: The meaning of unless. In: North East Linguistics Society,

vol. 22 (1992)
35. Declerck, R., Reed, S.: Conditionals: A Comprehensive Empirical Analysis. Mouton de

Gruyter, Berlin; New York (2001)
36. Quirk, R., Greenbaum, S., Leech, G., Svartvik, J.: A Grammar of Contemporary English.

Longman, London (1972)
37. Jackson, F.: On assertion and indicative conditionals. Philosoph. Rev. 88(4), 565–589 (1979)
38. Altman, N., Krzywinski, M.: Association, correlation and causation. Nat. Methods 12, 899–

900 (2015)
39. Holland, P.W.: Statistics and causal inference. J. Amer. Statist. Assoc. 81(396), 945–960 (1986)
40. Check, J., Schutt, R.K.: Causation and Experimental Design, ch. 5, pp. 116–144. SAGE

Publications, Thousand Oaks (2012)
41. Dul, J.: Necessary condition analysis (NCA): Logic and methodology of “necessary but not

sufficient” causality. Organizat. Res. Methods 19, 10–52 (2016)
42. Lewis, D.: Counterfactuals. Blackwell Publishers, Oxford (1973)
43. Sassower, R.: Causality and Correlation, pp. 1–4. American Cancer Society, Atlanta (2017)
44. Simon, H.A.: Spurious correlation: A causal interpretation. J. Amer. Statist. Assoc. 49(267),

467–479 (1954)

42 J. Fischbach and A. Vogelsang

45. Puga, J., Krzywinski, M., Altman, N.: Points of significance: Bayesian networks. Nature
Methods, vol. 12, pp. 799–800 (2015). Copyright: Copyright 2015 Elsevier B.V., All rights
Reserved

46. Taplin, J.E., Staudenmayer, H.: Interpretation of abstract conditional sentences in deductive
reasoning. J. Verbal Learn. Verbal Behavior 12(5), 530–542 (1973)

47. Marcus, S.L., Rips, L.J.: Conditional reasoning. J. Verbal Learn. Verbal Behavior 18(2), 199–
223 (1979)

48. Staudenmayer, H.: Understanding Conditional Reasoning with Meaningful Propositions,
pp. 55–79. Psychology Press, London (1975)

49. Lamport, L.: The temporal logic of actions. ACM Trans. Programm. Languag. Syst. 16, 872–
923 (1994)

50. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proceedings of the 21st International Conference on Software Engineering,
ICSE ’99 (New York, NY, USA), pp. 411–420. Association for Computing Machinery, New
York (1999)

51. Femmer, H., Méndez Fernández, D., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. J. Syst. Softw. 123, 190–213 (2017)

52. Frattini, J., Junker, M., Unterkalmsteiner, M., Mendez, D.: Automatic extraction of cause-
effect-relations from requirements artifacts. In: 2020 35th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp. 561–572 (2020)

53. Ciolkowski, M., Laitenberger, O., Vegas, S., Biffl, S.: Practical Experiences in the Design and
Conduct of Surveys in Empirical Software Engineering, pp. 104–128. Springer, Berlin (2003)

54. Baltes, S., Ralph, P.: Sampling in software engineering research: A critical review and
guidelines. Empir. Softw. Eng. 27(4), 94 (2022)

55. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Experimentation in
Software Engineering. Springer Publishing Company, Incorporated, Cham (2012)

56. Dalpiaz, F., Ferrari, A., Franch, X., Palomares, C.: Nlp tool showcase at nlp4re. In: Require-
ments Engineering: Foundation for Software Quality (2019)

57. Yates, D., Moore, D., McCabe, G.: The Practice of Statistics. W. H. Freeman, New York City
(1999)

58. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements syntax
(ears). In: 2009 17th IEEE International Requirements Engineering Conference, pp. 317–322
(2009)

59. Berry, D.M., Krieger, M.M.: From contract drafting to software specification: Linguistic
sources of ambiguity - a handbook version 1.0 (2000)

60. Rosadini, B., Ferrari, A., Gori, G., Fantechi, A., Gnesi, S., Trotta, I., Bacherini, S.: Using nlp to
detect requirements defects: An industrial experience in the railway domain. In: Requirements
Engineering: Foundation for Software Quality, Grünbacher, P., Perini, A. (eds.), pp. 344–360.
Springer International Publishing, Cham (2017)

61. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14, 131–164 (2009)

62. Kitchenham, B., Pfleeger, S.L.: Principles of survey research: Part 5: Populations and samples.
SIGSOFT Softw. Eng. Notes 27(5), 17–20 (2002)

63. Fernández, D.M., Wagner, S., Kalinowski, M., Felderer, M., Mafra, P., Vetrò, A., Conte,
T., Christiansson, M.T., Greer, D., Lassenius, C., Männistö, T., Nayabi, M., Oivo, M.,
Penzenstadler, B., Pfahl, D., Prikladnicki, R., Ruhe, G., Schekelmann, A., Sen, S., Spinola,
R., Tuzcu, A., De La Vara, J.L., Wieringa, R.: Naming the pain in requirements engineering.
Empirical Softw. Engg. 22(5), 2298–2338 (2017)

64. Kumar, A., Makhija, P., Gupta, A.: Noisy text data: Achilles’ heel of BERT. In: W-NUT,
pp. 16–21 (2020).

65. Femmer, H., Méndez Fernández, D., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. J. Syst. Softw. 123, 190–213 (2017)

66. Tran, H.K.V., Unterkalmsteiner, M., Börstler, J., Ali, N.b.: Assessing test artifact quality–a
tertiary study. Inf. Softw. Technol. 139, 106620 (2021)

Conditional Statements in Requirements Artifacts 43

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

From Design to Reality: An Overview
of the MontiThings Ecosystem for
Model-Driven IoT Applications

Jörg Christian Kirchhof

Abstract The Internet of Things (IoT) networks everyday objects that can perceive
and influence their environment using sensors and actuators. Since IoT systems
are inherently distributed systems, often built on fault-prone hardware and exposed
to harsh environmental conditions such as vibration or humidity, developing such
systems is challenging. In recent years, some DSLs for IoT system development
have been introduced, yet they only slightly improve IoT system development.
This chapter provides an overview of MontiThings, an ecosystem for model-
driven development of IoT systems that covers the life cycle of IoT systems
from design in the form of Component and connector (C&C) models, through
(dynamic) deployment, to failure analysis. MontiThings is designed to handle
different classes of errors and failures. By being able to make counter-suggestions to
device owners, the requirement-based deployment algorithm enables device owners
to customize their IoT systems to their needs. MontiThings also offers an app store
concept to decouple hardware development from software development in order
to prospectively reduce problems such as e-waste and security issues that result
from too close a coupling. Overall, MontiThings demonstrates an end-to-end model-
driven approach to IoT system development.

Note This chapter summarizes the thesis [16]. Thus, the content of this chapter is
taken from [16]. In particular, all illustrations were taken from the dissertation and
the respective papers the dissertation is based on.

J. C. Kirchhof (�)
Software Engineering, RWTH Aachen University, Aachen, Germany
e-mail: kirchhof@se-rwth.de

© The Author(s) 2024
E. Bodden et al. (eds.), Ernst Denert Award for Software Engineering 2022,
https://doi.org/10.1007/978-3-031-44412-8_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44412-8protect T1	extunderscore 3&domain=pdf

 885 56845 a 885 56845 a

mailto:kirchhof@se-rwth.de
mailto:kirchhof@se-rwth.de
mailto:kirchhof@se-rwth.de
https://doi.org/10.1007/978-3-031-44412-8_3
https://doi.org/10.1007/978-3-031-44412-8_3
https://doi.org/10.1007/978-3-031-44412-8_3
https://doi.org/10.1007/978-3-031-44412-8_3
https://doi.org/10.1007/978-3-031-44412-8_3
https://doi.org/10.1007/978-3-031-44412-8_3
https://doi.org/10.1007/978-3-031-44412-8_3
https://doi.org/10.1007/978-3-031-44412-8_3
https://doi.org/10.1007/978-3-031-44412-8_3
https://doi.org/10.1007/978-3-031-44412-8_3
https://doi.org/10.1007/978-3-031-44412-8_3

46 J. C. Kirchhof

1 Introduction

The Internet of Things (IoT) networks everyday objects. Sensors and actuators
enable them to perceive and influence their environment. The data obtained from
the sensors is often used to automate processes with the help of the actuators.
For example, in a smart home, the heating can be switched off automatically as
soon as the window is opened. Because IoT devices belong to real-world objects,
IoT systems are inherently distributed systems. The programming languages with
which such systems are mostly developed today are often the same General-purpose
programming languages (GPLs) such as C++ or Python with which all other
types of systems are developed, according to an analysis of GitHub projects [7]
and developer surveys [10]. These GPLs were not designed with the (primary)
goal of improving the development of IoT applications. Accordingly, these GPLs
are not well suited to address the challenges of developing IoT systems [32].
According to [32], the differences to programming traditional applications like web
applications include, among other things, multidevice programming, the always-on
nature of the system, heterogeneity, and the need to write fault-tolerant software.

In contrast to GPLs, domain-specific (modelling) languages often focus on
solving a specific problem. Such modelling languages raise the level of abstraction,
allowing certain aspects of development to be solved systematically in a way that
GPLs cannot, since they must provide a certain level of generality. In the last
decade, quite a few modelling and programming languages have been published
for the development of IoT applications, including ThingML [13, 24], Ericsson’s
Calvin [3, 28, 29], Eclipse Mita [11], CapeCode [4], FRASAD [26], and Node-
RED [27]. However, these languages often offer only a low level of abstraction [9],
ultimately leaving the complexity of challenges such as multidevice programming
to developers or focus only on early development phases and mostly neglect
deployment.

In this chapter, we present MontiThings, an ecosystem for the model-driven
IoT application development that covers the life cycle from initial prototypes to
deployment on IoT devices to analysis of deployed applications. MontiThings
consists of several modelling languages that clearly separate the business logic from
the technical aspects of development. In doing so, MontiThings supports developers
through various mechanisms in the development of error-resilient applications. In
the event that errors do occur, MontiThings offers various analysis procedures.
Since different instances of an IoT system can differ greatly from each other,
MontiThings offers device owners the possibility to influence the deployment. In
its app store concept, MontiThings also decouples the software from the hardware
development, thus perspectively avoiding e-waste and security problems caused by
outdated software or required cloud services discontinued by the manufacturer.

Figure 1 provides a brief overview of the MontiThings ecosystem. At design
time, the IoT developers are developing various artifacts. Through MontiThings
C&C architectures, the business logic of the application can be defined. Data
structures are specified using class diagrams. If the MontiThings C&C language

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 47

F
ig

. 1

O
ve

rv
ie

w
 o

f
th

e
M

on
tiT

hi
ng

s
ec

os
ys

te
m

 f
or

 m
od

el
-d

ri
ve

n
Io

T
 d

ev
el

op
m

en
t.

M
od

el
s

an
d

co
de

 a
re

 u
se

d
to

 g
en

er
at

e
C
.++

co
de

, w
hi

ch
 is

 c
on

ta
in

er
iz

ed

an
d

th
en

 d
ow

nl
oa

de
d

by
 I

oT
 d

ev
ic

es
. M

ul
tip

le
 s

er
vi

ce
s

in
te

ra
ct

 w
ith

 th
e

de
vi

ce
s

to
 o

ff
er

, e
.g

.,
co

m
m

un
ic

at
io

n
an

d
di

gi
ta

l t
w

in
s.

 F
ig

ur
e

ta
ke

n
fr

om
 [

22
]

48 J. C. Kirchhof

is unsuitable to express a certain behavior, handwritten code in a GPL can be used
as a supplement. Tagging languages can be used to define additional functionalities
such as digital twins. In addition to these platform-independent artifacts, platform-
specific artifacts, e.g., certain libraries for controlling a sensor, can also be used. All
these artifacts are uploaded as input to an online repository (e.g., GitLab). There, a
Continuous integration (CI) pipeline checks the artifacts, performs model-to-model
transformations if necessary (e.g., to add components for digital twins), and then
generates C.++ code from the models. The generated code is linked against an RTE
that provides common functionality such as communication between components.
The generated code is then containerized and offered via a registry. From there,
the IoT devices download the container images relevant to them. The Deployment
Manager decides which images are relevant in each case. The Deployment Manager
is one of several additional services that are operated at runtime alongside the
actual application. These additional services enable communication between the
components, provide digital twins, or offer analysis services, for example.

The rest of this chapter presents some parts of MontiThings in more detail:
Sec. 2 first introduces the MontiThings language family. Sec. 3 then explains
MontiThings’ deployment algorithm. After that, Sec. 4 shows how tagging can be
used to add digital twins to the application. Sec. 5 introduces MontiThings’ app
store concept. Sec. 6 shows different methods for error handling and analysis. Sec. 7
concludes. The MontiThings ecosystem can only be briefly described in this chapter.
Please find additional information on the respective papers [6, 17–20, 20, 22] and
dissertation [16].

2 The MontiThings Language Family

The core of MontiThings is a C&C language. This language is used to describe
the business logic of IoT applications. For this purpose, IoT developers specify
components that exchange data with other components via typed and directed ports.
Instances of the components are connected to each other via connectors.

Figure 2 shows an example of such an application. The example shows a section
of a fire alarm system. MontiThings uses both a textual and a graphical syntax.
However, only the textual models are actually processed. The graphical models exist
only for better understanding. Thus, the top two models are therefore two different
representations of the same FireAlarm component.

The behavior of a component can be defined in four different ways:

1. By instantiating subcomponents and connecting them to the ports of the
component instantiating them,

2. through a Java-like behavior language,
3. using statecharts,
4. using handwritten GPL code (e.g., in C.++ or Python).

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 49

Fig. 2 An example of the graphical and textual syntax of MontiThings. The graphical syntax is
only for better comprehensibility. Only the textual version is parsed. Figure adapted from [20]

Components that define their behavior through subcomponents are also called
composed components. Components that describe their behavior via one of the other
three methods are also called atomic components.

In the graphical syntax, one can see a difference between black and white ports.
White ports represent a port that exchanges data with other components. Black
ports represent a port for which the IoT developers have stored handwritten code.
This handwritten code enables the port to access the hardware (e.g., a sensor). In
the textual syntax, however, there is no difference between black and white ports.
This makes it possible to use an override mechanism similar to that used by object-
oriented languages to override base class methods in subclasses. If a port for which

50 J. C. Kirchhof

Fig. 3 Overview of languages from the MontiVerse incorporated by MontiThings’ core language.
Figure taken from [19]

handwritten code exists is connected using a connector, the handwritten code is
automatically ignored, and only the connector is considered. This mechanism makes
it easier to reuse components in different contexts. For example, a component
that accesses hardware can be connected in the context of a test case with mock
components that take on the role of the real hardware for the test.

MontiThings also serves as an example of how the MontiCore language work-
bench [15] can be used to build large languages. In total, MontiThings combines 46
grammars from the MontiCore language library in addition to its own grammars.
An overview can be found in Fig. 3. Besides MontiArc, which is the basis for
MontiThings, the type system and the expressions are especially worth mentioning.
MontiThings reuses the primitive types of MontiCore. They are extended by the
types of the International System of Units (SI) Units language. Hereby, it is possible
to use SI Units like primitive data types. This can be seen, for example, in the
middle model of Fig. 2, where . ◦C is used like a normal data type. If two compatible
but different types are to be converted into each other (e.g., km/h and m/s),
MontiThings can automatically convert the values into each other in the background.
This makes components more flexible to use, since the types of connected ports do
not have to match but only have to be compatible to each other. If more complex data
types are to be used, they can be defined via class diagrams of the Class diagrams
for analysis (CD4A) project. MontiThings can import the symbols of such class
diagrams and thus make them available to the components. These types can be
instantiated using an object diagram-like syntax similar to Go’s composite literals.1

Furthermore, MontiThings uses the Object constraint language (OCL) for
expressions. The main use case here is to enable IoT developers to describe pre- and
postconditions for component behavior. If an error is detected, the execution can

1 https://go.dev/ref/spec.

https://go.dev/ref/spec
https://go.dev/ref/spec
https://go.dev/ref/spec
https://go.dev/ref/spec
https://go.dev/ref/spec

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 51

either be aborted at this point or a behavior can be defined to handle the exception.
For example, a default value or the last measured value could be used if a sensor
value deviates too much from the expected range. Parts of the OCL can also be used
within the Java-like behavioral language at points where Boolean expressions are
provided. For example, an if condition can be specified using the OCL.

Further language features of MontiThings’ core language such as the definition
of initial behavior, periodic behavior, or dynamics can be found in [16].

Besides the C&C language, the MontiThings project consists of other languages.
The MontiThings Configuration Language (MTCFG, bottom model of Fig. 2) is a
tagging language that can be used to customize components depending on their
target platform. For example, different code templates can be selected for different
platforms (e.g., Arduino vs. Raspberry Pi). Technical requirements can also be
specified here (cf. Sec. 3).

Furthermore, MontiThings includes a language for specifying test cases based
on [14]. Figure 4 gives an example of this language. Again, the graphical syntax
is only for easier comprehension. MontiThings only parses textual models. Tech-
nically, MontiThings uses the test models to generate C.++ tests written against
the GoogleTest framework. Based on MontiCore’s sequence diagram language, the

Fig. 4 White box test cases can be specified in the form of sequence diagrams that describe the
message exchange between component instances. The graphical syntax of placing ports below
components is taken from [14]. Figure taken from [16]

52 J. C. Kirchhof

desired interaction between subcomponent instances of a composed component
is represented in a sequence diagram. Of course, it is also possible to omit the
specification of the inner workings and define a pure blackbox test where only
the inputs and outputs are specified. In the depicted example, a smoke detector
senses a voltage of 3.8 V and decides based on this voltage that there is a fire and
informs the FireDetector’s in1 port about it. After a maximum delay of 2 s, the
FireDetector must have sent a message to the alarm port of the FireAlarm
component. Then the temperature sensor detects a temperature of .32 ◦C and
informs the FireDetector about this. Nevertheless, the FireDetector does
not change its decision as it still has sufficient evidence of a fire based on the
SmokeDetector’s earlier message.

3 Requirement-Based Self-Adaptive Deployment

IoT applications are often distributed applications. Partial applications must be
deployed to a large number of IoT devices. In the same way, parts of applications
can also be deployed to a cloud. The interaction of the IoT devices and the cloud
results in the overall business logic. Furthermore, IoT applications can also include
user interfaces via which the data of the application can be viewed or commands
can be sent to the application. Such graphical user interfaces are not considered in
this chapter.

IoT devices can be very different from each other. In addition to different
computing power, they can also have different sensors and actuators. Consequently,
the sub-applications cannot be deployed arbitrarily on the IoT devices. Instead,
deployment requires precise planning of which devices should run which software.
In addition to the purely technical framework conditions, the personal wishes of the
device owners also play a role. For example, a device owner may wish not to install
camera software provided by a social network on the devices in his bathroom. Legal
requirements can also play a role. For example, in some countries, it is necessary
to install a fire alarm in certain living spaces. A requirement could therefore be to
install a fire alarm in every room, for example.

Furthermore, the deployment of IoT applications is not necessarily static. One
reason for this is that IoT devices—unlike a television, for example, which is sold
as a complete product—are often sold in extensible form. Many people initially buy
a small number of IoT devices. If these devices prove successful, more devices are
purchased. In this way, the IoT system is continuously expanded. The deployment
of the software must adapt to these changes in the hardware accordingly. On the
other hand, IoT devices can also fail. IoT devices often consist of inexpensive
hardware and are often exposed to harsh environmental conditions. These and other
factors favor a failure of the devices. Furthermore, IoT devices can of course also
be deliberately removed by their owners. If an IoT device leaves the system, the
deployment may have to be adjusted accordingly.

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 53

Fig. 5 The deployment manager generates Prolog code that calculates which IoT devices execute
which images from the container registry based on technical requirements of the components,
requirements of the device owners, and information about the IoT devices. Figure taken from [22]

MontiThings relies on a requirement-based deployment process. Figure 5 gives
an overview of this deployment process. MontiThings distinguishes between tech-
nical requirements and local requirements. Technical requirements define the
properties that a component must technically fulfill in order to be able to execute
a component. They are defined by the IoT developers at design time. Local
requirements, on the other hand, refer to the locality in which a component is
executed. These requirements can be different for each instance of an application.
They are defined by the device owners.

The technical and local requirements are merged in the Deployment Manager.
In addition, the Deployment Manager receives information about the devices used
in an IoT system. The Deployment Manager uses all this information to generate
Prolog code that can be used to calculate a distribution of the software components
to the IoT devices. In the process, Prolog facts are generated from the information
about the IoT devices, and queries are generated from the requirements. A special
feature here is that the generated Prolog code can not only calculate a distribution of
the software components to the IoT devices but can also make counterproposals
in the case of unfulfillable requirements. In particular, the purchase of new IoT
devices and the modification (i.e., weakening) of the requirements can be suggested.
Once a deployment is agreed upon with the device owner, the Deployment Manager
communicates it to the IoT devices, which then download the (Docker) containers
assigned to them according to the deployment.

Figure 6 shows the deployment process in more detail. First, IoT developers
model their IoT components using MontiThings. In particular, they also specify
the technical requirements of the components. If necessary, they also implement
handwritten code to implement the behavior of the components. The IoT developers
then upload all these artifacts to an online repository. There, a CI pipeline distributes
the uploaded artifacts. First, the artifacts are checked for validity. If errors are

54 J. C. Kirchhof

Fig. 6 Deployment process. The artifacts of the IoT developers are checked and provided by a
CI/CD pipeline. The device owners negotiate with the deployment manager which devices should
run which software. Figure taken from [20]

found, the IoT developers are asked to correct the errors with a corresponding error
message. If the artifacts are accepted as valid, they are then used for code generation.
The generated code is compiled and packaged into containers.

The device owners who want to deploy the application on their infrastructure
must first specify their local requirements. MontiThings currently supports the
following four types of local requirements:

1. A component shall (not) be deployed at a specific location,
2. A location requires a (minimum, maximum, or exact) number of components to

be deployed there,
3. Two components may not be deployed to the same device,
4. A component requires a certain number of components (optionally in a similar

location, i.e., the same room, floor, or building).

The Deployment Manager first validates these local requirements. If a valid
deployment can be found taking into account the requirements, the device owners
can decide whether they want to install this deployment on their devices. If no
deployment can be found, the Deployment Manager suggests changes to the device
owners. It is always possible to reject the proposed changes. In this case, the
Deployment Manager calculates another proposal. In order not to overload the
device owners with very similar proposals, the proposals are filtered so that the
rejection of a proposal automatically counts as a rejection of all supersets of this
proposal. For example, if the device owners refuse to buy a new fire alarm for the
bathroom, a theoretically possible proposal to buy one fire alarm for the bathroom
and one for the kitchen is automatically rejected.

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 55

Fig. 7 Overview of the Prolog code generated by Deployment Manager. Left: high-level work-
flow. Right: applying a single negotiable requirement. Figure taken from [20]

The process of how the automatically generated Prolog code processes the
requirements is shown in more detail in Fig. 7. First, Prolog searches the list of
all known IoT devices for the devices that are currently online and thus available for
deployment. Based on this list, it then identifies the devices that meet the technical
requirements. Since the IoT developers are not involved in the deployment process,
their technical requirements are considered non-negotiable in the process. If a device
does not meet the technical requirements of a component, it cannot execute the
component. Device owners cannot overrule this decision. After applying the non-
negotiable requirements, the local requirements are checked. These are assumed
to be negotiable because the equipment owners are involved in the deployment
process and can respond to counterproposals. The reaction includes in particular
the possibility to reject all counterproposals and to cancel the deployment, i.e., to
consider the local requirements as non-negotiable as well.

When Prolog considers a local requirement, it first checks whether the require-
ment is already satisfied by the current allocation of components to IoT devices
(1 in Fig. 7). If this is the case, one can proceed to the next requirement. If the
requirement is not fulfilled, it is first checked whether too many IoT devices are
currently executing the corresponding component (2). This can occur, for example,

56 J. C. Kirchhof

if device owners require a particular component to be deployed a maximum of
5 times. If this is the case, components are removed from IoT devices using
backtracking, and it is checked whether the requirement can be fulfilled in this
way while complying with the previously processed requirements (4 and 5). If the
component is not scheduled too often, it is handled that a component is not yet
scheduled frequently enough. In this case, it is first checked whether the requirement
can be met by purchasing more hardware (3). Only if this is not the case is it
suggested that requirements be reduced (6 and 7). In order not to overload the device
owners with requests that may not have any influence on the ultimate fulfillment of
the deployment later in the process, the modification proposals are first collected
before they are presented to the device owners until a theoretically valid deployment
is found. The Deployment Manager implicitly assumes that all change requests are
accepted. Should a valid deployment be found with this, the proposed changes will
be offered to the device owners in a bundle.

Creating local requirements requires some knowledge of the software com-
ponents of the IoT system. This is not desirable in some cases. On the one
hand, because it requires IoT developers to disclose their software architecture
to a certain extent and, on the other hand, because it requires training from
device owners. Therefore, to increase the level of abstraction, MontiThings also
offers an approach based on feature diagrams. Here, IoT developers create a
feature diagram that models the features they envision in their application and
their dependencies on each other. They use tagging to relate the features to the
software components. This is illustrated in Fig. 8. This enables device owners to
select the desired features based on the abstract feature diagram. Furthermore,
device owners can run automatic analyses through which feature configurations are
automatically calculated. For example, the largest possible feature configuration can
be calculated or the largest possible feature configuration that can be deployed with
the existing IoT devices. Behind the feature analyses lies the previously described
requirements-based mechanism, which generates Prolog code from requirements.

Fig. 8 Feature Diagrams can be used to tag architecture models. In this way, multiple components
can be combined into a common feature. Device owners can thus select the desired features at a
higher level of abstraction. Figure taken from [6]

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 57

For this purpose, requirements are generated from the feature configurations, e.g.,
that a certain component must be deployed in the system so that a certain feature is
fulfilled.

4 Synthesizing Digital Twins

Once the components are deployed to the target infrastructure, the next challenge is
to observe or influence the system. For this purpose, digital twins can be created. In
this chapter, we will refer to the definition of digital twins that the Chair of Software
Engineering has developed through several years of discussions and a systematic
literature review [8]:

Definition 1 “Digital Twin, V2.1
A digital twin of a system consists of

• a set of models of the system and
• a set of digital shadows, both of which are purposefully updated on a regular

basis, and
• provides a set of services to use both purposefully with respect to the original

system.

The digital twin interacts with the original system by

• providing useful information about the system’s context and
• sending it control commands.” [30]

MontiThings offers the possibility to create digital twins based on class diagrams
and C&C architecture models. The class diagram represents the data structure of a
Digital twin information system (DTIS). In the actual implementation, the business
logic of the system is created as usual with MontiThings. The information system is
created with the help of MontiGem [1, 12], a tool for the model-driven creation of
web applications. Figure 9 gives an overview of the process of synthesizing digital
twins. After the IoT applications and the web application, and thus MontiThings
models and class diagrams, have been developed (step 1 and 2 in Fig. 9), a system
integrator connects the models together (step 3). For this purpose, he connects
attributes of the class diagram with ports of the MontiThings architecture by means
of tagging.

For this purpose, let’s look at exemplary models of a fire extinguishing system
in Fig. 10. The associated tagging model that the system integrator uses to connect
the two models is shown in Fig. 11. First, the integrator uses the identify
keyword to distinguish the different IoT devices from the web system. This can
be done either by an entry in the database (especially if the digital twin is created
before the real system) (ll. 1–5) or by the system automatically assigning identifiers
to the IoT devices and storing them in the database (ll. 6–8). After that, the ports
of the architecture models are connected to the attributes of the class diagram. The
direction plays a role here. On the one hand, the real system can have data sent to its

58 J. C. Kirchhof

F
ig

. 9

Ta
gg

in
g

al
lo

w
s

M
on

tiT
hi

ng
s

m
od

el
s

to
 b

e
as

so
ci

at
ed

 w
ith

 c
la

ss
 d

ia
gr

am
s

th
at

 d
efi

ne
 t

he
 d

at
a

st
ru

ct
ur

e
of

 a
 w

eb
 a

pp
lic

at
io

n.
 V

ia
 m

od
el

-t
o-

m
od

el

tr
an

sf
or

m
at

io
n,

 th
e

ne
ce

ss
ar

y
m

od
el

 e
le

m
en

ts
 a

re
 a

dd
ed

 th
at

 k
ee

p
th

e
w

eb
 s

ys
te

m
 a

s
a

di
gi

ta
l t

w
in

 in
 s

yn
c

w
ith

 th
e

Io
T

 s
ys

te
m

. F
ig

ur
e

ad
ap

te
d

fr
om

 [
17

]

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 59

Fig. 10 An example of a fire alarm application. Left: the data structure of the web application.
Right: the model of the IoT application. Figure taken from [17]

Fig. 11 The tagging language associates attributes of a class diagram with ports of a C&C
architecture (ll. 9-18). Additionally, it defines how the IoT devices identify themselves to the web
application (ll. 1-8). Figure taken from [17]

60 J. C. Kirchhof

Fig. 12 Model-to-model transformations add components to the C&C architecture that synchro-
nize with the digital twin. Elements created by model-to-model transformations are shown in bold.
Figure adapted from [17]

digital twin by sending data from the port to the attribute in the class diagram (and
thus to the database generated from it) (ll. 9–13). On the other hand, the digital twin
can send data to its real counterpart by defining the reverse direction in the tagging
(ll. 14–18).

Once the models are connected, the next step is to process them through model-
to-model transformations (step 4 in Fig. 9). The transformations give the models
additional elements that keep the real system and its twin in sync with each
other. In the following, we will look at the transformations of the architecture.
Interested readers can find a more detailed explanation of the method and the
transformations of the web system in [17]. Figure 12 gives an overview of the
architecture transformations. We distinguish three cases:

1. Connecting an outgoing port
2. Connecting an incoming port that currently has no incoming connectors
3. Connecting an incoming port that already has an incoming connector

In the first case, we add a new component via transformation that receives all data
sent through the port and forwards it to the digital twin. In the second case, we
do the reverse and add a component that receives data from the digital twin and
forwards it to the port. In the third case, the already-existing connector must be
resolved. We replace it with a new Injector component. On the one hand, this
contains a Transceiver component that can both forward data to the digital twin
and receive data from it. The situation can arise here that the value of the digital
twin does not correspond to the value that the component receives via the connector
replaced by the transformation. To resolve this situation, the Injector component
includes a MUX that decides whether to use the data from the digital twin or from
the real system. Users can control this MUX in the web interface. It enables them to
prevent their desired values from being overwritten by the real system in the next

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 61

moment. For example, in our fire alarm, a test alarm can be triggered even if the
sensors report that there is no fire, and the alarm should therefore be switched off.

5 IoT App Store Concept

When IoT devices are sold today, they are usually sold as a single product consisting
of hardware and software. This gives the provider a great degree of control over
the IoT devices. Users are usually not free to install new software on their IoT
devices. If the manufacturer of the IoT devices now decides to change the rules
of the game after the devices have been purchased, e.g., to introduce a subscription
model, the user usually has little recourse against this. If the device manufacturer
decides to shut down the cloud services required to operate the devices or simply
goes bankrupt, the devices can become electronic waste. This practice is neither
economically nor ecologically sustainable.

One way to solve this problem is to introduce an app store that would allow
software to be installed independently of the hardware manufacturer. Such an
IoT app store has already been proposed by various scientists, e.g., [2, 5, 25].
Consequently, MontiThings also includes a concept for an app store. Figure 13
shows an overview of MontiThings’ app store concept. This concept is mainly
based on the deployment algorithm already presented. A key feature of the concept
is the clear separation between hardware and software development. The software
developer specifies his application as previously introduced by C&C architecture
models. In addition, their hardware requirements are specified for each component.
The hardware requirements are specified thereby with the help of OCL. Thus,
for example, also ranges of hardware requirements can be defined, e.g., a camera
with at least 4 megapixels (instead of exactly 4 megapixels). Optionally, other
models such as a feature diagram can be used to define high-level features. The
applications specified in this way are transformed into executable container images
by a CI/Continuous deployment (CD) pipeline.

On the hardware side, device developers develop their IoT devices and the
corresponding drivers to access their devices. In addition, they specify the properties
of their IoT devices in the form of an object diagram. On the software side, the
IoT devices have the following software stack: A container engine executes the
containers of the actual IoT application as specified by the deployment algorithm. A
message broker enables the device-internal communication between the application
containers and the hardware drivers. The hardware access manager coordinates
which application containers access which sensors and actuators. This is particularly
relevant if there is more than one instance of a hardware component, e.g., four
weight sensors. It ensures that the application containers do not conflict with each
other. The hardware access manager tells the application containers on which topics
they can communicate with the requested hardware. The hardware access manager
is then no longer involved in the subsequent data exchange.

62 J. C. Kirchhof

F
ig

. 1
3

M
on

tiT
hi

ng
s’

 a
pp

 s
to

re
 c

on
ce

pt
 d

ec
ou

pl
es

 h
ar

dw
ar

e
an

d
so

ft
w

ar
e

de
ve

lo
pm

en
t.

So
ft

w
ar

e
de

ve
lo

pe
rs

 s
pe

ci
fy

 te
ch

ni
ca

l r
eq

ui
re

m
en

ts
 f

or
 c

om
po

ne
nt

s
in

 O
C

L
. H

ar
dw

ar
e

de
ve

lo
pe

rs
 d

es
cr

ib
e

te
ch

ni
ca

l
pr

op
er

tie
s

of
 t

he
ir

 d
ev

ic
es

 v
ia

 o
bj

ec
t

di
ag

ra
m

s.
 A

 h
ar

dw
ar

e
on

to
lo

gy
 p

ro
vi

de
d

by
 t

he
 a

pp
 s

to
re

 h
ar

m
on

iz
es

th

e
re

qu
ir

em
en

ts
 a

nd
 d

ev
ic

e
pr

op
er

tie
s.

 F
ig

ur
e

ta
ke

n
fr

om
 [

6]

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 63

To determine which hardware can execute which software components, the
deployment algorithm must now check the OCL requirements of the software
against the object diagrams that describe the hardware. For integration into our
deployment algorithm, both are transformed into Prolog. The details can be found
in [6]. To enable the software and hardware developers to match OCL and object
diagrams in the end, even if the developers do not know each other, the app store
provides a hardware ontology in the form of a class diagram. This class diagram
specifies which types of hardware the app store expects in principle and which
properties must be defined for such hardware. For example, it can be defined that
cameras are a type of sensor and a width and height in pixels must be specified
for each of the images shot. The rest of the deployment process then takes place
as usual, i.e., device owners can specify additional local rules in a web interface.
The deployment algorithm then decides which IoT devices should execute which
software components and the IoT devices download the software accordingly from
a container registry.

6 Failure Handling in MontiThings Applications

IoT devices are often based on low-cost hardware. One disadvantage of this
hardware is that it is not particularly protected against failures or errors. IoT software
must therefore be able to deal with the fact that errors occur. Such errors range from
incorrect sensor values to completely failing devices.

MontiThings’ C&C models describe the business logic of IoT applications.
Technical details are not visible at this level of abstraction. Figure 14 shows an
example of this. Even if the application has been modeled correctly in itself,
various errors can occur at runtime due to unreliable hardware. Sensors can provide
incorrect readings, affecting the flow of the system. Similarly, software errors such
as incorrectly set clocks can affect the system. Network problems can delay or
completely prevent the delivery of messages. This is especially noticeable on mobile
devices that must rely on a cellular connection.

Frameworks for developing IoT applications must therefore be able to handle
errors. Thus, MontiThings provides several mechanisms for analyzing and handling
errors, which are summarized in the remainder of this section.

6.1 Record and Replay for Handling Failing Devices

The strongest form of failure of an IoT device is its complete failure. MontiThings
deployment algorithm can detect failing devices by missing heartbeat messages.
When a device fails, the components that the device was executing before its failure
(if possible) are reassigned to another IoT device. However, this new device is not
in the same state as the failed device before its failure.

64 J. C. Kirchhof

Fig. 14 (Hardware) errors that are not caused by the business logic may not be detected directly
in the C&C architecture. Figure taken from [18]

Fig. 15 If components fail (due to hardware defects), the components that replace them are not
necessarily in the same state. MontiThings restores the state of the failed component by resending
messages sent to the failed component to the new component. Figure taken from [22]

To address the issue of complete hardware failure, MontiThings uses record-
and-replay. Figure 15 shows an overview of this. MontiThings continuously records
the messages exchanged between the devices during runtime. If one device fails,
the deployment algorithm starts the component on another device. When the new
component is launched, incoming connectors are first connected to a replayer. The
recorded messages are then used to put the new component in the state of the failed
component. The replayer plays back the recorded messages. Once the messages
are replayed and thus the state is restored, the ports are connected to the rest. In
particular, the outgoing ports are connected only now, so that the messages sent as
a by-product during state recovery do not affect the rest of the system.

This procedure has a complexity of .O(n), where n is the number of messages.
To improve this, components can periodically serialize their state and store it in
the record-and-replay system. If a component fails, only the constant number of
messages since the last state serialization has to be replayed. Thus the complexity
sinks to .O(1).

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 65

6.2 Recording and Transformation-Based Replaying

In less severe failure cases, only parts of the IoT system fail or misbehave. One
problem in analyzing such errors is that they often cannot be reproduced under
laboratory conditions. To analyze such faults, MontiThings therefore offers the
possibility to record the behavior of the system and reproduce it later under
deterministic conditions. Figure 16 shows an overview of this procedure. The
procedure consists of the following steps:

1. IoT developers model their application through a C&C architecture as usual.
2. the developers’ models are used to generate (C.++) code that is executed by the

IoT devices.
3. during the runtime of the system, a recorder records all messages exchanged

between the devices. Metadata is also recorded. This includes, for example,
what time elapsed between sending and receiving a message. As a result, system
traces are created that contain the recorded system behavior.

4. a transformation engine uses the architecture models originally used by the
generator and the system traces to create a new architecture model, the
reproduction model. This model is a modified form of the original model that
allows the replay of the system traces.

5. from the reproduction model, a new (non-distributed) application and (C++)
code are created. Unlike the original version of the application, this is not a
distributed application but a single binary. We call this application Reproduction
Executable.

6. the Reproduction Executable can now be analyzed by the IoT developer using
the usual debugging tools such as gdb. In particular, he now also has the
possibility, for example, to set breakpoints and thus stop the entire system.
Inspecting the global state of the system like this is not easily possible in a
distributed system [31].

In step 4, the reproduction model was created from the architecture and system
traces. Figure 17 gives a detailed insight into the relationship between the original
model and the reproduction model. The transformation engine looks for places in
the original model where the hardware or the environment affects the execution of
the IoT system. At these points, the corresponding model elements are replaced
or extended in such a way that the influences are removed and deterministically
reproduced for the reproduction. In particular, sensors and actuators are replaced
by components. By the mechanism described in Sec. 2, it is sufficient to insert new
components and connect their ports to the black ports for this purpose. The new
components then mock the real hardware by, for example, replaying recorded sensor
values at the right time. Where components are connected, new components are
introduced that simulate the recorded network properties. This means in particular
delaying or losing messages. Where components execute a computation (atomic
components), a wrapper is introduced around the components, which maps the

66 J. C. Kirchhof

F
ig

. 1
6

D
ev

el
op

er
s

ca
n

re
cr

ea
te

 r
ec

or
de

d
er

ro
rs

 i
n

a
re

pr
od

uc
tio

n.
 D

ur
in

g
ru

nt
im

e,
 e

xc
ha

ng
ed

 d
at

a
an

d
m

et
ad

at
a

ar
e

re
co

rd
ed

.
T

he
se

 a
re

 u
se

d
to

 c
re

at
e

a
re

pr
od

uc
tio

n
m

od
el

. T
hi

s
re

pr
od

uc
tio

n
m

od
el

 c
an

 b
e

an
al

yz
ed

 b
y

th
e

de
ve

lo
pe

r.
Fi

gu
re

 ta
ke

n
fr

om
 [

18
]

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 67

Fig. 17 The reproduction model (top) replaces hardware- or environment-dependent model
elements in the original model (bottom) with elements that replay the recorded data. Figure adapted
from [18]

delay by the computations of the processor. Further details like the handling of non-
deterministic computations can be read in [18].

6.3 Web-Based Failure Tracing

The method presented in the previous section analyzes faults in an environment
separated from the real system. Another popular option for debugging is the analysis
of logs. The difficulty with IoT devices is that they are distributed applications.
The logs of the individual IoT devices are therefore not necessarily available in a
coherent form. If errors occur, such as clocks not being perfectly synchronized, the
logs can be misleading. In order to analyze errors, a large amount of additional
information must be logged that may not be relevant to the analysis of the problem
at hand. These log messages further complicate troubleshooting by distracting from
the relevant messages.

In practice, error analysis often takes the form of noticing misbehavior at a certain
point. In the best case, this misbehavior can be detected in the logs. From this point,
the developers perform a reverse search and try to identify how the error occurred. If
the application is modeled in the form of a C&C application, the modeled data flow
yields additional information that can narrow down the error search: by knowing
which component exchanges data with which other components, log messages can
be filtered.

68 J. C. Kirchhof

Fig. 18 MontiThings correlates log messages from interacting components. Thus, in large logs, it
is possible to trace which logs have led to the generation of a log message. Figure taken from [21]
and based on [23]

MontiThings offers a tool for this that lets developers interact with the real system
at runtime. The logs of each individual component are displayed. If a developer
clicks on a log message, it is displayed which other log messages are related to
this log message. For this purpose, a graph is built that graphically represents the
architecture, reducing it to the relevant communication paths.

Technically, this works as shown in Fig. 18. When a message arrives at a port,
MontiThings starts to bundle log messages. A unique ID is assigned for each bundle.
If the component now sends a message on a port in response to the incoming
message, the ID of the current bundle of log messages is also sent. In this way,
a graph structure of bundles of log messages can be created. When a developer
asks for the origin of a particular log message, the log system communicates with
the components to get the log messages associated with the IDs. Details about this
process can be found in [21].

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 69

7 Conclusion

Developing distributed IoT applications based on heterogeneous, error-prone IoT
devices is complex. GPLs are not designed for this task. Model-driven approaches
promise to make this problem manageable through abstraction. In this chapter,
we presented MontiThings, a model-driven ecosystem for developing, deploying,
and analyzing IoT applications. MontiThings also outlines an app store concept
that decouples hardware and software development. Overall, MontiThings’ deploy-
ment algorithm and app store concept help give device owners more control
over their devices. By negotiating deployment with device owners, the deploy-
ment algorithm increases the flexibility of IoT systems. Possible future work
includes more automated exploitation of cloud services, integration of user-defined
behavior (including, e.g., through Large Language Models), and generation of user-
understandable explanations for system behavior.

Source Code

MontiThings is available on GitHub: https://github.com/MontiCore/montithings.

Acronyms

C&C Component and connector . 45
CD Continuous deployment . 61
CD4A Class diagrams for analysis . 50
CI Continuous integration . 170
DTIS Digital twin information system. 57
GPL General-purpose programming language . 46
IoT Internet of Things . 45
OCL Object constraint language . 50
SI International System of Units . 50

Acknowledgments Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy—EXC 2023 Internet of Production—
390621612. Website: https://www.iop.rwth-aachen.de.

References

1. Adam, K., Michael, J., Netz, L., Rumpe, B., Varga, S.: Enterprise Information Systems in
Academia and Practice: Lessons learned from a MBSE Project. In: 40 Years EMISA: Digital
Ecosystems of the Future: Methodology, Techniques and Applications (EMISA’19). Lecture
Notes in Informatics, vol. P-304, pp. 59–66. Gesellschaft für Informatik e.V., Bonn (2020)

https://github.com/MontiCore/montithings
https://github.com/MontiCore/montithings
https://github.com/MontiCore/montithings
https://github.com/MontiCore/montithings
https://github.com/MontiCore/montithings
https://www.iop.rwth-aachen.de
https://www.iop.rwth-aachen.de
https://www.iop.rwth-aachen.de
https://www.iop.rwth-aachen.de
https://www.iop.rwth-aachen.de
https://www.iop.rwth-aachen.de

70 J. C. Kirchhof

2. Ahmad, S., Mehmood, F., Mehmood, A., Kim, D.H.: Design and Implementation of Decoupled
IoT Application Store: A Novel Prototype for Virtual Objects Sharing and Discovery.
Electronics 8(3) (2019)

3. Angelsmark, O., Persson, P.: Requirement-Based Deployment of Applications in Calvin. In:
Žarko, I.P., Broering, A., Soursos, S., Serrano, M., (eds.) Interoperability and Open-Source
Solutions for the Internet of Things, pp. 72–87. Springer International Publishing, Cham (2017)

4. Brooks, C., Jerad, C., Kim, H., Lee, E.A., Lohstroh, M., Nouvelletz, V., Osyk, B., Weber, M.:
A Component Architecture for the Internet of Things. Proc. IEEE 106(9), 1527–1542 (2018)

5. Bröring, A., Schmid, S., Schindhelm, C.K., Khelil, A., Käbisch, S., Kramer, D., Le Phuoc, D.,
Mitic, J., Anicic, D., Teniente, E.: Enabling IoT Ecosystems through Platform Interoperability.
IEEE Softw. 34(1), 54–61 (2017)

6. Butting, A., Kirchhof, J.C., Kleiss, A., Michael, J., Orlov, R., Rumpe, B.: Model-Driven IoT
App Stores: Deploying Customizable Software Products to Heterogeneous Devices. In: Pro-
ceedings of the 21th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences (GPCE 22), pp. 108–121. ACM, New York (2022)

7. Corno, F., De Russis, L., Sáenz, J.P.: How is Open Source Software Development Different in
Popular IoT Projects? IEEE Access 8, 28337–28348 (2020)

8. Dalibor, M., Jansen, N., Rumpe, B., Schmalzing, D., Wachtmeister, L., Wimmer, M., Wort-
mann, A.: A cross-domain systematic mapping study on software engineering for Digital
Twins. J. Syst. Softw. 193 (2022)

9. Dias, J.P., Restivo, A., Ferreira, H.S.: Designing and constructing internet-of-Things systems:
An overview of the ecosystem. Internet of Things 19, 100529 (2022)

10. Eclipse Foundation: IoT Developer Survey 2020. [Online]. Available: https://outreach.eclipse.
foundation/eclipse-iot-developer-survey-2020 (2020). Last accessed 20 June 2021

11. Eclipse Mita Project Website: [Online]. Available: https://www.eclipse.org/mita/. Last
accessed: 13 April 2023

12. Gerasimov, A., Heuser, P., Ketteniß, H., Letmathe, P., Michael, J., Netz, L., Rumpe, B., Varga,
S.: Generated Enterprise Information Systems: MDSE for Maintainable Co-Development
of Frontend and Backend. In: Michael, J., Bork, D., (eds.) Companion Proceedings of
Modellierung 2020 Short, Workshop and Tools & Demo Papers, pp. 22–30. CEUR Workshop
Proceedings (2020)

13. Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: A Language and Code Generation
Framework for Heterogeneous Targets. In: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, MODELS ’16, pp. 125–
135. ACM, New York (2016)

14. Hermerschmidt, L., Perez, A.N., Rumpe, B.: A Model-based Software Development Kit for
the SensorCloud Platform. In: Workshop Wissenschaftliche Ergebnisse der Trusted Cloud
Initiative, pp. 125–140. Springer, Schweiz (2013)

15. Hölldobler, K., Kautz, O., Rumpe, B.: MontiCore Language Workbench and Library Hand-
book: Edition 2021. Aachener Informatik-Berichte, Software Engineering, Band 48. Shaker
Verlag, Herzogenrath (2021)

16. Kirchhof, J.C.: Model-Driven Development, Deployment, and Analysis of Internet of Things
Applications. Aachener Informatik-Berichte, Software Engineering, Band 54. Shaker Verlag,
Herzogenrath (2023)

17. Kirchhof, J.C., Michael, J., Rumpe, B., Varga, S., Wortmann, A.: Model-driven Digital Twin
Construction: Synthesizing the Integration of Cyber-Physical Systems with Their Information
Systems. In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, pp. 90–101. ACM, New York (2020)

18. Kirchhof, J.C., Malcher, L., Rumpe, B.: Understanding and Improving Model-Driven IoT Sys-
tems through Accompanying Digital Twins. In Tilevich, E., De Roover, C. (eds.) Proceedings
of the 20th ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences (GPCE ’21), pp. 197–209. ACM SIGPLAN, New York (2021)

19. Kirchhof, J.C., Kleiss, A., Michael, J., Rumpe, B., Wortmann, A.: Efficiently Engineering IoT
Architecture Languages—An Experience Report (Poster). STAF 2022 Workshop Proceedings:

https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://www.eclipse.org/mita/
https://www.eclipse.org/mita/
https://www.eclipse.org/mita/
https://www.eclipse.org/mita/
https://www.eclipse.org/mita/

An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications 71

10th International Workshop on Bidirectional Transformations (BX 2022), 2nd International
Workshop on Foundations and Practice of Visual Modeling (FPVM 2022) and 2nd Interna-
tional Workshop on MDE for Smart IoT Systems (MeSS 2022) (co-located with Software
Technologies: Applications and Foundations federation of conferences (STAF 2022)) (2022)

20. Kirchhof, J.C., Kleiss, A., Rumpe, B., Schmalzing, D., Schneider, P., Wortmann, A.:
Model-driven Self-adaptive Deployment of Internet of Things Applications with Automated
Modification Proposals. ACM Trans. Internet of Things 3(4) (2022)

21. Kirchhof, J.C., Malcher, L., Michael, J., Rumpe, B., Wortmann, A.: Web-Based Tracing for
Model-Driven Applications. In: Proceedings of the 48th Euromicro Conference Series on
Software Engineering and Advanced Applications (SEAA’22). In Press (2022)

22. Kirchhof, J.C., Rumpe, B., Schmalzing, D., Wortmann, A.: MontiThings: Model-driven
Development and Deployment of Reliable IoT Applications. J. Syst. Softw. 183, 111087 (2022)

23. Malcher, L.: Reconstructing the Behavior of Cyber-Physical Systems through Digital Shadows
and Deterministic Replay in Component & Connector Architectures. Master Thesis. RWTH
Aachen University. Software Engineering Group (2021)

24. Morin, B., Harrand, N., Fleurey, F.: Model-Based Software Engineering to Tame the IoT
Jungle. IEEE Softw. 34(1), 30–36 (2017)

25. Munjin, D., Morin, J.-H.: Toward Internet of Things Application Markets. In: IEEE Interna-
tional Conference on Green Computing and Communications, pp. 156–162 (2012)

26. Nguyen, X.T., Tran, H.T., Baraki, H., Geihs, K.: FRASAD: A framework for model-driven
IoT Application Development. In: IEEE 2nd World Forum on Internet of Things (WF-IoT),
pp. 387–392 (2015)

27. Node-RED—Low-code programming for event-driven applications: [Online]. Available:
https://nodered.org. Last accessed 13 April 2023

28. Persson, P., Angelsmark, O.: Calvin – Merging Cloud and IoT. Procedia Comput. Sci. 52, 210–
217 (2015). 6th International Conference on Ambient Systems, Networks and Technologies
(ANT 2015)

29. Persson, P., Angelsmark, O.: Kappa: Serverless IoT deployment. In: Proceedings of the 2nd
International Workshop on Serverless Computing, WoSC ’17, pp. 16–21. Association for
Computing Machinery, New York (2017)

30. Rumpe, B., Michael, J.: Digital Twins 2.1. [Online]. Available: https://www.se-rwth.de/essay/
Digital-Twin-Definition/. Last accessed 05 April 2023

31. Serror, M., Kirchhof, J.C., Stoffers, M., Wehrle, K., Gross J.: Code-Transparent Discrete
Event Simulation for Time-Accurate Wireless Prototyping. In: Proceedings of the 2017 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM-PADS ’17,
pp. 161–172. Association for Computing Machinery, New York (2017)

32. Taivalsaari, A., Mikkonen, T.: A Roadmap to the Programmable World: Software Challenges
in the IoT Era. IEEE Softw. 34(1), 72–80 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://nodered.org
https://nodered.org
https://nodered.org
https://www.se-rwth.de/essay/Digital-Twin-Definition/
https://www.se-rwth.de/essay/Digital-Twin-Definition/
https://www.se-rwth.de/essay/Digital-Twin-Definition/
https://www.se-rwth.de/essay/Digital-Twin-Definition/
https://www.se-rwth.de/essay/Digital-Twin-Definition/
https://www.se-rwth.de/essay/Digital-Twin-Definition/
https://www.se-rwth.de/essay/Digital-Twin-Definition/
https://www.se-rwth.de/essay/Digital-Twin-Definition/
https://www.se-rwth.de/essay/Digital-Twin-Definition/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Security Compliance in Model-Driven
Software Development

Sven Peldszus

Abstract To ensure the security of a software system, it is vital to keep up
with changing security precautions, attacks, and mitigations. Although model-
based development enables addressing security already at design-time, design
models are often inconsistent with the implementation or among themselves.
Such inconsistencies hinder the effective realization and verification of secure
software systems. In addition, variants of software systems are another burden
to developing secure systems. Vulnerabilities must be identified and fixed on
all variants or else attackers could be well-guided in attacking unfixed variants.
To ensure security in this context, in the thesis (Peldszus, Security Compliance
in Model-driven Development of Software Systems in Presence of Long-Term
Evolution and Variants. Springer, Berlin; 2022), we present GRaViTY, an approach
that allows security experts to specify security requirements on the most suitable
system representation. To preserve security, based on continuous automated change
propagation, GRaViTY automatically checks all system representations against
these security requirements. To systematically improve the object-oriented design
of a software-intensive system, GRaViTY provides security-preserving refactorings.
For both continuous security compliance checks and refactorings, we show the
application to variant-rich software systems. To support legacy systems, GRaV-
iTY allows to automatically reverse-engineer variability-aware UML models and
semi-automatically map existing design models to the implementation. Besides
evaluations of the individual contributions, we demonstrate applicability of the
approach in two real-world case studies, the iTrust electronics health records system
and the Eclipse Secure Storage. This book chapter provides a summary of the thesis,
focusing on the addressed problems, identified and answered research questions,
the general solution, and its application of it to two case studies. For details on the

The author obtained his Doctorate from the University of Koblenz-Landau.

S. Peldszus (�)
Ruhr University Bochum, Bochum, Germany
e-mail: sven.peldszus@rub.de

© The Author(s) 2024
E. Bodden et al. (eds.), Ernst Denert Award for Software Engineering 2022,
https://doi.org/10.1007/978-3-031-44412-8_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44412-8protect T1	extunderscore 4&domain=pdf

 885 56845 a 885 56845 a

mailto:sven.peldszus@rub.de
mailto:sven.peldszus@rub.de
mailto:sven.peldszus@rub.de
https://doi.org/10.1007/978-3-031-44412-8_4
https://doi.org/10.1007/978-3-031-44412-8_4
https://doi.org/10.1007/978-3-031-44412-8_4
https://doi.org/10.1007/978-3-031-44412-8_4
https://doi.org/10.1007/978-3-031-44412-8_4
https://doi.org/10.1007/978-3-031-44412-8_4
https://doi.org/10.1007/978-3-031-44412-8_4
https://doi.org/10.1007/978-3-031-44412-8_4
https://doi.org/10.1007/978-3-031-44412-8_4
https://doi.org/10.1007/978-3-031-44412-8_4
https://doi.org/10.1007/978-3-031-44412-8_4

74 S. Peldszus

individual solutions, please refer to the thesis and the corresponding publications
referenced in this book chapter.

1 Introduction

Software has become a considerable part of today’s life, and we rely on it to be
safe and secure and respect our privacy. Even in critical domains like healthcare,
modern medical imaging devices are exposed to the Internet. Furthermore, software
systems tend to be used on a long-term basis in environments prone to changes,
and at the same time successors of a software system are developed rapidly. A
successor is often a variant of the previous system as significant parts are reused.
Besides, multiple variants of a software system can exist at the same time. In all
cases, to ensure the security of a software-intensive system, all changes, e.g., due to
maintenance or extension, have to be continuously reflected in the whole software
system, including all variants. These circumstances result in significant challenges
regarding the security of evolving software systems and their variants.

Traditionally, manufacturers ensure security by implementing security standards
such as the Common Criteria. Currently, such security standards focus more on the
processes of how the software is developed than the concrete artifacts. Concerning
today’s short product cycles and the vast amount of product versions, certifying each
product manually is impossible. One missing key to improve security is integrated
tool support covering all software development phases. Furthermore, it can already
support avoiding security violations during implementation.

A widely accepted development approach is Model-Driven Development (MDD)
[3, 10] that allows planning well-structured software systems. To support evolution,
MDD can include systematic variation points for future extensions or variants.
Furthermore, it enables us to address security in the early phases of the software
design using approaches such as UMLsec [14] or SecDFD [43]. Design models
are annotated with security requirements, and the approaches provide reasoning
about their consistency. In many domains, establishing appropriately documented
design-time artifacts is mandatory due to legal requirements, e.g., according to the
ISO/IEC 62304 for medical device software. Unfortunately, these artifacts are often
inconsistent with the implementation [11], eventually causing security issues and a
significant effort for harmonizing all artifacts before a certification.

One reason for this inconsistency is the way software is developed. Programming
practices involve successive steps of edits, updates, and refinements to improve the
implementation and incrementally meet ever-changing requirements [36]. Unfortu-
nately, these changes are often not reflected in the design-time models. In addition,
this continuous evolution causes internal decay that can lead software systems to end
up in incomprehensible or even inconsistent states [23]. This continuous evolution
increases the effort required to extend and maintain a software system and paves
the way for security problems. Ultimately, this leads to certification issues as the
implementation does not comply with the security design.

Security Compliance in Model-Driven Software Development 75

In practice, software systems need frequent restructuring to keep them maintain-
able [9]. To support the efficient restructuring of a software system, refactorings
have been proposed and documented in a human-readable form. Despite intense
studies and widespread application, a verifiable specification of refactoring oper-
ations and the execution of this specification is still an open problem. The same
applies to the interaction of refactorings with nonfunctional properties of the
software system, such as security.

In summary, the increasing amount of security-critical data and the faster-
changing environments are a burden to develop secure software systems. However,
there are already some approaches to address the individual sub-problems. However,
there is a lack of holistic security engineering support throughout the development
life cycle, especially with respect to tracing security requirements and verifying the
compliance of all artifacts produced with them.

2 Background and Problem Identification

Software security has been addressed in various ways, but the systematic develop-
ment of secure software-intensive systems is still not fully addressed when it comes
to supporting the entire software development life cycle, as evidenced by frequent
news of security incidents. Considering existing solutions, we identify four main
reasons that hinder the effective development of secure software systems.

2.1 Non-integrated Solutions

Several approaches have been developed to support the development of secure
software systems. MDD-based approaches allow planning of the software system
and allow developers to incorporate security considerations from the beginning, but
only abstractly [14, 43]. Similarly, common threat modeling approaches, such as
STRIDE [40], abstractly model the system to identify security threats. In contrast,
implementation-level approaches support the verification of concrete aspects, such
as the correct use of cryptographic APIs [15], but not whether these are used
where needed. In the best case, design-time security considerations should be reused
until the final product is certified, but in practice, there are many non-integrated
solutions. Security-related information collected in design or threat models must be
manually transferred to the implementation in order to use appropriate security tools
or perform manual code reviews.

76 S. Peldszus

2.2 Inconsistency and Missing Traceability

Often, the initial security requirements of a software-intensive system and the
documentation of the system are inconsistent with the implementation, making it
difficult to reason about security at the system level. Checking whether an object
in a medical management system contains personal or medical information, and the
resulting security requirements, can become a nontrivial task. To enable traceability,
the continuous changes in security assumptions and design must be reflected in
both the design-time models and the implementation. Currently, developers must
manually trace between the various artifacts to identify and apply the necessary
changes in the right places. In practice, this often leads to models not being used at
all, despite their obvious benefits, such as systematic threat modeling planning for
secure system designs. Therefore, we need to maintain correspondences between
artifacts used in all development phases and automate the underlying mapping
process.

2.3 Security-Aware Restructuring

As software systems are continuously subject to changes, we have to continuously
check their security compliance, e.g., with design-time security requirements. In
the best case, we can evaluate the desired change before applying it. Current
refactoring approaches do not consider nonfunctional properties such as security.
We can only evaluate the impact of a refactoring on security aspects after executing
the refactoring, e.g., to notice that medical information has been moved to an object
that is sent over a non-encrypted connection. This entails the risk of not being
able to undo the change entirely. In summary, security-preserving restructurings are
required to support the restructuring of security-critical systems without requiring a
complete re-certification. If changes cannot be checked upfront, we need means to
efficiently check only security properties that might be affected.

2.4 Variant-Rich Software Systems

While existing security approaches can be applied to each product or variant of a
software product line, due to the vast amount of possible product configurations,
this is not feasible within a reasonable time. We need means for applying security
compliance checks and security-preserving refactorings to software product lines
without enumerating every single variant. Consequently, the intended measures
discussed above must also support software systems with many variants.

Security Compliance in Model-Driven Software Development 77

3 Research Questions

Based on the problems identified, we formulate five research questions that are
answered in the thesis [26]. Figure 1 maps the research questions to the development
artifacts considered by GRaViTY. We introduce the research questions discussed in
the thesis in detail in what follows.

3.1 RQ1: How Can Security Requirements Be Traced Among
System Representations Throughout the Development
Process?

During the development of a software system, various artifacts are produced,
such as models or source code. Following security by design [14, 38], security
requirements are already planned and validated on the early design artifacts. These
security requirements specified on model elements have to be addressed on later
models by planning concrete security measures or their concrete realization in the
implementation. To ensure the security of a software system, we need to trace the
specified security requirements through all artifacts created. In doing so, we have to
take into account continuous changes to the software system, e.g., due to ongoing
development activities or maintenance, under which we have to preserve the
validity of the created trace links. Furthermore, we need to identify an appropriate
granularity of trace links to support security requirements on design-time models
and code. Early design-time models are at a different level of abstraction than

UML

Domain Model

Design Model

Implementation Model

Java

Refactorings
Security Checks

Program Model

Variability VariabilitySecurity

Security

ChangeChange

Security Checks

RQ5

RQ3

RQ1

RQ2

RQ4

Fig. 1 Concept of GRaViTY with RQs

78 S. Peldszus

the final implementation of the software system, where individual methods or
statements may be security critical, e.g., a security requirement on a communication
link in a deployment diagram that is reflected by a call to a cryptographic API.

3.2 RQ2: How Can We Apply Model-Based Security
Engineering to Legacy Projects That Have No or
Disconnected Design Models?

Many software systems that were developed decades ago are still in use and are more
or less actively maintained. For such legacy systems, often, no models are available,
or the existing models have been created in the early phases of system development
and are disconnected from the implementation. As most legacy software systems
have not been developed using the approach presented in the thesis, the question is
how these legacy systems can switch to using the introduced model-based security
engineering approach for further development and maintenance. Since tracing
between design-time models and implementation is essential, we need efficient and
effective means, automated as much as possible, to reverse-engineer these trace links
for legacy projects. Thereby, we distinguish between two kinds of legacy projects:
projects that do not have design-time models and projects for which early models
were initially created but no traces have been maintained.

3.3 RQ3: How Can Developers Be Supported in Realizing,
Preserving, and Enforcing Design-Time Security
Requirements?

Various approaches have been developed to plan the required security mechanisms
in the early stages of software design. However, when it comes to verifying the
implementation of security requirements in a software system, most checks have to
be performed in manual code reviews. This is due to the local scope of individual
security analyses and the lack of automated reuse. To effectively support developers
in implementing and verifying design-time security, automated reuse of security
specifications and appropriate checks for verifying security properties on other
system representations are required. The most relevant question is what we need to
check and where we have to check it to show that the specified security requirements
are met. For example, a fundamental security requirement for a medical system
is that no personal or medical data is accessible to unauthorized entities. In the
design models, we can identify what we consider to be such sensitive data and
plan appropriate measures at an abstract level, e.g., that only certain parts in a
security core of the application are allowed to access this information and that it
must be encrypted when it leaves that core. Verification of compliance involves

Security Compliance in Model-Driven Software Development 79

a variety of checks, including dependency and taint analysis, which must be
configured according to the specific requirements, as well as verification that the
information is actually encrypted when required. In addition, it may not be sufficient
to only statically check the code, as a exchanged library at deployment or a newly
discovered attack vector may cause security violations in a software system that has
passed all static security checks.

3.4 RQ4: How Do Changes Affect a System’s Security
Compliance, and How Can These Effects Be Handled?

The development of a software system consists not only of adding new elements
but also of modifying existing elements. Both changes require the continuous
update of the traces studied in RQ1. However, as part of RQ1, we do not look at
how such changes might affect security requirements. Suppose we want to guide
developers. In that case, we have to inform them if some changes, which have
automatically been performed by our tool support or manually by them, affect
security requirements. For example, this is of particular interest in the certified
software scenario [27, 31], where it has to be ensured that a change violates no
security requirement.

3.5 RQ5: How Can We Verify and Preserve Security
Compliance in Variant-Rich Software Systems?

Often, software systems come in many variants that share huge parts in common.
Thereby, the number of possible variants can quickly reach an astronomical scale,
making the security analysis of every single product infeasible [22]. Nevertheless,
for every single variant or product, we have to ensure that it does not contain any
security violation. Furthermore, we have to preserve security compliance also in
case of changes, e.g., in case of applied restructuring operations. Here, the goal is to
find means to apply the developed security engineering approach also to variant-rich
software systems.

4 Research Methodology

To answer the presented research questions and provide a solution to the outlined
problems, we followed the design science research methodology [6, 13, 24].
The goal of this research approach is to develop artifacts that overcome current
boundaries. Thereby, new knowledge is achieved by building and investigating

80 S. Peldszus

the application of the developed artifact. Accordingly, this approach requires that,
initially, a general solution concept is developed, which is afterward implemented
and evaluated. If necessary, the developed solution concept is adapted based on the
observations during application and evaluation until the desired goals are met. We
divided the topics of the thesis into small sub-problems with individual research
questions that can be investigated separately for solving the identified problems and
incorporated them into one approach afterward.

5 Approach

To overcome the outlined challenges in developing and maintaining secure software
systems, we identified five research questions, focusing on aspects required for
improving the model-based development and maintenance of secure variant-rich
software systems. To allow continuous model-based security engineering, we
mainly focus on the automated tracing of security requirements throughout the
whole development process and their continuous verification. In general, the idea
of the presented GRaViTY development approach is to automatically create and
maintain detailed low-level trace links between design and code artifacts. These
trace links are intended to be processed by the tool and not for direct manual use.
Developers benefit from the trace links through tool support that uses them for
automated navigation between different artifacts. In addition, trace links are used
to propagate security-related information between models and the implementation
of a software system. Also, the trace links allow to automatically reflect changes on
any artifact to all other artifacts. Due to this continuous automated synchronization,
which allows changing all artifacts of a software system at any time, the GRaViTY
development approach supports both sequential and agile development processes.

In this section, we discuss from a developer’s perspective how a secure software
system can be developed with GRaViTY to overcome the identified problems. First,
we discuss our assumptions on how to allow developers to work efficiently at the
development of secure software systems. By doing this, we derive key ideas on
which we will build our solution. Afterward, we show the development process for
developing secure software systems using GRaViTY. Also, we show the provided
tool support and how it is integrated into this process. Finally, we demonstrate the
development using our approach from the perspective of a developer.

5.1 Key Ideas of the GRaViTY Approach

Developers play an essential role in the success of a software project. The more
developers can focus on their tasks, the more efficient they can be in solving these
tasks. The primary goal of GRaViTY is to enable the successful development and

Security Compliance in Model-Driven Software Development 81

maintenance of secure software systems. To achieve this goal, we identified four key
ideas to be realized in GRaViTY.

5.1.1 Suitable Views

The first key idea is that developers should work on the most suitable view for
their task. For every task, there is a view in which this task can be carried out
most effectively. For example, when a security expert is planning or updating the
general security requirements of a software system, an abstract view of the software
system, such as a thread model or an architectural model, is more likely to be
appropriate than the source code with all its details. However, due to circumstances
from the used development process or tooling, all the required information might
not be available in this view, or the view cannot easily be created. For example,
while a software system has initially been designed using means to specify security
requirements and measures on abstract design-time models, such as UMLsec [14]
or SecDFD [43], due to missing trace links, changes in the security requirements
have to be specified on the implementation level. Such situations should be avoided
by the design of our approach and proper tool support. Tool support must ensure
that software developers and experts, such as security experts or software architects,
can always work in the view of the system best suited to their task.

5.1.2 Side Effects

When working on their task, developers should only focus on their tasks and should
not have to care about potential side effects. Nearly every task a developer performs
comes with side effects she has to think about. Accordingly, these side effects draw
attention from the main task and hinder the development. In the thesis, we explicitly
consider two kinds of side effects.

Local side effects: First, side effects within the artifact that a developer is
changing, e.g., replacing a cryptographic library to better fit the needs at a
particular location in the source code, requires also updating the other locations
where the previous library was used. Handling such side effects is essential for
maintaining the correct behavior of a software system. Automated tool support as
part of a development approach can help identify such side effects. For example,
compilers can detect calls to non-existent APIs, and UMLsec checks can detect
side effects of model-level changes that affect design-time security requirements.

Global side effects: Second, in addition to local side effects, there might be side
effects on other artifacts. If these artifacts do not immediately relate to the
correct function of the software system, developers should not have to care about
side effects on these. For example, consider a developer optimizing a software
system’s implementation-level design quality. Most changes might not affect the
architecture of the software system, since they are too fine-grained and do not

82 S. Peldszus

affect the borders of components. In this case, the developer should not have to
care about the effects on the architecture during his or her task.
However, coming back to the suitability of views, an architect should also not
have to review the local restructurings at the implementation level of the software
system. Side effects that occurred and changed the architectural level should be
propagated to the architectural level.
Furthermore, refactorings might have side effects regarding a software system’s
security requirements, e.g., by making sensitive information accessible. Here,
the developer should still be able to focus on the code quality, and tool support
should take care of preventing changes with such side effects.

To this end, with GRaViTY, we want to get one step closer to the point where
developers do not have to think about such side effects. The ultimate goal is to
automatically propagate all changes made by a developer to all other artifacts and
then present the propagated changes to an appropriate expert for review. In addition,
tool support should reduce the risk of changes leading to violations in other artifacts.

5.1.3 Synchronization

To avoid the individual artifacts of a software system, such as design-time models
and code, to diverge, a continuous synchronization in the sense of reflecting every
change on all artifacts is necessary. Keeping all artifacts synchronized in case of
changes usually requires a significant manual effort, even when tool support is used,
and is likely to give rise to inconsistencies. Using GRaViTY, developers should be
able to change artifacts in arbitrary order, and their changes will be automatically
propagated by GRaViTY for keeping all artifacts synchronized. Furthermore, this
step is a prerequisite for allowing developers, architects, and security experts to
work on the most suitable view of the software system as depicted in the previous
two ideas. Accordingly, the synchronization of the artifacts should happen as far as
possible in the background with as few user interactions as possible.

5.1.4 Continuous Security

To ensure the security of a software system under development, it is essential to
check every change for its security implications at some point of time. This can be
either aggregated before a release, when a commit is pushed to a repository, or, in the
best case, continuously during the development as part of the live checks provided
in an IDE. Similar to bugs, the earlier a security violation is discovered, the easier
and cheaper it is to fix. For this reason, in GRaViTY, developers are continuously
assisted by automated security compliance checks helping to preserve the security
of the software system. Due to the needed runtime, which can vary depending on
the size of the system and the properties selected to be checked from a few seconds
to multiple hours, security compliance checks of the entire system are provided

Security Compliance in Model-Driven Software Development 83

as batch checks but should be also integrated into continuous integration pipelines
in the future. For live support in an IDE, we discuss how checks can be executed
incrementally to only consider the changed parts.

Such continuous automated security checks are also an essential concept in other
approaches, e.g., SecDevOps [20]. We consider these in GRaViTY, but the goal is to
go even one step further. Usually, when talking about continuous automated security
checks, low-level security checks with a limited scopes are meant. In our approach,
we target the security compliance of the implementation with the specification in
design-time models. Nevertheless, security checks with limited scopes, such as
UMLsec that only targets the model-level, are essential to ensure the consistency
of the security specifications with which we check the compliance. However, these
automated security checks should not replace manual reviews but support these.
Also, continuous automated security checks allow to review changes quicker and
study their effects. This eases incremental reviews.

To summarize, we need a development process that allows developers to focus
on their tasks and allows them to perform the tasks on the most suitable view on
the software system. In addition, such an approach might also assist in performing
the tasks themselves. The consideration of tool support can be a fundamental part
of such an approach. However, in the intended GRaViTY approach, tool support
is not meant to replace developers, security experts, or software architects but to
assist them. While the desired tool support might not be easy to implement from
a technical perspective, the main challenges lie in the design of a development
approach supporting the outlined key ideas and in the underlying challenges that
have to be solved for realizing the approach.

5.2 The GRaViTY Development Approach

Next, we show the general development process using the GRaViTY approach and
the automatically executed tasks within this sequence. Figure 2 shows a conceptual
overview of the development using the GRaViTY development approach.

The artifacts that will be created are shown on the left side of Fig. 2. We
assume that three levels of design models are used in addition to the concrete
implementation of the software system. At the most abstract level, a domain model
captures the essential elements and relationships of a domain, usually in the form
of a UML class diagram. These elements are then detailed according to the planned
system and related to the coarse-grained element of the planned system, e.g., in
an early class model or threat model. In the implementation model, the coarse-
grained elements such as components, classes, or processes from the system model
are detailed to the point where they can be implemented in source code.

As soon as a model is created, it is denoted by a circle representing an instance
of the model or the software system’s source code. Following the figure, we assume,
that all models are created in the order of their abstraction level, and none is
temporarily skipped. However, we do not assume that any of these models is

84 S. Peldszus

Domain
Model

System
Model

Implementation
Model

Implementation

main development process development artifact

automated change propagation security & quality reporting

InitializationDevelopment
Artifact

Development
& Maintenance

Fig. 2 Development process of the GRaViTY development approach

completed before the next one is created. Incrementally, developing the models
in iterations is explicitly possible and allows the usage of GRaViTY in agile
development processes.

In agile development, the main development process has three initialization
steps in which initial versions of all models are created. In the fourth step, the
development and maintenance phase is reached, in which we iterate until the
software system has been developed. If we want to consider the maintenance of
the software system, we stay in this step and iterate until the software system’s end
of life.

The blue area above the main development process arrow contains all artifacts
available in the current step of the main development process. Whenever a change
is applied to any of the artifacts, this change is propagated to all other artifacts that
have been developed automatically. The corresponding development activities are
denoted in the figure by blue arrows.

A software system’s development is supported by security and quality reports
covering all artifacts that have been developed. While working in the way as
presented above, trace links are created and maintained continuously that will be
leveraged for selecting and executing security compliance checks. The security and
quality aspects derived this way are centrally reported into the main development
process, which is denoted by red, dotted arrows.

5.3 Developer Perspective on Using GRaViTY

In Fig. 3, we show the interaction of a developer with the software system under
development while using GRaViTY. The software system under development is
depicted in the center of the figure. Thereby, the software system consists out of

Security Compliance in Model-Driven Software Development 85

Software System

Domain
Model

Design
Model

Implementation
Model

Source
Code

Developer

Security
Report

G
R

aV
iT

Y
 F

ram
ew

ork

derived_create

derived_delete

create

delete

Fig. 3 A developer performing changes using GRaViTY

the discussed development artifacts, namely, different design models and the source
code of the software system. These artifacts as well as their relations are shown in
the center of the figure.

The GRaViTY framework is indicated by a cylindrical shape on the figure’s
right side. This shape connects all development artifacts and operates invisibly for
a developer in the background. It takes care of synchronizing all artifacts in case of
changes, the propagation of security requirements, and security checks.

On the left of the figure, a developer is shown that can directly interact with the
development artifacts of the software system. In our case, interaction means that
the single artifacts of the software system can directly be edited by the developer,
using an IDE into which GRaViTY is integrated. This integration comprises user
interfaces allowing developers to make use of the GRaViTY tool support, e.g., by
using refactorings for restructuring the implementation. Currently, only Java in the
Eclipse IDE in combination with the Papyrus model editor [16, 42] for UML models
and data flow diagrams is supported.

Within this IDE, GRaViTY continuously provides reports to developers. For
example, this reporting comprises details on security violations currently present
in the software system in the form of error markers on the models and code but also
more detailed reports via an integration with the UMLsec tooling. For other cases,
such as details on the effects of planned refactoring operations, the information is
immediately provided as part of the refactoring UI. Based on the reports, developers
and experts can plan improvements to the software system. For the generation of
reports, GRaViTY considers all artifacts present in the software system.

86 S. Peldszus

Whenever a developer edits a development artifact, e.g., by deleting and adding
elements in models or source code, these changes are propagated to all other artifacts
by GRaViTY. For example, the developer’s addition to the design model leads to
a derived addition in the source code, and a deletion of elements in the source
code leads to deletions in the implementation model and design model. After every
change, an updated report is created and presented to the developer. This report can
then be used for estimating the impact of the change but also be shared with experts,
e.g., software architects or security experts.

While working with GRaViTY, there should be no difference between working
on a single product or a variant-rich software system. A developer can still change
the software product line in his or her preferred way. Also, security and quality
reports are continuously provided but now consider the whole software product line.

6 Research Outcomes

In the thesis, we present GRaViTY, an integrated approach for continuous security
compliance checks at model-driven development. While answering the research
questions, the approach addresses the challenges identified at problem discussion.

6.1 Inconsistency and Missing Traceability

While we use standard UML technologies for tracing among UML models with
different levels of abstraction, we employ Triple Graph Grammars (TGG) [39],
a bidirectional graph transformation technology, for tracing between models and
code. Based on transformation rules, TGGs build a correspondence model and allow
changes to be synchronized between models and code. While the TGG rules allow
us to abstract details from the statement level, we still end up with very detailed
models that need to be connected to more abstract, manually created instances, for
which we provide tool support. However, in combination, this approach allows us
to automatically prevent inconsistencies throughout software development (RQ1)
and allows developers to work on the more abstract instances [25, 28, 29]. We
also discuss semi-automated traceability recovery and reverse engineering of UML
models (RQ2) [33, 44].

6.1.1 Continuous Tracing

In the thesis, we have shown that we can propagate arbitrary security requirements
within UML models of different abstraction but also between UML models and
the implementation and an implementation-level program model. For this purpose,
we investigated two different mechanisms for tracing security requirements. First,

Security Compliance in Model-Driven Software Development 87

we extended the TGG transformation to create corresponding security requirements
in the implementation as Java annotations. Second, we looked at dynamic tracing
using the correspondence model. In both variants, the TGGs allow to automatically
propagate changes to keep all artifacts synchronized.

The dynamic tracing avoids enriching the implementation with additional anno-
tations, but it can have the disadvantage of being inefficient. Since the metamodels
of the considered models are given, the trace links contained in the correspondence
model can point to elements from the different models, but are not directly
accessible from them, resulting in a search for all trace links pointing to an element
of interest. If only a few traces are required across the correspondence model or an
efficient cache has been created, dynamic tracing should be used to avoid distracting
developers. However, if many annotations are required for analysis, the propagation
is more likely to be efficient. Also, the created annotations are available at runtime.
Altogether, small local lookups should be realized using dynamic tracing, while for
full compliance checks or at deployment, the UMLsec security requirements should
be propagated into the implementation using additional TGG rules.

To conclude, we provide an automated mechanism to preserve consistency
between different program representations for managing evolving Java programs.
As a result, we obtain a model-based framework for arbitrarily interleaving program
evolution and maintenance steps while ensuring consistency. Furthermore, we can
use this approach to also translate and synchronize security requirements of model
elements between different system representations, thereby providing traceability
of security requirements. Our evaluation on real-world software projects up to 200k
LOC shows that our approach allows efficient synchronization between code and
models after changes with a speedup of 95% compared to extracting the models
after the change.

6.1.2 Restoring Traceability

For legacy projects, we discussed the application of GRaViTY considering two
different scenarios. First, we considered software projects in which no design-time
models exist. Here, we discussed how the required models and correspondence
models between the design-time models and the implementation can be reverse-
engineered using GRaViTY’s synchronization mechanism [25]. Second, we consid-
ered legacy projects in which early design models are available but are disconnected
from the implementation. To restore this connection in terms of a correspondence
model, we introduced a semi-automated mapping approach [33, 44] that provides
the user with suggestions for correspondences and learns from its decisions.

The two approaches can be used complementary in projects containing early
design models. First, developers can reverse-engineer UML class diagrams using
the TGGs and, afterward, reconstruct the correspondence model between early
data flow diagrams (DFD) and the implementation. These correspondence models
can then be used to create trace links between the DFDs and reverse-engineered
UML class diagrams, which is again supported by suggestions that are provided

88 S. Peldszus

by tooling. This allows to transfer security requirements from security annotations
on the DFDs (using the SecDFD notation [43]) into the class diagrams and avoids
specifying these again, preventing potential errors.

To conclude on the application of GRaViTY on legacy projects, the proposed
reverse-engineering approaches allow reconstructing models and correspondence
models that allow the application of GRaViTY. The reverse-engineered UML
class diagrams can continuously be synchronized with the implementation using
GRaViTY’s synchronization mechanism without any adaptions. We evaluated the
scalability of the reverse engineering on real-world Java projects up to a size of
200k LOC. The correspondence model created between early design models and
the implementation is a snapshot of the current state and cannot be automatically
synchronized. However, as outlined, they build a basis for propagating security
requirements and reconstructing the model hierarchy used by GRaViTY. For the
semi-automated approach, we have shown in our evaluation on five open-source
projects that we already reach a precision of .50.5% and recall of .69.8% in the
first iteration, reaching .87.2% and .92% after a few iterations. Thereby, the user
has on average an impact on the recall of .7.9% and provides new input for the
automatization. Notice that on average, .75% of all correct correspondences are
suggested to the user and do not have to be manually defined. All in all, the user is
not only guided through the implementation by our tool but also assisted in creating
the correspondence model between SecDFDs and their implementations.

6.2 Non-integrated Solutions

To overcome non-integrated solutions, for ensuring security compliance, we connect
design-time security with implementation-level security. The presented automation
allows us to effectively check security at low cost by allowing security experts
to only specify security requirements once in combination with an automated
propagation based on our tracing mechanism (RQ3) [1, 25, 34, 44]. We leverage
design-time security requirements for static and dynamic implementation-level
security checks. Besides newly developed checks, specifically tailored for verifying
considered design-time security requirements, we also discussed how state-of-
the-art taint analysis can be improved by connecting design-time security with a
data flow analyzer [2]. Finally, we present a runtime monitor for detecting and
mitigating violations of design-time security requirements. Furthermore, we support
an adaption of the design models to allow an inspection of observed security
violations.

6.2.1 Static Security Checks

We introduce a novel approach for tackling the problem of automating the code-
level verification of planned security mechanisms. In particular, we have developed

Security Compliance in Model-Driven Software Development 89

a solution with tool support for executing security compliance checks between
an abstract design model and its implementation (in Java). Once defined, the
correspondence model is leveraged for an automated security analysis of the
implementation against the security design. Two types of security compliance
checks are executed: a check whether cryptographic operations are used at the
expected locations and a local data flow check for data processing contracts specified
in the model. The results of the compliance checks (convergence, absence, and
divergence) are lifted to the attention of the user via the user interface of our tool.
Similarly, the mapped design is also leveraged to initialize and execute a state-of-
the-art data flow analyzer over the entire Java project. We can optimize and automate
taint analysis by automatically identifying sources of sensitive information while
improving precision by identifying allowed sinks in the design.

Our approach was evaluated with two studies on open-source Java projects,
focused on assessing the performance from different angles. The rule-based security
compliance checks are very precise (.100%) and rarely overlook implemented
cryptographic operations (recall is .94.5%). In addition, the local data flow checks
are fairly precise (.79.6%) but may overlook some implemented flows (recall is
.65.6%), due to the large gap between the design-time SecDFD models and the
implementation. Further, our approach enables a project-specific data flow analysis
with up to 62% fewer false alarms.

6.2.2 Dynamic Security Checks

To ensure security compliance at runtime, we introduce an approach for coupling
model-based security analyses with the code level at runtime and supporting round-
trip engineering by providing feedback into the models [35]. We realized support
for checking secure call dependencies at runtime, by extending the realization of
UMLsec Secure Dependency, which could only be checked statically (and thus
partly) by now. We provide a runtime monitor that leverages the implementation-
level security annotations discussed above for enforcing the design-time secure
dependency security property. Reaction to detected security issues is supported by
passive reactions like call trace logging or actively by providing modified return
values to protect real application data. Round-trip engineering is supported both
by feeding additional associations monitored during execution back into the model
and automatically generating sequence diagrams of attacks to support developers in
investigating attacks with graphical support and related to the model. Thus, software
system evolution detection is also tackled.

We evaluated the effectiveness and applicability of the security monitoring
against real CWEs and DaCapo benchmark. Results show that we support realistic
application scenarios and real-world software systems. Further, a user survey shows
that the generated sequence diagrams are useful for investigation security violations
that were observed or mitigated.

90 S. Peldszus

6.3 Security-Aware Restructuring

To detect security violations after changes, we introduce security violation patterns
that encode implementation-level security checks against design-time security
requirements as graph patterns (RQ4) [34]. Especially, we discuss their incremental
execution for efficiently verifying security compliance instead of full-security
compliance checks. In addition, we provide security-preserving refactorings for
ensuring security compliance at restructuring (RQ3 & 4). The security-preserving
refactorings allow checking security compliance before modifying the implementa-
tion [28, 29, 37].

While the refactoring of a software system is already challenging, this challenge
even gets greater on security-critical software systems. We have shown how refac-
torings can be formalized using graph transformation languages [28, 29]. Existing
works show that such formalizations allow reasoning about the correctness of the
refactorings regarding them not changing a software system’s behavior [19]. Also,
such formalization allows checking the applicability of the refactorings upfront.
However, the correctness of the refactored implementation could not be guaranteed
as the refactorings had to be performed manually on the implementation. Here,
we show how to overcome this gap using the program model and synchronization
mechanism introduced in the thesis. Finally, we have shown how the formalized
refactorings can be extended with security constraints, leveraging design-time
security requirements.

In summary, the presented solutions allow the restructuring of security-critical
software systems as part of the GRaViTY development approach. In our evaluation,
we show that the incremental execution of the security violation patterns provides a
significant speedup against security compliance checks of the entire system (which
did not terminate within a reasonable time). During refactoring, the discussed
security extensions allow to automatically prevent security-violating refactorings.
Further, we have shown that our refactoring approach also prevents behavior-
changing refactorings that are executed by the Eclipse IDE.

6.4 Variant-Rich Systems

Finally, we investigated the application of GRaViTY to variant-rich software
systems (RQ5). To verify UMLsec security requirements in model product lines, we
have encoded the checks as OCL constraints and applied a template interpretation
approach [32]. Developers verifying their product lines can use the our OCL
constraints as a black box and do not have to look into the complicated logic.
Detected violations are automatically presented on a concrete variant containing
the violation, and other affected variants are listed. To apply arbitrary pattern-based
checks, such as security violation patterns or security-preserving refactorings, we
have extended the Henshin graph transformation engine to support variability within
transformation rules and models at the same time [41].

Security Compliance in Model-Driven Software Development 91

6.4.1 Design Time Variability

We provide a comprehensive methodology for the model-based security analysis of
software product lines. We extended our UMLsec to also support variability within
the security requirements by adding presence conditions to the security annota-
tions [32]. Users specify security requirements as well as variability information
as part of the design-time system models. Furthermore, we investigated how we can
detect security violations on the UML product lines without iterating all products.
For this purpose, we specified UMLsec checks as OCL constraints and evaluated
these using a state-of-the-art template interpretation technique [7]. This way, our
analysis addresses the scalability issues encountered in this setting by lifting the
analysis to the level of the entire product line rather than individual products. In
our evaluation, this solution enables the analysis of realistic product lines where the
naive approach terminated without a result; a user study indicates the usefulness of
our methodology.

6.4.2 Variability on the Implementation Level

To allow the application of refactorings and security violation patterns to SPLs,
we introduce a multivariant model transformation approach allowing applying
variability-based transformation rules to software product lines. To be more precise,
we propose a methodology for software product line transformations in which not
only the input product line but also the transformation system contains variability.
At the heart of our methodology, a staged rule application technique exploits reuse
potential concerning shared portions of the involved products and rules. We present
a formalization of our technique, including an optimization that supports an efficient
checking of negative application conditions (an advanced transformation feature).
We demonstrated practical benefit by applying our technique to two scenarios from
a software evolution context. We observed speedups in all considered cases, in some
of them by one order of magnitude. As part of this evaluation, we have shown
how our methodology can be used for refactoring software product lines using
security-preserving refactorings. The application of security violation patterns to
SPLs works analogously. The proposed multivariant transformation approach is not
only applicable to our two scenarios but to every variability-based transformation
rule and product line. For example, the variability-supporting UMLsec checks,
currently expressed by us using OCL constraints, could also be implemented using
this technique.

7 Case Studies

In addition to the individual evaluations, we applied GRaViTY in two case studies
to demonstrate that the approach works as a whole. The first case study is the
Electronics Health Management System iTrust, and the second case study is the

92 S. Peldszus

Eclipse Secure Storage of the Eclipse IDE. As the developers of iTrust provide
complete documentation and models are available in existing research, we used
iTrust to demonstrate the feasibility of the GRaViTY approach for developing a new
software system taking security into account. While the Eclipse IDE also provides
good documentation of the implementation, there are no requirements or models
available. For this reason, we applied the GRaViTY approach to Eclipse Secure
Storage to demonstrate its feasibility on legacy projects.

7.1 Case Study 1: iTrust

The iTrust case study comprises a realistic and working electronic health records
system that has been developed and maintained in university classes over 25
semesters and is compliant with the HIPAA Security and Privacy Rules [12, 18]. The
main documentation is provided as requirements describing use cases of the iTrust
system. The software system itself has been implemented in Java using Java Server
Pages (JSP). This project has been used as a subject in various research projects,
resulting in the creation of design-time models in addition to the original source
code [4, 5, 12].

In this case study, we simulate the implementation of the iTrust system using
GRaViTY from the very beginning, starting with requirements engineering. After
the initial development of the software system, we focus on the restructuring of
iTrust as part of the maintenance. Finally, we showcase the conversion of iTrust into
an SPL. In all steps, we reuse the existing iTrust artifacts and create all required
artifacts following the GRaViTY development approach.

7.1.1 Requirements Engineering

Usually, the development of a software system starts with an analysis of the domain
as part of the requirements engineering. The knowledge about entities and relations
within the software system’s domain is captured in a domain model. The domain
model elements are then used to specify their realization in the software system.
Here, the specification of the software system’s intended functionality is one of
the first steps of requirements engineering. For this purpose, the UML provides
the notation of use case diagrams. To simulate the requirements engineering, we
manually recreated iTrust’s use case diagram based on iTrust’s requirements by
redrawing a diagram in less than an hour. Thereby, we took a domain model as
given and refined it by specifying the use case diagram. The used domain model
shows basic concepts in a hospital such as doctors treating patients. Whenever
there was a refinement relation between the use case diagram and the domain
model, we explicitly modeled this relation. In the next step, the domain model
and use case diagrams are refined further to specify an architecture that allows the
implementation of the specified use cases.

Security Compliance in Model-Driven Software Development 93

7.1.2 Software Architecture and Security Modeling

After requirements engineering, based on the requirements models and the textual
requirements, the software system’s architecture is specified. Following the princi-
ple of security by design, we have to consider security requirements explicitly in
this step. Accordingly, we discuss the simulation of the architecture specification
for the iTrust system. To this end, we focus on the feasibility of refinements for
specifying software architecture and security engineering. Starting from the models
developed at requirements engineering, we iteratively refine these models until we
reach a detailed specification of the iTrust system.

After every extension step, comprising the addition of a coherent set of model
elements, a security engineering step takes place. Here, we considered the security
engineering using UMLsec and SecDFDs. As the SecDFD and UMLsec specifica-
tions and checks are known from the literature, we do not focus on their usage but
the Secure Realization security-refinement mechanism introduced in the thesis.

As part of our case study, we simulated these steps by selecting parts of the
design and implementation models and iteratively rebuilding the models. Whenever
we added a new part to the models, we also created the corresponding refinement
relations. We started our simulation with a domain model already containing
fundamental security requirements, such as that personal data has to be classified
at the security level of secrecy. Based on this model, we simulated three evolution
steps:

1. In the first step, we defined classes in the design model refining persons and
actors of the domain model and use case diagram.

2. Afterward, we added the data classes for storing medical information about
patients to the design model.

3. Finally, we added classes and operations for implementing the functionality of
the use cases.

Figure 4 shows on the right-hand side of the figure a corresponding excerpt of
the domain model of the healthcare domain in which sensitive information such as
the home address of a person is classified using UMLsec. On the left-hand side, the
figure shows the design of iTrust and using realization edges how it realizes to the
elements from the domain model.

7.1.3 Implementation

After reaching a state in which the design-time models are detailed enough, we have
to start implementing the software system. Thereby, tracing is required from the first
written line of code for applying the GRaViTY approach. For this reason, we focus
on the integration of GRaViTY’s tracing approach into software development.

Using the synchronization mechanism of GRaViTY, we generated an early
Java class layout from the implementation model. Afterward, we filled this layout
manually with functionality. During this step, the implementation model has been

94 S. Peldszus

Doctott r

+doctott rsrr*

ities: String [*]

Domain ModelDesign Model

+datatt : User [1]

+login()
+rerr setPasswortrr (tt)
+chooseUser()

Contrtt orr l

+fiffnishModification()

DiagnosisContrtt orr l
+datatt : Diagnosis [1]

datatt

Patient

User
+passwordrr : Strtt ing [1]
+fif rsrr tName: Strtt ing [1]
+lastName: Strtt ing [1]
+/++ name: FullName [1]
+homeAddrerr ss: Addrerr ss [1]

Patient
++++allergrr ies: Strtt ing [*]

Diagnosis

Examination

Persrr on
+/++ name: FullName [1]
+homeAddrerr ss: Addrerr ss [1]

trtt err atstt

+doctott rsrr

+patientstt *

*
+patient

+examinations

1
*

+patient

+diagnosis

1

*

+doctott r

+examinations

1
*

+diagnoses

*

+examination

+diagnosis

1

1

<<c<< rititctt al>>>>
{s{{ ecrerr cy={==h{{ omeAddrerr ss : Addrerr ss}}}}

+special

LoginControl

Fig. 4 Refinement relations between the design model of iTrust and a domain model of the
healthcare domain

kept synchronized by GRaViTY with the manual changes. We performed this
manual extension by copying and pasting implementation fragments of the iTrust
implementation into the generated class layout. However, as the MoDisco parser is
not incremental, in addition, we had to simulate these changes on the MoDisco
model by manually copying the corresponding changes into this model. After
every set of source code changes, we generated a MoDisco model and copied the
changes into the MoDisco model previously used by GRaViTY, making the changes
processable for the used TGG this way.

7.1.4 Security Compliance

The continuous verification of the planned and implemented security is an essential
contribution of GRaViTY. As part of this case study, we investigate how these
verification steps integrate into the software development process.

Comparable to the incremental specification of the software system’s architec-
ture, we also interleaved security verification steps with the implementation steps.
These implementation steps have been discussed as the subject of the previous part
of this case study. After synchronizing every change made on the implementation
with the design models, we manually executed all security compliance checks.

As in the generated class design and the first pasted code fragments, no security
mechanisms have been contained, and all have been reported as absent. For this
reason, initially, we faced a long list of absences regarding the planned security
design. However, as we incrementally added more functionality from iTrust’s
implementation, the size of the lists of absences reduced until we got rid of all
absences. Thereby, the absences functioned as a kind of to-do lists for security-
related tasks and as selection criteria for the next code fragments to paste. For
example, Fig. 5 shows a screenshot of the corresponding tooling with detected
issues at the bottom. In the example, the security-critical change password process
considered in the design represented as data flow diagram has not been implemented

Security Compliance in Model-Driven Software Development 95

F
ig
. 5

Se

cu
ri
ty
 c
om

pl
ia
nc
e
ch
ec
k
be
tw

ee
n
a
da
ta
 fl
ow

 d
ia
gr
am

 d
es
cr
ib
in
g
an
 iT

ru
st
 u
se
 c
as
e
an
d
th
e
im

pl
em

en
ta
tio

n

96 S. Peldszus

in the implementation yet. As the source code inserted this way was always security
compliant, no other violations have been reported.

7.1.5 Restructuring

After reaching the state in which our case study system’s implementation was
identical to the original iTrust implementation, we investigated this implementation
regarding possibilities for restructuring the software system. Thereby, we only
focused on restructuring in terms of refactorings.

To find additional refactoring opportunities, we executed the search-based opti-
mization tool GOBLIN [37]. Thereby, we added all three refactorings introduced in
the thesis (Create Superclass, Pull-Up Method, and Move Method) to GOBLIN.
Besides, the optimization criteria considered in the summarized experiment of
Ruland et al. (design-flaws [31], coupling/cohesion, visibilities, and the number of
changes), we also added the Critical Design Proportion metric discussed in the
thesis as an optimization criterion. Due to iTrust’s architecture along with the Java
server pages, most times, the implemented functionality was already well located,
and we only rarely found additional beneficial refactoring opportunities.

7.1.6 Variability Engineering

As the last part of this case study, we considered the re-engineering of iTrust into an
SPL. In this case study, we mainly focus on the specification of an SPL in terms of
the variability within all artifacts of the software system. However, we also consider
the security checks for SPLs.

We started on the use case diagrams with the identification of possible features
and ended in assigning individual use cases to features. Afterward, we investigated
two different approaches for realizing the identified features in the software system:
first, a top-down approach by specifying variability on the models and propagating
it to code and, second, a bottom-up approach in which we specified variability on
the source code and propagated it into the design-time models. After realizing the
variability in the iTrust system, we executed the SecPL checks to verify the security
of the iTrust SPL.

7.2 Case Study 2: Eclipse Secure Storage

Our second case study focuses on applying GRaViTY to relatively small (2,900
LLOC) but security-critical part of the Eclipse IDE. Eclipse Secure Storage [8] is
used by Eclipse plugins such as the Eclipse git client to store confidential data like
passwords. The Eclipse Secure Storage is implemented as an Eclipse plugin itself
using Java. How exactly the secure storage works is described in the help document

Security Compliance in Model-Driven Software Development 97

of Eclipse [8]. However, this description is rather high level and complemented by
the low-level API documentation. We consider Eclipse Secure Storage due to its
security criticality, good documentation, and wide usage in practice.

In this case study, we focused on migrating legacy projects to GRaViTY. In what
follows, we first discuss the reverse engineering of the Eclipse Secure Storage to
create a state in which the application of the GRaViTY approach is possible. Next,
we discuss security engineering, aiming at making security requirements explicit
and checking the software system regarding compliance with them. Finally, we
discuss the runtime monitoring of the Eclipse Secure Storage based on a fictive
malicious Eclipse plugin and the adaption of the reverse-engineered models.

7.2.1 Reverse Engineering of Models

As there are no models available for Eclipse Secure Storage, the first step of this
case study was the reverse engineering of models. For the reverse engineering of
models, we followed a three-step approach. First, based on the documentation of
Eclipse Secure Storage, we manually created data flow diagrams and UML activity
diagrams, which are similar to the DFDs but include control flow, for two use
cases, accessing a value from the secure storage and resetting a password. As
usual in threat modeling, these diagrams are at a high level of abstraction and
are limited to the essential elements; in our case, they include only 7 assets per
diagram and 7 or 10 nodes, respectively. Afterward, we automatically reverse-
engineered a detailed UML class diagram from the source code of Eclipse Secure
Storage using GRaViTY. Finally, we used the semi-automated mapping approach
to establish refinements between the manually created diagrams, the automatically
reverse-engineered class diagram, and the software system’s implementation.

7.2.2 Static Security Specification and Checks

One of the two main goals of applying GRaViTY to legacy projects is to create
artifacts that allow an easier specification of security requirements, compared to
their specification on the implementation, and the security compliance checks with
these security requirements. The other main goal is to continue with the continuous
verification of the software system’s security after the initial state has been proven
to be secure. In this part of the case study, we focus on creating such an initial secure
state using GRaViTY.

After reverse engineering, we started to annotate the models with security
requirements. Here, we started by specifying essential security requirements on
the DFDs, which were automatically propagated to the detailed reverse-engineered
class diagram. These propagated security requirements served as starting points for
the specification of detailed security requirements with annotations according to
UMLsec Secure Dependency, which was guided by the UMLsec tooling.

98 S. Peldszus

Unlike the iTrust case study, there is only one level of inheritance, which still
simplified this step, but required us to look into the very detailed UML model more
often than it was necessary in the iTrust case, where almost all detailed security
requirements were propagated from more abstract models. After this specification,
the propagation to the source code worked without problems, and as expected, the
compliance checks showed no issues. Technically, we demonstrated the feasibility
of the tools for annotating the models and, in particular, of GRaViTY’s synchroniza-
tion mechanism for propagating the security requirements to the implementation.
An extension of the tooling with clustering approaches to generate additional more
abstract models could be helpful.

7.2.3 Runtime Monitoring

In the last part of this case study, we focused on leveraging the specified security
requirements to enforce these at runtime. In the implementation of a software system
specified by a UML model, the dependencies stereotyped with «call» are usually
implemented as method calls and field accesses. Even if a model does not contain
violations, at runtime, it has to be guaranteed that the security requirements specified
at design time are not violated. Furthermore, detecting all dependencies which can
occur at runtime is statically undecidable, e.g., due to the use of Java reflection [17,
21]. What can also not be foreseen from a static perspective are violations caused
by an exchanged library or malicious code.

In Eclipse, for example, every installed plugin can access the password store.
Which plugins a developer installs into his or her Eclipse IDE is not predictable.
However, considering the discussed security annotations, only plugins that comply
with the secrecy security level should be allowed to access the password store.

To conduct this part of the case study, we implemented a malicious plugin that
attempts to illegally access passwords stored in Eclipse Secure Storage. In addition
to the security requirements annotated to the design models discussed above,
we extended the Eclipse Secure Storage implementation with countermeasures to
actively prevent illegal accesses that violate these security requirements. Based
on this, we monitored Eclipse for security violations with respect to UMLsec
secure dependency and executed the malicious plugin. The runtime monitoring
successfully detected and mitigated the security violations caused by the malicious
Eclipse plugin we prepared. In addition, the models were modified as expected,
providing details about the operation of our malicious plugin and allowing a detailed
investigation of the security violation.

7.3 Observations

In the two case studies, we demonstrated the technical suitability of the developed
approach to work as a whole and being technically applicable for developing
secure software systems. Although some parts of the case studies required manual

Security Compliance in Model-Driven Software Development 99

simulations of parts of the approach, our case studies revealed that the current
implementation of GRaViTY already provides much support for effectively and
efficiently aiding the development of secure software systems. As for most research
prototypes, especially the user interface should be improved for practical application
and there is room for automation to more seamlessly integrate into the workflow,
currently, most tooling that could run automatically has to be triggered manually.
Altogether, the case studies demonstrated the technical feasibility of GRaViTY.

Considering the key assumptions on users of the GRaViTY approach, we made
the following observations.

Suitable Views: As part of the case studies, we were able to specify security
requirements mainly on design models, as we suggest security experts do. While
it was necessary to specify some security requirements on a fairly detailed
version of these models, it was often possible to specify security requirements
on abstract models and propagate them to more detailed models and the
implementation. It may be that we have enforced working on the model rather
than the code, but this still shows technical feasibility. However, we agree that
the usability should be improved, but this is only partly related to our own tools,
but mainly to the Papyrus UML editor used.

Side effects: While conducting the case studies, we explicitly tried not to let our
actions be influenced by their potential side effects, to inspect if we would be
notified about them. As expected due to this behavior, there were some situations
where we had to resolve conflicts caused by side effects, but they were always
prominently presented to us by the tool support. For example, a dependency
added due to an implementation-level change caused a security problem on the
design models but was detected by the continuous security checks and displayed
as an error marker. Therefore, we believe that this approach allows us to focus
more on security engineering or implementation, but it remains to be verified
with external developers.

Synchronization: In the case study, we were always able to synchronize our
changes without any technical problems. This is not surprising, as our case
studies mainly contained changes that resided at the detailed source code level,
and TGGs can propagate all changes from a more detailed to a more abstract
model. The opposite direction is more challenging, as changes cannot be reflected
one to one and sometimes ended up with the change being applied to the source
code but requiring manual post-processing. For example, when we deleted a
dependency in a design model to fix a security issue due to an illegal access,
the source code was adjusted accordingly by deleting a method call, but the
variable to which the method’s return value was assigned was now unassigned.
We considered this to be intentional and not a significant problem, since the
method had to be changed as a result of a design decision. Instead of accepting
this compilation error, the entire body of the method could be automatically
commented out and a to-do added as a more elegant solution. In practice, there
may be cases where large changes to the UML models that need to be propagated

100 S. Peldszus

to the implementation, or parallel changes, may cause synchronization problems.
However, what such cases are is explicitly discussed in the thesis.

Continuous Security: Throughout the case studies, the primary goal of being
able to continuously check for compliance with security requirements was
possible. After the initial specification of security requirements, we were able to
continuously check the software system for security violations and were notified
of violations. However, this only demonstrates the technical feasibility of the
approach and the ability to tailor implementation-level security checks based
on design-time security requirements in all situations we faced. Based on the
case study, we can only state that we did not receive any false positives for
security violations, but we cannot judge whether the results were always correct
or whether security issues were missed.

8 Outlook

In the thesis, we mainly looked at individual software systems that are located in
critical domains. In these domains, standards such as ISO/IEC 62304 for medical
device software, which was relevant to our first case study, require developers
to deliver all of the artifacts that are created when following MDD and are also
considered in GRaViTY. However, there are still many domains with individual
challenges that need to be addressed. Also, the approach is designed in principle
not to be limited to the Java world but any object-oriented language, which remains
to be confirmed.

One particularly relevant domain that requires extremely complex software-
intensive systems and is utmost security and safety critical toward which we are
currently expanding GRaViTY is autonomous driving. While autonomous driving
systems are in principle located in a strongly regulated domain that would guarantee
the perfect applicability of GRaViTY due to standards such as the IEEE 26262 on
functional safety management, most autonomous driving projects, especially the
open-source projects such as Autoware.auto or Baidu Apollo, do not seem to follow
strict model-based development processes. The same also applies to many other
domains such as mobile apps, and we have to identify more lightweight tracing
approaches to allow an easy application of GRaViTY to these domains.

Further, autonomous vehicles are extremely distributed systems as well on
the individual vehicle as on external systems that are communicating with the
autonomous vehicle. Popular robotic middlewares, such as the Robotic Operation
System (ROS), which is the basis for Autoware.auto, foster the realization of such
systems as a multitude of individually running nodes that are deployed on the
vehicle itself or on external servers and communicate through a message API of
the middleware with each other. In the thesis, we have already seen that we can
extract much information about the borders of the system, e.g., to optimize security
checks with information that is not contained in the source code. Leveraging such

Security Compliance in Model-Driven Software Development 101

information becomes even more important for effective security checks in such
massively distributed systems. Also, we have to integrated different kinds of checks
on different nodes. Especially in autonomous driving, there is a significant use of
machine learning approaches for tasks such as perception of the environment and
prediction of behavior. Here, we have to work with assumptions on the machine
learning-based nodes when checking other nodes that interact with these. For
checking these nodes themselves, we have to create more dynamic verification
approaches. However, as already shown in the thesis even for handwritten code,
many aspects cannot be verified statically. We have to develop approaches to
trace nonfunctional requirements throughout the entire development process to the
runtime and to verify them in all phases to provide developers with a holistic picture.

Finally, we are currently extending our approaches to consider not only security
but also other nonfunctional requirements such as safety. In most software-intensive
systems, the various nonfunctional requirements do not stand alone, but there is
significant interaction. For example, in autonomous driving, a successful attack will
potentially lead to a malfunction of the car’s behavior, e.g., because some nodes
of the system do not provide required data. Such a malfunction is obviously also
safety critical, and we cannot consider these two aspects completely separately. Our
ultimate goal is to provide an approach that allows the selection of relevant domain-
specific profiles of nonfunctional requirements, such as safety and security, and
provides a holistic verification of whether the system satisfies all these requirements.
In combination with the demonstrated change handling and incremental verification,
this will form the basis for an incremental certification framework.

9 Summary

In the thesis, we present the GRaViTY approach for continuously supporting
developers with automated propagation of changes to avoid security-critical incon-
sistencies. Based on this synchronization, security experts can specify security
requirements on the most suitable system representation. We can verify and
enforce these security requirements on all system representations using automated
security checks, allowing us to check the implementation’s security compliance, as
needed in certifications. To preserve this compliance when restructuring the system,
we provide semantics-preserving refactorings that are enriched with security-
preserving constraints. For both security checks and refactorings, we show their
application to variant-rich software systems. To support legacy systems, we show
how UML models can be reverse-engineered also for systems with variants and
how existing early SecDFD design models can be semi-automatically mapped to
the implementation. In addition to an evaluation of the single parts of the approach,
the overall approach is demonstrated in two real-world case studies, the iTrust
electronics health records system and the Eclipse Secure Storage.

102 S. Peldszus

References

1. Ahmadian, A.S., Peldszus, S., Ramadan, Q., Jürjens, J.: Model-based privacy and security
analysis with CARiSMA. In: Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering (2017)

2. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
McDaniel, P.: FlowDroid: precise context, Flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In: Proceedings of the 35th Conference on Programming Language
Design and Implementation (2014)

3. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice. Synth.
Lect. Softw. Eng. 1(1) (2012)

4. Bürger, J.: Recovering Security in Model-Based Software Engineering by Context-Driven Co-
Evolution. PhD thesis, University of Koblenz-Landau (2019)

5. Bürger, J., Gärtner, S., Ruhroth, T., Zweihoff, J., Jürjens, J., Schneider, K.: Restoring security
of long-living systems by co-evolution. In: Proceedings of the 39th Annual Computer Software
and Applications Conference (COMPSAC) (2015)

6. Crnkovic, G.D.: Constructive research and info-computational knowledge generation. In:
Proceedings of the International Conference on Model-based Reasoning in Science and
Technology (MBR) (2010)

7. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against well-
formedness OCL constraints. In: Proceedings of the 5th International Conference on Generative
Programming and Component Engineering (GPCE) (2006)

8. Eclipse contributors: Workbench User Guide – Secure Storage – How secure storage works.
Technical report. The Eclipse Foundation (2013). https://help.eclipse.org/

9. Fowler, M.: Refactoring: Improving the Design of Existing Code. Object Technology Series
(1999)

10. France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap.
In: Proceedings of the Conference on the Future of Software Engineering (FOSE) (2007)

11. Gorschek, T., Tempero, E., Angelis, L.: On the use of software design models in software
development practice: an empirical investigation. J. Syst. Softw. (JSS) 95, 176–193 (2014)

12. Heckman, S., Stolee, K.T., Parnin, C.: 10+ years of teaching software engineering with iTrust:
the good, the bad, and the ugly. In: Proceedings of the 40th International Conference on
Software Engineering: Software Engineering Education and Training (2018)

13. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research.
MIS Quaterly 28(1), 75–105 (2004)

14. Jürjens, J.: Secure Systems Development with UML, Springer (2005)
15. Krüger, S., Nadi, S., Reif, M., Ali, K., Mezini, M., Bodden, E., Göpfert, F., Günther,

F., Weinert, C., Demmler, D., Kamath, R.: CogniCrypt: supporting developers in using
cryptography. In: Proceedings of the 32nd International Conference of Automated Software
Engineering (ASE), pp. 931–936 (2017)

16. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P., Schnekenburger,
R., Dubois, H., Terrier, F.: Papyrus UML: an open source toolset for MDA. In: Proceedings
of the 5th European Conference on Model-driven Architecture Foundations and Applications
(ECMDA-FA), pp. 1–4 (2009)

17. Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for Java. In: Proceedings of the 3rd

Asian Symposium on Programming Languages and Systems (APLAS), pp. 139–160 (2005)
18. Meneely, A., Smith, B., Williams, L.: iTrust Electronic Health Care System Case Study. (2021)

https://github.com/ncsu-csc326/iTrust2
19. Mens, T., Taentzer, G., Müller, D.: Model-driven software refactoring. In: Model-driven

Software Development: Integrating Quality Assurance, pp. 170–203 (2008)
20. Mohan, V., Othmane, L.B.: SecDevOps: is it a marketing buzzword? - mapping research on

security in DevOps. In: Proceedings of the 11th International Conference on Availability,
Reliability and Security (ARES), pp. 542–547 (2016)

https://help.eclipse.org/
https://help.eclipse.org/
https://help.eclipse.org/
https://help.eclipse.org/
https://github.com/ncsu-csc326/iTrust2
https://github.com/ncsu-csc326/iTrust2
https://github.com/ncsu-csc326/iTrust2
https://github.com/ncsu-csc326/iTrust2
https://github.com/ncsu-csc326/iTrust2
https://github.com/ncsu-csc326/iTrust2

Security Compliance in Model-Driven Software Development 103

21. Murphy, G.C., Notkin, D., Griswold, W.G., Lan, E.S.: An empirical study of static call graph
extractors. Trans. Softw. Eng. Methodol. 7(2), 158–191 (1998)

22. Oster, S., Markert, F., Ritter, P: Automated incremental pairwise testing of software product
lines. In: Proceedings of the 14th International Conference on Software Product Lines (SPLC),
pp. 196–210 (2010)

23. Parnas, D.L.: Software aging. In: Proceedings of the 16th International Conference on Software
Engineering (ICSE), pp. 279–287 (1994)

24. Peffers, K., Tuunanen, T., Gengler, C.E., Rossi, M., Hui, W., Virtanen, V., Bragge, J.: The
design science research process: a model for producing and presenting information systems
research. In: Design Science Research in Information Systems and Technology, pp. 83–106
(2006)

25. Peldszus, S.: Model-driven development of evolving secure software systems. In: Collaborative
Workshop on Evolution and Maintenance of Long-Living Software Systems (EMLS) (2020)

26. Peldszus, S.: Security Compliance in Model-driven Development of Software Systems in
Presence of Long-Term Evolution and Variants. Springer, Berlin (2022)

27. Peldszus, S., Jürjens, J.: Werkzeuggestützte Sicherheitszertifizierung – Anwendung auf den
Industrial Data Space. In: Proceedings of the Software Quality Days, Software Quality Lab
GmbH, pp. 10–14 (2017)

28. Peldszus, S., Kulcsár, G., Lochau, M.: A Solution to the Java refactoring case study using
eMoflon. In: Proceedings of the Transformation Tool Contest (TTC), pp. 118–122 (2015)

29. Peldszus, S., Kulcsár, G., Lochau, M., Schulze, S.: Incremental co-evolution of Java programs
based on bidirectional graph transformation. In: Proceedings of the Principles and Practices of
Programming on The Java Platform (PPPJ), pp. 138–151 (2015)

30. Peldszus, S., Kulcsár, G., Lochau, M., Schulze, S.: Continuous detection of design flaws in
evolving object-oriented programs using incremental multi-pattern matching. In: Proceedings
of the 31st International Conference on Automated Software Engineering (ASE) (2016)

31. Peldszus, S., Cirullies, J., Jürjens, J.: Sicherheitszertifizierung für die Digitale Transformation
– Anwendung auf den Industrial Data Space. In: Software-QS-Tag (2017)

32. Peldszus, S., Strüber, D., Jürjens, J.: Model-based security analysis of feature-oriented software
product lines. In: ACM SIGPLAN International Conference on Generative Programming
(GPCE), pp. 93–106 (2018)

33. Peldszus, S., Tuma, K., Strüber, D., Jürjens, J., Scandariato, R.: Secure data-flow compliance
checks between models and code based on automated mappings. In: MODELS, pp. 23–33
(2019)

34. Peldszus, S., Bürger, J., Kehrer, T., Jürjens, J. Ontology-driven evolution of software security.
Domain Knowl. Eng. 134, 1–31 (2021)

35. Peldszus, S., Bürger, J., Jürjens, J.: UMLsecRT: reactive security monitoring of java applica-
tions with round-trip engineering. IEEE Trans. Softw. Eng. https://doi.org/10.1109/TSE.2023.
3326366

36. Rajlich, V., Gosavi, P.: Incremental change in object-oriented programming. IEEE Softw.
21(4), 62–69 (2004)

37. Ruland, S., Kulcsár, G., Leblebici, E., Peldszus, S., Lochau, M.: Controlling the attack surface
of object-oriented refactorings. In: International Conference on Fundamental Approaches to
Software Engineering (FASE), pp. 38–55 (2018)

38. Santos, J.C.S., Tarrit, K., Mirakhorli, M.: A catalog of security architecture weaknesses. In:
Proceedings of the International Conference on Software Architecture Workshops (ICSAW),
pp. 220–223 (2017)

39. Schürr, A.: Specification of graph translators with triple graph grammars. In: Proceedings of
the International Workshop on Graph-theoretic Concepts in Computer Science (WG), pp. 151–
163 (1995)

40. Shostack, A.: Threat Modeling: Designing for Security. John Wiley & Sons, New York (2014)
41. Strüber, D., Peldszus, S., Jürjens, J.: Taming multi-variability of software product line trans-

formations. In: International Conference on Fundamental Approaches to Software Engineering
(FASE), pp. 337–355 (2018)

https://doi.org/10.1109/TSE.2023.3326366
https://doi.org/10.1109/TSE.2023.3326366
https://doi.org/10.1109/TSE.2023.3326366
https://doi.org/10.1109/TSE.2023.3326366
https://doi.org/10.1109/TSE.2023.3326366
https://doi.org/10.1109/TSE.2023.3326366
https://doi.org/10.1109/TSE.2023.3326366
https://doi.org/10.1109/TSE.2023.3326366

104 S. Peldszus

42. The Eclipse Foundation: Papyrus Modeling Environment. (2019) https://www.eclipse.org/
papyrus/

43. Tuma, K., Scandariato, R., Balliu, M.: Flaws in flows: unveiling design flaws via information
flow analysis. In: Proceedings of the International Conference on Software Architecture
(ICSA), pp. 191–200 (2019)

44. Tuma, K., Peldszus, S., Strüber, D., Scandariato, R., Jürjens, J.: Checking security compliance
between models and code. Softw. Syst. Model. 22, 273–296 (2022)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Model-Driven Engineering of
Microservice Architectures—The
LEMMA Approach

Florian Rademacher, Philip Wizenty, Jonas Sorgalla, Sabine Sachweh,
and Albert Zündorf

Abstract This chapter presents LEMMA (Language Ecosystem for Modeling
Microservice Architecture). LEMMA enables the application of Model-Driven
Engineering (MDE) to Microservice Architecture (MSA). LEMMA mitigates the
complexity of MSA by decomposing it along four viewpoints on microservice
architectures, each capturing the concerns of different MSA stakeholders in dedi-
cated architecture models. LEMMA formalizes the syntax and semantics of these
models with specialized modeling languages that are integrated based on an import
mechanism, thus enabling holistic MSA modeling. LEMMA also bundles its own
model processing framework (MPF) to facilitate model processor implementation
for technology-savvy MSA stakeholders without a background in MDE.

We describe the design and development of LEMMA and exemplify the usage
of its modeling languages and MPF for a case study microservice architecture.
In addition, we present practical applications of LEMMA for microservice code
generation, architecture reconstruction, quality analysis, defect resolution, and
establishing a common architecture understanding. A comparison of LEMMA with
related approaches reveals that LEMMA has particular strengths in (i) language-
level extensibility, allowing model-based reification of architectural patterns; (ii)
model processing, by bundling sophisticated code generators and static quality
analyzers; and (iii) versatility, making LEMMA applicable in microservice devel-
opment, operation, architecture reconstruction, and quality assessment.

F. Rademacher (�)
Software Engineering, RWTH Aachen University, Aachen, Germany
e-mail: rademacher@se-rwth.de

P. Wizenty · J. Sorgalla · S. Sachweh
IDiAL Institute, University of Applied Sciences and Arts Dortmund, Dortmund, Germany
e-mail: philip.wizenty@fh-dortmund.de; jonas.sorgalla@fh-dortmund.de;
sabine.sachweh@fh-dortmund.de

A. Zündorf
Software Engineering Research Group, University of Kassel, Kassel, Germany
e-mail: zuendorf@uni-kassel.de

© The Author(s) 2024
E. Bodden et al. (eds.), Ernst Denert Award for Software Engineering 2022,
https://doi.org/10.1007/978-3-031-44412-8_5

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44412-8protect T1	extunderscore 5&domain=pdf

 885 47989 a 885 47989 a

mailto:rademacher@se-rwth.de
mailto:rademacher@se-rwth.de
mailto:rademacher@se-rwth.de

 885 51863 a 885 51863
a

mailto:philip.wizenty@fh-dortmund.de
mailto:philip.wizenty@fh-dortmund.de
mailto:philip.wizenty@fh-dortmund.de
mailto:philip.wizenty@fh-dortmund.de

 13594 51863 a 13594 51863 a

mailto:jonas.sorgalla@fh-dortmund.de
mailto:jonas.sorgalla@fh-dortmund.de
mailto:jonas.sorgalla@fh-dortmund.de
mailto:jonas.sorgalla@fh-dortmund.de

 -2016 52970 a -2016
52970 a

mailto:sabine.sachweh@fh-dortmund.de
mailto:sabine.sachweh@fh-dortmund.de
mailto:sabine.sachweh@fh-dortmund.de
mailto:sabine.sachweh@fh-dortmund.de

 885 56845 a 885 56845 a

mailto:zuendorf@uni-kassel.de
mailto:zuendorf@uni-kassel.de
mailto:zuendorf@uni-kassel.de
https://doi.org/10.1007/978-3-031-44412-8_5
https://doi.org/10.1007/978-3-031-44412-8_5
https://doi.org/10.1007/978-3-031-44412-8_5
https://doi.org/10.1007/978-3-031-44412-8_5
https://doi.org/10.1007/978-3-031-44412-8_5
https://doi.org/10.1007/978-3-031-44412-8_5
https://doi.org/10.1007/978-3-031-44412-8_5
https://doi.org/10.1007/978-3-031-44412-8_5
https://doi.org/10.1007/978-3-031-44412-8_5
https://doi.org/10.1007/978-3-031-44412-8_5
https://doi.org/10.1007/978-3-031-44412-8_5

106 F. Rademacher et al.

1 Introduction

Microservice Architecture (MSA) [65] is an approach to architecting distributed
software systems that promotes system decomposition into microservices. The
notion of microservice comprises all characteristics of a service, i.e., it is a
functional software component that (i) minimizes dependencies to other compo-
nents; (ii) clusters coherent business logic; (iii) agrees on contracts that specify
communication relationships with other components by means of interfaces; and
(iv) interacts with other components to realize coarse-grained tasks [23]. While
MSA emerged from Service-Oriented Architecture (SOA) [17, 23], other than an
SOA service, a microservice aims to maximize service-specific independence. From
the aspects that are concerned by this maximization, the notion of microservice can
be defined as follows [6, 13, 14, 17, 44, 64, 65, 93, 101]:

Definition 1 (Microservice) A microservice is a service with the following char-
acteristics:

• It provides a distinct capability to other components, and all of its functionalities
address a single concern of either functional or infrastructure nature.

• It is as independent as possible from other components in terms of implementa-
tion, data management, testing, deployment, and operation.

• It is fully accountable for its interaction with other components including, e.g.,
the actual decision for interaction, communication protocol determination, data
format conversion, and failure handling. Without a sound technical reason,
a microservice supports at most two communication protocols—one for syn-
chronous one-to-one and one for asynchronous one-to-many interactions.

• It is owned by exactly one team. The team is fully responsible for all aspects
related to the microservice’s design, implementation, and operation.

Starting from these characteristics, MSA is expected to benefit the architectures
of distributed software systems in several ways. First, microservices can improve
performance efficiency, and especially scalability [42], making it possible to scale
heavily frequented functionalities independently and horizontally [19]. Second,
microservices may have a positive impact on maintainability and, more precisely,
modifiability [42], because they facilitate isolated replacement of functionality as
long as interfaces remain stable [65]. Third, MSA can increase the testability [42]
of software systems by demanding stand-alone component executability.

While performance efficiency and maintainability are the most important quality
attributes of MSA and key drivers for its adoption [17, 119], microservices can
benefit further quality attributes [42] such as (i) reliability, due to each microservice
being expected to include its own failure handling mechanisms for preventing failure
cascades across service boundaries [13, 65]; (ii) portability, by deploying microser-
vices using lightweight virtualization technologies like containers [9, 18, 111]; and
(iii) compatibility, as independent executability and standardized communication
protocols foster interoperability and gradual migration of legacy systems toward
MSA [13, 119].

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 107

However, these benefits come at the cost of an increased complexity that affects
architecture design, implementation, and operation [109]. For example, granularity
determination is a major challenge in MSA design as too fine-grained microser-
vices induce frequent interactions and thus network overhead [119]. Concerning
implementation, MSA aggravates technology management by supporting dedicated
technology choices per service and delegation of decisions for technology stacks
to microservice teams [52]. The resulting increase of technology heterogeneity [65]
also concerns operation because the corresponding infrastructure of a microservice
architecture usually consists of loosely coupled components for diverse tasks like
service discovery, API provisioning, load balancing, and monitoring [7].

Model-Driven Engineering (MDE) [15] is an approach to software engineering
that leverages models as a means to abstract from selected details of a software
system to mitigate complexity. More precisely, MDE focuses on the systematic
construction, evolution, and maintenance of software models, and making them
actionable within one or more phases of the software engineering process. For a
certain set of purposes, models can then act as substitutes of more complex artifacts.
For instance, models may abstract from implementation details of the conversion
between data-format-specific network messages and data-format-agnostic in-
memory objects. Yet they can enable the automated derivation of source code
for this purpose [94]. On another note, models are well suited to reify structures of
software systems and facilitate reasoning about them, e.g., for quality assessment
and improvement [16].

As an orthogonal approach to software architecting that strives for purposeful
complexity mitigation, MDE is a predestined means for the description, devel-
opment, and analysis of complex software systems [28, 104]. Indeed, it has
successfully been applied in different domains of software architectures such as
cyber-physical systems [62], Industry 4.0 [127], Internet of Things [51], and
SOA [2]. Hence, it is evident to investigate the applicability of MDE-for-MSA [31].

This chapter presents recent findings of this investigation by (i) summarizing
the main results of a corresponding dissertation [93], which manifested in the
Language Ecosystem for Modeling Microservice Architecture (LEMMA) [108];
and (ii) showing how LEMMA stimulates ongoing research on MDE-for-MSA
beyond the dissertation.

The remainder of the chapter is structured as follows. Section 2 presents
background information on MDE-for-MSA. Section 3 describes LEMMA’s design
and implementation. Section 4 focuses on its applications, e.g., for microservice
code generation, architecture reconstruction, and defect resolution. Sections 5 and 6
compare LEMMA with related works and conclude the chapter.

2 Preliminaries

This section describes challenges in MSA engineering (Sect. 2.1), the MDE
paradigm (Sect. 2.2), and the adoption of MDE to tackle MSA engineering
challenges (Sect. 2.3).

108 F. Rademacher et al.

2.1 Challenges in Microservice Architecture Engineering

Following the taxonomy for pains of microservices by Soldani et al. [109], we
summarize challenges in MSA engineering along the dimensions Design (Sect.
2.1.1), Implementation (Sect. 2.1.2), and Operation (Sect. 2.1.3). Given MSA’s
impact on development organizations [64], we also consider the Organization
dimension (Sect. 2.1.4).

2.1.1 Design Challenges

The identification of microservices is pivotal in MSA design [29, 109, 119]. It
entails the decomposition of functionality and is closely related to granularity
determination (see below). Domain-Driven Design (DDD) is a popular methodology
for microservice identification [24, 30, 56, 57, 64, 65]. It provides model-based
techniques and patterns to identify coherent parts in an application domain and
eventually derive bounded contexts from them. A bounded context clusters coherent
domain concepts, their structures, and relationships in a domain model [24]. Similar
to microservices, bounded contexts gather coherent functionality, belong to one
team, and require interactions via well-defined interfaces. Despite the perceived
closeness of DDD and MSA [65], the adoption of the former in the context of
the latter is often considered complex [13, 29] and additional effort when domain
models act as mere documentation artifacts [24].

Determining the optimal granularity of a microservice is a major challenge in
MSA design [109, 119]. Besides the vague suggestion to align a microservice to
a distinct capability (Definition 1), there exist no broadly accepted guidelines on
how to tailor a microservice’s responsibilities. Additionally, the independence of
microservice teams fosters divergent intuitions of microservice granularity and, in
the worst case, may result in a centralized architecture team that balances varying
granularities by frequent refactoring [13]. On the other hand, certain microservices
may intentionally be more coarse-grained than others to decrease network load,
eliminate interaction dependencies, or reduce the number of microservices [13, 18].

By contrast to SOA, MSA considers APIs as contracts [128], thereby rendering
the formal specification of interactions and explicit contract negotiation [66] redun-
dant. Instead, the interaction relationship between two microservices concludes
an implicit service contract, which reduces design complexity. As a drawback,
microservices are confronted with API versioning and assuring consumer compli-
ance [109]. Moreover, the waiver of explicit contracts fosters ad hoc communication
and thus the accidental occurrence of cyclic service dependencies [118].

2.1.2 Implementation Challenges

As already mentioned (Sect. 1), MSA can increase the technology heterogeneity of
a software system. While it may be beneficial that each microservice can rely on

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 109

those implementation technologies that are the most suitable for its capability [65],
this level of freedom in technology choices incurs risks for increased technical
debt, additional maintainability costs, and steeper learning curves for new team
members [13, 52, 118].

Moreover, MSA’s emphasis on loose coupling also leads to a decoupling of
technical concerns [38]. Hence, technology management is additionally aggravated
due to an increased number of technology variation points [95] like the following:

• Programming languages: The programming language of a microservice is
opaque to clients. Java, JavaScript, and C# are among the most popular service
programming languages [106]. However, certain specifics of a service’s capa-
bility can motivate the adoption of an alternative programming language. For
instance, the built-in support for data collection handling and the availability of
sophisticated frameworks for scientific computing or time series processing make
Python a viable choice for corresponding microservices [46, 54, 95].

• Database management systems (DBMSs): To decrease coupling, each
microservice should have its own database [63, 102]. A service’s capability
may also favor DBMS mechanisms like NoSQL or graphs over the relational
paradigm [52].

• Communication protocols: A microservice architecture should employ at most
two communication protocols (Sect. 1). However, some situations may require
more than two protocols, e.g., when gradually modernizing legacy systems [58].

• Data formats: The interaction scenario or choice of a communication protocol
may impact the selection of a format for data encoding and decoding.

2.1.3 Operation Challenges

Microservices are usually packaged, deployed, and executed in virtualized contain-
ers [111]. Containers enable the combined deployment of software components
and pre-configured runtime environments while being more resource-efficient than
virtual machines due to kernel and library sharing with the host operating system.
Containers benefit microservices’ scalability and portability [18] but typically
require additional orchestration platforms, e.g., to fulfill elasticity requirements [40,
52]. These platforms expose microservice architectures to continuous service
partitioning and relocation with additional effort to keep track of [109].

Next to container orchestration platforms, MSA requires additional infrastructure
components, e.g., for service discovery, API provisioning, load balancing, and
monitoring [7]. The loose coupling of these components increases technology
heterogeneity on the operation level. Furthermore, each component may have its
own requirements w.r.t. configuration and life cycle management [109].

110 F. Rademacher et al.

2.1.4 Organizational Challenges

MSA assumes an alignment of the development organization with the software
architecture to be effective [4]. A common practice is to decompose homogeneous
development organizations into teams, possibly assembled from members with
heterogeneous skill sets, of which each is responsible for one or more microservices.
Consequently, MSA fosters DevOps [64] and thus faces challenges like establishing
and maintaining a collaborative culture, automation, and knowledge sharing [55].

2.2 Model-Driven Engineering

To unfold its potential for complexity mitigation, MDE anticipates systematic model
construction, evolution, and maintenance. Modeling languages specify models’
syntaxes and semantics [15]. The syntax consists of an abstract syntax and one or
more concrete syntaxes. The former defines modeling concepts’ structures, relation-
ships, and tool-internal representation. The latter determine user-facing notations
of modeling concepts, e.g., as graphical constituents of box-and-line diagrams or
grammar-based textual strings. Modeling language syntaxes may impose constraints
on model well-formedness, thus contributing to the definition of language-specific
model validity. The semantics of a modeling language assigns meaning to modeling
concepts and their instantiation as model elements; and can restrict the set of valid
models even further [37].

Model processors turn models into actionable software engineering artifacts [15].
Code generation is often perceived to drive MDE adoption because of an expected
increase of development productivity [123]. However, there exists a plethora of
other model processing approaches with relevance to software architecting, e.g.,
reverse engineering [117] and static model analysis [15]. Most of these approaches
resort to model transformation [15], i.e., the (semi-) automated conversion of one
or more source models into one or more target models based on transformation
rules [59]. The syntaxes of source and target models may differ, e.g., when model
elements are transformed into programming language constructs (code generation)
or implementation artifacts are transformed into models (reverse engineering).

2.3 Employing Model-Driven Engineering to Cope with
Challenges in Microservice Architecture Engineering

Table 1 maps MDE means (Sect. 2.2) to MSA engineering challenges (Sect. 2.1) and
substantiates our hypothesis that MDE-for-MSA can cope with MSA’s complexity.

Sections 2.3.1 to 2.3.4 describe the mapping per MSA engineering dimension.

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 111

Table 1 Mapping of supportive MDE means to MSA engineering challenges [93]

Dimension Challenge Summary MDE means

Design

C.1 Managea services’ granularities Modeling languages

C.2 Facilitate domain-driven
service identification

Modeling languages

C.3 Increase the value of domain
models

Model processing

C.4 Manage services’ APIs Modeling languages

C.5 Cope with cyclic service
dependencies

Context conditions, static
analysis

Implementation C.6 Manage technology
heterogeneity

Abstraction, code
generation

Operation

C.7 Cope with complexity in
service partitioning and

location

Abstraction

C.8
Manage architecture

components for service
deployment and infrastructure

provisioning

Modeling languages

Organizational
C.9 Automate as much manual

tasks as possible
Model processing

C.10 Provide formats and guidelines
for knowledge sharing

Modeling languages

. a In the context of the table, the term “manage” covers the actions elicitation, adaptation, and
consistent documentation of managed entities

2.3.1 Design

Modeling languages have proven suitable for granularity and API specification in
other approaches to service-based architecting [2, 94]. Hence, they can tackle Chal-
lenges C.1 and C.4. Modeling languages are also a natural choice for Challenge C.2
because DDD (Sect. 2.1) constructs domain models with modeling languages [24].
Model processing then increases domain models’ value (Challenge C.3) by elevat-
ing them from documentation artifacts to first-class citizens in software engineering.
When resorting to MDE-based microservice design, the detection of cyclic service
dependencies (Challenge C.5) is possible at design time using (i) context conditions
that constrain model validity to non-cyclic service dependencies; and (ii) static
analysis to detect cycles across models.

2.3.2 Implementation

MDE’s abstraction from technology [70] predestines it for coping with technology
heterogeneity (Challenge C.6). Nonetheless, model-based technology abstraction
can be tailored per stakeholder group [95, 110]. Code generation then produces

112 F. Rademacher et al.

technology-specific code from technology-agnostic models [15, 96]. For MSA,
code generation can even increase maintainability (Sect. 1) by automating steps in
migrating microservice implementations to other technology stacks.

2.3.3 Operation

For Challenge C.7, we rely on abstraction as it allows capturing of service
partitioning and location agnostic to deployment and orchestration technologies. For
Challenge C.8, the existence of model-based approaches to operation environment
specification [25, 67] proves modeling languages well suited for infrastructure
management in MSA.

2.3.4 Organizational

Model processing supports task automation and is therefore inherently suited to
deal with Challenge C.9. Modeling languages facilitate sharing of architecture
knowledge (Challenge C.10) by formalizing its model-based expression [123],
especially in combination with stakeholder-oriented viewpoints for knowledge
decomposition [28].

3 LEMMA—A Language Ecosystem for Modeling
Microservice Architecture

Here, we present LEMMA [93] in detail. Section 3.1 specifies architecture view-
points [43] for MSA to which LEMMA’s modeling languages (Sect. 3.2) and model
processing facilities (Sect. 3.3) align. Section 3.4 illustrates LEMMA’s usage.

3.1 Microservice Architecture Viewpoints

We leverage the notion of architecture viewpoint (“viewpoint” henceforth) from
ISO 42010 [43] to decompose MSA’s complexity (Sect. 2.1). A viewpoint frames
stakeholder concerns toward a software system. It prescribes languages and tech-
niques to construct architecture models as well as operations to process them [43].

For LEMMA, we focused on the following stakeholder groups and their concerns
in MSA engineering [13, 29, 36, 38, 102]:

• Domain experts: Domain experts demand a software that covers the relevant
domain-specific requirements in a cost-effective manner in the expected quality.

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 113

• Microservice developers: Microservice developers implement and test owned
microservices w.r.t. specifications, e.g., of requirements or the architecture.

• Microservice operators: Microservice operators are concerned with microser-
vice and operation infrastructure deployment and configuration.

• Software architects: Software architects deal with architecture specification and
examination to assess quality attribute satisfaction. In addition, they communi-
cate with and across development teams.

From these stakeholders and their concerns, we derived viewpoints for the
model-based description of microservice architectures:

• Domain viewpoint: This viewpoint supports the construction of domain models
for microservice architectures. Following DDD, domain model construction may
be a collaborative activity by domain experts and microservice developers [24].

• Technology viewpoint: This viewpoint reifies the technology heterogeneity of
microservice architectures. It captures the concerns of microservice developers
and operators toward technology management within technology models.

• Service viewpoint: The viewpoint addresses the concerns of microservice
developers by the construction of service models for microservices, their inter-
faces, and operations. Service models may refer to technology models to reify
technology decisions. To enable model reuse and facilitate technology exchange,
the viewpoint also considers the construction of service technology mapping
models, which externalize technology decisions from service models.

• Operation viewpoint: This viewpoint allows microservice operators the captur-
ing of microservice deployment and operation in operation models.

To increase information content and reusability, MSA models are composable
by element references. For example, operation parameters in service models may
refer to domain concepts in domain models as types. Figure 1 shows LEMMA’s
viewpoints and composition relationships between model kinds of different view-
points. Model composition inherently addresses the concerns of software architects
by fostering architecture specification and examination with a coherent architecture
representation.

3.2 Modeling Languages

Following ISO 42010, we devised modeling languages (Sect. 2.2) for the construc-
tion of MSA viewpoint models (Fig. 1). Figure 2 shows the language development
process.

Sections 3.2.1 to 3.2.5 describe the activities of the development process.

114 F. Rademacher et al.

Domain Viewpoint

Domain Model Kind Operation Model Kind

Service Viewpoint

Service Model Kind

Service Technology Mapping Model Kind

technology mapping
of domain concepts

typing of service
operation parameters

assignment of
microservices to
operation nodestechnology mapping

of domain concepts

technology mapping
of microservices

technology
mapping of
microservices

Domain
Experts

Microservice
Developers

Software
Architects Operators

Technology Viewpoint

Technology Model Kind

Technology Model Kind

Operation Viewpoint

Microservice

Fig. 1 LEMMA’s MSA viewpoints and reference-based composition relationships between model
kinds of different viewpoints. The relationships are depicted as dashed arrows from referencing to
referred model kinds. Colored icons on a viewpoint box identify the stakeholder groups whose
concerns are framed by the viewpoint [43]

6

SBSA Modeling Concepts

357

Conceptual
SBSA Frameworks

Open Source
Architectures 7

Concept
Clusters 6

5
LEMMA Language

Metamodels incl.
Context Conditions

Grammar Specification

5
LEMMA Modeling
Languages

Viewpoint-Based
Metamodel Specification

SBSA Modeling Concept
Extraction

SBSA Modeling Concept
Clustering

Practicability Analysis

Fig. 2 BPMN diagram [69] of LEMMA’s language development process

3.2.1 SBSA Modeling Concept Extraction

We identified and extracted an initial set of potential modeling concepts for
LEMMA’s modeling languages from six conceptual frameworks [10, 60, 66–
68, 121] for the model-based description of service-based software architectures
(SBSAs) [23]. We selected these frameworks because they explicitly consider
various stakeholder groups, viewpoints, and engineering phases, without prescribing
a certain solution architecture. In total, we extracted 357 SBSA modeling concepts
and their definitions [92].

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 115

Table 2 Count of SBSA
modeling concepts per
Essential SOA Elements
category

Essential SOA Elements category Concept count

Contract 53

Governance 19

Implementation 31

Infrastructure & Management 77

Interface 177

SLA 19

Not classifiable 58

Sum 434

3.2.2 SBSA Modeling Concept Clustering

We clustered the SBSA modeling concepts into the categories of the Essential SOA
Elements taxonomy [2], i.e., “Contract,” “Governance,” “Implementation,” “Infras-
tructure & Management,” “Interface,” and “Service Level Agreement (SLA).” For
the clustering, we relied on concepts’ definitions extracted in the previous activity.
The clustering enabled us to relate a concept to one or more of the MSA model
kinds described in Sect. 3.1. Table 2 summarizes the clustering results.

The mismatch between the sums of clustered modeling concepts (434) and
extracted modeling concepts (357) stems from ambiguous concept definitions. For
example, based on its definition, SoaML’s Capability concept [68] was clustered
into the Implementation and Interface categories. On the other hand, some concept
definitions were too narrow to permit classification, e.g., the Clipped Structural
Modeling Connector concept from the Service-Oriented Modeling Framework [60].
Section 4.3.1 and Appendix B of the dissertation that conceived LEMMA [93]
provide more details on the clustering activity.

3.2.3 Practicability Analysis

The previous activities established a conceptual baseline for LEMMA’s model
languages on the basis of SBSA modeling concepts. This focus on SBSA was
necessary as no conceptual frameworks for MSA modeling existed. To assess
the applicability of the extracted SBSA modeling concepts for MSA engineering
and balance conceptual rigor with practice orientation, we analyzed concepts’
manifestation and actual usage in seven open-source microservice architectures. We
derived the set of these architectures by joining two subsets of microservice archi-
tectures that (i) provide their source code on GitHub;1 and (ii) have already been
academically investigated to gain insights about MSA implementation concepts
and patterns [63, 100]. Table 3 lists the considered architectures. They account for
51.35% of the overall lines of code of all architectures in the unified set. For further

1 https://www.github.com.

https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com

116 F. Rademacher et al.

Table 3 Open-source microservice architectures selected for practicability analysis of SBSA
modeling concepts. Table entries are arranged in descending order by the value in the “Lines of
Code” column as of February 1st, 2020

Architecture name Academic
reference GitHub patha

Programming
languages Lines of code

eShopOnContainers [100] /dotnet-archi-
tecture/eSho-
pOnContainer-
s/tree/20238d53

C#, JavaScript 94,660

Micro company [63] /idugalic/mi-
cro-compa-
ny/tree/5a4ee50

Java, JavaScript 83,685

Lakeside Mutual
Insurance company

[100] /Microservice-API–
Patterns/Lakeside-
Mutual/tree/35a67ac

Java, JavaScript 83,181

Pitstop - garage
management
system

[63, 100] /EdwinVW/pit-
stop/tree/e3afc74

C#, JavaScript 53,591

Microservices
reference

[63] /mspnp/mi-
croservices-ref-
erence-implementa-
tion/tree/69a8f63

C#, Java, JavaScript 18,751

WeText [63] /daxnet/we-tex-
t/tree/6bab01c

C#, JavaScript 18,523

FTGO - restaurant
management

[100] /microservices-pat-
terns/ftgo-applica-
tion/tree/9f85c77

Cucumber, Java,
JavaScript

15,069

. a Relative to host https://www.github.com

details, we refer to Sect. 4.3.2 and Appendix C of the dissertation that conceived
LEMMA [93].

3.2.4 Viewpoint-Based Metamodel Specification

For each of the viewpoint-specific model kinds in Fig. 1, we defined the abstract
syntax of a LEMMA modeling language (Sect. 2.2) as metamodel [15]. Conse-
quently, LEMMA comprises five modeling languages, each targeting a different
MSA viewpoint. Table 4 provides an overview of these languages.

LEMMA’s modeling languages support MSA stakeholders as follows:

• Domain Data Modeling Language (DDML): The DDML enables the col-
laborative construction of domain models by domain experts and microservice
developers (Sect. 2.1). It integrates constructs for the model-based expression of
domain concepts and their augmentation with DDD patterns.

• Technology Modeling Language (TML): The TML addresses microservice
developer and operator concerns (Sect. 3.1) in capturing technology decisions.

https://www.github.com/dotnet-architecture/eShopOnContainers/tree/20238d53
https://www.github.com/idugalic/micro-company/tree/5a4ee50
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/35a67ac
https://www.github.com/EdwinVW/pitstop/tree/e3afc74
https://www.github.com/mspnp/microservices-reference-implementation/tree/69a8f63
https://www.github.com/daxnet/we-text/tree/6bab01c
https://www.github.com/microservices-patterns/ftgo-application/tree/9f85c77
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 117

Table 4 LEMMA’s languages per stakeholder group, viewpoint, and model kind

Stakeholder group Viewpoint

Modeling languages
(# Modeling concepts/
context conditions) Model kind

Domain experts Domain Domain Data Modeling
Language (28/36)

Domain Model Kind

Microservice developers

Domain Domain Data Modeling
Language

Domain Model Kind

Service
Service Modeling Lan-
guage (24/39)

Service Model Kind

Service Technology
Mapping Modeling
Language (20/39)

Service Technology
Mapping Model Kind

Technology Technology Modeling
Language (24/37)

Technology Model Kind

Microservice operators
Operation Operation Modeling

Language (12/36)
Operation Model Kind

Technology Technology Modeling
Language

Technology Model Kind

Software architects All All All

• Service Modeling Language (SML): The SML targets microservice developer
concerns. Service models constructed with the SML thus specify microservice
APIs including operation signatures and physical or logical endpoints.

• Service Technology Mapping Modeling Language (STMML): The STMML
enables the construction of service technology mapping models to augment
service model elements with technology information, thereby keeping service
models technology-agnostic and reusable across technologies.

• Operation Modeling Language (OML): The OML supports operators in
specifying microservice deployment, infrastructure configuration and usage.

We base the composition relationships between model kinds (Fig. 1) on imports,
i.e., specific elements in a model can refer to specific elements in imported models.

For each LEMMA modeling language, Table 4 also shows the number of model-
ing concepts and context conditions [15] that prescribe model well-formedness.

Figure 3 shows an excerpt of the SML’s metamodel and thus illustrates the
influence of the practicability analysis on the eventual definition of metamodel
concepts.

An SML ServiceModel comprises an arbitrary number of Microser-
vices, each having a name, type, visibility, and, optionally, a version.
A microservice can require other microservices to express service dependencies.
Required microservices may originate from the same or an imported service
model (Import and PossiblyImportedMicroservice concepts). A non-
imported microservice has one or more Interfaces. The notImplemented
flag specifies whether an interface lacks an implementation, which is useful for
iterative API refinement prior to API exposure. An interface has one or more
Operations that model the respective microservice’s behavioral signatures. An

118 F. Rademacher et al.

Fig. 3 Excerpt of the SML’s metamodel with concepts’ structures and relationships in a UML
class diagram [73]. The term “dominated” identifies the driving source for a concept’s eventual
metamodel reification

operation consists of incoming or outgoing Parameters. Each parameter has
a CommunicationType that allows, e.g., modeling of synchronously activated
operations that yet exhibit asynchronous behavior. With its ApiOperationCom-
ment and ApiParameterComment concepts, the SML supports API documen-
tation. Since LEMMA relies on aspects [105] to augment model elements with
metadata, the SML associates microservices with ImportedServiceAspects.
While originally intended for capturing technology decisions, aspects can also
incorporate architectural patterns into LEMMA models [93].

Listing 1 illustrates our usage of OCL [71] to specify metamodel constraints that
exceed class diagram expressivity.

Listing 1 Excerpt of the OCL-based [71] context conditions for the SML’s metamodel
1 -- Imports in a service model must be unique
2 context ServiceModel inv uniqueImports:
3 self.imports->forAll(i1, i2 | i1 <> i2 implies
4 i1.name <> i2.name and i1.importURI <> i2.importURI)
5 -- Aspects on microservices must have the correct join point
6 context Microservice inv validJoinPointTypes:
7 self.aspects->forAll(a | a.importedAspect.joinPoints
8 ->includes(technology::JoinPointType::MICROSERVICES))
9 -- Interfaces must define at least one operation
10 context Interface inv notEmpty: self.operations->size() > 0

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 119

We used the Eclipse Modeling Framework (EMF) [116] and, more precisely,
Xcore2 and Xbase3 for metamodel implementation. All LEMMA metamodel
implementations can be found on Software Heritage [86–90].

3.2.5 Grammar Specification

We specified concrete syntaxes [15] for LEMMA’s metamodels to make the
resulting modeling language practically usable. Based on our experiences with the
development and application of a graphical MSA modeling language [98, 114],
we decided for textual concrete syntaxes. Since microservice architectures usually
involve many services and infrastructure components, graphical models quickly
become unclear.

We employed the Xtext framework [11] for grammar specification. Listing 2
shows an excerpt of the Xtext grammar for LEMMA’s SML.

Listing 2 Excerpt of the Xtext grammar for LEMMA’s SML
1 enum Visibility returns Visibility:
2 INTERNAL=’internal’ | ARCHITECTURE=’architecture’ | PUBLIC=’public’;
3 enum MicroserviceType returns MicroserviceType:
4 FUNCTIONAL=’functional’ | UTILITY=’utility’ |
5 INFRASTRUCTURE = ’infrastructure’;
6 Microservice returns Microservice:
7 visibility=Visibility? type=MicroserviceType
8 ’microservice’ name=QualifiedNameWithAtLeastOneLevel
9 (’version’ version=ID)? ’{’ interfaces+=Interface+ ’}’;

First, the grammar determines keywords for the literals of the metamodel
enumerations Visibility and MicroserviceType (Fig. 3). Next, it specifies
the grammar for the Microservice metamodel concept. A microservice is
introduced by a visibility modifier and type, followed by the microservice
keyword and the service’s name, which must exhibit at least one qualifying level to
support service clustering. The version keyword sets the service’s version. The
interface keyword introduces an interface definition of the service within curly
brackets. Listing 3 illustrates the SML’s usage for modeling the OrderService
of the microservice architecture used by Richardson to exemplify MSA [102]
(Sect. 3.4).

Listing 3 Example of a microservice definition based on the metamodel (Fig. 3) and concrete
syntax (Listing 2) of LEMMA’s SML
1 public functional microservice org.example.OrderService {
2 interface Orders { . . . }
3 }

The grammar specifications of LEMMA’s modeling languages and the SML code
for the OrderService can be found on Software Heritage [76–80, 91].

2 https://wiki.eclipse.org/Xcore.
3 https://wiki.eclipse.org/Xbase.

https://wiki.eclipse.org/Xcore
https://wiki.eclipse.org/Xcore
https://wiki.eclipse.org/Xcore
https://wiki.eclipse.org/Xcore
https://wiki.eclipse.org/Xcore
https://wiki.eclipse.org/Xbase
https://wiki.eclipse.org/Xbase
https://wiki.eclipse.org/Xbase
https://wiki.eclipse.org/Xbase
https://wiki.eclipse.org/Xbase

120 F. Rademacher et al.

Source Model
Parsing

Source Model
Filtering

Intermediate
Model Parsing

Intermediate
Model Filtering

Source Model
Validation

Intermediate
Model ValidationCode Generation

Fig. 4 Built-in phases of LEMMA’s MPF

3.3 Model Processing Framework

We devised a modeling processing framework (MPF) to make LEMMA models
actionable as envisioned by MDE (Sect. 2.2). The MPF targets technology-savvy
MSA stakeholders, e.g., Microservice Developers and Operators (Sect. 3.1), who
not necessarily have an MDE background. Therefore, the MPF (i) structures model
processing into phases w.r.t. the Phased Construction pattern [53]; (ii) focuses on
Java as the most popular service programming language [13, 106]; (iii) supports
programming approaches common in Java-based microservice development, e.g.,
annotation-based Inversion of Control (IoC) [47] in combination with the Abstract
Class pattern [107]; (iv) abstracts from MDE technologies used by LEMMA; and
(v) yields stand-alone executable model processors for continuous integration [48].

Figure 4 shows the MPF’s model processing phases. It is possible to add custom
phases for other model processing purposes like simulation [15].

The phases’ responsibilities are as follows:

• Source/Intermediate Model Parsing: These phases parse LEMMA models
(source models; Sect. 3.2) and their intermediate representations (intermediate
models). LEMMA intermediate models incorporate preprocessed data such
as explicit configuration values resulting from implicit default values. Model
processors thus need not calculate this data, which also imposes consistency in
model processing. Moreover, intermediate models expressed in the generic XML
Metadata Interchange format [72] decouple model processors from EMF.

• Source/Intermediate Model Filtering: These phases allow the selection of
model elements for subsequent processing phases. Each phase expects an OCL
file whose queries [71] are evaluated against the source or intermediate model.
The MPF then applies follow-up phases only on elements matching the queries.

• Source/Intermediate Model Validation: These phases support the provisioning
of model validity checks with specific severities. Source model validation may
also happen interactively via the Language Server Protocol (LSP).4 That is, MPF-
based model processors leverage the LSP to connect with the Eclipse editor of
the respective LEMMA modeling language to display validation results during
model construction. Hence, modelers need not invoke a processor separately
from the IDE and trace validation results to erroneous model elements manually.

4 https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification.

https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 121

• Code Generation: The MPF incorporates this phase as code generation is one
of the key drivers for MDE adoption [5, 61, 123].

The Kotlin5 -based MPF can be found on Software Heritage [83].

3.4 Illustrative Example

We illustrate the construction of a microservice with LEMMA’s modeling lan-
guages (Sect. 3.2) and the processing of the resulting models with LEMMA’s MPF
(Sect. 3.3).

Listing 4 shows four coherent LEMMA model excerpts in the DDML, TML,
and SML (Sect. 3.2). The complete models can be found on Software Heritage [81].
They cover the Order and Restaurant microservices of Richardson’s MSA case
study [102].

Listing 4a contains the domain model of the Order microservice in LEMMA’s
DDML. The model consists of the two bounded contexts (Sect. 2.1), Order and
API.

The Order context comprises two domain concepts. Order is a structured
domain concept that consists of five fields of which four have the built-in primitive
type long, while the state field is typed by the enumeration domain concept
OrderState (Lines 11–16). LEMMA’s DDML also integrates keywords for DDD
patterns [24], e.g., Aggregate and Entity. The Order structure combines both
these patterns. As an aggregate, its instances cluster instances of other domain
concepts, which are only accessible from the Order instance. As an entity, two
Order instances are distinguishable by a domain-specific identifier (see the
id field in Line 4).

The API context comprises three domain concepts for the Order microser-
vice’s interactions. The CreateOrderRequest concept is a DDD valueOb-
ject [24], i.e., its instances transport information between architecture compo-
nents. Therefore, all of its fields are immutable and receive a value once during
instance initialization.

Listing 4b shows a technology model for Java and Spring6 in the TML (Sect. 3.2).
The types section defines technology-specific type synonyms for LEMMA’s
built-in primitive types. During model processing, these synonyms replace all
instances of LEMMA primitive types in models that apply the technology model.
Since LEMMA’s type system is based on Java [33], the mapping of built-in
types to technology-specific synonyms Listing 4b is straightforward. For example,
the boolean type has the synonym Boolean (Lines 4–5). The technology
model also specifies the PostMapping aspect (Lines 20–21). It maps to the

5 https://www.kotlinlang.org.
6 https://www.spring.io.

https://www.kotlinlang.org
https://www.kotlinlang.org
https://www.kotlinlang.org
https://www.kotlinlang.org
https://www.spring.io
https://www.spring.io
https://www.spring.io
https://www.spring.io

122 F. Rademacher et al.

Listing 4 Example models in LEMMA’s (a) DDML, (b, c) TML, and (d) SML. The models are
excerpts from the models for the order and restaurant microservices of Richardson’s MSA case
study [102] used to illustrate LEMMA’s model processing capabilities [81]

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 123

eponymous Spring annotation7 and is applicable to microservice operations (for
operations) exactly once (singleval).

Listing 4c constructs a technology model with the rest protocol for the
REST architectural style [26]. REST is often applied in synchronous microservice
interactions [13]. The rest protocol uses the JSON data format [21] and is
the default synchronous protocol when a microservice applies the technology
model.

Listing 4d shows a service model in the SML. It exemplifies the imported-
based composition of LEMMA models (Sect. 3.2) as it imports the domain model
in Listing 4a under the alias OrderDomain, and the two technology models in
Listing 4b and c under the aliases JavaSpring and Protocols (Lines 2–
4). The two technology models are applied to the OrderService microservice
(Line 8) by the built-in @technology annotation. These applications lead to
implicit replacement of types with synonyms (Listing 4b) and the assumption of
default protocols (Listing 4c).

The OrderService has a public visibility, which allows its exposure to
external clients, and a functional type, which identifies the service’s capability
to stem from the application domain. The OrderService consists the Orders
interface (Lines 10–20) with a rest endpoint (Line 9). In LEMMA, an endpoint is a
combination of a protocol from a technology model being applied to a microservice
(Line 7 and Listing 4c) and one or more addresses, i.e., “/orders” (Line 9).

The Orders interface consists of the create operation (Lines 16–19). The
API comment (Lines 11–14) informs about the operation’s function. create
defines the synchronous input parameter request and the synchronous output
parameter response. The type of the former is the structured domain concept
CreateOrderRequest imported from the domain model in Listing 4a. The
type of the latter is the response-specific counterpart of CreateOrderRequest,
i.e., CreateOrderResponse [81]. create applies the PostMapping aspect
from the technology model in Listing 4b to specify that the operation is invokable
by HTTP POST requests [27].

Listing 5 shows excerpts from an MPF-based model processor (Sect. 3.3), whose
complete Java sources are available on Software Heritage [81]. The processor
yields the number of microservices’ interfaces in a LEMMA service model and
also distinguishes between interfaces with only asynchronous or synchronous
operations. Such classifications of interfaces are crucial to MSA-specific quality
metrics [22].

Listing 5a shows the Java class of the processor’s source model validator
(Sect. 3.3). The annotation @SourceModelValidator allows LEMMA’s MPF
to find source model validators on the classpath. A source model validator must
extend AbstractXtextModelValidator and override its getSupport-
edFileExtensions method to inform the MPF about the validator’s supported

7 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/
bind/annotation/PostMapping.html.

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html

124 F. Rademacher et al.

Listing 5 Example model processor written in Java based on LEMMA’s MPF. For each microser-
vice in the input service model, the processor (a) prints an information message; and (b) generates
a file with the overall interface count as well as with the share of asynchronous and synchronous
interfaces. The code in (c) shows the processor’s entry point

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 125

model file types. Methods with the @Check annotation are validation methods. The
types of their first parameters must correspond to the metamodel concepts for whose
instances in a model the validation methods shall be invoked by the MPF. Thus,
the checkMicroservice method in Lines 9–12 validates Microservice
instances in LEMMA service models (Fig. 3).

Listing 5b contains a code generation module of the example model processor.
The MPF modularizes the Code Generation phase (Sect. 3.3) to enable separation
of concerns in complex model processors [49]. A code generation module is a Java
class that (i) exhibits the @CodeGenerationModule annotation; (ii) extends
AbstractCodeGenerationModule; and (iii) overrides the getLanguage-
Namespace method to signal the MPF the namespace of the metamodel targeted
by code generation. In case of the module in Listing 5b, this namespace identifies
the intermediate representation of LEMMA service models (Sects. 3.2 and 3.3). The
execute method (Lines 9–42) implements the module’s logic. The for-loop in
Lines 17–29 iterates over all microservices and interfaces in the given intermediate
service model and counts the number of interfaces whose operations have only
asynchronous or synchronous parameters. Lines 30–36 map this information to a
string and buffer it in the resultFileContents variable. Finally, Lines 38–41
inform the MPF about the generated file content for its eventual serialization.

Listing 5c comprises the processor’s entrypoint, i.e., a Java class that inherits
from AbstractModelProcessor and has a main method that delegates
execution to the MPF. This delegation informs the MPF about the processor’s Java
package that shall be scanned for phase implementations like those in Listing 5a
and b.

4 Applications of LEMMA

This section presents applications of LEMMA for microservice code generation
(Sect. 4.1), model-based architecture reconstruction (Sect. 4.2), static quality analy-
sis (Sect. 4.3), defect resolution by model refactoring (Sect. 4.4), and establishing a
common architecture understanding (Sect. 4.5).

4.1 Plugin-Based Generation of Technology-Specific
Microservice Code

MSA’s technology heterogeneity (Sect. 1) not only concerns architecture models
(Sect. 3.1) but also microservice implementations [95]. Therefore, we devised a
code generator for Java-based microservice programming that maps LEMMA
models in their intermediate representations (Sect. 3.3) to basic Java abstract syntax
trees (ASTs). Besides Java, these basic ASTs are technology-agnostic in that

126 F. Rademacher et al.

they do not leverage a specific microservice implementation technology. For the
specification of the mapping between intermediate LEMMA model element types
and Java AST node types, we refer to Appendix K of the dissertation that conceived
LEMMA [93].

Our Java Base Generator (JBG) [82] draws on LEMMA’s MPF and is also a
framework for the development of technology-specific code generation plugins,
called Genlets. The JBG may load an arbitrary number of pre-compiled Genlets
and execute them in a specific order after the creation of basic Java AST nodes from
traversed intermediate model elements. Genlets consist of a set of code generation
handlers, which are Java classes that exhibit the @CodeGenerationHandler
annotation and implement the GenletCodeGenerationHandlerI interface.

A Genlet requests the JBG to invoke it for a combination of model element type
and AST node type and pass to it both the element and the mapped node. The JBG
then passes the element and node to the Genlet for technology-specific adaptation
after which the JBG integrates the adapted node in the Java AST. After the execution
of all given Genlets, the JBG serializes the adapted Java ASTs, which may involve
a reordering of the ASTs to comply with patterns that preserve manual changes to
generated code upon re-generation [35].

Figure 5 exemplifies the interaction between the JBG and its Genlets in the
context of the Orders interface from Listing 4d.

The JBG maps an interface modeled in LEMMA’s SML to an eponymous Java
class (NormalClassDeclaration instance [33] in Compartment 1 of Fig. 5).
Modeled operations become Java methods (MethodDeclaration instance [33]
in Compartment 1). The Spring Genlet adapts the generated class to behave as
a REST controller that invokes the create operation when receiving an HTTP
POST request (Compartment 2 in Fig. 5). This adaptation follows from the modeled
rest endpoint of the Orders interface (Listing 4d) and the application of
the PostMapping aspect to the create operation. In the serialization phase
(Compartment 3 in Fig. 5), the JBG adapts the AST to be compatible with the
Generation Gap to preserve manual changes to generated code. Next to this pattern,
the JBG also supports its extended variant [35], which reduces the amount of
pattern-specific boilerplate code.

LEMMA currently bundles Genlets for Spring, the Kafka message broker,8

DDD, and the Domain Event and CQRS patterns [75, 102]. Since a Genlet is
inherently a LEMMA model processor, it can leverage functionality provided by the
MPF including stand-alone execution for interactive model validation (Sect. 3.3).
We applied the JBG in a research project from the Electromobility domain and were
able to generate the implementations of all domain concepts, microservice inter-
faces, and extensible infrastructure for asynchronous interaction. The generation
efficiency ranged between 5.90 and 6.26, i.e., from one line of LEMMA model,
roughly six lines of Java microservice code were producible, making generative
microservice development with LEMMA basically efficient. For details, we refer to

8 https://kafka.apache.org.

https://kafka.apache.org
https://kafka.apache.org
https://kafka.apache.org
https://kafka.apache.org

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 127

: M e t h o d B o d y

blockStatement = "throw new
 UnsupportedOperationException
 ("Not implemented yet")"

: M e t h o d D e c l a r a t i o n

methodModifier = PUBLIC
result = void
identifier = "create"

: M e t h o d B o d y

blockStatement = "throw new
 UnsupportedOperationException
 ("Not implemented yet")"

: M e t h o d D e c l a r a t i o n

methodModifier = PUBLIC
result = void
identifier = "create"

: N o r m a l A n n o t a t i o n

typeName = "PostMapping"

: M e t h o d D e c l a r a t i o n

identifier = "create"

: M e t h o d D e c l a r a t i o n

methodModifier = PUBLIC
result = void
identifier = "create"

: N o r m a l A n n o t a t i o n

typeName = "RestController"

: N o r m a l A n n o t a t i o n

typeName = "Component"

: M e t h o d D e c l a r a t i o n

J a v a B a s e G e n e r a t o r (A S T M o d i fi c a t i o n f o r M a n u a l C o d e E x t e n s i o n)

S p r i n g G e n l e t (A S T E n r i c h m e n t)J a v a B a s e G e n e r a t o r (I n i t i a l A S T P r o v i s i o n i n g)

: N o r m a l A n n o t a t i o n

: N o r m a l A n n o t a t i o n
: N o r m a l I n t e r f a c e D e c l a r a t i o n

typeIdentifier = "OrdersGen"

: N o r m a l C l a s s D e c l a r a t i o n

modifier = PUBLIC, ABSTRACT
typeIdentifier =
 "OrdersGenImpl"

: N o r m a l C l a s s D e c l a r a t i o n

modifier = PUBLIC
typeIdentifier = "Orders"

: N o r m a l C l a s s D e c l a r a t i o n

typeIdentifier = "Orders"

: N o r m a l C l a s s D e c l a r a t i o n

modifier = PUBLIC
typeIdentifier = "Orders"

: C o m p i l a t i o n U n i t

: P a c k a g e D e c l a r a t i o n

identifier = "org.example"

implementedType

extended
Type

3

21

Fig. 5 Sample Java AST enrichment with the JBG and the Spring Genlet [99]

Sect. 8.7 of the dissertation that conceived LEMMA [93]. Recent works leveraged
the JBG and its Genlets to derive microservice code from underspecified domain
models [96], integrate blockchain technology into microservice architectures [122],
and realize asynchronous microservice interactions [99].

4.2 Model-Based Reconstruction of Microservice Architectures

MSA’s emphasis on service-specific independence (Sect. 1) may lead to service
proliferation and the subsequent erosion of the anticipated architecture design
because teams can autonomously advance different architecture parts [13]. Soft-
ware Architecture Reconstruction (SAR) [8] is thus an important area in MSA
research [1]. This section describes the design, development, and evaluation of
an extensible LEMMA-based SAR approach that automates the translation of the
source code of existing microservice architectures into LEMMA models, thereby

128 F. Rademacher et al.

Reconstruction
Plugin - Java

Reconstruction Framework
Domain Viewpoint

Concepts
Service Viewpoint

Concepts
Operation Viewpoint

Concepts

Architecture Artifacts

Source Code Deployment
Specifications

LEMMA Models
Operation

Models
Service
Models

Domain
Models

Reconstruction
Database

LEMMA Model
Extractor

Reconstruction
Plugin - Spring

Reconstruction
Plugin - Docker

based on
invokes

based on
invokes

based on
invokes

stores
uses

uses creates

Fig. 6 Core components of our LEMMA-based SAR approach

facilitating the reasoning about the architecture and enabling the application of
MDE techniques like quality assessment (Sect. 4.3) and defect resolution (Sect. 4.4).

4.2.1 An Extensible Approach for LEMMA-Based Microservice
Architecture Reconstruction

Figure 6 depicts the core components of our LEMMA-based SAR approach.
The Reconstruction Framework (RF) orchestrates the SAR process according to

Bass et al. [8].
In the first phase, the RF recovers architecture information from the artifacts of a

microservice architecture including its source code and deployment specifications.
To this end, the RF iterates over all artifacts of a given architecture and invokes
reconstruction plugins on artifacts. These plugins cover different microservice tech-
nologies and LEMMA viewpoints. They are responsible for extracting architecture
information from given artifacts, translate the information into the format expected
by the RF, and return it to the RF. In the sense of Bass et al., the plugins perform a
raw view extraction [8].

In the second phase, the RF stores all extracted architecture information in a
reconstruction database. For this purpose, we specified data formats for each MSA
viewpoint (Sect. 3.1). The database enables the RF’s future extension by dynamic
analyses where gathered architecture information originates from continuous mon-
itoring. This phase corresponds to database construction and view fusion in the
SAR process of Bass et al. [8] where heterogeneous architecture information are
harmonized and stored in a common format.

In the third phase, the RF enables subsequent, LEMMA-based processing of
reconstructed architecture information. In a first step, the RF invokes the LEMMA
model extractor [97] to serialize information from the reconstruction database
into LEMMA model files for the reconstructed viewpoints (Sect. 3.2). Starting
from these reconstructed view models, software architects can perform efficient

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 129

architecture analyses, e.g., for quality assessment (Sect. 4.3) or defect detection
(Sect. 4.4), as suggested by Bass et al. [8].

4.2.2 Evaluation of the LEMMA-Based Reconstruction Approach

We evaluated our LEMMA-based SAR approach on Lakeside Mutual,9 which is
an MSA case study application for a fictitious insurance company. The architec-
ture consists of a generic Customer Core microservice and four more specific
microservices for customer, policy, and risk management as well as customer
self-service. The Customer Self-Service and Policy Management microservices
interact via asynchronous messaging. All remaining microservices rely on HTTP-
based interaction. The services (i) use a registry to discover each other; (ii) are
primarily implemented in Java and Spring (Sect. 3.4); (iii) produce logs for runtime
monitoring; and (iv) store information in their own databases. We selected Lakeside
Mutual for the evaluation of our SAR approach because its architecture is well
documented [129, 130].

Table 5 shows the results of the evaluation of our SAR approach on Lakeside
Mutual. The evaluation used reconstruction plugins for Java and Spring that cover
LEMMA’s Domain and Service viewpoints (Sect. 3.1 and Fig. 6). We use the Recall,
Precision, and F.measure metrics to assess the preciseness of the reconstruction
process.

The evaluation showed that the current implementation of our SAR approach is
able to reconstruct four of the five microservices of Lakeside Mutual in LEMMA
service model. The RF did not recover the Risk Management microservice because
it is based on Node.js10 and our reconstruction plugins currently target Java.
However, all expected interfaces and operations of the reconstructed microservices
could be recovered with reconstructed data structures in LEMMA domain models
originating from operations’ parameter types (Sect. 3.4). The discrepancy between
expected and recovered structures results from classes defined in external depen-
dencies whose source code is currently not available to the RF.

4.3 Assessment of Microservice Maintainability with Static
Model Analysis

Next to scalability, maintainability is the most crucial quality attribute in MSA [17,
119] (Sect. 1). There exist several metrics suites that define metrics for maintain-
ability assessment of microservices [3, 22, 39, 41]. While the majority of these
metrics does not target MSA, but SOA [3, 41] or REST [39], they are still known

9 https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075.
10 https://www.nodejs.org.

https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075
https://www.nodejs.org
https://www.nodejs.org
https://www.nodejs.org
https://www.nodejs.org

130 F. Rademacher et al.

Ta
bl

e
5

Pr
el
im

in
ar
y
re
co
ns
tr
uc
tio

n
re
su
lts
 f
ro
m
 th

e
re
co
ns
tr
uc
tio

n
pr
oc
es
s

E
le

m
en

t
E

xp
ec

te
d

T
ru

e
po

si
ti

ve
s

F
al

se
 p

os
it

iv
es

F
al

se
 n

eg
at

iv
es

R
ec

al
l

P
re

ci
si

on
. F

m
ea

su
re

M
ic
ro
se
rv
ic
es

5
4

0
1

80
%

10
0%

88
%

In
te
rf
ac
es

16
14

0
2

87
%

10
0%

93
%

O
pe
ra
tio

ns
61

50
3

8
86
%

94
%

90
%

D
at
a
st
ru
ct
ur
es

16
1

11
7

29
14

89
%

80
%

84
%

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 131

to be applicable to MSA [12]. We were interested in the assessment of these
metrics by static LEMMA model analysis to provide fast feedback about modeled
microservices’ quality.

We investigated the LEMMA-based calculation of each of the 26 metrics from
the aforementioned four metrics suites. They can be characterized as follows:

• Hirzalla et al. [41]: Hirzalla et al. define ten metrics for single SOA services
and complete architectures. Among such metrics are (i) NOVS (Number of
Versions per Service), which measures architecture complexity by calculating the
ratio between service versions and services; and (ii) SRP (Service Realization
Pattern), which measures the share of services exposed by intermediaries in
the overall share of exposed services with a lower share hinting at lesser
complexity. While NOVS is directly assessable from LEMMA service models,
SRP requires operation models and a notion of intermediary like API gateway or
edge server [7].

• Athanasopoulos et al. [3]: This suite consists of three metrics that measure
service interface cohesion on the message, conversation, and domain level.
Cohesion is important for microservices as it has a direct impact on maintainabil-
ity [109, 119]. All metrics of the suite rely on interface-level graphs (ILG) which
are undirected, labeled, and weighted graphs whose vertices represent interface
operations and whose weighted edges inform about operations’ similarity. The
ideal ILG is a complete ILG with similarity weight 1, i.e., all interface operations
are maximal similar. The lack of interface-level cohesion is then computable as
the relative difference between the ILG and the ideal ILG.

The metrics in the suite differ by their calculation rules for ILG similarity
weights. For instance, the Message-Level Cohesion Lack metric considers the
similarity of operations’ message types, whereas the Domain-Level Cohesion
Lack metric focuses on operation similarity based on domain terms. All metrics
in the suite are directly computable from LEMMA service models.

• Haupt et al. [39]: Haupt et al. define seven metrics for structural REST API
analysis. The metrics rely on managed resources, i.e., objects of information
maintained via REST [26]. For their LEMMA-based computation, the majority
of the metrics require a technology model that indicates REST application
(Sect. 3.4) as well as domain and service models. For example, to assess the
Number of Resources metric, it is mandatory to identify REST operations
(technology and service model; cf. Listing 4) and managed resources as structural
types of service operation parameters (domain model).

• Engel et al. [22]: This suite comprises six metrics for MSA core principles like
loose coupling. Those metrics include Number of (A)Synchronous Interfaces
and Average Size of Asynchronous Messages. While the former is computable
from LEMMA service models (Listing 5b), the latter requires runtime moni-
toring and is only heuristically assessable. That is, parameter types of modeled
asynchronous operations allow lower-bound assessment of message sizes.

From the 26 metrics defined in the presented suites, 20 were computable from
LEMMA models. The remaining six metrics either require dynamic analysis or

132 F. Rademacher et al.

process modeling, which is currently out of LEMMA’s scope. For details, we refer
to Sects. 9.5.2 to 9.5.5 of the dissertation that conceived LEMMA [93].

We implemented a library for the computation of supported metrics [84] and
an MPF-based static analyzer [85] (Sect. 3.3) allowing the library’s usage. We
evaluated the analyzer on the LEMMA reconstruction models of Lakeside Mutual
(Sect. 4.2) and revealed weaknesses in service cohesion. In our ongoing works, we
integrate the analyzer library with LEMMA’s Eclipse plugins (Sect. 3.2) to provide
MSA stakeholders with ad hoc visual feedback about microservice maintainability.

4.4 Defect Resolution by Model Refactoring

Defects of a software architecture refer to issues in its design that may cause
unwanted behavior of the implemented system. They are often made unintentionally,
and without the awareness of software architects and developers [74]. Furthermore,
their manifestation and occurrence is impacted by the architectural style, e.g., MSA.
For defect resolution, the architecture design and implementation usually need to
undergo a refactoring process. In the following, we describe a preliminary approach
for the LEMMA-based detection and resolution of security defects in microservice
architectures [125].

We illustrate our approach for a common security defect in MSA, i.e., Publicly
Accessible Microservices (PAM), where interfaces are not exposed in a restricted
and controlled fashion by an intermediary but are instead freely accessible by
architecture-external clients [74]. This public and complete exposure of service
interfaces increases the risk for confidentiality violations and other security issues
significantly. To resolve the defect, an intermediary for interface exposure, e.g., an
API Gateway [7], should be integrated into the architecture.

Listing 6 shows LEMMA technology and operation models (Sect. 3.2) that allow
detection of the PAM defect and eventually resolve it.

The technology model in Listing 6a defines aspects that allow the enrichment of
infrastructure nodes in LEMMA operation models with functional seman-
tics. For instance, the isApiGateway aspect can be used to communicate the
intent that a certain infrastructure node represents an API Gateway independent
of the actual technology used to realize this capability. Listing 6b is technology
model for a concrete API Gateway technology, i.e., Zuul.11 Listing 6c is a LEMMA
operation model that applies the technology models in Listing 6a and b to specify
a Zuul-based infrastructure node called Gateway and identify it as an API
Gateway using the isApiGateway aspect. Listing 6d contains an operation model
with a specification for container-based microservice deployment. More precisely,
it models the Docker12 deployment of the Lakeside Mutual’s Customer Core

11 https://github.com/Netflix/zuul.
12 https://www.docker.com.

https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 133

Listing 6 Example models for LEMMA-based defect resolution. We rely on aspects to assign
semantics to infrastructure components (a). The technology model in (b) describes a concrete API
Gateway technology used in the operation model in (c) by an infrastructure node denoting an API
Gateway. The operation model in (d) captures the Docker-based deployment of a microservice that
does not use the API Gateway, whereas (e) shows the refactored operation model resolving this
defect

microservice (Sect. 4.2). The depends on directive (Line 5) shows that the Docker
container only depends on a service registry from another imported operation model.
Hence, it does not leverage the capabilities of an API Gateway, thereby introducing
the PAM defect.

For the detection of defects in LEMMA models, we implemented a model
processor using LEMMA’s MPF (Sect. 3.3). The processor’s validation phase
identifies defects in given LEMMA models and reports them to the user by hinting
at the defect-inducing model element. In order to facilitate defect resolution, we
implemented an Eclipse plugin that enriches defect issues reported by the processor
with quick fixes that are applicable to resolve the detected defect via automated
model refactoring. For the PAM defect, the corresponding refactoring is the addition
of an API Gateway and its usage by concerned microservices [74]. Listing 6d
illustrates the defect resolution by adding the Gateway from Listing 6c to the nodes
on which the container depends (Line 5).

134 F. Rademacher et al.

We are currently working on integrating the defect resolution processor with
LEMMA’s JBG (Sect. 4.1) such that refactored models can directly be mapped to
microservice code and configuration artifacts. As a result, we can eventually provide
MSA stakeholders with means for defect detection, resolution, resolution reasoning,
and evaluation, including the subsequent generation of code for the most suitable
resolution.

4.5 Model Transformations for a Common Architecture
Understanding

MSA poses challenges to organizations in restructuring their development processes
to cope with service-specific independence and ownership (Definition 1). The
division into different teams, each of which being holistically responsible for one
or more microservices, can lead to a lack of architectural understanding across
team boundaries. This lack of understanding can have a negative effect, e.g., when
setting development priorities. We have observed this effect especially in small-
and medium-sized enterprises, whose service landscapes evolve together with their
development organizations [113].

Model-driven approaches such as LEMMA are particularly suitable for doc-
umenting and transferring knowledge [15]. Therefore, we argue that LEMMA
constitutes an effective means to create and maintain a common and organization-
wide architecture understanding by making (partial) MSA models available to teams
and support their active exchange. For this purpose, due to microservices fostering
technology heterogeneity (Sect. 2.1), the application of MDE technologies and tech-
niques, e.g., code generation (Sect. 4.1) or model-based reconstruction (Sect. 4.2),
cannot be assumed. However, LEMMA provides bidirectional model transforma-
tions [59] to derive LEMMA models from microservice API specifications based
on OpenAPI13 (synchronous APIs) or Apache Avro14 (asynchronous APIs) and
vice versa. Consequently, these transformations allow knowledge documentation
and communication without requiring microservice teams to develop their services
with MDE.

In the following, we (i) describe a development process for small- and medium-
sized enterprises that supports both code-first and model-first microservice develop-
ment in an integrated fashion; and (ii) how LEMMA’s OpenAPI model transforma-
tion enables this process. For more details regarding the process, the transformation,
and the corresponding artifacts, we refer to our previous work [115].

13 https://www.openapis.org.
14 https://avro.apache.org.

https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://avro.apache.org
https://avro.apache.org
https://avro.apache.org
https://avro.apache.org

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 135

Team B

opt

opt

Model Artifacts Code Artifacts

Model
Refinement

LEMMA Model
Generation

Interface Specification
Generation

Source Code
Implementation

LEMMA Model
Construction

Intermediate Model
Generation

Source Code
Generation

Code Artifacts Model Artifacts

Team A

Source Code
Refinement

Fig. 7 Code-first vs. model-first microservice development in cross-functional teams

4.5.1 Code-First vs. Model-First Microservice Development

Figure 7 compares code-first with model-first microservice development in two
cross-functional MSA teams [7].

Team A applies the code-first approach to microservice development in which
source code is a first-class citizen and models are used, if at all, for mere
documentation and communication. That is, Team A starts to implement a service
by writing its source code, followed by the automated generation of interface
specification. The latter step follows from insights of an exploratory study [113]
in which we found that MSA teams in industry rarely and reluctantly create manual
documentation of their interfaces but instead rely on automated approaches, e.g.,
Swagger15 to generate OpenAPI specifications. With LEMMA, it is now possible
to automatically transform generated interface specifications into corresponding
LEMMA domain, service, and technology models (Sect. 3.2). Team A may then
refine the derived LEMMA models, if desired, and eventually share them with
other teams to stimulate the creation of a common architectural understanding
by exploiting MDE’s abstraction facilities (Sect. 2.2) and to support model-first
development approaches. With the support of model generation in a code-first
approach, thus enabling teams to communicate, share knowledge, and create a
common understanding, LEMMA addresses a possible lack of expertise on the
part of developers, which is a common challenge for the success of MDE tools
in practice [124].

Team B in Fig. 7 practices model-first microservice development, which uses
LEMMA models as first-class citizens, thereby directly following MDE’s line of
thought. From such models and their intermediate representations, a code generator

15 https://www.swagger.io.

https://www.swagger.io
https://www.swagger.io
https://www.swagger.io
https://www.swagger.io

136 F. Rademacher et al.

API Documentation
.json or .yamlIn-Memory

M2M

Data

Service

Technology

conforms to

Data

Service

Technology

In-Memory

{tags}
{paths}

{paths}

{schemas}

API Model

Transformations
Extractions .data

.service

.technology

Technology Model

Service Model

Domain Model

LEMMA Models

OpenAPI Specification

Fig. 8 M2M transformation process for deriving LEMMA domain, service, and technology
models from OpenAPI specifications

like the JBG (cf. Sect. 4.1) can be used to produce refinable code. As for the code-
first approach, both LEMMA model and source code artifacts exist in the end.

4.5.2 OpenAPI Model Transformation

LEMMA realizes the code-first approach (Fig. 7) through multiple model-to-model
(M2M) transformations [15], which we detail on the example of the OpenAPI-to-
LEMMA transformation in Fig. 8.

The M2M transformation process starts with an OpenAPI-conform interface
specification in a file with the extension “.json” or “.yaml”. This specification is
parsed into an in-memory API Model fueling multiple M2M transformations. Since
the intended use of OpenAPI is to describe HTTP resource APIs, corresponding
specifications include utilizable information about data, interfaces, and transfer-
specific technology information like media types. This information is translated
into LEMMA domain, service, and technology models by means of dedicated M2M
transformations.

In detail, the Data transformation operates on schemas objects in OpenAPI
specifications and generates a data structure in a LEMMA domain model for
each traversed schema. The Service transformation processes OpenAPI tags and
paths objects. It creates a LEMMA service model that is populated with interfaces
for each encountered tag. Paths corresponding to a tag result in interface operations
with request and response parameters. Furthermore, the Service transformation gen-
erates matching LEMMA collection types for each OpenAPI array. The Technology
transformation analyzes the OpenAPI paths object for specific media types and
creates a corresponding LEMMA technology model. Subsequently, the resulting in-

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 137

memory LEMMA models are serialized as files by specialized extractors and are
thus immediately usable by MSA teams.

5 Related Work

Table 6 compares LEMMA with related MDE-for-MSA approaches. Additional
details can be found in Sects. 4.6 and 5.6 of the dissertation that conceived
LEMMA [93].

While related approaches cover some of the MSA viewpoints (Sect. 3.1),
LEMMA is the only approach to support them all, including viewpoint-specific
modeling languages and holistic MSA modeling by viewpoint integration
(Sect. 3.2). A further strength of LEMMA is its extensibility on the language
level, enabled by the aspect-oriented metadata mechanism of the TML. This
extensibility allows, e.g., model-based reification of architecture patterns and
selective technology-specificity, which is essential for agile modeling [103].

In comparison, LEMMA also facilitates model processing by bundling a special-
ized MPF (Sect. 3.3) and sophisticated model processors. Additionally, LEMMA
has proven to be exceptionally versatile in a variety of MSA engineering scopes,
ranging from development and operation over reconstruction to quality assessment
(Sect. 4).

6 Conclusion and Future Work

This chapter presented LEMMA (Language Ecosystem for Modeling Microservice
Architecture) [93]—an approach for the application of Model-Driven Engineering
to Microservice Architecture (MSA) engineering. LEMMA mitigates the complex-
ity of MSA (Sect. 2) by first decomposing it along four viewpoints on microservice
architectures, each capturing the concerns of different MSA stakeholders in dedi-
cated architecture models (Sect. 3.1). The Domain viewpoint supports the collabora-
tive construction of domain models by domain experts and microservice developers.
Domain models cluster all domain concepts relevant to a microservice architecture.
The Technology viewpoint focuses on the concerns of microservice developers and
operators and enables them to capture technologies for microservices and operation
nodes within technology models. The Service viewpoint provides microservice
developers with modeling facilities for microservices, their interfaces, operations,
and endpoints. The Operation viewpoint addresses the concerns of microservice
operators in deployment and infrastructure operation modeling. We accompanied
each viewpoint with a specialized modeling language that formalizes the syntax
and semantics of viewpoint-specific MSA models (Sect. 3.2). LEMMA’s modeling
languages are integrated by means of an import mechanism so that elements in one
model can refer to elements in imported models, e.g., to configure the container-

138 F. Rademacher et al.

Ta
bl

e
6

C
om

pa
ri
so
n
of
 L
E
M
M
A
 w
ith

 r
el
at
ed
 M

D
E
-f
or
-M

SA
 a
pp
ro
ac
he
s

C
ha

ra
ct

er
is

ti
c/

ap
pr

oa
ch

L

E
M

M
A

[9

3]

C
lo

ud
M

L

[2
5]

C
on

te
xt

M

ap
pe

r
[5

0]

D
C

SL

[2
0]

JD
L

 [
45

]
M

D
SL

[5

0]

. μ
A

R
T

[3

4]

M
ic

ro

B
ui

ld
er

[1

20
]

M
iS

A
R

[1

]

M
SA

 v
ie

w
po

in
t

(V
P

)
su

pp
or

t
D
om

ai
n
V
P

�
–

�
�

–
�

–
�

–
Se

rv
ic
e
V
P

�
–

–
–

�
�

�
�

�
Te
ch
no
lo
gy
 V
P

�
�

��
–

�
–

–
�

�
O
pe
ra
tio

n
V
P

�
�

–
–

�
–

–
–

�
Sp

ec
ia
liz

ed
 la
ng

ua
ge
 p
er
 V
P

�
–

–
�

–
–

�
–

–
V
P
In
te
gr
at
io
n

�
�

�
N
/A

�
�

N
/A

�
�

M
od

el
in

g
la

ng
ua

ge
s

L
an
gu

ag
e-
le
ve
l e
xt
en
si
bi
lit
y

�
–

–
�

–
–

–
–

–
Se

le
ct
iv
e
te
ch
no

lo
gy

-s
pe
ci
fic

ity
�

–
–

–
–

–
–

–
–

Te
ch
no
lo
gy
-a
gn
os
tic
 s
yn
ta
x

�
–

��
�

–
�

–
–

–

M
od

el
 p

ro
ce

ss
in

g
M
od
el
 p
ro
ce
ss
or
 c
re
at
io
n

�
–

��
–

–
–

–
–

–
B
un
dl
ed
 c
od
e
ge
ne
ra
to
rs

�
�

�
�

�
�

–
�

–
H
an
dw

ri
tte

n
ex
te
ns
io
n
of
 g
en
er
at
ed
 c
od

e
�

–
–

�
–

–
N
/A

–
N
/A

B
un

dl
ed
 s
ta
tic

 a
na
ly
ze
rs

�
–

–
–

–
–

–
–

–

M
SA

 e
ng

in
ee

ri
ng

 s
co

pe

D
ev
el
op
m
en
t

�
–

�
�

�
�

–
�

-
O
pe
ra
tio

n
�

�
–

–
�

–
–

–
–

R
ec
on

st
ru
ct
io
n

�
–

–
–

–
–

�
–

�
Q
ua
lit
y
as
se
ss
m
en
t

�
–

–
–

–
–

–
–

–

Sy
m
bo
l k

ey
:�

=
 F
ul
l s
up
po
rt
;��

=
 P
ar
tia
l s
up
po
rt
; –

 =
 N
o
su
pp
or
t

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 139

based deployment of a modeled microservice within an operation model. The
modeling languages are practically usable as plugins for the Eclipse IDE. LEMMA
also bundles its own model processing framework (MPF; Sect. 3.3). The MPF
facilitates model processor implementation for technology-savvy MSA stakeholders
by decoupling model processing into phases and allow phase implementation
by mechanisms that are popular in MSA engineering, e.g., Java and annotation-
based Inversion of Control [47]. We exemplified the usage of LEMMA’s modeling
languages and MPF in the context of a case study microservice architecture
(Sect. 3.4). Section 4 presented practical applications of LEMMA for microservice
code generation (Sect. 4.1), architecture reconstruction (Sect. 4.2), quality analysis
(Sect. 4.3), defect resolution (Sect. 4.4), and establishing a common architecture
understanding (Sect. 4.5). Section 5 compared LEMMA to related approaches and
concluded that LEMMA has particular strengths in (i) holistic MSA modeling
based on viewpoint integration; (ii) language-level extensibility, enabling model-
based reification of architecture patterns and selective technology-specificity; (iii)
model processing, by bundling a specialized MPF together with sophisticated
model processors for code generation and quality analysis; and (iv) versatility,
making LEMMA applicable in microservice development, operation, architecture
reconstruction, and quality assessment.

In our ongoing and future works, we combine LEMMA with formal techniques
for correct microservice behavior specification [31, 32]. Moreover, while we have
already empirically shown that LEMMA is effective for MSA modeling [112],
we plan to evaluate it further in industry-related development processes of small-
and medium-sized enterprises. In addition, two doctoral students currently improve
LEMMA to (i) better integrate with distributed and non-modeling microservice
teams [113, 115]; and (ii) increase the coverage and correctness of LEMMA-based
reconstruction processes [126].

References

1. Alshuqayran, N., Ali, N., Evans, R.: Towards micro service architecture recovery: An
empirical study. In: 2018 IEEE International Conference on Software Architecture (ICSA),
pp. 47–56. IEEE, Piscataway (2018). https://doi.org/10.1109/ICSA.2018.00014

2. Ameller, D., Burgués, X., Collell, O., Costal, D., Franch, X., Papazoglou, M.P.: Development
of service-oriented architectures using model-driven development: a mapping study. Informat.
Softw. Technol. 62, 42–66 (2015). Elsevier. https://doi.org/10.1016/j.infsof.2015.02.006

3. Athanasopoulos, D., Zarras, A.V., Miskos, G., Issarny, V., Vassiliadis, P.: Cohesion-driven
decomposition of service interfaces without access to source code. IEEE Trans. Serv. Comput.
8(4), 550–562 (2015). IEEE. https://doi.org/10.1109/TSC.2014.2310195

4. Ayas, H.M., Leitner, P., Hebig, R.: Facing the giant: A grounded theory study of decision-
making in microservices migrations. In: Proceedings of the 15th ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), ESEM ’21.
Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3475716.
3475792

https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792

140 F. Rademacher et al.

5. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large industrial context — Motorola
case study. In: Briand, L., Williams, C. (eds.) Model Driven Engineering Languages and
Systems, pp. 476–491. Springer, Berlin (2005). https://doi.org/10.1007/11557432_36

6. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables DevOps:
migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016). IEEE. https://doi.
org/10.1109/MS.2016.64

7. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures using
microservices: An experience report. In: Celesti, A., Leitner, P. (eds.) Advances in Service-
Oriented and Cloud Computing, pp. 201–215. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33313-7_15

8. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn. Addison-
Wesley, Boston (2013)

9. Bass, L., Klein, J.: Deployment and Operations for Software Engineers, 1st edn. Self-
published (2019)

10. Benguria, G., Larrucea, X., Elvesæter, B., Neple, T., Beardsmore, A., Friess, M.: A platform
independent model for service oriented architectures. In: Doumeingts, G., Müller, J., Morel,
G., Vallespir, B. (eds.) Enterprise Interoperability, pp. 23–32. Springer, London (2007).
https://doi.org/10.1007/978-1-84628-714-5_3

11. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, 2nd edn. Packt
Publishing, Birmingham (2016)

12. Bogner, J.: On the evolvability assurance of microservices: metrics, scenarios, and patterns.
Ph.D. Thesis (2020). https://doi.org/10.18419/opus-10950

13. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Microservices in industry: Insights into
technologies, characteristics, and software quality. In: 2019 IEEE International Conference on
Software Architecture Companion (ICSA-C), pp. 187–195. IEEE, Piscataway (2019). https://
doi.org/10.1109/ICSA-C.2019.00041

14. Cerny, T., Donahoo, M.J., Trnka, M.: Contextual understanding of microservice architecture:
current and future directions. SIGAPP Appl. Comput. Rev. 17(4), 29–45 (2018). ACM.
https://doi.org/10.1145/3183628.3183631

15. Combemale, B., France, R.B., Jézéquel, J.M., Rumpe, B., Steel, J., Vojtisek, D.: Engineering
Modeling Languages: Turning Domain Knowledge into Tools, 1st edn. CRC Press, Boca
Raton (2017)

16. Cortellessa, V., Eramo, R., Tucci, M.: From software architecture to analysis models and back:
model-driven refactoring aimed at availability improvement. Informat. Softw. Technol. 127
(2020). https://doi.org/10.1016/j.infsof.2020.106362

17. Di Francesco, P., Malavolta, I., Lago, P.: Research on architecting microservices: Trends,
focus, and potential for industrial adoption. In: 2017 IEEE International Conference on
Software Architecture (ICSA), pp. 21–30. IEEE, Piscataway (2017). https://doi.org/10.1109/
ICSA.2017.24

18. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R., Safina,
L.: Microservices: Yesterday, today, and tomorrow. In: Mazzara, M., Meyer, B. (eds.) Present
and Ulterior Software Engineering, pp. 195–216. Springer, Berlin (2017). https://doi.org/10.
1007/978-3-319-67425-4_12

19. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.: Microservices:
How to make your application scale. In: Petrenko, A.K., Voronkov, A. (eds.) Perspectives of
System Informatics, pp. 95–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
74313-4_8

20. Le, D.M., Dang, D.-H., Nguyen, V.-H.: Domain-driven design using meta-attributes: A DSL-
based approach. In: 2016 Eighth International Conference on Knowledge and Systems
Engineering (KSE), pp. 67–72. IEEE, Piscataway (2016). https://doi.org/10.1109/KSE.2016.
7758031

21. Ecma International: The JSON data interchange syntax. Standard ECMA-404, Ecma
International (2017)

https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 141

22. Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice architec-
tures: A metric and tool-based approach. In: Mendling, J., Mouratidis, H. (eds.) Information
Systems in the Big Data Era, pp. 74–89. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-92901-9_8

23. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology and Design, 1st edn.
Prentice Hall, Hoboken (2005)

24. Evans, E.: Domain-Driven Design, 1st edn. Addison-Wesley, Boston (2004)
25. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven provi-

sioning, deployment, monitoring, and adaptation of multi-cloud systems. In: 2013 IEEE
Sixth International Conference on Cloud Computing, pp. 887–894. IEEE, Piscataway (2013).
https://doi.org/10.1109/CLOUD.2013.133

26. Fielding, R.T.: Architectural styles and the design of network-based software architectures.
Ph.D. Thesis (2000)

27. Fielding, R.T., Reschke, J.F.: Hypertext Transfer Protocol (HTTP/1.1): Semantics and
content. RFC 7231, RFC Editor (2014)

28. France, R., Rumpe, B.: Model-driven development of complex software: A research roadmap.
In: 2007 Future of Software Engineering, FOSE ’07, pp. 37–54. IEEE, Washington, (2007).
https://doi.org/10.1109/FOSE.2007.14

29. Francesco, P.D., Lago, P., Malavolta, I.: Migrating towards microservice architectures: An
industrial survey. In: 2018 IEEE International Conference on Software Architecture (ICSA),
pp. 29–38. IEEE, Piscataway (2018). https://doi.org/10.1109/ICSA.2018.00012

30. Garriga, M.: Towards a taxonomy of microservices architectures. In: Cerone, A., Roveri,
M. (eds.) Software Engineering and Formal Methods, pp. 203–218. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-74781-1_15

31. Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F.: Model-driven generation of
microservice interfaces: From LEMMA domain models to Jolie APIs. In: ter Beek, M.H.,
Sirjani, M. (eds.) Coordination Models and Languages, pp. 223–240. Springer, Berlin (2022).
https://doi.org/10.1007/978-3-031-08143-9_13

32. Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F., Sachweh, S.: Jolie and LEMMA:
Model-driven engineering and programming languages meet on microservices. In: Damiani,
F., Dardha, O. (eds.) Coordination Models and Languages, pp. 276–284. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78142-2_17

33. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., Smith, D., Bierman, G.: The Java
language specification: Java se 17th edn. Specification JSR-392 Java SE 17, Oracle America,
Inc. (2021)

34. Granchelli, G., Cardarelli, M., Francesco, P.D., Malavolta, I., Iovino, L., Salle, A.D.:
Towards recovering the software architecture of microservice-based systems. In: 2017 IEEE
International Conference on Software Architecture Workshops (ICSAW), pp. 46–53. IEEE,
Piscataway (2017). https://doi.org/10.1109/ICSAW.2017.48

35. Greifenberg, T., Hölldobler, K., Kolassa, C., Look, M., Mir Seyed Nazari, P., Müller, K.,
Navarro Perez, A., Plotnikov, D., Reiss, D., Roth, A., Rumpe, B., Schindler, M., Wortmann,
A.: Integration of handwritten and generated object-oriented code. In: Desfray, P., Filipe, J.,
Hammoudi, S., Pires, L.F. (eds.) Model-Driven Engineering and Software Development, pp.
112–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27869-8_7

36. Gu, Q., Parkin, M., Lago, P.: A taxonomy of service engineering stakeholder types. In:
Abramowicz, W., Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.) Towards a
Service-Based Internet, pp. 206–219. Springer, Berlin (2011). https://doi.org/10.1007/978-3-
642-24755-2_20

37. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of “semantics”? Computer
37(10), 64–72 (2004). IEEE. https://doi.org/10.1109/MC.2004.172

38. Haselböck, S., Weinreich, R., Buchgeher, G.: Decision models for microservices: Design
areas, stakeholders, use cases, and requirements. In: Lopes, A., de Lemos, R. (eds.)
Software Architecture, pp. 155–170. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-65831-5_11

https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11

142 F. Rademacher et al.

39. Haupt, F., Leymann, F., Scherer, A., Vukojevic-Haupt, K.: A framework for the structural
analysis of REST APIs. In: 2017 IEEE International Conference on Software Architecture
(ICSA), pp. 55–58. Springer, Berlin (2017). https://doi.org/10.1109/ICSA.2017.40

40. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: What it is, and what
it is not. In: Proceedings of the 10th International Conference on Autonomic Computing
(ICAC 13), pp. 23–27. USENIX, San Jose (2013). https://www.usenix.org/conference/icac13/
technical-sessions/presentation/herbst

41. Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: A metrics suite for evaluating flexibility
and complexity in service oriented architectures. In: Feuerlicht, G., Lamersdorf, W. (eds.)
Service-Oriented Computing – ICSOC 2008 Workshops, pp. 41–52. Springer, Berlin (2009).
https://doi.org/10.1007/978-3-642-01247-1_5

42. ISO/IEC: Systems and software engineering — Systems and software Quality Requirements
and Evaluation (SQuaRE) — System and software quality models. Standard ISO/IEC
25010:2011(E), International Organization for Standardization/International Electrotechnical
Commission (2011)

43. ISO/IEC/IEEE: Systems and software engineering — Architecture description. Standard
ISO/IEC/IEEE 42010:2011(E), International Organization for Standardization/International
Electrotechnical Commission/Institute of Electrical and Electronics Engineers (2011)

44. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: The journey so
far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018). IEEE. https://doi.org/10.1109/
MS.2018.2141039

45. JHipster: JHipster Domain Language (JDL) (2023). https://www.jhipster.tech/jdl
46. Johanson, A., Flögel, S., Dullo, C., Hasselbring, W.: OceanTEA: Exploring ocean-derived

climate data using microservices. In: Proceedings of the 6th International Workshop on
Climate Informatics: CI 2016. National Center for Atmospheric Research (2016)

47. Johnson, R.E., Foote, B.: Designing reusable classes. J. Object-Oriented Programm. 1(2),
22–35 (1988). SIGS Publications

48. Jongeling, R., Carlson, J., Cicchetti, A.: Impediments to introducing continuous integration
for model-based development in industry. In: 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 434–441. IEEE, Piscataway (2019).
https://doi.org/10.1109/SEAA.2019.00071

49. Kahani, N., Bagherzadeh, M., Cordy, J.R., Dingel, J., Varró, D.: Survey and classification of
model transformation tools. Softw. Syst. Model. 18(4), 2361–2397 (2019). Springer. https://
doi.org/10.1007/s10270-018-0665-6

50. Kapferer, S., Zimmermann, O.: Domain-specific language and tools for strategic domain-
driven design, context mapping and bounded context modeling. In: Proceedings of the 8th
International Conference on Model-Driven Engineering and Software Development - Volume
1: MODELSWARD, pp. 299–306. INSTICC, SciTePress (2020). https://doi.org/10.5220/
0008910502990306

51. Kirchhof, J.C., Rumpe, B., Schmalzing, D., Wortmann, A.: Montithings: Model-driven
development and deployment of reliable IoT applications. J. Syst. Softw. 183, 111087 (2022).
https://doi.org/10.1016/j.jss.2021.111087

52. Knoche, H., Hasselbring, W.: Drivers and barriers for microservice adoption – a survey among
professionals in Germany. Enterprise Modell. Informat. Syst. Architect. 14(1), 1–35 (2019).
German Informatics Society. https://doi.org/10.18417/emisa.14.1

53. Lano, K., Kolahdouz-Rahimi, S.: Model-transformation design patterns. IEEE Trans. Softw.
Eng. 40(12), 1224–1259 (2014).. IEEE https://doi.org/10.1109/TSE.2014.2354344

54. Le, V.D., Neff, M.M., Stewart, R.V., Kelley, R., Fritzinger, E., Dascalu, S.M., Harris, F.C.:
Microservice-based architecture for the NRDC. In: 2015 IEEE 13th International Conference
on Industrial Informatics (INDIN), pp. 1659–1664. IEEE, Piscataway (2015). https://doi.org/
10.1109/INDIN.2015.7281983

55. Luz, W.P., Pinto, G., Bonifácio, R.: Building a collaborative culture: A grounded theory
of well succeeded DevOps adoption in practice. In: Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, ESEM ’18,

https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://www.jhipster.tech/jdl
https://www.jhipster.tech/jdl
https://www.jhipster.tech/jdl
https://www.jhipster.tech/jdl
https://www.jhipster.tech/jdl
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.5220/0008910502990306
https://doi.org/10.5220/0008910502990306
https://doi.org/10.5220/0008910502990306
https://doi.org/10.5220/0008910502990306
https://doi.org/10.5220/0008910502990306
https://doi.org/10.5220/0008910502990306
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 143

pp. 6:1–6:10. ACM, New York (2018). https://doi.org/10.1145/3239235.3240299
56. Márquez, G., Villegas, M.M., Astudillo, H.: A pattern language for scalable microservices-

based systems. In: Proceedings of the 12th European Conference on Software Architecture:
Companion Proceedings, ECSA ’18, pp. 24:1–24:7. ACM, New York (2018). https://doi.org/
10.1145/3241403.3241429

57. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic software
architectures. In: 2017 IEEE International Conference on Web Services (ICWS), pp. 524–
531. IEEE, Piscataway (2017). https://doi.org/10.1109/ICWS.2017.61

58. Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S.T., Dustdar, S.: Microser-
vices: migration of a mission critical system. IEEE Trans. Serv. Comput., 1–14 (2018). IEEE.
https://doi.org/10.1109/TSC.2018.2889087

59. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electron. Notes Theoret. Comput.
Sci. 152, 125–142 (2006). Elsevier. https://doi.org/10.1016/j.entcs.2005.10.021

60. Methodologies Corporation: Service-oriented modeling framework (SOMF) version 2.1.
(2011)

61. Mohagheghi, P., Dehlen, V.: Where is the proof? - A review of experiences from applying
MDE in industry. In: Schieferdecker, I., Hartman, A. (eds.) Model Driven Architecture –
Foundations and Applications, pp. 432–443. Springer, Berlin (2008). https://doi.org/10.1007/
978-3-540-69100-6_31

62. Mohamed, M.A., Challenger, M., Kardas, G.: Applications of model-driven engineering in
cyber-physical systems: a systematic mapping study. J. Comput. Lang. 59, 1–54 (2020).
https://doi.org/10.1016/j.cola.2020.100972

63. Márquez, G., Astudillo, H.: Actual use of architectural patterns in microservices-based open
source projects. In: 2018 25th Asia-Pacific Software Engineering Conference (APSEC), pp.
31–40. IEEE, Piscataway (2018). https://doi.org/10.1109/APSEC.2018.00017

64. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice Architecture: Align-
ing Principles, Practices, and Culture, 1st edn. O’Reilly, Sebastopol (2016)

65. Newman, S.: Building Microservices: Designing Fine-Grained Systems, 1st edn. O’Reilly,
Sebastopol (2015)

66. OASIS: Reference architecture foundation for Service Oriented Architecture version 1.0.
Standard OASIS Committee Specification 01, Organization for the Advancement of Struc-
tured Information Standards (2012)

67. OASIS: Topology and orchestration specification for cloud applications version 1.0. Standard,
Organization for the Advancement of Structured Information Standards (2013)

68. OMG: Service oriented architecture Modeling Language (SoaML) specification version 1.0.1.
Standard, Object Management Group (2012)

69. OMG: Business Process Model and Notation (BPMN) version 2.0.2. Standard formal/2013-
12-09, Object Management Group (2013)

70. OMG: Model Driven Architecture (MDA) MDA Guide rev. 2.0. Standard ormsc/2014-06-01,
Object Management Group (2014)

71. OMG: Object Constraint Language version 2.4. Standard formal/2014-02-03, Object
Management Group (2014)

72. OMG: XML Metadata Interchange (XMI) specification. Standard formal/2015-06-07, Object
Management Group (2015)

73. OMG: OMG Unified Modeling Language (OMG UML) version 2.5.1. Standard formal/17-
12-05, Object Management Group (2017)

74. Ponce, F., Soldani, J., Astudillo, H., Brogi, A.: Smells and refactorings for microservices
security: a multivocal literature review. J. Syst. Softw. 192, 111393 (2022). https://doi.org/
10.1016/j.jss.2022.111393

75. Rademacher, F.: Genlets for LEMMA’s JBG on Software Heritage. https://archive.
softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?
origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators

76. Rademacher, F.: Grammar specification of LEMMA’s Domain Data Modeling Language
on Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_

https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext

144 F. Rademacher et al.

url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/
lemma/data/DataDsl.xtext

77. Rademacher, F.: Grammar specification of LEMMA’s Operation Modeling Language on
Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_
url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/
lemma/operationdsl/OperationDsl.xtext

78. Rademacher, F.: Grammar specification of LEMMA’s Service Modeling Language on
Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_url=
https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/
ServiceDsl.xtext

79. Rademacher, F.: Grammar specification of LEMMA’s Service Technology Mapping
Modeling Language on Software Heritage. https://archive.softwareheritage.org/browse/
origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.
technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext

80. Rademacher, F.: Grammar specification of LEMMA’s Technology Modeling Language on
Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_url=
https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/
de/fhdo/lemma/technology/TechnologyDsl.xtext

81. Rademacher, F.: LEMMA model processing example on Software Heritage. https://archive.
softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/
lemma&path=examples/model-processing

82. Rademacher, F.: LEMMA’s Java Base Generator on Software Heritage. https://archive.
softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?
origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.
lemma.model_processing.code_generation.java_base

83. Rademacher, F.: LEMMA’s Model Processing Framework on Software Heritage. https://
archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/
SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing

84. Rademacher, F.: LEMMA’s static analysis library on Software Heritage. https://archive.
softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?
origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib

85. Rademacher, F.: LEMMA’s static analyzer on Software Heritage. https://archive.
softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?
origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer

86. Rademacher, F.: Metamodel implementation of LEMMA’s Domain Data Modeling Language
on Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_
url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/
model/DataViewpointModel.xcore

87. Rademacher, F.: Metamodel implementation of LEMMA’s Operation Modeling Language
on Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_
url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/
model/OperationViewpointModel.xcore

88. Rademacher, F.: Metamodel implementation of LEMMA’s Service Modeling Language on
Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_url=
https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/
ServiceViewpointModel.xcore

89. Rademacher, F.: Metamodel implementation of LEMMA’s Service Technology Mapping
Modeling Language on Software Heritage. https://archive.softwareheritage.org/browse/
origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.
technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore

90. Rademacher, F.: Metamodel implementation of LEMMA’s Technology Modeling Language
on Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_
url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.
metamodel/model/TechnologyDefinitionModel.xcore

https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 145

91. Rademacher, F.: Service model for the OrderService on Software Heritage.
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/
frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-
example-and-intermediate-models/Order/Order.services

92. Rademacher, F.: An overview of modeling concepts for service-based software architectures.
In: Software Engineering Publications. Kasseler Online Bibliothek, Repository und Archiv
(KOBRA) (2020). https://doi.org/10.17170/kobra-202008191601

93. Rademacher, F.: A language ecosystem for modeling microservice architecture. Ph.D. Thesis,
University of Kassel (2022). https://doi.org/10.17170/kobra-202209306919. https://kobra.
uni-kassel.de/handle/123456789/14176

94. Rademacher, F., Peters, M., Sachweh, S.: Design of a domain-specific language based on a
technology-independent web service framework. In: Weyns, D., Mirandola, R., Crnkovic, I.
(eds.) Software Architecture, pp. 357–371. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23727-5_29

95. Rademacher, F., Sachweh, S., Zündorf, A.: Aspect-oriented modeling of technology hetero-
geneity in microservice architecture. In: 2019 IEEE International Conference on Software
Architecture (ICSA), pp. 21–30. IEEE, Piscataway (2019). https://doi.org/10.1109/ICSA.
2019.00011

96. Rademacher, F., Sachweh, S., Zündorf, A.: Deriving microservice code from underspecified
domain models using DevOps-enabled modeling languages and model transformations. In:
2020 46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 229–236. IEEE, Piscataway (2020). https://doi.org/10.1109/SEAA51224.2020.
00047

97. Rademacher, F., Sachweh, S., Zündorf, A.: A modeling method for systematic architecture
reconstruction of microservice-based software systems. In: Nurcan, S., Reinhartz-Berger,
I., Soffer, P., Zdravkovic, J. (eds.) Enterprise, Business-Process and Information Systems
Modeling, pp. 311–326. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-49418-
6_21

98. Rademacher, F., Sorgalla, J., Wizenty, P., Sachweh, S., Zündorf, A.: Graphical and textual
model-driven microservice development. In: Bucchiarone, A., Dragoni, N., Dustdar, S., Lago,
P., Mazzara, M., Rivera, V., Sadovykh, A. (eds.) Microservices: Science and Engineering, pp.
147–179. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-31646-4_7

99. Rademacher, F., Sorgalla, J., Wizenty, P., Trebbau, S.: Towards an extensible approach for
generative microservice development and deployment using LEMMA. In: Scandurra, P.,
Galster, M., Mirandola, R., Weyns, D. (eds.) Software Architecture, pp. 257–280. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-15116-3_12

100. Rahman, M.I., Panichella, S., Taibi, D.: A curated dataset of microservices-based systems.
In: Joint Proceedings of the Inforte Summer School on Software Maintenance and Evolution,
pp. 1–9. CEUR-WS (2019). http://ceur-ws.org/Vol-2520/paper1a.pdf

101. Richards, M.: Software Architecture Patterns, 1st edn. O’Reilly, Sebastopol (2015)
102. Richardson, C.: Microservices Patterns, 1st edn. Manning Publications, Shelter Island (2019)
103. Rumpe, B.: Agile Modeling with UML, 1st edn. Springer, Berlin (2017)
104. Ruscio, D.D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Developing next

generation ADLs through MDE techniques. In: 2010 ACM/IEEE 32nd International
Conference on Software Engineering, vol. 1, pp. 85–94. IEEE, Piscataway (2010). https://
doi.org/10.1145/1806799.1806816

105. Schauerhuber, A., Schwinger, W., Kapsammer, E., Retschitzegger, W., Wimmer, M., Kappel,
G.: A survey on aspect-oriented modeling approaches. Technical Report, Vienna University
of Technology (2007)

106. Schermann, G., Cito, J., Leitner, P.: All the services large and micro: Revisiting industrial
practice in services computing. In: Norta, A., Gaaloul, W., Gangadharan, G.R., Dam, H.K.
(eds.) Service-Oriented Computing – ICSOC 2015 Workshops, pp. 36–47. Springer, Berlin
(2016). https://doi.org/10.1007/978-3-662-50539-7_4

https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4

146 F. Rademacher et al.

107. Sobernig, S., Zdun, U.: Inversion-of-control layer. In: Proceedings of the 15th European
Conference on Pattern Languages of Programs, EuroPLoP ’10, pp. 1–22. ACM, New York
(2010). https://doi.org/10.1145/2328909.2328935

108. [Software] Florian Rademacher: Language Ecosystem for Modeling Microservice
Architecture (LEMMA). VCS: https://www.github.com/SeelabFhdo/lemma, SWHID:
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/
SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;
anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606> (2022)

109. Soldani, J., Tamburri, D.A., Heuvel, W.J.V.D.: The pains and gains of microservices: a
systematic grey literature review. J. Syst. Softw. 146, 215–232 (2018). Elsevier. https://
doi.org/10.1016/j.jss.2018.09.082

110. Soliman, M., Riebisch, M., Zdun, U.: Enriching architecture knowledge with technology
design decisions. In: 2015 12th Working IEEE/IFIP Conference on Software Architecture,
pp. 135–144. IEEE, Piscataway (2015). https://doi.org/10.1109/WICSA.2015.14

111. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based operating
system virtualization: A scalable, high-performance alternative to hypervisors. In: Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems
2007, EuroSys ’07, pp. 275–287. ACM, New York (2007). https://doi.org/10.1145/1272996.
1273025

112. Sorgalla, J., Rademacher, F., Sachweh, S., Zündorf, A.: Modeling microservice architecture:
A comparative experiment towards the effectiveness of two approaches. In: Proceedings of
the 35th Annual ACM Symposium on Applied Computing, SAC ’20, p. 1506–1509. ACM,
New York (2020). https://doi.org/10.1145/3341105.3374065

113. Sorgalla, J., Sachweh, S., Zündorf, A.: Exploring the microservice development process in
small and medium-sized organizations. In: Morisio, M., Torchiano, M., Jedlitschka, A.
(eds.) Product-Focused Software Process Improvement, pp. 453–460. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64148-1_28

114. Sorgalla, J., Wizenty, P., Rademacher, F., Sachweh, S., Zündorf, A.: AjiL: Enabling model-
driven microservice development. In: Proceedings of the 12th European Conference on
Software Architecture: Companion Proceedings, ECSA ’18, pp. 1:1–1:4. ACM, New York
(2018). https://doi.org/10.1145/3241403.3241406

115. Sorgalla, J., Wizenty, P., Rademacher, F., Sachweh, S., Zündorf, A.: Applying model-driven
engineering to stimulate the adoption of devops processes in small and medium-sized
development organizations. SN Comput. Sci. 2(6), 459 (2021). https://doi.org/10.1007/
s42979-021-00825-z

116. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework,
2nd edn. Addison-Wesley, Boston (2008)

117. Stoermer, C., Rowe, A., O’Brien, L., Verhoef, C.: Model-centric software architecture
reconstruction. Softw. Practice Exper. 36(4), 333–363 (2006). Wiley. https://doi.org/10.
1002/spe.699

118. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Softw. 35(3),
56–62 (2018). IEEE. https://doi.org/10.1109/MS.2018.2141031

119. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating to
microservices architectures: an empirical investigation. IEEE Cloud Comput. 4(5), 22–32
(2017). IEEE. https://doi.org/10.1109/MCC.2017.4250931

120. Terzić, B., Dimitrieski, V., Kordić, S., Milosavljević, G., Luković, I.: Development and
evaluation of MicroBuilder: a model-driven tool for the specification of REST microservice
software architectures. Enterprise Informat. Syst. 12(8-9), 1034–1057 (2018). Taylor &
Francis. https://doi.org/10.1080/17517575.2018.1460766

121. The Open Group: SOA reference architecture. C119 (2011)
122. Trebbau, S., Wizenty, P., Sachweh, S.: Towards integrating blockchains with microservice

architecture using model-driven engineering. In: Gregory, P., Kruchten, P. (eds.) Agile
Processes in Software Engineering and Extreme Programming – Workshops, pp. 167–175.
Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-88583-
0_16

https://doi.org/10.1145/2328909.2328935
https://doi.org/10.1145/2328909.2328935
https://doi.org/10.1145/2328909.2328935
https://doi.org/10.1145/2328909.2328935
https://doi.org/10.1145/2328909.2328935
https://doi.org/10.1145/2328909.2328935
https://doi.org/10.1145/2328909.2328935
https://www.github.com/SeelabFhdo/lemma
https://www.github.com/SeelabFhdo/lemma
https://www.github.com/SeelabFhdo/lemma
https://www.github.com/SeelabFhdo/lemma
https://www.github.com/SeelabFhdo/lemma
https://www.github.com/SeelabFhdo/lemma
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556;anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606>
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1145/3341105.3374065
https://doi.org/10.1145/3341105.3374065
https://doi.org/10.1145/3341105.3374065
https://doi.org/10.1145/3341105.3374065
https://doi.org/10.1145/3341105.3374065
https://doi.org/10.1145/3341105.3374065
https://doi.org/10.1145/3341105.3374065
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1007/978-3-030-64148-1_28
https://doi.org/10.1145/3241403.3241406
https://doi.org/10.1145/3241403.3241406
https://doi.org/10.1145/3241403.3241406
https://doi.org/10.1145/3241403.3241406
https://doi.org/10.1145/3241403.3241406
https://doi.org/10.1145/3241403.3241406
https://doi.org/10.1145/3241403.3241406
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1002/spe.699
https://doi.org/10.1002/spe.699
https://doi.org/10.1002/spe.699
https://doi.org/10.1002/spe.699
https://doi.org/10.1002/spe.699
https://doi.org/10.1002/spe.699
https://doi.org/10.1002/spe.699
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1007/978-3-030-88583-0_16
https://doi.org/10.1007/978-3-030-88583-0_16
https://doi.org/10.1007/978-3-030-88583-0_16
https://doi.org/10.1007/978-3-030-88583-0_16
https://doi.org/10.1007/978-3-030-88583-0_16
https://doi.org/10.1007/978-3-030-88583-0_16
https://doi.org/10.1007/978-3-030-88583-0_16
https://doi.org/10.1007/978-3-030-88583-0_16
https://doi.org/10.1007/978-3-030-88583-0_16
https://doi.org/10.1007/978-3-030-88583-0_16
https://doi.org/10.1007/978-3-030-88583-0_16

Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 147

123. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven engineer-
ing. IEEE Softw. 31(3), 79–85 (2014). IEEE. https://doi.org/10.1109/MS.2013.65

124. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial adoption of
model-driven engineering: Are the tools really the problem? In: Model-Driven Engineering
Languages and Systems: 16th International Conference, MODELS 2013, Miami, FL, USA,
September 29–October 4, 2013. Proceedings 16, pp. 1–17. Springer, Berlin (2013). https://
doi.org/10.1007/978-3-642-41533-3_1

125. Wizenty, P., Ponce, F., Rademacher, F., Soldani, J., Astudillo, H., Brogi, A., Sachweh, S.:
Towards resolving security smells in microservices, model-driven. In: Proceedings of the
18th International Conference on Software Technologies (ICSOFT 2023). To appear

126. Wizenty, P., Rademacher, F.: Towards viewpoint-based microservice architecture reconstruc-
tion. In: Abstracts of the Fourth International Conference on Microservices (Microservices
2022). Microservices Community (2022). https://www.conf-micro.services/2022/papers/
paper_16.pdf

127. Wortmann, A., Barais, O., Combemale, B., Wimmer, M.: Modeling languages in industry 4.0:
an extended systematic mapping study. Softw. Syst. Model. 19(1), 67–94 (2020). https://doi.
org/10.1007/s10270-019-00757-6

128. Zimmermann, O.: Microservices tenets. Comput. Sci. Res. Develop. 32(3–4), 301–310
(2017). Springer. https://doi.org/10.1007/s00450-016-0337-0

129. Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C., Zdun, U.: Introduction to microser-
vice API patterns (MAP). In: Cruz-Filipe, L., Giallorenzo, S., Montesi, F., Peressotti,
M., Rademacher, F., Sachweh, S. (eds.) Joint Post-proceedings of the First and Second
International Conference on Microservices (Microservices 2017/2019), OpenAccess Series
in Informatics (OASIcs), vol. 78, pp. 4:1–4:17. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/OASIcs.Microservices.2017-
2019.4

130. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., Pautasso, C.: Patterns for API Design:
Simplifying Integration with Loosely Coupled Message Exchanges. Addison-Wesley Signa-
ture Series (Vernon). Addison-Wesley Professional, Boston (2022)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://www.conf-micro.services/2022/papers/paper_16.pdf
https://www.conf-micro.services/2022/papers/paper_16.pdf
https://www.conf-micro.services/2022/papers/paper_16.pdf
https://www.conf-micro.services/2022/papers/paper_16.pdf
https://www.conf-micro.services/2022/papers/paper_16.pdf
https://www.conf-micro.services/2022/papers/paper_16.pdf
https://www.conf-micro.services/2022/papers/paper_16.pdf
https://www.conf-micro.services/2022/papers/paper_16.pdf
https://www.conf-micro.services/2022/papers/paper_16.pdf
https://www.conf-micro.services/2022/papers/paper_16.pdf
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Usefulness of Automatic Static Analysis
Tools: Evidence from Four Case Studies

Alexander Trautsch

Abstract Automated Static Analysis Tools (ASATs) are an additional tool avail-
able to developers in their pursuit of high-quality software. ASATs match source
code against configured rules and produce a warning when a rule is violated.
However, the evaluation of the warnings by developers as well as the resolution
of warnings requires time. This raises the question of whether we are able to
evaluate the usefulness of ASATs empirically. Within this chapter, we present
the results of four case studies, which investigate different aspects regarding the
impact of ASATs on software quality and the perception of the developers thereof.
We present results regarding the evolution of ASAT warnings from a longitudinal
study of 54 open-source projects. To evaluate the impact on defects, we present
results from two studies. The first study is evaluating predictive models in the
context of defect prediction with ASAT-based features. The second study provides a
statistical investigation of the differences between changes that induce a defect and
all other changes. In order to observe the developer’s perspective regarding ASAT
warnings and other software quality metrics, we include the results of a study of
developer intent, which compares changes where the developers intend to improve
the quality of the code base with all other changes to see which quality metrics and
ASAT warnings change in which way. We employ methods of empirical software
engineering research to investigate these relationships and provide evidence-based
information for researchers and practitioners alike. Within our studies, we can
show empirically that we are able to measure an impact on quality. However, the
effect is surprisingly small. Moreover, our investigation of developer intents yield
information about the magnitude of bug fixing as a driver for complexity in software.
Our results can help practitioners estimate the possible impact of introducing an
ASAT on defects, as well as provide guidelines for managing the complexity of
software.

A. Trautsch (�)
Universität Passau, Passau, Germany
e-mail: alexander.trautsch@uni-passau.de

© The Author(s) 2024
E. Bodden et al. (eds.), Ernst Denert Award for Software Engineering 2022,
https://doi.org/10.1007/978-3-031-44412-8_6

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44412-8protect T1	extunderscore 6&domain=pdf

 885 56845 a 885 56845 a

mailto:alexander.trautsch@uni-passau.de
mailto:alexander.trautsch@uni-passau.de
mailto:alexander.trautsch@uni-passau.de
mailto:alexander.trautsch@uni-passau.de
https://doi.org/10.1007/978-3-031-44412-8_6
https://doi.org/10.1007/978-3-031-44412-8_6
https://doi.org/10.1007/978-3-031-44412-8_6
https://doi.org/10.1007/978-3-031-44412-8_6
https://doi.org/10.1007/978-3-031-44412-8_6
https://doi.org/10.1007/978-3-031-44412-8_6
https://doi.org/10.1007/978-3-031-44412-8_6
https://doi.org/10.1007/978-3-031-44412-8_6
https://doi.org/10.1007/978-3-031-44412-8_6
https://doi.org/10.1007/978-3-031-44412-8_6
https://doi.org/10.1007/978-3-031-44412-8_6

150 A. Trautsch

1 Introduction

Automated Static Analysis Tools (ASATs) parse source code into internal represen-
tations and match these representations against a predefined set of rules. If a rule
is matched, a warning is triggered, which shows a position in the source code and
the rule that was triggered. Depending on the type of ASAT, the rules range from
stylistic issues to patterns of known bugs. Rules can be defined in the configuration
of the ASAT. In summary, ASATs are providing a type of automatic inspection of
the source code [66].

Within our studies, we predominantly investigate a commonly used static analy-
sis tool for Java: PMD.1 The reason for this is that PMD has been used for a long
time, which allows for a rich source of historical data. It also directly works with
the source code instead of the bytecode, which is an advantage as older revisions of
open-source projects might not be compilable anymore [60]. PMD also provides a
diverse set of rules, which range from code style issues to best practices to known
problems. This combination makes PMD an ideal tool for our studies. While ASATs
can be helpful, they can have problems with false positives, i.e., warnings about code
that is not problematic, which may hinder adoption by developers [10, 26]. This led
to many studies concerned with classification of ASATs into potential false positives
or actionable warnings, e.g., [19, 29, 31]. While the results of this research were not
transferred to practice, the authors of ASATs are always interested in improving
the tools by considering bug reports about false positives. However, there may be
a different definition of false positive; some studies, e.g., [4, 20, 63] define false
positives as every warning, except the ones which the developer believes could
lead to significant program misbehavior. Others defined false positives as warnings
that were not resolved in a bug fix change after a certain time, e.g., [29], which
brings its own validity problems. Ayewah et al. [4] also discuss the issue of false
positives and summarize that simply classifying into true and false positives is an
oversimplification of the issue. There may be coding style-related warnings that are
good to resolve, but may not necessarily lead to errors. Other studies try to find real
defects, e.g., [52] or [18]. Thung et al. [52] investigated three open-source projects
and linked bug reports to fixes. They found that PMDmisses bugs in 3.9% (AspectJ),
15% (Rhino), and 50% (Lucene) of cases. FindBugs (a bug focused ASAT) misses
33.6%, 10% and 71.4%. Habib and Pradel [18] used Defects4J [27] and found that
SpotBugs [50] (successor to FindBugs [17]) is able to find 18 of the 594 bugs in
the extended Defects4J dataset. These numbers provide some insight into the recall.
However, given that we are also interested in warnings that do not necessarily cause
a defect, this is not ideal for our approach. Lee et al. [32] provide some numbers for
false positives (10% of about 10,000). However, in their study, they only check six
in house checks for C/C. ++, which do not necessarily apply to Java, e.g., check for
double-free.

1 https://pmd.github.io.

https://pmd.github.io
https://pmd.github.io
https://pmd.github.io
https://pmd.github.io

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 151

Regardless of the problem of false positives, many developers still believe that
static analysis tools have a positive impact on software quality [11, 61]. This invites
the question whether using ASATs provides a net-benefit regarding software quality
and how large the benefit might be. Some researchers investigate this impact via
predictive models for defects in software, e.g., [33, 38, 41, 43, 45]. This is an angle
we also cover in our own research [55]. Other researchers investigate whether they
are able to find defects directly, e.g., [18, 52, 62].

However, for predictive models as well as finding defects, validity problems need
to be considered. Finding defects, even with full access to the Issue Tracking System
(ITS) and Version Control System (VCS), can be problematic. Usually a variant
of the Śliwerski Zimmermann Zeller (SZZ) algorithm [48] is used to link defects
to bug fixes and subsequently to the bug inducing change, i.e., the change that is
responsible for the bug. While the SZZ algorithm provides bug fixes and from there
bug-inducing changes, the data that is provided contains noise, e.g., in the form of
mislabeled issue types in the ITS [3, 24], faulty links from bug report to bug-fixing
or bug-inducing changes [15, 46] or tangled changes, i.e., a bug-fixing change that
is tangled with unrelated changes to the code [23, 25, 36].

Most data validity problems require manual investigation of the data to mitigate
the noise. Building upon previous work [59], we extended the existing data mining
platform SmartSHARK with additional data and features [56] to aid us and other
researchers in his endeavor. Using the SmartSHARK mining ecosystem with its
many plugins and manual validation frontend, we were able to provide a feature-
rich, new dataset for researchers, which also addresses data validity problems.
Within our case studies, we applied the results and data of several previous studies,
which investigate data validity problems including manually investigating noisy
data. We use an improved SZZ variant, which also includes manually validated issue
types [22]. In addition, we include manually validated bug-fixing lines to mitigate
tangling noise, i.e., unrelated changes alongside a bug fix, from a large investigation
into effects of tangling [21].

Within this chapter, we present and combine the results of four large peer-
reviewed empirical studies to investigate different aspects of ASATs. We provide
empirical data on the evolution of ASAT warnings, impact on defects, as well as the
perspective of the developers regarding quality and ASATs. The presented results
are acquired over multiple years and use manually validated data where possible to
mitigate noise in the data and provide a clearer picture of the results. We are able
to present empirical data for a very common case, that of using a well-known static
analysis tool (PMD) for the Java programming language and its impact on quality.
Within this chapter, we will use PMD and ASAT interchangeably.

Multiple empirical methods are available to researchers to investigate these ques-
tions [64]. In the results presented in this chapter, we apply empirical methods to
gather evidence in an evidence-based software engineering context. Kitchenham et
al. [30] introduced the term evidence-based software engineering by borrowing the
idea of it from medicine. In evidence-based medicine, the practitioner takes current
research into consideration and weighs the data presented in empirical studies to
improve his ability to provide treatments for patients. Evidence-based software

152 A. Trautsch

engineering aims to do the same for practitioners in software engineering. More
concretely, “. . . to provide the means by which current best evidence from research
can be integrated with practical experience and human values in the decision-
making process regarding the development and maintenance of software”[30].

To this end, evidence-based software engineering can provide empirical data
for practitioners to base their decisions on, e.g., whether to use a certain tool or
methodology. In this chapter, we provide evidence for practitioners regarding the
use and configuration of ASATs within the results of the studies we combine. In
addition to the data provided for research, this gives a very practical insight into
the impact of ASATs in a general overview that applies to every practitioner that
programs in Java and considers static analysis.

This chapter is based on four peer-reviewed publications [54, 55, 57, 58] and my
PhD thesis [53]. The rest of this chapter is organized as follows: Sect. 2 summarizes
the results of our studies, while Sect. 3 summarizes limitations of the studies and
the data. Section 4 sets our studies into the context of their respective related work.
Section 5 summarizes this chapter and provides a short outlook on future work.

2 Results

In this chapter, we will present results together, which are published separately. This
allows us to connect to them and emphasize why each of the parts was needed for
a better picture of the overall topic. The study subjects of all studies discussed here
are shown in Table 1. For the sake of brevity, we do only include short descriptions
of the methodology.

In Sect. 2.1, we investigate changes in the evolution of static analysis warnings
and how they are correlated with the size of the project or changes in the config-
uration of the ASAT. In Sect. 2.2, we investigate ways to measure the correlation
between ASAT warnings and defects via building defect prediction models using
features based on ASAT warnings as well as a statistical comparison of ASAT
warning density between bug-inducing and other changes over the lifetime of open
source repositories. Section 2.3 observes developers of open-source projects “in the
wild” and whether they connect removing static analysis warnings and static source
code metrics with quality improvements in the code base.

2.1 Evolution of ASAT Warnings

The first question we ask in our investigation of static analysis tools is whether
we have to account for a change over time regarding static analysis warnings. We
therefore investigate the change of ASAT warnings over time in multiple open
source projects.

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 153

Table 1 Study subjects used in our studies and the sections in which they are used

Project Section 2.1 Section 2.2.1 Section 2.2.2 Section 2.3

ant-ivy No Yes Yes No

archiva Yes Yes No Yes

calcite Yes Yes No Yes

cayenne Yes Yes No Yes

commons-bcel Yes Yes Yes Yes

commons-beanutils Yes Yes Yes Yes

commons-codec Yes Yes Yes Yes

commons-collections Yes Yes Yes Yes

commons-compress Yes Yes Yes Yes

commons-configurations Yes Yes Yes Yes

commons-dbcp Yes Yes Yes Yes

commons-digester Yes Yes Yes Yes

commons-imaging Yes No No Yes

commons-io Yes Yes Yes Yes

commons-jcs Yes Yes Yes Yes

commons-jexl Yes Yes No Yes

commons-lang Yes Yes Yes Yes

commons-math Yes Yes Yes Yes

commons-net Yes Yes Yes Yes

commons-rdf Yes No No Yes

commons-scxml Yes Yes Yes Yes

commons-validator Yes Yes Yes Yes

commons-vfs Yes Yes Yes Yes

deltaspike No Yes No No

eagle Yes Yes No Yes

falcon Yes No No Yes

flume Yes No No Yes

giraph Yes Yes Yes Yes

gora Yes Yes Yes Yes

helix Yes No No Yes

httpcomponents-client Yes No No Yes

httpcomponents-core Yes No No Yes

jena Yes No No Yes

jspwiki Yes Yes No Yes

knox Yes Yes No Yes

kylin Yes Yes No Yes

lens Yes Yes No Yes

mahout Yes Yes No Yes

manifoldcf Yes Yes No Yes

mina-sshd Yes No No Yes

(continued)

154 A. Trautsch

Table 1 (continued)

Project Section 2.1 Section 2.2.1 Section 2.2.2 Section 2.3

nutch No Yes No No

opennlp No Yes Yes No

parquet-mr No Yes Yes No

pdfbox Yes No No Yes

phoenix Yes No No Yes

ranger Yes No No Yes

roller Yes No No Yes

santuario-java Yes Yes Yes Yes

storm Yes No No Yes

streams Yes No No Yes

struts Yes No No Yes

systemml Yes Yes No Yes

tez Yes No No Yes

tika Yes Yes No Yes

wss4j Yes Yes Yes Yes

zeppelin Yes No No Yes

Table 2 Correlation coefficients and p-values between LLOC and the number of static analysis
warnings. Adapted from Trautsch et al. [54], used under Creative Commons CC-BY license

Method Coefficient P-value

Spearman’s .ρ 0.57509 . <0.0001
Kendall’s .τ 0.71654 . <0.0001

Statistically significant p-values are bolded

First, however, is the question of whether the size of the project correlates
with the number of ASAT warnings. We therefore correlate the changes in ASAT
warnings with the Logical Lines of Code (LLOC), i.e., the number of lines of code
without comments and empty lines.

Table 2 shows the correlation between the number of ASAT warnings and the
size of the project in LLOC for Spearman’s . ρ [49] and Kendall’s . τ [28]. Both are
non-parametric correlation metrics, which are appropriate for our data. The results
show that the number of static analysis warnings grow as the size of the open-source
project is growing. If we look at the number of warnings per LLOC of the system
.wd(s) = #warnings

LLOC
as warning density, we find that it is decreasing.

Table 3 shows the averaged results over all years of project history. We can see
that warning density is decreasing. Over all study subjects, 3.5 ASAT warnings per
1k LLoC are resolved per year. If we only measure subjects and years in which
PMD is included in the build, we measure a number of 2.3 ASAT warnings. We
only measure full years in which PMD was included, not years in which it was
introduced into the project because all measurements were per year; this means we
may be missing the cleanup phase after the introduction of an ASAT. Even though

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 155

Table 3 Mean changes per year for all study subjects. Adapted from Trautsch et al. [54], used
under Creative Commons CC-BY license

Method Change per year per kLLoC

Mean warning density . −3.5035

Mean warning density after PMD introduction . −2.2913

we measure a value of 2.3, we still find that the majority of study subjects retain a
positive trend of ASAT warning evolution a year after they introduced PMD into the
build process.

2.2 Impact on Defects

As we are interested in whether PMD has an impact on software quality, we
investigate defects as the “de facto standard measure of software quality” [16].
We investigate different views with respect to defects. Section 2.2.1 summarizes
results from a study that investigates feature sets for predictive models to investigate
whether features previously not considered, e.g., based on static analysis warnings
and static source code metrics, can improve the prediction of defects. Section 2.2.2
compares bug-inducing changes, i.e., changes which require a bug fix later, with
all other changes, therefore, shedding light on whether static analysis warnings are
more common in these kinds of changes.

2.2.1 Predictive Models

A large branch of research that investigates the relationship between defects and
metrics in the form of process metrics, e.g., number of changes, and static source
code metrics, e.g., cyclomatic complexity, is categorized as defect prediction
research. Within this category, predictive models are built, which aim to predict
faulty code at different granularity using data collected about the code or the process
of developing the code. Pascarella et al. [40] introduced a fine-grained just-in-time
defect prediction model, which is a good fit for our study, as it is concerned with
changes on a file level instead of change level or release level. However, it is only
investigating change features on a per-file basis. Therefore, we extend this approach
with additional features to investigate the impact of source code metrics and ASAT
warnings through the lens of change-based defect prediction research. We build
predictive models with different sets of features and evaluate them to compare their
performance including different labeling strategies.

As shown in the previous section, static analysis warnings are resolved over time,
on average. Therefore, we introduce features that take this into account to investigate
ASAT warnings as part of the features for the predictive models. To achieve this, we
do not simply use the sum of ASAT warnings as it increases in most cases or the

156 A. Trautsch

Table 4 Feature sets used in the predictive models. ©2020 IEEE. Adapted, with permission,
from Trautsch et al. [55]

Name Feature set description

combined All features combined

jit Change features commonly used in just-in-time defect prediction adapted for a
fine-grained scenario by Pascarella et al. [40]

static Static source code metrics by OpenStaticAnalyzer. A full list is available onlinea

pmd Static analysis warnings by PMD also collected via OpenStaticAnalyzer. A full
list is available onlinea

a See footnote 2

Table 5 Additional warning density based features introduced in our case study. ©2020 IEEE.
Adapted, with permission, from Trautsch et al. [55]

Name Formula Description

wd(s) .wd(s)t The warning density (wd) of the system (s) at the current
change (t)

swd(f) .
∑

t wd(f)t − wd(s)t The cumulative difference between warning density of the
file and the system over all changes (t) up to the current
change

swd(a) .
∑

t wd(a)t − wd(a)t−1 The cumulative sum of the changes in warning density by
the author (a)

warning density as it declines in most cases. We calculate the difference between
the warning density of the current file and the rest of the system at that point in time
as a feature for the predictive models.

Table 4 shows a short description of the feature sets used in the model
evaluations. The study makes heavy use of OpenStaticAnalyzer2 via the
SmartSHARK [56, 59] infrastructure. Moreover, we also use two common defect
labeling strategies used in research, ad-hoc SZZ, which is only based on keywords
within the commit message to identify bug fixes, and ITS SZZ, which requires a
direct link between the ITS and the bug fix commit as well as the correct, manually
validated issue type, i.e., bug instead of enhancement.

Within this study, we use model performance metrics based on the confusion
matrix, true positives, T P ; false positives, FP ; false negatives, FN ; and true
negatives, T N . We aggregate them as precision . T P

T P+FP
, recall . T P

T P+FN
, and a

combination F-measure . 2·precision·recall
precision+recall

. In addition, we use AUC, the area under
the Receiver Operating Characteristic (ROC) curve, which is the false-positive rate
against the true-positive rate.

Table 5 shows aggregated warning density-based features in addition to the
sum of static analysis warnings simply aggregated by their warning type already
contained in the pmd feature set. As we have seen in Sect. 2.1, warning density
is decreasing, so we may encounter time effects. Therefore, we aggregate warning

2 https://www.sourcemeter.com/resources/java/.

https://www.sourcemeter.com/resources/java/
https://www.sourcemeter.com/resources/java/
https://www.sourcemeter.com/resources/java/
https://www.sourcemeter.com/resources/java/
https://www.sourcemeter.com/resources/java/
https://www.sourcemeter.com/resources/java/

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 157

density via differences between the file and the system or aggregate the sum of the
differences per author.

Figure 1 shows the model performance metrics F-measure and AUC for all
feature sets and labeling strategies. Complementary to the critical distance diagram
in Fig. 1, we include Table 6. We can see that the combined feature set is ranked first
with a significant distance to the second rank except for F-measure with the ITS SZZ

Fig. 1 Ranking of model performance metrics in an interval approach. ©2020 IEEE. Adapted,
with permission, from Trautsch et al. [55]

Table 6 Ranking of model
performance metrics, median
(MED), mean absolute error
(MAD), confidence interval
(CI), effect size; effect size
magnitudes are negligible (n),
small (s), medium (m), large
(l). Bolding denotes a
statistically significant
difference to the first rank.
©2020 IEEE. Adapted, with
permission, from Trautsch
et al. [55]

Ad-hoc SZZ

A
U
C

Feature MED MAD CI Effect size

combined 0.707 0.121 [0.685, 0.732] 0.000 (n)

jit 0.695 0.136 [0.664, 0.716] 0.078 (n)
static 0.681 0.126 [0.657, 0.709] 0.110 (n)
pmd 0.625 0.123 [0.597, 0.645] 0.351 (n)

F-
M
ea
su
re

Feature MED MAD CI Effect size

combined 0.350 0.236 [0.304, 0.400] . −0.000 (n)

static 0.333 0.225 [0.286, 0.382] 0.015 (n)
jit 0.320 0.250 [0.273, 0.370] 0.063 (n)
pmd 0.272 0.227 [0.233, 0.320] 0.158 (s)

ITS SZZ

A
U
C

Feature MED MAD CI Effect size

combined 0.759 0.170 [0.730, 0.795] 0.000 (n)

static 0.733 0.162 [0.703, 0.773] 0.088 (n)
pmd 0.697 0.186 [0.657, 0.727] 0.202 (s)
jit 0.672 0.199 [0.632, 0.716] 0.247 (s)

F-
M
ea
su
re

Feature MED MAD CI Effect size

combined 0.086 0.128 [0.049, 0.126] 0.000 (n)

static 0.091 0.135 [0.055, 0.127] . −0.011 (n)

pmd 0.062 0.091 [0.029, 0.100] 0.057 (n)
jit 0.054 0.080 [0.000, 0.087] 0.119 (n)

158 A. Trautsch

labeling approach. This shows that we are able to improve the fine-grained just-in-
time defect prediction approach introduced by Pascarella et al. [40], which only
considers jit features with additional features over multiple labeling approaches.

If we only consider a comparison between static and the aggregated ASAT
warnings, we find that the combined set is ranked first in both labeling approaches
for AUC, while only the static set is ranked first in F-Measure. However, the distance
between both is not significant, and the number of features is vastly different
(207 static source code features vs. 3 aggregated ASAT features). In addition, we
calculated the feature importance for the two models used in the study, a regularized
logistic regression model and a Random forest model. We found that for the ITS
SZZ labeling approach as well as the ad-hoc SZZ labeling approach, the aggregated
warning density metrics .wd(s), .swd(f) and .swd(a) were in the top 10 most
important features.

Overall, our research points to the predictive power of the additional features,
especially static source code features, which can enhance just-in-time defect
prediction approaches, e.g., Rosen et al. [47] or Yan et al. [65].

2.2.2 Statistical Observation

In Sect. 2.2.1, we did get some hints that adding features based on ASAT warnings
can improve predictive models, however, only slightly. In a more direct investigation
of this phenomenon, we specifically look at differences between bug-inducing
changes in files and all other changes in files over the lifetime of a repository.

We aggregate the different warning types by summation on a per-file basis as
described in Table 7. In addition, we also discern between two sets of rules for the
ASAT. If nothing is added to the description, we use all rules available; if (default)
is added, we only use the default rules. This categorization increases the amount
of information while at the same time mitigating the risk of subgroup analysis.
Figure 2 shows negative values for both .f d(f) and .df d(f); this shows that we
can still see an effect of decreasing warning density with differences in warning
densities. However, we can also see that bug-inducing changes have a slightly higher
warning density for default warning. When looking into the data, we can see that
files changed reduce warning density over time, while files not changed often retain
a higher warning density.

Figure 3 and Table 8 shows the final results and statistical tests for the comparison
between bug-inducing changes and other file changes for all study subjects. We can

Table 7 Warning density based metrics compared in this section

Name Formula Description

.f d(f) .wd(f)t − wd(s)t The difference in warning density between the file f and
the system at current change

.df d(f) .
∑j=t

j=1
wd(f)j −wd(s)j

t−j+1 The linearly discounted cumulative warning density of the
file and the system up to the current change t

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 159

Fig. 2 Box plot of .f d(f) and .df d(f) for only default warnings of all bug-inducing files before
and after the bug-inducing change, median value in parentheses. Fliers are omitted. From Trautsch
et al. [58], used under Creative Commons CC-BY license

Fig. 3 Box plots of .f d(f) and .df d(f) for only default warnings of all bug-inducing changes and
all other file changes, median value in parentheses. Fliers are omitted. Adapted from Trautsch et al.
[58], used under Creative Commons CC-BY license

Table 8 Median values, Mann-Whitney U test p-values, and effect sizes for all warning density
metrics. From Trautsch et al. [58], used under Creative Commons CC-BY license

WD Metric Median other Median bug inducing P-value Effect size

.f d(f) . −0.0440 . −0.0300 . <0.0001 0.05 (n)

.f d(f) (default) . −0.0098 . −0.0072 . <0.0001 0.10 (n)

.df d(f) . −0.0948 . −0.0661 0.0247 –

.df d(f) (default) . −0.0228 . −0.0170 . <0.0001 0.07 (n)

Statistically significant p-values are bolded

see that while the difference is statistically significant, the effect size is negligible
for all. If we only look at default warnings, we see that the effect size is slightly
higher. This indicates that with our metrics, there is a difference in warning density
between bug-inducing changes and all other changes, even though it is likely very
small. In addition, using the default rules provided increases the effect size and is
statistically significant in all measured metrics. This means that the configuration of
rules has an impact and is something practitioners and researchers should consider.

160 A. Trautsch

2.3 Perception of the Developers

In our investigation of static analysis warnings, we also want to look at whether
developers are really perceiving ASAT warnings as quality improving. To achieve
this, we are looking into changes where the developer intends to improve the quality,
either by fixing a bug (corrective) or an internal quality improvement (perfective)
e.g., by refactoring, cleanup, or simplifications. We decided to name the categories
perfective and corrective after Swanson [8] to ease the readability. To determine the
intent of the developers, two researchers manually classified a random sample of
2,533 commit messages into these categories. This data was then used to fine-tune
a BERT [12] large language model and to evaluate its performance. The fine-tuned
model is then used to classify the rest of the commit messages into these categories.
After this categorization, we are comparing the differences between these categories
to see whether ASAT warnings are removed when developers intend to improve the
quality of the codebase.

In addition to ASAT warnings, we also compare these categories of changes via
other software quality metrics from the most recent version [6] of a software quality
model [5]. This includes complexity metrics such as cyclomatic complexity [35]
and object-oriented metrics after Chidamber and Kemerer [9]. Table 9 shows all
software quality metrics used in this section as well as a short description. In this
section, the ASAT warnings are aggregated by their severity rating, analogous to the
quality model [6].

2.3.1 Size of Perfective and Corrective Changes

As a first step, we are interested in whether we can see differences in perfective
and corrective changes regarding the size of the change. Previous work finds that
corrective and perfective changes are smaller than other changes [1, 37, 42]. We can
also see that this is the case in our own data in Table 10. Our data shows that the
difference is statistically significant for the number of lines added and deleted even
though the effect size is small.

Figure 4 visualizes the differences between all changes, only perfective changes
and corrective changes. We can see that corrective changes add less lines than other
changes, while perfective changes remove more lines of code than other changes.

Due to these differences in size between the categories of changes, we will
correct for size using the number of changed lines going forward, analogous to using
warning density in previous results. However, we can already note that our results
replicate previous research, which suggests that our study setup and data collection
are valid.

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 161

Table 9 Static source code metrics and static analysis warning severities used in this results
section. Adapted from Trautsch et al. [57], used under Creative Commons CC-BY license

Name and description Abbrev.

Cyclomatic Complexity [35]

The number of independent control-flow paths McCC

Logical Lines of Code

Number of lines in a file without comments and empty lines LLOC

Nesting Level else-if

Maximum of nesting level in a file NLE

Number of parameters in a method

The sum of all parameters of all methods in a file NUMPAR

Clone Coverage

Ratio of code covered by duplicates CC

Comment lines of code

Sum of commented lines CLOC

Comment density

Ratio of CLOC to LLOC CD

API Documentation

Number of documented public methods, . +1 if class is documented AD

Number of Ancestors

Number of classes, interfaces, enums from which the class is inherited NOA

Coupling between object classes

Number of used classes (inheritance, function call, type reference) CBO

Number of Incoming

Invocations Other methods that call the current class NII

Minor static analysis warnings

E.g., brace rules, naming conventions Minor

Major static analysis warnings

E.g., type resolution rules, unnecessary/unused code rules Major

Critical static analysis warnings

E.g., equals for string comparison, catching null pointer exceptions Critical

Table 10 Statistical test results of comparing perfective and corrective commits to non-perfective
and non-corrective, Mann-Whitney U test p-values, and effect size with category (n is negligible,
s is small). Statistically significant p-values are in bold. Adapted from Trautsch et al. [57], used
under Creative Commons CC-BY license

Perfective Corrective

Metric P-value Effect size P-value Effect size

#lines added . <0.0001 0.20 (s) . <0.0001 0.21 (s)

#lines deleted . <0.0001 0.15 (s) . <0.0001 0.16 (s)

#files modified 0.2081 – . <0.0001 0.22 (s)

#hunks . <0.0001 0.01 (n) . <0.0001 0.22 (s)

162 A. Trautsch

Fig. 4 Commit size distribution over all projects for all perfective and corrective commits. Fliers
are omitted. From Trautsch et al. [57], used under Creative Commons CC-BY license

2.3.2 Differences in Perfective and Corrective Changes

While the size is important to determine whether we need to account for different
sizes between our categories, the more important question we ask in this section is
whether there are differences between perfective, corrective, and all other changes.
More to the point, we are interested in whether ASAT warnings are reduced in
perfective and corrective changes and whether we can compare the magnitude of
this effect with other traditional source code quality metrics (see Table 9). This
comparison should yield insights into whether developers regard ASAT warnings
as important to quality by exploring whether the developers remove the warnings
when they intend to improve the quality of the source code.

Figure 5 shows the differences between all changes, only perfective and only
corrective changes. We can already see that corrective changes tend to be more
complex when we look at the McCC and NLE metrics, for example. We can
also see that perfective changes are less complex as shown in multiple software
quality metrics, e.g., McCC, NLE, CBO. These results are somewhat expected,
however, the magnitude of the effect for corrective changes and complexity was
not expected when setting up the study. While we expected that corrective changes
would increase the complexity, we did not expect such a magnitude especially
when correcting for size and in comparison to all changes, which also include
types of change that we would expect a high complexity from, e.g., feature
additions. Having done a visual analysis of the distributions of all groups, we are
interested in the differences between perfective, corrective, and their counterparts,
e.g., perfective against all non-perfective changes, especially whether they are
statistically significantly different and the effect size of the differences.

Table 11 shows the differences between perfective, corrective, and their coun-
terparts over the full history of all study subjects. We can see that static analysis
warnings are removed in perfective as well as in corrective changes. While the effect
size is higher in perfective changes, this hints at evidence that developers in fact do
remove static analysis warnings or improve the code that generated the warnings
when they intend to improve source code quality.

Table 11 emphasizes, for us, an unexpected result of the study. McCC, LLOC,
and NLE are not reduced in corrective commits when compared with all other non-
corrective commits. While we did not expect complexity and size to be reduced
in corrective changes, the comparison here is one of statistical dominance over all
other changes, including feature additions. This means that corrective changes are

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 163

Fig. 5 Static source code metric value changes in all perfective and corrective commits divided by
changed lines. Fliers are omitted. From Trautsch et al. [57], used under Creative Commons CC-BY
license

Table 11 Statistical test
results of comparing
perfective and corrective
commits to non-perfective
and non-corrective commits,
Mann-Whitney U test
p-values, and effect size with
category (n is negligible, s is
small, m is medium).
Statistically significant
p-values are in bold. All
values are normalized for
changed lines. Adapted
from Trautsch et al. [57], used
under Creative Commons
CC-BY license

Perfective Corrective

Metric P-value Effect size P-value Effect size

McCC . <0.0001 0.39 (m) 1.0000 –

LLOC . <0.0001 0.45 (m) 1.0000 –

NLE . <0.0001 0.27 (s) 1.0000 –

NUMPAR . <0.0001 0.25 (s) . <0.0001 0.09 (n)

CC 1.0000 – . <0.0001 0.12 (s)

CLOC . <0.0001 0.16 (s) . <0.0001 0.05 (n)

CD 1.0000 – . <0.0001 0.16 (s)

AD . <0.0001 0.02 (n) . <0.0001 0.08 (n)

NOA . <0.0001 0.08 (n) . <0.0001 0.07 (n)

CBO . <0.0001 0.19 (s) . <0.0001 0.06 (n)

NII . <0.0001 0.19 (s) . <0.0001 0.02 (n)

Minor . <0.0001 0.19 (s) . <0.0001 0.05 (n)

Major . <0.0001 0.12 (s) . <0.0001 0.05 (n)

Critical . <0.0001 0.05 (n) . <0.0001 0.03 (n)

164 A. Trautsch

not less complex or smaller than all other changes even when corrected for size via
changed lines.

2.3.3 State Before Perfective and Corrective Changes

After we have investigated the differences in Sect. 2.3.2, we also want to investigate
the state of the changed files before the changes were applied. This gives us the
information which types of files with regard to software quality metrics and static
analysis warnings are the target of perfective or corrective changes. Figure 6 shows
the distribution of all metrics before any change, perfective change, or corrective
change is applied. We can see some results we would have expected, e.g., the
cyclomatic complexity is higher before a corrective change is applied. We can also
see that other complexity metrics are slightly higher, e.g., CBO, NOA, NLE, as well
as the different severities of static analysis warnings.

Nevertheless, we also see some results we did not expect. For example, the files
which are the target of perfective changes are on average less complex and smaller
even before the change is applied. Table 12 gives the median of the changes. If we

Fig. 6 Static source code metrics divided by the number of changed files before the change is
applied. Fliers are omitted. From Trautsch et al. [57], used under Creative Commons CC-BY
license

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 165

Table 12 Median metric
values per file before the
change is applied.
From Trautsch et al. [57],
used under Creative
Commons CC-BY license

Metric All Perfective Corrective

McCC 21.78 18.78 33.23

LLOC 186.98 163.75 264.18

NLE 9.60 8.33 14.00

NUMPAR 16.06 15.00 22.00

CC 0.04 0.04 0.05

CLOC 46.25 55.00 54.00

CD 0.25 0.32 0.25

AD 0.50 0.67 0.46

NOA 1.00 1.00 1.00

CBO 9.67 8.00 14.00

NII 8.00 8.50 9.50

Minor 7.00 6.00 9.67

Major 2.00 1.25 3.00

Critical 0.00 0.00 0.00

Table 13 Statistical test
results for perfective and
corrective commits regarding
their average metrics before
the change, Mann-Whitney U
test p-values, and effect size
with category (n is negligible,
s is small, m is medium).
Statistically significant
p-values are in bold. Adapted
from Trautsch et al. [57], used
under Creative Commons
CC-BY license

Perfective Corrective

Metric P-value Effect size P-value Effect size

McCC . <0.0001 0.05 (n) . <0.0001 0.08 (n)

LLOC . <0.0001 0.05 (n) . <0.0001 0.05 (n)

NLE . <0.0001 0.04 (n) . <0.0001 0.07 (n)

NUMPAR 0.6367 – 0.0218 –

CC . <0.0001 0.01 (n) 0.0011 –

CLOC . <0.0001 0.12 (s) . <0.0001 0.06 (n)

CD . <0.0001 0.15 (s) . <0.0001 0.15 (s)

AD . <0.0001 0.17 (s) . <0.0001 0.15 (s)

NOA 0.5109 – . <0.0001 0.02 (n)

CBO . <0.0001 0.09 (n) . <0.0001 0.07 (n)

NII . <0.0001 0.05 (n) . <0.0001 0.04 (n)

Minor . <0.0001 0.04 (n) . <0.0001 0.02 (n)

Major . <0.0001 0.09 (n) . <0.0001 0.04 (n)

Critical . <0.0001 0.05 (n) . <0.0001 0.03 (n)

combine these with the results presented in Sect. 2.3.2, this means that complex files
are more often the target of bug-fixing operation. However, bug fixing in the form
of corrective changes also increases the complexity of the file. Moreover, we have
shown that complex files are not necessarily the target of perfective changes. This
combination yields the unfortunate result that files only get more complex and that
we need the focus perfective improvements more on the complex files than on the
simpler files like it is shown in our data now.

In addition to the visualization of the distribution in Fig. 6 and medians in
Table 12, we provide statistical test results in Table 13. These show that while the
differences are statistically significant, the effect size is negligible to small in all
cases.

166 A. Trautsch

3 Limitations

We acknowledge several limitations in the presented results and studies. Our results
are focused on PMD for Java as the ASAT of choice due to its broad use, age,
excellent documentation, and ability to work with source code directly. A different
ASAT as well as a different type of language, e.g., interpreted, may yield completely
different results. We only used an ASAT for a compiled language. Using an ASAT
for an interpreted language, e.g., JavaScript with JLint, could yield a larger effect on
defects, as the compiling step for Java already takes care of a lot of source of errors.
This view is shared by Beller et al. [7] as mentioned in their results.

Moreover, due to the nature of our work, we only include open-source projects.
While open-source projects provide a convenient source of data, it may also
influence the results, and investigating closed-source industry projects may yield
different results. In addition, we are only able to investigate software repository
data. If a developer uses an ASAT offline or within the IDE, which is not also in the
build configuration, we are not able to detect it. However, this would only decrease
the measurable effect instead of increasing the risk of overestimating our findings.

Data validity is necessarily limited by the available time and personnel for study.
Some aspects require manual validation, e.g., issue types in the ITS, lines which
contribute toward the bug fix or the intent of the developer as expressed in the
commit message. In the data for our studies, we mitigate this by including the
best currently available manually validated data either directly in the study, e.g.,
for developer intents [57], for issue types [22], or data from a large labeling study
regarding tangling for bug fix lines [21].

4 Related Work

Multiple researchers investigated ASATs over time. In this section, we summarize
their work and how it relates to our studies. Due to the different viewpoints, we
divide the related work into different categories. Section 4.1 contains related work
regarding the evolution of static analysis warnings. Section 4.2 contains related work
regarding the impact of ASATs or ASAT warnings on defects. Section 4.3 contains
related work regarding the perspective of developers on ASATs.

4.1 Evolution

Beller et al. [7] investigate the state of static analysis tools. They explore howASATs
are used in open-source projects in different programming languages and how their
rules evolve. They found that about 60% of the most popular projects make use
of ASATs, dynamically typed languages profit more from ASATs, and that default

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 167

rules seem to be a good fit for most projects. In our work, we are also investigating
rule changes. However, we are more interested in the actual warnings that an ASAT
produces. In contrast to Beller et al. [7], we retroactively run an ASAT for each
revision of our study subjects to investigate the actual warnings produced.

Marcilio et al. [34] investigate resolution times of ASAT warnings and developer
engagement on the example of SonarQube.3 While they do not provide information
about general trends in the paper, we were able to use the provided replication kit
to reproduce our results of increasing number of warnings in most projects. The
data does not contain a size measure, so we were not able to reproduce warning on
density-based results.

Some ASATs contain rules that are focused on security. Di Penta et al. [13] study
the evolution of three open-source projects regarding the warnings produced by
three security ASATs. The authors used vulnerability density and found that they
were not able to discern a general trend of reducing density. In contrast to Di Penta et
al. [13], our results contain a reducing warning density trend. However, we explore
a general-purpose ASAT, which is not focused on security warnings, which might
explain this difference.

Aloraini et al. [2] investigate security ASATs over two snapshots, one at 2012 and
one at 2017 of 116 open-source projects. The authors also come to the conclusion
that warning density is constant, which is in contrast to our own non-security
focused results. This hints at a possible difference between security warnings and
general-purpose warnings regarding their removal trends.

4.2 Defects

ASATs are investigated in many different ways regarding possible defects that can
be identified in research. One avenue of investigation is whether ASATs can identify
existing defects as part of their warnings. Thung et al. [52] manually validate all
lines responsible for a bug for 439 bugs. The authors note the difficulties of this
approach regarding tangling but were able to identify all lines for 200 of the 438
bugs. After this, the authors were able to execute static analysis tools to investigate
whether the tools do find these bugs fully (all lines) or partially. When combining
three ASATs, the authors find that between 1.9% and 50% of bugs are missed on
three open-source projects with large variations between projects. In addition, the
authors find that PMD and FindBugs perform best, but note that their warnings are
very generic.

Habib and Pradel [18] conduct a similar study with an extension4 of the
Defects4J [27] dataset. The authors investigate three ASATs and the question
whether they are able to indicate each bug from the dataset. The authors found
that only 27 of 594 bugs were found by at least one of the ASATs. Due to our

3 https://www.sonarqube.org.
4 https://github.com/rjust/defects4j/pull/112.

https://www.sonarqube.org
https://www.sonarqube.org
https://www.sonarqube.org
https://www.sonarqube.org
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112

168 A. Trautsch

usage of SmartSHARK [59] and the large-scale study it enabled [21], we are able to
investigate 1,723 bugs for which all lines were manually validated and agreed upon
by least three researchers. In contrast to both studies, we are concerned with general
trends and whether we are able to measure a net-benefit of a general-purpose ASAT
over multiple years of project evolution.

A different avenue of investigation is an indirect exploration of extending pre-
dictive models with data from ASATs. Nagappan and Ball [38] explore predicting
defect density with static analysis warnings in a case study with Microsoft. They
find that static analysis warnings can be used to predict defect prone modules in
which to focus quality assurance efforts. In contrast to Nagappan and Ball [38], we
investigate an open-source general-purpose ASAT and open-source projects.

Plosch et al. [41] investigate correlations between ASAT warnings and the
number of bugs in each file for three releases of Eclipse JDT. The authors find that
PMD performs better than FindBugs with correlation values between 0.25 and 0.34,
which is a weak to slightly moderate correlation.

Rahman et al. [45] compare the ASATs FindBugs and PMD with a logistic defect
prediction model. They analyze 34 releases from 5 open-source projects and find
that while FindBugs outperforms the predictive model PMD does not. However, the
reported precision is low in all cases. The authors find that they were not able to
improve their predictive model with additional data from the ASATs, which is in
contrast to our own findings. The reason for this, aside from the data and age of
releases, could be that we create aggregated features from ASAT warnings, which
Rahman et al. [45] do not.

While Rahman et al. [45] used a release-level defect prediction approach, Querel
and Rigby [43] investigate whether they can improve an existing just-in-time defect
prediction approach implemented in commit guru [47]. The authors add ASAT
warnings as features to the just-in-time defect prediction model. Their results
indicate that they were able to improve the predictive model. A later study [44]
finds that the magnitude of the effect of ASAT warnings is likely small. Our own
results replicate this outcome with different data and models. This indicates that
there may be a correlation between bugs and static analysis warnings, even for a
general-purpose ASAT such as PMD even if it is likely small.

4.3 Developers

The perspective of the developers on source code quality improvements is investi-
gated in numerous studies. We focus in this section on studies which extracted the
intent of the developers to increase quality and after the change measured an effect
on software quality attributes. Stroggylos and Spinellis [51] investigate intended
refactorings via commit messages and measured a change via several source code
metrics. The authors find that refactoring often decreases source code quality
metrics, i.e., the intent of the developer does not match the resulting measurements.

Fakhoury et al. [14] compare the intent of developers to increase the readability in
the code base with the change of readability measured with an existing readability

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 169

model. The authors show that the intent of the developers is not matched by the
readability model. The readability improvement perceived by the developers is not
matched by the results of the measurements by the readability model.

Pantiuchina et al. [39] compare the intent of developers to increase certain
software quality metrics with actual measurement of these metrics. The authors
also find that the intent of the developer is not captured by the value change of
the software quality metric. In contrast to Pantiuchina et al. [39], Fakhoury et
al. [14], and Stroggylos and Spinellis [51], our study measures a more generic
improvement intent by the developer. Refactoring, readability, and the mention
of static source code metric improvement are part of our classification schema.
Moreover, we include ASAT warnings as part of the measurement of the outcome of
the change. All of the studies mentioned in this section measure a mismatch between
intent of developer and actual measurement. This can mean that the intent was
misunderstood, the change was badly implemented, or that the measured metrics or
models used may not be as accurate as assumed. In our work, we show that most of
the changes for perfective quality improvements actually match the measurements
as expected. Corrective quality improvements did yield unexpected results however.

5 Summary

In this section, we summarize the chapter and link our results from Sect. 2 together
with the results briefly discussed in the related work in Sect. 4 in a loose qualitative
meta-analysis. Within this chapter, we have presented results of several large studies
of ASATs and static software metrics associated with quality. We are using empirical
methods, statistical analysis, and large-scale studies to produce empirical data and
ultimately evidence to be used by researchers and practitioners. Estimating the
usefulness of static analysis tools can help practitioners select tooling based on
empirical evidence; this is the idea behind evidence-based software engineering.
Moreover, general trends or lessons extracted from research can improve software
development processes, i.e., an indication on where to focus perfective maintenance
within a software project.

We use our extended version [56] of the SmartSHARK mining ecosystem [59]
to mine and validate large amounts of open-source software development data.
The data is used to investigate different aspects of ASATs and their impact on
software quality from different perspectives. With the help of SmartSHARK, we
conducted several large studies that required manual validation [21, 22, 57] that
were enabled by our implementations inside the SmartSHARK frontend. In addition
to the replication kits of each publication, all of the raw data is made public for other
researchers or practitioners on the SmartSHARK website.5

5 https://smartshark.github.io/dbreleases/.

https://smartshark.github.io/dbreleases/
https://smartshark.github.io/dbreleases/
https://smartshark.github.io/dbreleases/
https://smartshark.github.io/dbreleases/
https://smartshark.github.io/dbreleases/

170 A. Trautsch

We can show that while the sum of static analysis warnings is steadily increasing
and correlated to the number of LLOC, the warning density is decreasing in most
of our study subjects. A steady increase of the number of static analysis warnings is
also found in previous research [34], however not explicitly mentioned in the paper.
Our results contain a decrease in warning density; overall, each project resolves
about 3.5 ASAT warnings per kLLOC per year, which means that if we think of
warning density as an indicator of source code quality, source code quality improves
over time.

While we are the first to report warning density for a general-purpose ASAT,
Aloraini et al. [2] and Di Penta et al. [13] found no decrease in warning density for
security-focused ASATs. A reason for this could be a difference in removal effort
between general-purpose ASAT warnings and security-focused ASAT warnings.
Regardless, our findings indicate that we have to account for changes in general
warning density of open-source projects for longitudinal studies, which utilize
source code evolution data.

Our investigation into the impact of ASATs on quality from the perspective
of predictive models as well as statistical comparisons yields a surprisingly small
effect. However, this small effect is replicated by other researchers for predictive
models [44] or simple correlation measures [41], increasing the evidence toward a
small effect of ASATs on defects. In addition, our research indicates that a subset of
rules provides a larger effect size, which hints toward differences in rules regarding
their impact.

Previous work has shown that the perception of source code quality by the
developers and the actual measurements of static source code quality metrics does
not always match. In our research, we found that ASAT warnings are not only
associated with quality by developers in questionnaires as in [10, 61] but that static
analysis warnings are in fact reduced when developers intend to improve code
quality. We measured an effect that is not as high as static source code metrics
commonly associated with quality, e.g., McCC or CBO. In the course of this study,
we also noticed a small effect where corrective changes increase complexity of
already complex files, but perfective changes, which reduce complexity, are only
applied on already less complex files.

Combining our results, we can draw several conclusions for practitioners. The
number of ASAT warnings is going to increase with the size of the code base.
Adopting a metric-like warning density for Continuous Integration (CI) systems can
therefore be a more helpful measure for a general overview. We presented data on
the impact on defects, which can help practitioners weight the benefits against the
cost of introducing and maintaining ASATs. While our results only point to a very
small effect on defects, there may still be more positive influence of ASATs not part
of our study, e.g., readability of code. Our results also show a higher effect for the
default subset of warnings, indicating that this configuration is a good starting point
when using PMD for Java.

Fixing a bug is a complex operation, while maintenance that reduces complexity
is predominantly focused on less complex parts of the code. To dissolve this
contradiction, maintenance activities should be focused on files that were part of a

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 171

Fig. 7 Knowledge transfer from studies to practitioners

bug-fixing operation. Another solution would be to reserve resources for perfective
maintenance on overly complex files; these could be indicated by tooling using
thresholds from our research. This would reduce complexity and can also lead to
a reduced number of bugs as indicated in our research.

The SmartSHARK mining infrastructure and the data collected can be further
utilized by researchers for all topics that rely on software repository data as well as
manual validation via web frontend. We will continue to support and enhance this
platform in the future.

Given the results of our empirical studies and the implementations required to
conduct them, we are able to proceed in various directions. Our research can be
utilized inside the IDE via Language Server Protocol (LSP) integration. Figure 7
depicts such a scenario in which the data acquired from research is transferred to
the practitioner. This allows thresholds from research, e.g., complexity or types of
ASAT warnings, to be displayed while working on the source code of a file and
show hints and recommendations to the developer.

References

1. Alali, A., Kagdi, H., Maletic, J.I.: What’s a typical commit? A characterization of open
source software repositories. In: 2008 16th IEEE International Conference on Program
Comprehension, pp. 182–191 (2008). https://doi.org/10.1109/ICPC.2008.24

2. Aloraini, B., Nagappan, M., German, D.M., Hayashi, S., Higo, Y.: An empirical study of
security warnings from static application security testing tools. J. Syst. Softw. 158, 110427
(2019). ISSN 0164-1212. https://doi.org/10.1016/j.jss.2019.110427. http://www.sciencedirect.
com/science/article/pii/S0164121219302018

3. Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., Guéhéneuc, Y.-G.: Is it a bug or an
enhancement?: A text-based approach to classify change requests. In: Proceedings of the 2008

https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1016/j.jss.2019.110427
http://www.sciencedirect.com/science/article/pii/S0164121219302018
http://www.sciencedirect.com/science/article/pii/S0164121219302018
http://www.sciencedirect.com/science/article/pii/S0164121219302018
http://www.sciencedirect.com/science/article/pii/S0164121219302018
http://www.sciencedirect.com/science/article/pii/S0164121219302018
http://www.sciencedirect.com/science/article/pii/S0164121219302018
http://www.sciencedirect.com/science/article/pii/S0164121219302018
http://www.sciencedirect.com/science/article/pii/S0164121219302018

172 A. Trautsch

Conference of the Center for Advanced Studies on Collaborative Research: Meeting of Minds,
CASCON ’08, pp. 23:304–23:318. ACM, New York (2008). https://doi.org/10.1145/1463788.
1463819. http://doi.acm.org/10.1145/1463788.1463819

4. Ayewah, N., Pugh, W., David Morgenthaler, J., Penix, J., Zhou, Y.Q.: Evaluating static analysis
defect warnings on production software. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE ’07, pp. 1–8.
Association for Computing Machinery, New York (2007). ISBN 9781595935953. https://doi.
org/10.1145/1251535.1251536

5. Bakota, T., Hegedűs, P., Körtvélyesi, P., Ferenc, R., Gyimóthy, T.: A probabilistic software
quality model. In: 2011 27th IEEE International Conference on Software Maintenance (ICSM),
pp. 243–252 (2011). https://doi.org/10.1109/ICSM.2011.6080791

6. Bakota, T., Hegedűs, P., Siket, I., Ladányi, G., Ferenc, R.: Qualitygate sourceaudit: a tool
for assessing the technical quality of software. In: 2014 Software Evolution Week – IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-
WCRE), pp. 440–445 (2014). https://doi.org/10.1109/CSMR-WCRE.2014.6747214

7. Beller, M., Bholanath, R., McIntosh, S., Zaidman, A.: Analyzing the state of static analysis: a
large-scale evaluation in open source software. In: 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 470–481 (2016).
https://doi.org/10.1109/SANER.2016.105

8. Burton Swanson, E.: The dimensions of maintenance. In: Proceedings of the 2nd International
Conference on Software Engineering, ICSE ’76, pp. 492–497. IEEE Computer Society Press,
Washington (1976)

9. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans. Softw.
Eng. 20(6), 476–493 (1994). ISSN 0098-5589. https://doi.org/10.1109/32.295895

10. Christakis, M., Bird, C.: What developers want and need from program analysis: an empirical
study. In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, pp. 332–343. ACM, New York (2016). ISBN 978-1-4503-3845-5.
https://doi.org/10.1145/2970276.2970347. http://doi.acm.org/10.1145/2970276.2970347

11. Devanbu, P., Zimmermann, T., Bird, C.: Belief evidence in empirical software engineering. In:
2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp. 108–119
(2016). https://doi.org/10.1145/2884781.2884812

12. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805 (2018). http://arxiv.org/abs/
1810.04805

13. Di Penta, M., Cerulo, L., Aversano, L.: The life and death of statically detected vulnerabilities:
an empirical study. Inform. Softw. Technol. 51(10), 1469–1484 (2009). ISSN 0950-5849.
https://doi.org/10.1016/j.infsof.2009.04.013. http://www.sciencedirect.com/science/article/pii/
S0950584909000500. Source Code Analysis and Manipulation, SCAM 2008

14. Fakhoury, S., Roy, D., Hassan, A., Arnaoudova, V.: Improving source code readability: theory
and practice. In: 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC), pp. 2–12 (2019). https://doi.org/10.1109/ICPC.2019.00014

15. Fan, Y., Xia, X., Alencar da Costa, D., Lo, D., Hassan, A.E., Li, S.: The impact of changes
mislabeled by SZZ on just-in-time defect prediction. IEEE Trans. Softw. Eng. 1–1 (2019).
https://doi.org/10.1109/TSE.2019.2929761

16. Fenton, N., Bieman, J.: Software Metrics: A Rigorous and Practical Approach, 3rd edn. CRC
Press, Inc., Boca Raton (2014). ISBN 1439838224, 9781439838228

17. FindBugs: Findbugs (2018). http://findbugs.sourceforge.net/
18. Habib, A., Pradel, M.: How many of all bugs do we find? A study of static bug detectors.

In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, pp. 317–328. ACM, New York (2018). ISBN 978-1-4503-5937-5.
https://doi.org/10.1145/3238147.3238213. http://doi.acm.org/10.1145/3238147.3238213

19. Heckman, S., Williams, L.: A model building process for identifying actionable static analysis
alerts. In: 2009 International Conference on Software Testing Verification and Validation,
pp. 161–170 (2009). https://doi.org/10.1109/ICST.2009.45

https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1145/1463788.1463819
http://doi.acm.org/10.1145/1463788.1463819
http://doi.acm.org/10.1145/1463788.1463819
http://doi.acm.org/10.1145/1463788.1463819
http://doi.acm.org/10.1145/1463788.1463819
http://doi.acm.org/10.1145/1463788.1463819
http://doi.acm.org/10.1145/1463788.1463819
http://doi.acm.org/10.1145/1463788.1463819
http://doi.acm.org/10.1145/1463788.1463819
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1109/ICSM.2011.6080791
https://doi.org/10.1109/ICSM.2011.6080791
https://doi.org/10.1109/ICSM.2011.6080791
https://doi.org/10.1109/ICSM.2011.6080791
https://doi.org/10.1109/ICSM.2011.6080791
https://doi.org/10.1109/ICSM.2011.6080791
https://doi.org/10.1109/ICSM.2011.6080791
https://doi.org/10.1109/ICSM.2011.6080791
https://doi.org/10.1109/CSMR-WCRE.2014.6747214
https://doi.org/10.1109/CSMR-WCRE.2014.6747214
https://doi.org/10.1109/CSMR-WCRE.2014.6747214
https://doi.org/10.1109/CSMR-WCRE.2014.6747214
https://doi.org/10.1109/CSMR-WCRE.2014.6747214
https://doi.org/10.1109/CSMR-WCRE.2014.6747214
https://doi.org/10.1109/CSMR-WCRE.2014.6747214
https://doi.org/10.1109/CSMR-WCRE.2014.6747214
https://doi.org/10.1109/CSMR-WCRE.2014.6747214
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
http://doi.acm.org/10.1145/2970276.2970347
https://doi.org/10.1145/2884781.2884812
https://doi.org/10.1145/2884781.2884812
https://doi.org/10.1145/2884781.2884812
https://doi.org/10.1145/2884781.2884812
https://doi.org/10.1145/2884781.2884812
https://doi.org/10.1145/2884781.2884812
https://doi.org/10.1145/2884781.2884812
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1016/j.infsof.2009.04.013
https://doi.org/10.1016/j.infsof.2009.04.013
https://doi.org/10.1016/j.infsof.2009.04.013
https://doi.org/10.1016/j.infsof.2009.04.013
https://doi.org/10.1016/j.infsof.2009.04.013
https://doi.org/10.1016/j.infsof.2009.04.013
https://doi.org/10.1016/j.infsof.2009.04.013
https://doi.org/10.1016/j.infsof.2009.04.013
https://doi.org/10.1016/j.infsof.2009.04.013
https://doi.org/10.1016/j.infsof.2009.04.013
http://www.sciencedirect.com/science/article/pii/S0950584909000500
http://www.sciencedirect.com/science/article/pii/S0950584909000500
http://www.sciencedirect.com/science/article/pii/S0950584909000500
http://www.sciencedirect.com/science/article/pii/S0950584909000500
http://www.sciencedirect.com/science/article/pii/S0950584909000500
http://www.sciencedirect.com/science/article/pii/S0950584909000500
http://www.sciencedirect.com/science/article/pii/S0950584909000500
http://www.sciencedirect.com/science/article/pii/S0950584909000500
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/TSE.2019.2929761
https://doi.org/10.1109/TSE.2019.2929761
https://doi.org/10.1109/TSE.2019.2929761
https://doi.org/10.1109/TSE.2019.2929761
https://doi.org/10.1109/TSE.2019.2929761
https://doi.org/10.1109/TSE.2019.2929761
https://doi.org/10.1109/TSE.2019.2929761
https://doi.org/10.1109/TSE.2019.2929761
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
http://doi.acm.org/10.1145/3238147.3238213
http://doi.acm.org/10.1145/3238147.3238213
http://doi.acm.org/10.1145/3238147.3238213
http://doi.acm.org/10.1145/3238147.3238213
http://doi.acm.org/10.1145/3238147.3238213
http://doi.acm.org/10.1145/3238147.3238213
http://doi.acm.org/10.1145/3238147.3238213
http://doi.acm.org/10.1145/3238147.3238213
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1109/ICST.2009.45

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 173

20. Heckman, S., Williams, L.: A systematic literature review of actionable alert identification
techniques for automated static code analysis. Inf. Softw. Technol. 53(4), 363–387 (2011).
ISSN 0950-5849. https://doi.org/10.1016/j.infsof.2010.12.007

21. Herbold, S., Trautsch, A., Ledel, B., Aghamohammadi, A., Ghaleb, T.A., Chahal, K.K.,
Bossenmaier, T., Nagaria, B., Makedonski, P., Ahmadabadi, M.N., Szabados, K., Spieker, H.,
Madeja, M., Hoy, N., Lenarduzzi, V., Wang, S., Rodríguez-Pérez, G., Colomo-Palacios, R.,
Verdecchia, R., Singh, P., Qin, Y., Chakroborti, D., Davis, W., Walunj, V., Wu, H., Marcilio,
D., Alam, O., Aldaeej, A., Amit, I., Turhan, B., Eismann, S., Wickert, A.-K., Malavolta, I.,
Sulir, M., Fard, F., Henley, A.Z., Kourtzanidis, S., Tuzun, E., Treude, C., Shamasbi, S.M.,
Pashchenko, I., Wyrich, M., Davis, J., Serebrenik, A., Albrecht, E., Aktas, E.U., Strüber, D.,
Erbel, J.: A fine-grained data set and analysis of tangling in bug fixing commits. Empirical
Softw. Eng. 27(6), 125 (2022). ISSN 1573-7616. https://doi.org/10.1007/s10664-021-10083-5

22. Herbold, S., Trautsch, A., Trautsch, F., Ledel, B.: Problems with SZZ and features: an empirical
study of the state of practice of defect prediction data collection. Empirical Softw. Eng. 27(2),
42 (2022). ISSN 1573-7616. https://doi.org/10.1007/s10664-021-10092-4

23. Herzig, K., Zeller, A.: The impact of tangled code changes. In: Proceedings of the 10thWorking
Conference on Mining Software Repositories, MSR ’13, pp. 121–130. IEEE Press, Piscataway
(2013). ISBN 9781467329361

24. Herzig, K., Just, S., Zeller, A.: It’s not a bug, it’s a feature: How misclassification impacts bug
prediction. In: Proceedings of the International Conference on Software Engineering, ICSE
’13, pp. 392–401. IEEE Press, Piscataway (2013). ISBN 978-1-4673-3076-3. http://dl.acm.
org/citation.cfm?id=2486788.2486840

25. Herzig, K., Just, S., Zeller, A.: The impact of tangled code changes on defect prediction models.
Empirical Softw. Eng. 1–34 (2016). https://www.microsoft.com/en-us/research/publication/
the-impact-of-tangled-code-changes-on-defect-prediction-models/

26. Johnson, B., Song, Y., Murphy-Hill, E.., Bowdidge, R.: Why don’t software developers use
static analysis tools to find bugs? In: Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pp. 672–681. IEEE Press, Piscataway (2013). ISBN 978-1-
4673-3076-3. http://dl.acm.org/citation.cfm?id=2486788.2486877

27. Just, R., Jalali, D., Ernst, M.D.: Defects4j: a database of existing faults to enable controlled
testing studies for Java programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, pp. 437–440. Association for Computing Machin-
ery, New York (2014). ISBN 9781450326452. https://doi.org/10.1145/2610384.2628055

28. Kendall, M.G.: Rank Correlation Methods. Charles Griffin & Co. Ltd., London (1955)
29. Kim, S., Ernst, M.D.: Which warnings should i fix first? In: Proceedings of the the 6th

Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC-FSE ’07, pp. 45–54. ACM,
New York (2007). ISBN 978-1-59593-811-4. https://doi.org/10.1145/1287624.1287633

30. Kitchenham, B.A., Dyba, T., Jorgensen, M.: Evidence-based software engineering. In:
Proceedings of the 26th International Conference on Software Engineering, ICSE ’04, pp. 273–
281. IEEE Computer Society, Washington (2004). ISBN 0-7695-2163-0. http://dl.acm.org/
citation.cfm?id=998675.999432

31. Koc, U., Saadatpanah, P., Foster, J.S., Porter, A.A.: Learning a classifier for false positive
error reports emitted by static code analysis tools. In: Proceedings of the 1st ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages, pp. 35–42 (2017).
ISBN 978-1-4503-5071-6. https://doi.org/10.1145/3088525.3088675

32. Lee, S., Hong, S., Yi, J., Kim, T., C.-J. Kim, Yoo, S.: Classifying false positive static checker
alarms in continuous integration using convolutional neural networks. In: 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST), pp. 391–401 (2019).
https://doi.org/10.1109/ICST.2019.00048

33. Lenarduzzi, V., Lomio, F., Huttunen, H., Taibi, D.: Are sonarqube rules inducing bugs? In:
2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 501–511 (2020)

https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1007/s10664-021-10092-4
http://dl.acm.org/citation.cfm?id=2486788.2486840
http://dl.acm.org/citation.cfm?id=2486788.2486840
http://dl.acm.org/citation.cfm?id=2486788.2486840
http://dl.acm.org/citation.cfm?id=2486788.2486840
http://dl.acm.org/citation.cfm?id=2486788.2486840
http://dl.acm.org/citation.cfm?id=2486788.2486840
http://dl.acm.org/citation.cfm?id=2486788.2486840
http://dl.acm.org/citation.cfm?id=2486788.2486840
http://dl.acm.org/citation.cfm?id=2486788.2486840
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
https://www.microsoft.com/en-us/research/publication/the-impact-of-tangled-code-changes-on-defect-prediction-models/
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/1287624.1287633
http://dl.acm.org/citation.cfm?id=998675.999432
http://dl.acm.org/citation.cfm?id=998675.999432
http://dl.acm.org/citation.cfm?id=998675.999432
http://dl.acm.org/citation.cfm?id=998675.999432
http://dl.acm.org/citation.cfm?id=998675.999432
http://dl.acm.org/citation.cfm?id=998675.999432
http://dl.acm.org/citation.cfm?id=998675.999432
http://dl.acm.org/citation.cfm?id=998675.999432
http://dl.acm.org/citation.cfm?id=998675.999432
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1109/ICST.2019.00048
https://doi.org/10.1109/ICST.2019.00048
https://doi.org/10.1109/ICST.2019.00048
https://doi.org/10.1109/ICST.2019.00048
https://doi.org/10.1109/ICST.2019.00048
https://doi.org/10.1109/ICST.2019.00048
https://doi.org/10.1109/ICST.2019.00048
https://doi.org/10.1109/ICST.2019.00048

174 A. Trautsch

34. Marcilio, D., Bonifácio, R., Monteiro, E., Canedo, E., Luz, W., Pinto, G.: Are static analysis
violations really fixed?: A closer look at realistic usage of sonarqube. In: Proceedings of the
27th International Conference on Program Comprehension, ICPC ’19, pp. 209–219. IEEE,
Piscataway Press (2019). https://doi.org/10.1109/ICPC.2019.00040

35. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320 (1976). ISSN
0098-5589. https://doi.org/10.1109/TSE.1976.233837

36. Mills, C., Pantiuchina, J., Parra, E., Bavota, G., Haiduc, S.: Are bug reports enough for
text retrieval-based bug localization? In: 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 381–392 (2018). https://doi.org/10.1109/ICSME.
2018.00046

37. Mockus, Votta: Identifying reasons for software changes using historic databases. In: Proceed-
ings 2000 International Conference on Software Maintenance, pp. 120–130 (2000). https://doi.
org/10.1109/ICSM.2000.883028

38. Nagappan, N., Ball, T.: Static analysis tools as early indicators of pre-release defect density.
In: Proceedings of the 27th International Conference on Software Engineering, ICSE ’05,
pp. 580–586. ACM, New York (2005). ISBN 1-58113-963-2. https://doi.org/10.1145/1062455.
1062558. http://doi.acm.org/10.1145/1062455.1062558

39. Pantiuchina, J., Lanza, M., Bavota, G.: Improving code: the (mis) perception of quality metrics.
In: 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pp. 80–91 (2018). https://doi.org/10.1109/ICSME.2018.00017

40. Pascarella, L., Palomba, F., Bacchelli, A.: Fine-grained just-in-time defect prediction. J. Syst.
Softw. 150, 22–36 (2019). ISSN 0164-1212. https://doi.org/10.1016/j.jss.2018.12.001. http://
www.sciencedirect.com/science/article/pii/S0164121218302656

41. Plosch, R., Gruber, H., Hentschel, A., Pomberger, G., Schiffer, S.: On the relation between
external software quality and static code analysis. In: 2008 32nd Annual IEEE Software
Engineering Workshop, pp. 169–174 (2008). https://doi.org/10.1109/SEW.2008.17

42. Purushothaman, R., Perry, D.E.: Toward understanding the rhetoric of small source code
changes. IEEE Trans. Softw. Eng. 31(6), 511–526 (2005). https://doi.org/10.1109/TSE.2005.
74

43. Querel, L.-P., Rigby, P.C.: Warningsguru: Integrating statistical bug models with static analysis
to provide timely and specific bug warnings. In: Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, pp. 892–895. Association for Computing Machinery,
New York (2018). ISBN 9781450355735. https://doi.org/10.1145/3236024.3264599

44. Querel, L.-P., Rigby, P.C.: Warning-introducing commits vs bug-introducing commits: a tool,
statistical models, and a preliminary user study. In: 29th IEEE/ACM International Conference
on Program Comprehension, ICPC 2021, Madrid, May 20–21 (2021), pp. 433–443. IEEE,
Piscataway (2021). https://doi.org/10.1109/ICPC52881.2021.00051

45. Rahman, F., Khatri, S., Barr, E.T., Devanbu, P.: Comparing static bug finders and statistical
prediction. In: Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pp. 424–434. ACM, New York (2014). ISBN 978-1-4503-2756-5. https://doi.org/
10.1145/2568225.2568269. http://doi.acm.org/10.1145/2568225.2568269

46. Rosa, G., Pascarella, L., Scalabrino, S., Tufano, R., Bavota, G., Lanza, M., Oliveto, R.:
Evaluating SZZ implementations through a developer-informed oracle. In: 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, 22–30 May 2021,
pp. 436–447 (2021). https://doi.org/10.1109/ICSE43902.2021.00049

47. Rosen, C., Grawi, B., Shihab, E.: Commit guru: analytics and risk prediction of software
commits. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pp. 966–969. Association for Computing Machinery, New York
(2015). ISBN 9781450336758. https://doi.org/10.1145/2786805.2803183

48. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? SIGSOFT Softw.
Eng. Notes 30(4), 1–5 (2005). ISSN 0163-5948. https://doi.org/10.1145/1082983.1083147

49. Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol.
15, 88–103 (1904)

https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1145/1062455.1062558
https://doi.org/10.1145/1062455.1062558
https://doi.org/10.1145/1062455.1062558
https://doi.org/10.1145/1062455.1062558
https://doi.org/10.1145/1062455.1062558
https://doi.org/10.1145/1062455.1062558
https://doi.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1016/j.jss.2018.12.001
http://www.sciencedirect.com/science/article/pii/S0164121218302656
http://www.sciencedirect.com/science/article/pii/S0164121218302656
http://www.sciencedirect.com/science/article/pii/S0164121218302656
http://www.sciencedirect.com/science/article/pii/S0164121218302656
http://www.sciencedirect.com/science/article/pii/S0164121218302656
http://www.sciencedirect.com/science/article/pii/S0164121218302656
http://www.sciencedirect.com/science/article/pii/S0164121218302656
http://www.sciencedirect.com/science/article/pii/S0164121218302656
https://doi.org/10.1109/SEW.2008.17
https://doi.org/10.1109/SEW.2008.17
https://doi.org/10.1109/SEW.2008.17
https://doi.org/10.1109/SEW.2008.17
https://doi.org/10.1109/SEW.2008.17
https://doi.org/10.1109/SEW.2008.17
https://doi.org/10.1109/SEW.2008.17
https://doi.org/10.1109/SEW.2008.17
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1145/3236024.3264599
https://doi.org/10.1145/3236024.3264599
https://doi.org/10.1145/3236024.3264599
https://doi.org/10.1145/3236024.3264599
https://doi.org/10.1145/3236024.3264599
https://doi.org/10.1145/3236024.3264599
https://doi.org/10.1145/3236024.3264599
https://doi.org/10.1109/ICPC52881.2021.00051
https://doi.org/10.1109/ICPC52881.2021.00051
https://doi.org/10.1109/ICPC52881.2021.00051
https://doi.org/10.1109/ICPC52881.2021.00051
https://doi.org/10.1109/ICPC52881.2021.00051
https://doi.org/10.1109/ICPC52881.2021.00051
https://doi.org/10.1109/ICPC52881.2021.00051
https://doi.org/10.1109/ICPC52881.2021.00051
https://doi.org/10.1145/2568225.2568269
https://doi.org/10.1145/2568225.2568269
https://doi.org/10.1145/2568225.2568269
https://doi.org/10.1145/2568225.2568269
https://doi.org/10.1145/2568225.2568269
https://doi.org/10.1145/2568225.2568269
https://doi.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269
https://doi.org/10.1109/ICSE43902.2021.00049
https://doi.org/10.1109/ICSE43902.2021.00049
https://doi.org/10.1109/ICSE43902.2021.00049
https://doi.org/10.1109/ICSE43902.2021.00049
https://doi.org/10.1109/ICSE43902.2021.00049
https://doi.org/10.1109/ICSE43902.2021.00049
https://doi.org/10.1109/ICSE43902.2021.00049
https://doi.org/10.1109/ICSE43902.2021.00049
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147

Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 175

50. SpotBugs: Spotbugs (2020). https://spotbugs.github.io/
51. Stroggylos, K., Spinellis, D.: Refactoring–does it improve software quality? In: Fifth Interna-

tional Workshop on Software Quality (WoSQ’07: ICSE Workshops 2007), pp. 10–10 (2007).
https://doi.org/10.1109/WOSQ.2007.11

52. Thung, F., Lucia, Lo, D., Jiang, L., Rahman, F., Devanbu, P.T.: To what extent could we
detect field defects? An empirical study of false negatives in static bug finding tools. In:
2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, pp. 50–59 (2012). https://doi.org/10.1145/2351676.2351685

53. Trautsch, A.: Automated Static Analysis Tools: A Multidimensional View on Software Quality
Evolution. PhD thesis, Georg-August-Universität Göttingen (2022)

54. Trautsch, A., Herbold, S., Grabowski, J.: A longitudinal study of static analysis warning
evolution and the effects of PMD on software quality in apache open source projects. Empirical
Softw. Eng. 25(6), 5137–5192 (2020). ISSN 1573-7616. https://doi.org/10.1007/s10664-020-
09880-1

55. Trautsch, A., Herbold, S., Grabowski, J.: Static source code metrics and static analysis warn-
ings for fine-grained just-in-time defect prediction. In: 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 127–138 (2020). https://doi.org/10.1109/
ICSME46990.2020.00022

56. Trautsch, A., Trautsch, F., Herbold, S., Ledel, B., Grabowski, J.: The smartSHARK ecosystem
for software repository mining. In: 42nd International Conference on Software Engineering
(ICSE 2020 Demos) (2020). https://arxiv.org/abs/2001.01606

57. Trautsch, A., Erbel, J., Herbold, S., Grabowski, J.: What really changes when developers intend
to improve their source code: a commit-level study of static metric value and static analysis
warning changes. Empirical Softw. Eng. 28(2), 30 (2023). ISSN 1573-7616. https://doi.org/10.
1007/s10664-022-10257-9

58. Trautsch, A., Herbold, S., Grabowski, J.: Are automated static analysis tools worth it? An
investigation into relative warning density and external software quality on the example of
apache open source projects. Empirical Softw. Eng. 28(3), 66 (2023). ISSN 1573-7616. https://
doi.org/10.1007/s10664-023-10301-2

59. Trautsch, F., Herbold, S., Makedonski, P., Grabowski, J.: Addressing problems with replicabil-
ity and validity of repository mining studies through a smart data platform. Empirical Softw.
Eng. (2017). https://doi.org/10.1007/s10664-017-9537-x

60. Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshyvanyk, D.:
There and back again: can you compile that snapshot? J. Softw. Evol. Process 29(4), e1838
(2017). http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17

61. Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall, H.C., Zaidman, A.: How developers
engage with static analysis tools in different contexts. Empirical Softw. Eng. 25(2), 1419–1457
(2019). https://doi.org/10.1007/s10664-019-09750-5

62. Vetro, A., Morisio, M., Torchiano, M.: An empirical validation of findbugs issues related
to defects. In: 15th Annual Conference on Evaluation Assessment in Software Engineering
(EASE 2011), pp. 144–153 (2011). https://doi.org/10.1049/ic.2011.0018

63. Wagner, S., Jürjens, J., Koller, C., Trischberger, P.: Comparing bug finding tools with reviews
and tests. In: Khendek, F., Dssouli, R., (eds.) Testing of Communicating Systems, pp. 40–55.
Springer, Berlin (2005). ISBN 978-3-540-32076-0

64. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer Science & Business Media, Berlin (2012)

65. Yan, M., Xia, X., Fan, Y., Lo, D., Hassan, A.E., Zhang, X.: Effort-aware just-in-time defect
identification in practice: A case study at alibaba. In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, pp. 1308–1319. Association for Computing Machin-
ery, New York (2020). ISBN 9781450370431. https://doi.org/10.1145/3368089.3417048

66. Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.P., Vouk, M.A.: On the value of
static analysis for fault detection in software. IEEE Trans. Softw. Eng. 32(4), 240–253 (2006).
https://doi.org/10.1109/TSE.2006.38

https://spotbugs.github.io/
https://spotbugs.github.io/
https://spotbugs.github.io/
https://spotbugs.github.io/
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1007/s10664-020-09880-1
https://doi.org/10.1007/s10664-020-09880-1
https://doi.org/10.1007/s10664-020-09880-1
https://doi.org/10.1007/s10664-020-09880-1
https://doi.org/10.1007/s10664-020-09880-1
https://doi.org/10.1007/s10664-020-09880-1
https://doi.org/10.1007/s10664-020-09880-1
https://doi.org/10.1007/s10664-020-09880-1
https://doi.org/10.1007/s10664-020-09880-1
https://doi.org/10.1109/ICSME46990.2020.00022
https://doi.org/10.1109/ICSME46990.2020.00022
https://doi.org/10.1109/ICSME46990.2020.00022
https://doi.org/10.1109/ICSME46990.2020.00022
https://doi.org/10.1109/ICSME46990.2020.00022
https://doi.org/10.1109/ICSME46990.2020.00022
https://doi.org/10.1109/ICSME46990.2020.00022
https://doi.org/10.1109/ICSME46990.2020.00022
https://arxiv.org/abs/2001.01606
https://arxiv.org/abs/2001.01606
https://arxiv.org/abs/2001.01606
https://arxiv.org/abs/2001.01606
https://arxiv.org/abs/2001.01606
https://arxiv.org/abs/2001.01606
https://doi.org/10.1007/s10664-022-10257-9
https://doi.org/10.1007/s10664-022-10257-9
https://doi.org/10.1007/s10664-022-10257-9
https://doi.org/10.1007/s10664-022-10257-9
https://doi.org/10.1007/s10664-022-10257-9
https://doi.org/10.1007/s10664-022-10257-9
https://doi.org/10.1007/s10664-022-10257-9
https://doi.org/10.1007/s10664-022-10257-9
https://doi.org/10.1007/s10664-022-10257-9
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPBPOLP17
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1049/ic.2011.0018
https://doi.org/10.1049/ic.2011.0018
https://doi.org/10.1049/ic.2011.0018
https://doi.org/10.1049/ic.2011.0018
https://doi.org/10.1049/ic.2011.0018
https://doi.org/10.1049/ic.2011.0018
https://doi.org/10.1049/ic.2011.0018
https://doi.org/10.1049/ic.2011.0018
https://doi.org/10.1145/3368089.3417048
https://doi.org/10.1145/3368089.3417048
https://doi.org/10.1145/3368089.3417048
https://doi.org/10.1145/3368089.3417048
https://doi.org/10.1145/3368089.3417048
https://doi.org/10.1145/3368089.3417048
https://doi.org/10.1145/3368089.3417048
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/TSE.2006.38

176 A. Trautsch

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Contents
	Ernst Denert Software Engineering Award 2022
	1 Introduction
	2 Overview of the Nominated PhD Theses
	3 The Work of the Award Winner
	4 Structure of the Book
	4.1 Thanks

	References

	Conditional Statements in Requirements Artifacts: Logical Interpretation, Use Cases for Automated Software Engineering, and Fine-Grained Extraction
	1 Introduction
	2 Theoretical Foundation
	3 Understanding of Conditional Statements in Requirements Artifacts
	3.1 Prevalence, Form, and Complexity of Conditionals in Requirements Artifacts
	3.1.1 Study Design
	3.1.2 Study Results
	3.1.3 Concluding Discussion

	3.2 Logical Interpretation of Conditionals in Requirements Artifacts
	3.2.1 Study Design
	3.2.2 Study Results
	3.2.3 RQ 1: How Do Practitioners Logically Interpret Conditionals in Requirements?
	3.2.4 RQ 2: Which Factors Influence the Logical Interpretation of Conditional Clauses in Requirements?
	3.2.5 RQ 3: Which (if Any) Cue Phrases Promote (Un)Ambiguous Interpretation?
	3.2.6 Concluding Discussion

	4 Extracting Conditionals from Requirements Artifacts
	4.1 The cira Pipeline
	4.2 Tool Support

	5 Industrial Application: Leveraging Conditional Extraction for Automatic Acceptance Test Creation
	5.1 Study Design
	5.2 Study Results
	5.2.1 RQ 1: Can cira Create the Same Test Cases as the Manual Approach?
	5.2.2 RQ 2: What Are the Reasons for Deviating Test Cases?

	5.3 Concluding Discussion

	6 Summary and Outlook
	References

	From Design to Reality: An Overview of the MontiThings Ecosystem for Model-Driven IoT Applications
	1 Introduction
	2 The MontiThings Language Family
	3 Requirement-Based Self-Adaptive Deployment
	4 Synthesizing Digital Twins
	5 IoT App Store Concept
	6 Failure Handling in MontiThings Applications
	6.1 Record and Replay for Handling Failing Devices
	6.2 Recording and Transformation-Based Replaying
	6.3 Web-Based Failure Tracing

	7 Conclusion
	Source Code
	Acronyms
	References

	Security Compliance in Model-Driven Software Development
	1 Introduction
	2 Background and Problem Identification
	2.1 Non-integrated Solutions
	2.2 Inconsistency and Missing Traceability
	2.3 Security-Aware Restructuring
	2.4 Variant-Rich Software Systems

	3 Research Questions
	3.1 RQ1: How Can Security Requirements Be Traced Among System Representations Throughout the Development Process?
	3.2 RQ2: How Can We Apply Model-Based Security Engineering to Legacy Projects That Have No or Disconnected Design Models?
	3.3 RQ3: How Can Developers Be Supported in Realizing, Preserving, and Enforcing Design-Time Security Requirements?
	3.4 RQ4: How Do Changes Affect a System's Security Compliance, and How Can These Effects Be Handled?
	3.5 RQ5: How Can We Verify and Preserve Security Compliance in Variant-Rich Software Systems?

	4 Research Methodology
	5 Approach
	5.1 Key Ideas of the GRaViTY Approach
	5.1.1 Suitable Views
	5.1.2 Side Effects
	5.1.3 Synchronization
	5.1.4 Continuous Security

	5.2 The GRaViTY Development Approach
	5.3 Developer Perspective on Using GRaViTY

	6 Research Outcomes
	6.1 Inconsistency and Missing Traceability
	6.1.1 Continuous Tracing
	6.1.2 Restoring Traceability

	6.2 Non-integrated Solutions
	6.2.1 Static Security Checks
	6.2.2 Dynamic Security Checks

	6.3 Security-Aware Restructuring
	6.4 Variant-Rich Systems
	6.4.1 Design Time Variability
	6.4.2 Variability on the Implementation Level

	7 Case Studies
	7.1 Case Study 1: iTrust
	7.1.1 Requirements Engineering
	7.1.2 Software Architecture and Security Modeling
	7.1.3 Implementation
	7.1.4 Security Compliance
	7.1.5 Restructuring
	7.1.6 Variability Engineering

	7.2 Case Study 2: Eclipse Secure Storage
	7.2.1 Reverse Engineering of Models
	7.2.2 Static Security Specification and Checks
	7.2.3 Runtime Monitoring

	7.3 Observations

	8 Outlook
	9 Summary
	References

	Model-Driven Engineering of Microservice Architectures—The LEMMA Approach
	1 Introduction
	2 Preliminaries
	2.1 Challenges in Microservice Architecture Engineering
	2.1.1 Design Challenges
	2.1.2 Implementation Challenges
	2.1.3 Operation Challenges
	2.1.4 Organizational Challenges

	2.2 Model-Driven Engineering
	2.3 Employing Model-Driven Engineering to Cope with Challenges in Microservice Architecture Engineering
	2.3.1 Design
	2.3.2 Implementation
	2.3.3 Operation
	2.3.4 Organizational

	3 LEMMA—A Language Ecosystem for Modeling Microservice Architecture
	3.1 Microservice Architecture Viewpoints
	3.2 Modeling Languages
	3.2.1 SBSA Modeling Concept Extraction
	3.2.2 SBSA Modeling Concept Clustering
	3.2.3 Practicability Analysis
	3.2.4 Viewpoint-Based Metamodel Specification
	3.2.5 Grammar Specification

	3.3 Model Processing Framework
	3.4 Illustrative Example

	4 Applications of LEMMA
	4.1 Plugin-Based Generation of Technology-Specific Microservice Code
	4.2 Model-Based Reconstruction of Microservice Architectures
	4.2.1 An Extensible Approach for LEMMA-Based Microservice Architecture Reconstruction
	4.2.2 Evaluation of the LEMMA-Based Reconstruction Approach

	4.3 Assessment of Microservice Maintainability with Static Model Analysis
	4.4 Defect Resolution by Model Refactoring
	4.5 Model Transformations for a Common Architecture Understanding
	4.5.1 Code-First vs. Model-First Microservice Development
	4.5.2 OpenAPI Model Transformation

	5 Related Work
	6 Conclusion and Future Work
	References

	Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies
	1 Introduction
	2 Results
	2.1 Evolution of ASAT Warnings
	2.2 Impact on Defects
	2.2.1 Predictive Models
	2.2.2 Statistical Observation

	2.3 Perception of the Developers
	2.3.1 Size of Perfective and Corrective Changes
	2.3.2 Differences in Perfective and Corrective Changes
	2.3.3 State Before Perfective and Corrective Changes

	3 Limitations
	4 Related Work
	4.1 Evolution
	4.2 Defects
	4.3 Developers

	5 Summary
	References

