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Abstract The Ernst Denert Award is already existing since 1992, which does not 
only honor the award winners but also the software engineering field in total. 
Software engineering is a vivid and intensively extending field that regularly 
spawns new subfields such as automotive software engineering, research software 
engineering, or  quantum software engineering, covering specific needs but also 
generalizing solutions, methods, and techniques when they become applicable. This 
is the introductory chapter of the book on the Ernst Denert Software Engineering 
Award 2022. It provides an overview of the five nominated PhD theses. 

1 Introduction 

Software-based products, apps, systems, or other services are influencing all areas 
of our daily life. They are the basis and central driver for digitization and all kinds 
of innovation. This makes software engineering a core discipline to drive technical 
and societal innovations in the age of digitization [4]. 

As of 2023, software engineering operates in many new or significantly changed 
application domains, such as the Internet of Things (IoT), smart manufactur-
ing, autonomous systems, machine learning, artificial intelligence (AI), and even 
quantum computing. Surveys argue that more than 90% of research projects 
use software for gaining new insights, managing their results, understanding the 
research topic, controlling the physical gadgets, etc. Researchers of nearly all 
domains are significantly developing software within their research. Model-driven 
software and systems engineering approaches nowadays support handling the ever-
growing complexity of modern systems. Sophisticated static analysis tools identify 
more and more faults in the code and can mitigate the rising cyber-security 
challenges by identifying security vulnerabilities early or monitoring the system 
during runtime for a safe, reliable, robust, and secure operation. 

A rather strong recent trend, which affects software engineering practices, is the 
advent of generative AI, thanks to large language models (LLMs) based on the 
transformer architecture [10]. These models were popularized in recent months by 
publicly available, easy-to-use tools (e.g., GitHub CoPilot, ChatGPT, Bard). Such 
tools can generate source code based on natural language queries but can also 
interpret, fix, or document existing code. Trained with a vast data set including 
many popular libraries, such LLMs can potentially relieve software engineers from 
many accidental complexities and focus on the essential complexities of solving 
computing problems. Early experiments at Microsoft Research demonstrated a 55% 
developer productivity increase from using GitHub CoPilot for web programming, 
signifying promising potential for advancing software development practices [7]. 

While some authors already pro-claim “the end of programming” [9], the 
technology is still under development. LLMs sometimes find very helpful sentences 
and programs but sometimes only hallucinate. Generated source code thus may 
be partially semantically incorrect or doing something completely wrong. We will
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have to evaluate the new technology carefully. It will affect software engineering 
research to utilize generative AI for the development of programs, models, and the 
understanding of requirements to the fullest. It may be that the new approaches will 
leverage methods from psychology, where intelligent interrogation allows to reveal 
how an AI really works. 

We see a forthcoming challenging and very interesting future for software 
engineering research, not only for the application of AI models for software 
development but also for specific upcoming domains, such as research software 
engineering [5] or quantum computing [8]. 

It is important to recall that the IEEE Standard Glossary of Software Engineering 
Terminology [6] defines software engineering as follows: 

(1) The application of a systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software; that is, the application 
of engineering to software. 

(2) The study of approaches as in (1). 

It defines software engineering as an engineering discipline (“application of 
engineering to software”) with its own methodology (“systematic, disciplined, quan-
tifiable approach”) applied to all phases of the software life cycle (“development, 
operation, and maintenance of software”). The two-part structure of the definition 
of software engineering also makes the tight integration of software engineering (1) 
and software engineering research (2) explicit. 

Therefore, the Ernst Denert Software Engineering Award specifically rewards 
researchers who value the practical impact of their work and aim to improve 
current software engineering practices [3]. Creating tighter feedback loops between 
professional practitioners and academic researchers is essential to make research 
ideas ready for industry adoption. Researchers who demonstrate their proposed 
methods and tools on nontrivial systems under real-world conditions in various 
phases of the software life cycle shall be supported so that the gap between research 
and practice can be decreased. 

Overall, five PhD theses that were defended between September 1, 2021, and 
October 31, 2022, were nominated and finally presented during the Software 
Engineering Conference SE 2023. 

All submissions fulfill the ambitious selection criteria of the award defined in 
detail in the book for the Ernst Denert Software Engineering Award 2019 [2]. 
These criteria include, among others, practical applicability, usefulness via tools, 
theoretical or empirical insights, currentness, and contribution to the field. In a 
nutshell, “The best submissions are those that will be viewed as important steps 
forward even 15 years from now.” [3]. 

In this introductory chapter, we give an overview of the nominated five PhD 
theses, present the work of the award winner, and outline the structure of the book.
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2 Overview of the Nominated PhD Theses 

As previously mentioned, the Ernst Denert Software Engineering Award 2022 
committee identified five worthy nominations for PhD theses that were eligible to 
receive the Ernst Denert Award. These theses encompass a wide range of research 
in the field of software engineering, highlighting its diverse applications across 
various domains. They also demonstrate the vibrancy and diversity of the field 
through the utilization of different research methods, including formal methods, 
design science, and quantitative and qualitative empirical methods. Furthermore, 
these theses address various activities in the software life cycle, such as analysis, 
design, programming, testing, deployment, operation, and maintenance. This sec-
tion provides a brief overview of the nominated PhD theses. They will be presented 
in alphabetical order based on the names of the respective nominees, accompanied 
by a concise summary of the chapters contributed by each thesis to this book. 

The chapter of Jannik Fischbach and Andreas Vogelsang entitled “Conditional 
Statements in Requirements Artifacts: Logical Interpretation, Use Cases for Auto-
mated Software Engineering, and Fine-Grained Extraction” provides readers with 
an understanding of (1) the notion of conditionals in RE artifacts, (2) how to extract 
them in fine-grained form, and (3) the added value that the extraction of conditionals 
can provide to RE. Jannik Fischbach is the winner of the Ernst Denert Software 
Engineering Award 2022, and we present his work in more detail in the next section. 

The chapter of Jörg Christian Kirchhof entitled “From Design to Reality: An 
Overview of the MontiThings Ecosystem for Model-Driven IoT Applications” 
proposes a model-driven process for rapid development of IoT applications. The 
chapter gives an overview of how to develop, deploy and analyze distributed 
IoT applications using MontiThings. MontiThings demonstrates the benefits of a 
model-driven development approach not only in the initial conceptualization of the 
application but also in later development phases (e.g., deployment), leading to an 
app store concept that separates hardware from software development. 

The chapter of Sven Peldszus entitled “Security Compliance in Model-Driven 
Development of Software Systems in Presence of Long-Term Evolution and 
Variants” provides an approach for tracing and verifying security requirements 
in the model-driven development of software-intensive systems. Early security 
considerations based on the principle of security by design are part of many modern 
development processes, but to ensure the security of the final product, which 
may even comprise an entire product line, it is essential to check each individual 
product for compliance with the planned security design. To this end, the thesis 
investigates the systematic traceability of security requirements throughout the 
software development life cycle and how this traceability can be used for automated 
security compliance checking. The individual solutions were validated against 18 
objectives, and the overall approach was demonstrated on two open-source case 
studies. 

The chapter of Florian Rademacher et al., entitled “Model-Driven Engineering of 
Microservice Architectures: The LEMMA Approach”, investigates the application



Ernst Denert Software Engineering Award 2022 5

of model-driven engineering (MDE) to the design, development, and operation of 
software systems that are based on microservice architecture (MSA). From a set 
of well-known challenges in MSA engineering as well as real-world microservice 
architectures and approaches to the modeling of service-oriented architectures, 
Rademacher et al. derive a set of integrated, stakeholder-oriented MSA modeling 
languages. Furthermore, they accompany these languages with a framework for the 
implementation of model processors that is oriented toward technology-savvy MSA 
stakeholders without an MDE background. Finally, Rademacher et al. present and 
discuss the application of their MSA modeling languages and framework for the 
(i) extensible generation of microservice code; (ii) microservice architecture recon-
struction; (iii) quality assessment of microservices; (iv) microservice architecture 
defect resolution; and (v) establishment of a common architecture understanding 
among distributed MSA teams. 

Finally, the chapter of Alexander Trautsch entitled “Usefulness of Automatic 
Static Analysis Tools: Evidence from Four Case Studies” presents results from 
multiple empirical studies in the context of software engineering research. The 
studies explore an automated static analysis tool and its impact on quality in a broad 
overview from multiple perspectives. The chapter contains studies that focus on 
the evolution of static analysis warnings, static analysis warnings in the context of 
software defects, as well as the context of developer intent. 

3 The Work of the Award Winner 

We congratulate Jannik Fischbach, his advisor Andreas Vogelsang, and his alma 
mater, Universität zu Köln, for winning the Ernst Denert Software Engineering 
Award 2022 for the PhD thesis “Why and How to Extract Conditional Statements 
From Natural Language Requirements.” Dr. Jannik Fischbach focuses on condi-
tionals (e.g., “If the system detects an error, an error message shall be shown”) 
in requirements and highlights why and how requirements engineering can benefit 
from the automated extraction of conditionals. Specifically, he makes the following 
contributions: 

1. He presents empirical results on the prevalence and logical interpretation of 
conditionals in RE artifacts. Jannik Fischbach found that conditionals in require-
ments mainly occur in explicit, marked form and may include up to three 
antecedents and two consequents. Hence, the extraction approach must under-
stand conjunctions, disjunctions, and negations to fully capture the relation 
between antecedents and consequents. He also found that conditionals are a 
source of ambiguity, and there is not just one way to interpret them formally. 
This affects any automated analysis that builds upon formalized requirements 
(e.g., inconsistency checking) and may also influence guidelines for writing 
requirements.
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2. Jannik Fischbach presents his tool-supported approach CiRA capable of detect-
ing conditionals in NL requirements and extracting them in fine-grained form. 
For the detection, CiRA uses syntactically enriched BERT embeddings com-
bined with a softmax classifier and outperforms existing methods. His experi-
ments show that a sigmoid classifier built on RoBERTa embeddings is best suited 
to extract conditionals in fine-grained form. CiRA is available at http://www.cira. 
bth.se/demo/. 

3. He highlights how extracting conditionals from requirements can help cre-
ate acceptance tests automatically. Specifically, Jannik Fischbach shows how 
extracted conditionals can be mapped to a Cause-Effect-Graph from which 
test cases can be derived automatically. He demonstrates the feasibility of his 
approach in a case study with three industry partners. In his study, out of 578 
manually created test cases, 71.8% can be generated automatically. Furthermore, 
his approach discovered 80 relevant test cases missed in manual test case design. 

His findings prove that automated conditional extraction can contribute to 
implementing automatic acceptance test creation. However, he does not achieve full 
automation of acceptance test generation mainly due to (1) incomplete requirements 
and (2) errors of his approach in interpreting conditionals that contain three or 
more consequents. Hence, Jannik Fischbach suggests using CiRA to supplement 
the existing manual creation process to make test designers aware of all test cases 
that should be tested from a combinatorial point of view. He hypothesizes that this 
will help reduce the risk of missed negative test cases significantly. The work of 
Jannik Fischbach is presented in more detail in Chapter “Conditional Statements in 
Requirements Artifacts: Logical Interpretation, Use Cases for Automated Software 
Engineering, and Fine-Grained Extraction” of this book. 

4 Structure of the Book 

The remainder of the book is structured into five chapters, one for the work of each 
nominee listed above. Each nominee presents in his chapter

• an overview and the key findings of the work,
• its relevance and applicability to practice and industrial software engineering 

projects,
• additional information and findings that have only been discovered afterwards, 

e.g., when applying the results in industry or when continuing research. 

The chapters of the nominees are based on their PhD theses and arranged in 
alphabetic order. 

As already highlighted in the introductory book chapter of the Ernst Denert 
Software Engineering Award 2019 [3] and by Prof. Denert’s reflection on the 
field [1], software engineering is teamwork. Outstanding research with high impact

http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
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is also always teamwork, which somewhat conflicts with the requirement that a 
doctoral thesis must be the work of a single author. 

4.1 Thanks 

We again thank Professor Ernst Denert for all his help in making this award a success 
and the Gerlind & Ernst Denert-Stiftung for the kind donation of the first price and 
the overall support. We thank the team of the Software Engineering Conference 
SE 2023, which was organized by Gregor Engels, Stefan Sauer, Regina Hebig and 
Matthias Tichy at Paderborn University, to host the presentations of the nominees 
and the award ceremony. We also thank the German, Austrian, and Swiss computer 
science societies, i.e., the GI, the OCG, and the SI, respectively, for their support 
in making the Ernst Denert Software Engineering Award 2022 a success. Finally, 
we thank all the people that helped in its organization, including Christian Kirchhof 
and Florian Rademacher (both RWTH Aachen University), who supported in the 
organization of this book. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
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Abstract This thesis constitutes the first work in the RE community that studies 
the potential of extracting conditional statements from requirements. It is intended 
to stimulate further engagement of researchers and practitioners in the field of 
conditionals in RE artifacts. In essence, we present fundamental research on the 
notion of conditionals in requirements as well as methods for their fine-grained 
extraction. We show that conditionals are prevalent in requirements and mainly 
occur in explicit, marked form. Further, we reveal that conditionals are a source of 
ambiguity, and there is not just one way to interpret them formally. This affects any 
automated analysis that builds upon formalized requirements (e.g., inconsistency 
checking) and may also influence guidelines for writing requirements. We also 
present our tool-supported approach CiRA, capable of detecting conditionals in NL 
requirements and extracting them in fine-grained form. We evaluate our approach 
in a case study with three industry partners, namely, Allianz Deutschland AG 
(insurance), Ericsson (telecommunication), and Leopold Kostal GmbH & Co. 
KG (automotive), and highlight that automated conditional extraction facilitates 
automated acceptance test creation. CiRA is available at http://www.cira.bth.se/ 
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1 Introduction 

Functional requirements often describe system behavior by relating events to each 
other, e.g., “If the system detects an error (. e1), an error message shall be shown 
(. e2).” Such conditionals consist of two parts: the antecedent (see . e1) and the 
consequent (. e2), which convey strong, semantic information about the intended 
behavior of a system. Automatically extracting this embedded knowledge enables 
several analytical disciplines and is already used for question answering [1], 
event prediction [2–4], emergency management [5], medical text mining [6–8], 
and information retrieval [9]. For example, Doan et al. [10] extract conditionals 
from Twitter messages to identify factors causing stress, insomnia, and headache. 
Radinsky et al. [11] propose an approach capable of identifying conditionals in 
news articles to predict future events that certain events can cause. We argue that 
automated conditional extraction can also provide added value to requirements 
engineering (RE) by automating two RE tasks for which sufficient methods and 
tools are not yet available: “acceptance test creation” ( � Use Case 1 ) and “depen-
dency detection between requirements” ( � Use Case 2 ). However, the potential of 
extracting conditionals has not yet been leveraged for RE. We are convinced that 
this has two principal reasons: 

Problem 1: Missing Understanding of the Notion of Conditional Statements 
in Requirements Artifacts 

The extent, form, and complexity of conditional statements in requirements artifacts 
are poorly understood. We lack empirical evidence on conditionals in traditional RE 
artifacts (e.g., requirements documents) and agile RE artifacts (e.g., acceptance cri-
teria). Further, we do not know how authors of requirements formulate conditionals 
and in which complexity the conditionals usually occur: do they tend to specify 
only the dependency of a single antecedent and consequent, or do conditionals in 
RE artifacts include multiple interdependent events? We also do not know whether 
conditionals in RE artifacts typically occur in marked or unmarked form. This 
lack of knowledge hinders the development of approaches capable of extracting 
conditionals from requirements artifacts. Even more importantly, we do not know 
how RE practitioners logically interpret conditional statements. For example, 
we still lack insight into whether RE practitioners perceive antecedents only as 
sufficient or also necessary for the consequents. However, reliable knowledge 
about the logical interpretations of conditionals by RE practitioners is vital since 
conditionals need always be associated with a formal meaning to process them 
automatically. Otherwise, we choose a formalization that does not reflect how 
practitioners interpret conditional sentences, rendering downstream activities error-
prone. We would likely derive incomplete test cases or interpret dependencies 
between the requirements incorrectly.
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Problem 2: Missing Tool-Supported Approach for Fine-Grained Extraction 
of Conditional Statements 

The fine-grained extraction of conditionals is necessary to bridge the gap between 
requirements and test cases. Specifically, we need to consider the combinatorics 
between antecedents and consequents and split them into more fine-granular 
text fragments (e.g., variable and condition), making the extracted conditionals 
suitable for automatic test case derivation and dependency detection. However, 
existing approaches cannot extract conditional clauses from Natural Language (NL) 
requirements in fine-grained form (illustrated by Table 1). Some approaches [12–14] 
extract antecedents and consequents only on word level (see extracted conditionals 
. c1 and . c2). Consequently, valuable information about the conditional statement is 
lost (e.g., the conditions of “input A,” “input B,” and “the system” are ignored). 
Recent approaches [15–20] address this problem and identify conditionals on the 
phrase level. Nevertheless, they only extract antecedent-consequent pairs, whereby 
the combinatorics between the antecedents and consequents get lost during the 
extraction (see . c3 and . c4). We must extract the entire embedded conditional state-
ment to make it usable for test case derivation and dependency detection between 
requirements (see . c5). Thus, we require a new conditional extraction approach 
to implement our described use cases. This approach should be accompanied by 
adequate tool support to be easily integrated into testing processes in practice. 
Building on the two outlined problems, we formulate the following problem 
statement:

� Problem Statement: 

We need (1) a better understanding of the notion of conditionals in require-
ments artifacts and (2) a comprehensive method and tool support to extract 
conditionals in fine-grained form. 

We contribute to both areas and establish an understanding of (1) the notion of 
conditionals in RE artifacts, (2) how to extract them in fine-grained form, and 
(3) the added value that the extraction of conditionals can provide to RE. The 
remainder of this chapter is structured as follows: Sect. 2 presents the fundamentals 
that are needed to comprehend the content of this work. In Sect. 3, we present 
empirical results on the prevalence and logical interpretation of conditionals in RE 
artifacts. Section 4 presents our tool-supported approach CiRA, capable of detecting 
conditionals in NL requirements and extracting them in fine-grained form. CiRA is 
available at http://www.cira.bth.se/demo/. In Sect. 5, we highlight how extracting 
conditionals from requirements can help create acceptance tests automatically. 
Specifically, we show how extracted conditionals can be mapped to a Cause-Effect-
Graph from which test cases can be derived automatically. We demonstrate the

http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
http://www.cira.bth.se/demo/
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feasibility of our approach in a case study with three industry partners. This chapter 
is based on ten peer-reviewed publications [21–30] and the PhD thesis [31] of the  
first author. 

2 Theoretical Foundation 

Subject of Interest: Conditional Statements 
Conditional statements (e.g., “If A and B, then C”) are integral to everyday 
discourse because they allow us to express conditions and their consequences. 
A conditional statement is a grammatical structure consisting of two parts: an 
adverbial clause, often referred to as the antecedent, and a main clause, also 
known as the consequent [32]. The semantics of conditionals has been intensively 
discussed in the last decades and has received notable attention in studies of various 
disciplines, e.g., in psychology [33], linguistics [34–36], and philosophy [37]. These 
studies demonstrate that conditionals are a complex linguistic pattern that can 
occur in a variety of forms (e.g., explicit/implicit conditionals, marked/unmarked 
conditionals). For example, Conditional 1.1 (see below) is marked since the cue 
phrases “if” and “then” indicate the dependence between the antecedent and the 
consequent. The same relation can also be expressed as an unmarked conditional: 
“A and B occur. C evaluates to true.” This conditional is semantically identical to 
its marked form. Still, it spans two sentences and does not contain a cue phrase that 
signals the relationship of the antecedent and consequent. Both  Conditional 1.1 
and Conditional 1.2 are explicit. Specifically, they contain information about the 
antecedent and the consequent. Conditional 1.3 is implicit because the consequent 
that C evaluates to true is not explicitly stated. Rather, the interaction of the 
antecedent and consequent is encoded in the predicate (i.e., “leads to” implies that 
A and B are the triggers for C to occur). 

• Cond. 1.1: If A and B occur, then C evaluates to true. (marked and explicit) 
• Cond. 1.2: A and B occur. C evaluates to true. (unmarked and explicit) 
• Cond. 1.3: The occurrence of A and B leads to C. (marked and explicit) 

In everyday language, conditionals like “If A, then B” are often conceived as 
causal relations. Specifically, antecedents are usually understood as causes (see “A”) 
and consequents as effects (“B”). Hence, the terms conditionals and causation are 
often used interchangeably, although they represent completely different concepts. 
A conditional is a linguistic pattern that describes a dependence between an 
antecedent and a consequent. In other words, the antecedent and consequent are 
associated [38]. Causation is more specific and represents a distinctive form of 
association. To turn an association into a causal relationship, three constraints must 
be satisfied [39, 40]: 

• Constraint 1: The causing event (cause) must be both sufficient and necessary 
for the caused event (effect) [41]. Consequently, the connection between cause
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and effect is counterfactual: If the cause did not occur, then the effect could not 
have occurred either [42]. 

• Constraint 2: The effect occurs either simultaneously with or after the 
cause [43]. 

• Constraint 3: The cause must occur independently (i.e., no confounder influ-
ences the cause and effect and incorrectly implies causation) [44]. 

One sees immediately that a conditional describes any relationship between an 
antecedent and a consequent. At the same time, causation is a specific type of 
relationship for which several constraints must be met. Hence, we can conclude 
that a conditional does not imply causation: conditionals can arise in the presence 
(i.e., “A” causes “B”) or absence (i.e., “A” and “B” have a common cause) of a 
causal relationship [45]. It is, therefore, misleading to always interpret antecedents 
as causes and consequents as effects when analyzing the meaning of a conditional. 
We explicitly do not deal with causation in the context of our work but rather more 
fundamentally with conditionals in RE artifacts. However, we argue that causation 
is often the main focus when formulating conditionals in RE artifacts [22]. As a 
requirements author, I want to formulate the system behavior precisely by defining 
an antecedent as both the sufficient and necessary reason for the occurrence of a 
consequent (see Constraint 1). In other words, if “A” occurs, “B” should also 
occur, and if “A” does not evaluate to true, then “B” should also not occur. In 
practice, it is common to formulate several requirements that describe the same 
consequent (e.g., “When C occurs, then B”). In this context, we assume that each 
requirement describes a separate case in which the consequent should occur and 
link their antecedents with disjunctions (i.e., A ∨ C ⇔ B). 

Logical Interpretation of Conditional Statements 
As outlined in the previous section, there are many ways to express conditional 
statements in NL. Hence, the syntax can vary greatly among conditionals. Multiple 
studies [46–48] demonstrate that conditionals can also be associated with different 
semantic meanings, which makes them a source of ambiguity. We investigate 
the logical interpretations of conditionals by RE practitioners concerning two 
dimensions: necessity and temporality. This section demarcates both dimensions 
and introduces suitable formal languages that can be used to formalize the interpre-
tations appropriately. We use the following conditional as a running example: “If 
the system detects an error (e1), an error message shall be shown (e2).” 

Necessity The relationship between an antecedent and consequent can be inter-
preted logically in two different ways. First, through an implication as e1 ⇒ e2, 
in which e1 is a sufficient condition for e2. Interpreting the running example as an 
implication requires the system to display an error message if e1 is true. However, it 
is not specified what the system should do if e1 is false. The implication allows both 
the occurrence of e2 and its absence if e1 is false. In contrast, the relationship of 
antecedent and consequent can also be understood as a logical equivalence, where 
e1 is both a sufficient and necessary condition for e2 (i.e., e1 ⇔ e2). Interpreting 
the running example as an equivalence requires the system to display an error
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message if and only if it detects an error. Consequently, if e1 is false, then e2 
should also be false. Interpreting conditionals as an implication or equivalence 
significantly influences further development activities. For example, a test designer 
who interprets conditionals rather as implications than equivalences might only add 
positive test cases to a test suite. This may lead to a misalignment of tests and 
requirements if the business analyst intended to express an equivalence. 

Temporality The temporal relation between an antecedent and consequent can be 
interpreted in three different ways: (1) the consequent occurs simultaneous with 
the antecedent, (2)  the  consequent occurs immediately after the antecedent, and (3) 
the consequent occurs at some indefinite point after the antecedent. Propositional 
logic (PL) does not consider the temporal ordering of events and is therefore not 
expressive enough to model temporal relationships. In contrast, we require temporal 
logic (e.g., LTL), which considers temporal ordering by defining the behavior σ of 
a system as an infinite sequence of states 〈s0, . . . 〉, where sn is a state of the system 
at “time” n [49]. Accordingly, requirements are understood as constraints on σ . The  
desired system behavior is defined as an LTL formula F , where next to the usual 
PL operators, also temporal operators like � (always), ♦ (eventually), and � (next 
state) are used. 

Formalization Matrix To distinguish the logical interpretations of practitioners 
and their formalization, we constructed a formalization matrix (see Fig. 1). It 
defines a conditional statement of F and G along the two dimensions (Necessity 
and Temporality), each divided on a nominal scale. Specifically, the dimension 
Necessity has two levels: F is only sufficient or also necessary for G. The dimension 
Temporality has four levels: during, next state, eventually, and temporal ordering 
is not relevant. Each 2-tuple of characteristics can be mapped to an entry in the 
formalization matrix. For example, the LTL formula �(F ⇒ �G) formalizes a 
conditional statement, in which F is only sufficient and G occurs in the next state. 
To define F as both sufficient and necessary for G, we replace the implication by 
equivalence and rephrase the LTL formula as follows: �(F ⇔ �G). However, 
the equivalence operator is inadequate in cases where G will be caused eventually. 
Specifically, the formula �(F ⇔ ♦G) would define that as soon as F evaluates 

Necessity 

Temporality 
Temporal Ordering Relevant 

Temporal Ordering 
Not Relevant 

G is caused 
during F is true 

G will be caused 
in the next state 

G will be 
caused eventually 

F is 
only sufficient 

F is 
also necessary 

III. 

I. 

IV. V. 

II. 

VI. 

Fig. 1 Formalization matrix defining a conditional of F and G along the two dimensions, 
Necessity and Temporality
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to false, G is locked permanently. We argue that this formula does not represent 
the behavior we want to express since there may also be scenarios in which F 
is initially false but turns true at a later state and leads to the occurrence of G. 
Therefore, we want to specify that as soon as G occurs, F must have occurred 
concurrently or at a previous state (i.e., F is a necessary condition for an occurrence 
of G). To this end, we build on the precedence relation introduced by Dwyer et 
al. [50]: ♦G ⇒ (¬G U (F ∧ ¬G)). The core element of the precedence relation 
is the until U operator. Literally, the precedence relation can be interpreted as “If 
G occurs eventually, then G has been false until the state in which F occurs without 
G occurring concurrently.” Hence, in its original form, the precedence relation 
defines F as a necessary pre-condition of G. Since the eventually operator allows 
that G and F occur simultaneously, we adapt the precedence relation as follows: 
♦G ⇒ (¬G U F). 

3 Understanding of Conditional Statements in Requirements 
Artifacts 

We conduct two empirical studies to address the first problem of the thesis, namely, 
“the missing understanding of the notion of conditionals in RE artifacts.” In the first 
study (see Sect. 3.1), we analyze the extent, form, and complexity of conditionals 
in requirements rooted in 14,983 sentences and emerging from 53 requirement 
documents. In the second study (see Sect. 3.2), we study how 104 RE practitioners 
interpret 12 different conditional clauses in requirements. 

3.1 Prevalence, Form, and Complexity of Conditionals in 
Requirements Artifacts 

Reliable knowledge about the distribution of conditionals in requirements artifacts is 
necessary to develop efficient approaches for their automated extraction. However, 
empirical evidence on conditionals in requirements artifacts is presently still weak. 
We address this research gap and analyze conditional statements’ prevalence, form, 
and complexity in requirements artifacts. Based on the terminology introduced in 
Sect. 2, we investigate the following research questions (RQ): 

• RQ 1: To which degree do conditionals occur in requirement documents? 
• RQ 2: How often do the relations cause, enable, and prevent occur? 
• RQ 3: In which form do conditional statements occur in requirement docu-

ments? 

– RQ 3a: How often do marked and unmarked conditionals occur? 
– RQ 3b: How often do explicit and implicit conditionals occur?
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– RQ 3c: Which cue phrases are used? Are they mainly ambiguous or non-
ambiguous? 

• RQ 4: At which complexity do conditional statements occur in requirement 
documents? 

– RQ 4a: How often do multiple antecedents occur? 
– RQ 4b: How often do multiple consequents occur? 
– RQ 4c: How often do two-sentence conditionals occur? 
– RQ 4d: How often do event chains occur? 

• RQ 5: Is the distribution of labels in all categories domain-independent? 

3.1.1 Study Design 

Study Objects We created a new large gold standard corpus of requirements [22] 
by collecting publicly available requirements specifications employing a web 
search. We queried Google and libraries as Everyspec to retrieve documents from 
different domains. We only considered documents in PDF format, have at least 
ten pages, are written in English, and do contain requirements. We conducted a 
brief manual review of each document to verify the latter. After pre-processing, 
our data set contains 212,186 complete sentences.1 To the best of our knowledge, 
this data set is currently the most extensive collection of requirements available to 
the research community. We randomly selected 53 documents from the data set to 
analyze the prevalence of conditionals in RE artifacts. Hence, our study focuses on 
14,983 sentences from 18 domains. 

Data Annotation We annotate the sentences in our data set concerning eight 
categories: � Conditional Present , � Explicit , � Marked , � Single Sentence ,
� Single Antecedent , � Single Consequent , � Event Chain , and � Relationship . 
To answer RQ 5, we perform a stratified analysis for each category using the 
domains as strata. Due to the imbalanced data set concerning the domains the 
requirements sentences originate from, we formulate the following null hypothesis 
for each category X: “sentences from different domains have the same distribution 
of values in category X.” 

3.1.2 Study Results 

Figure 2 presents the analysis results for each labeled category. When interpreting 
the values, it is important to note that we analyze entire requirement documents in 
our study. Consequently, our data set contains records with different contents that

1 Available at https://figshare.com/s/725309c06b9dc82aa4a1. Due to the terms of use of some 
sources, we can only share the URLs of the collected documents. We attached a script to download 
the data set automatically. 

https://figshare.com/s/725309c06b9dc82aa4a1
https://figshare.com/s/725309c06b9dc82aa4a1
https://figshare.com/s/725309c06b9dc82aa4a1
https://figshare.com/s/725309c06b9dc82aa4a1
https://figshare.com/s/725309c06b9dc82aa4a1


18 J. Fischbach and A. Vogelsang

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

Fig. 2 Annotation results per category. The Y axis of the bar plot for the category
� Conditional Present refers to the total number of analyzed sentences. The other bar plots 
are only related to the sentences that contain a conditional. (a) Conditional present. (b) Explicit. 
(c) Marked. (d) Single sentence. (e) Single antecedent. (f) Single consequent. (g) Event chain. (h) 
Relationship 

do not represent all functional requirements. For example, requirement documents 
also contain non-functional requirements, phrases for content structuring, purpose 
statements, etc. Hence, the results of our analysis do not only refer to functional 
requirements but in general to the content of requirement documents. 

Answer to RQ 1 Figure 2 highlights that conditional statements occur in require-
ment documents. About 28% of the analyzed sentences contain a conditional. 
Therefore, conditionals are a major linguistic element of requirement documents 
since almost one-third of all sentences describe a dependence between an antecedent 
and consequent. 

Answer to RQ 2 The majority (56%) of conditionals contained in requirement 
documents express an enable relationship between certain events. Only about 10% 
of the conditionals indicate a prevent relationship. Cause relationships are found in 
about 34% of the annotated data.
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Answer to RQ 3a Figure 2 shows that the majority of conditionals contain one 
or more cue phrases to indicate the relationship between certain events. Unmarked 
conditionals occur only in about 15% of the analyzed sentences. 

Answer to RQ 3b Most conditionals are explicit, i.e., they contain information 
about both the antecedent and the consequent. Only about 10% of conditionals in 
the investigated requirements documents are implicit. 

Answer to RQ 3c To assess the ambiguity of a cue phrase x, we formulate a binary 
classification task: consider all sentences as the sample space. The conditionals of 
that sample space represent the relevant elements. The precision of cue phrase x as 
a selection criterion for conditionals is the conditional probability that a sentence 
from the sample space contains a conditional given that it contains cue phrase x and 
hence reflects the ambiguity of the cue phrase. A high precision value indicates a 
non-ambiguous cue phrase, i.e., the occurrence of the cue phrase in a sentence is 
a strong indicator for the sentence containing a conditional. In contrast, low values 
indicate strongly ambiguous cue phrases. Our analysis demonstrates that several 
different cue phrases are used to express conditionals in requirement documents. 
Not surprisingly, cue phrases like “if,” “because,” and “therefore” show precision 
values of more than 90%. However, a variety of cue phrases indicate conditionals 
in some sentences but also occur in other contexts. This is especially evident in 
the case of pronouns. Relative sentences can indicate conditionals, but not in every 
case, which is reflected by the low precision value of, for example, “which.” A 
similar pattern emerges concerning the used verbs. Only a few verbs (e.g., “leads 
to, degrade,” and “enhance”) show a high precision value. Consequently, most used 
pronouns and verbs do not necessarily indicate a conditional if they are present in a 
sentence. 

Answer to RQ 4a Figure 2 illustrates that a conditional in requirement documents 
often includes only a single antecedent. Multiple antecedents occur in only 19.1% of 
analyzed conditionals. The exact number of antecedents was not documented during 
the annotation process. However, the participating annotators reported consistently 
that in the case of complex conditional statements, two to three antecedents were 
usually included. More than three antecedents were rare. 

Answer to RQ 4b Interestingly, the distribution of consequents is similar to that 
of antecedents. Likewise, single consequents occur significantly more often than 
multiple consequents. According to the annotators, the number of consequents 
in case of complex conditionals is limited to two consequents. Three or more 
consequents occur rarely. 

Answer to RQ 4c Most conditionals can be found in single sentences. Relations 
where antecedent and consequent are distributed over several sentences occur only 
in about 7% of the analyzed data. The annotators reported that most often, the cue 
phrase “therefore” was used to express two-sentence conditionals.
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Fig. 3 Distribution of conditional statements among domains 

Answer to RQ 4d Figure 2 shows that event chains are rarely used in requirement 
documents. Most conditionals contain isolated relations between antecedent and 
consequent and only a few event chains. 

Answer to RQ 5 Figure 3 visualizes the distribution of conditionals among all 
domains represented with more than 100 sentences. As conditionals’ percentages 
range from 17.8% up to 44.4%, we can assume that conditional statements occur in 
all eligible domains. Our Chi-squared test suggests rejecting the null hypothesis for 
domain-independence for 10 out of 14 eligible domains considering the Bonferroni-
corrected significance level. We can conclude that conditionals are a phenomenon 
observable independent of the domain from which requirements originate, but the 
extent to which conditionals occur differs with statistical significance. 

The Chi-squared test of independence does not suggest rejecting the null 
hypothesis for the categories � Single Antecedent and � Event Chain , but  the  
distribution of two out of the eligible nine domains in the category � Marked and
� Single Sentence is significantly different. We can conclude that the distribution of 
values in all categories is domain-independent to a certain degree. While the com-
plexity of conditionals is mostly domain-independent, the distribution of marked 
conditionals and conditionals contained in single sentences differs significantly for 
about a fourth of the eligible domains. 

Our stratified analysis for RQ 3c shows considerable differences in the usage 
of cue phrases in the domains but also a degree of overlap: the cue phrase “if” is 
among the five most frequent cue phrases in all domains, closely followed by the cue 
phrases “when” and “where”. Our stratified frequencies lead to the assumption that 
the distribution of cue phrases is mostly domain independent. When looking at the 
most precise cue phrases per domain and the least precise cue phrases per domain, 
the cue phrases also reflect the findings from the overall distribution: precise cue 
phrases like “if”, “when”, and “because” as well as infrequent but precise causative 
verbs are equally represented in the domains just as imprecise cue phrases like “for”
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or “by”. Despite slight domain-specific variations, the results for RQ 3c are also 
domain-independent.2 

3.1.3 Concluding Discussion 

Conditionals are prevalent in requirements artifacts and therefore matter in require-
ments engineering, which motivates the necessity of an effective and reliable 
approach for the automatic extraction of conditionals in requirements. The com-
plexity of conditional statements is confined since they usually consist of a single 
antecedent and consequent relationship in all observed, eligible domains. However, 
for an approach that aims to extract conditionals to be applicable in practice, it 
needs to comprehend also more complex relations containing at least two to three 
and at best an arbitrary number of antecedents and consequents. Understanding 
conjunctions, disjunctions, and negations is consequently imperative to fully capture 
the relationships between antecedents and consequents and ensure the applicability 
of a detection and extraction approach. Two-sentence conditionals and event chains 
occur only rarely. Thus, both aspects can initially be neglected in developing the 
approaches and preserve coverage of more than 92% of the analyzed sentences. The 
dominance of explicit over implicit conditionals in the observed sentences simplifies 
the detection and extraction of conditionals. The information about both antecedent 
and consequent is embedded directly in the sentences so that an approach requires 
little or no implicit knowledge. The analysis of the precision values reveals that most 
of the used cue phrases are ambiguous. Consequently, automatic extraction methods 
require a deep understanding of language, as certain cue phrases are insufficient to 
indicate conditionals. Instead, a combination of the sentence’s syntax and semantics 
must be considered to detect conditional statements reliably. 

3.2 Logical Interpretation of Conditionals in Requirements 
Artifacts 

The interpretation of the semantics of conditionals affects all activities carried out 
based on documented requirements such as manual reviews, implementation, or test 
case generations. Even more, a correct interpretation is essential for all automatic 
analyses of requirements that consider the semantics of sentences, for instance, 
automatic quality analysis like smell detection [51], test case derivation [21, 52], and 
dependency detection [22]. Consequently, conditionals should always be associated 
with a formal meaning to process them automatically. However, determining a 
suitable formal interpretation is challenging because conditional statements in NL

2 More extensive tables reporting on the frequency and precision of cue phrases in eligible domains 
are included in our replication package: https://doi.org/10.5281/zenodo.5596668. 

https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
https://doi.org/10.5281/zenodo.5596668
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tend to be ambiguous. We aim to understand and (logically) formalize the interpre-
tation of conditionals in requirements by RE practitioners in software development 
projects. To this end, we conducted a survey following the guidelines by Ciolkowski 
et al. [53]. The expected outcome of our survey is a better understanding of how 
practitioners logically interpret conditional clauses in requirements. Further, we 
aim to determine which elements in our formalization matrix (introduced in Sect. 2) 
match their logical interpretations. We derived three research questions (RQ) from 
our survey goal. 

• RQ 1: How do practitioners logically interpret conditionals in requirements? 
• RQ 2: Which factors influence the logical interpretation of conditionals in 

requirements? 
• RQ 3: Which (if any) cue phrases promote (un)ambiguous interpretation? 

3.2.1 Study Design 

Target Population and Sampling The selection of survey participants was driven 
by a purposeful sampling strategy [54] along with the following criteria: (a) they 
elicit, maintain, implement, or verify requirements, and (b) they work in industry 
and not exclusively in academia. Each author prepared a list of potential participants 
using their personal or second-degree contacts (convenience sampling [55]). From 
this list, the research team jointly selected suitable participants based on their 
adequacy for the study. To increase the sample size further, we asked each 
participant for other relevant contacts after the survey (snowball sampling). Our 
survey was started by 168 participants, of which 104 completed the survey. All 
figures in this section refer to the 104 participants that completed the survey. 

Study Objects To conduct the survey and answer the RQs, we used three data sets 
(DS), each from a different domain. DS 1 contains conditionals from a requirements 
document describing the behavior of an automatic door in the automotive domain. 
We argue that all participants understand how an automatic car door is expected 
to work, so all participants should have the required domain knowledge. DS 2 
contains conditionals from Aerospace systems. We hypothesize that no or only 
a few participants have deeper knowledge in this domain, making DS 2 well 
suited for analyzing the impact of domain knowledge on logical interpretations. 
DS 3 contains abstract conditionals (e.g., “If event A and event B, then event 
C”). Thus, they are free from any domain-induced interpretation bias. To address 
RQ 3, we focused on four cue phrases in the conditionals: “if”, “while”, “after”, and 
“when”. To avoid researcher bias, we created the data sets by randomly extracting 
conditionals from existing practice requirement documents. The conditionals in 
DS 1 are taken from a requirements document written by Mercedes-Benz Passenger 
Car Development [56]. The conditionals contained in DS 2 originate from three
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Q1: F does not occur. What happens consequently?

• R1.1: G occurs nevertheless. (sanity check)
• R1.2: G does not occur. ( II)
• R1.3: Not defined in the statement. ( I) 

Q2: When does G occur?

• R2.1: Simultaneously with F . (  III)
• R2.2: Immediately after F . ( IV)
• R2.3: At some indefinite point after F . (  V)
• R2.3: Temporal ordering is irrelevant in the statement. ( VI) 

Fig. 4 Questionnaire template. The note after each answer option (e.g., → IV) indicates the 
matching characteristic in the formalization matrix. If a participant selects R1.2, for example, they 
implicitly interpret F as necessary for G. The notes were not included in the questionnaire 

requirements documents published by NASA and one by ESA.3 The conditionals in 
DS 3 are syntactically identical to those in DS 1, except that we replace the names 
of the events with abstract names. DS 1–3 contain 4 conditionals each, resulting in 
12 study objects. Each cue phrase occurs exactly once in each DS. 

Questionnaire Design We chose an online questionnaire as our data collection 
instrument to gather quantitative data on our research questions. Since our research 
goal is descriptive, most questions are closed-ended. We designed three questions 
(Q) addressing the two dimensions and prepared a distinct set of responses (R), 
among which the participants can choose. Each of these responses can be mapped 
to a characteristic in the formalization matrix and thus allows us to determine 
which characteristic the practitioners interpret as being reflected by a conditional. 
We build the questionnaire for each study object (e.g., “If F then G”) according 
to a predefined template (see Fig. 4). The template is structured as follows: The 
first question (Q 1) investigates the dimension of Necessity: if event G cannot 
occur without event F , then F is not only sufficient, but also necessary for G. 
We add “nevertheless” as a third response option (see R1.1 in Fig. 4) to perform 
a sanity check on the answers of the respondents. We argue that interpreting that the 
consequent should occur although the antecedent does not occur indicates that the 
sentence has not been read carefully. The second question (Q 2) covers the temporal 
ordering of the events. In this context, we explicitly ask for the three temporal 
relations eventually, always, and next state described in Sect. 2. Should a participant 
perceive temporal ordering as irrelevant for interpreting a certain conditional, we 
can conclude that PL is sufficient for its formalization. We ask Q 1–2 for each of the 
12 study objects, resulting in 24 questions. To get an overview of the background

3 We retrieved these documents from our gold standard corpus of requirements presented in 
Sect. 3.1. We are referring to the documents: REQ-DOC-22, REQ-DOC-26, REQ-DOC-27, and 
REQ-DOC-30. 
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Fig. 5 Heatmaps visualizing the interpretations of the participants 

of our respondents, we also integrated five demographic questions. In total, our 
final questionnaire consists of 29 questions and can also be found in our replication 
package.4 

3.2.2 Study Results 

3.2.3 RQ 1: How Do Practitioners Logically Interpret Conditionals in 
Requirements? 

To answer RQ 1, we first look at the total number of answers for each dimension 
across all data sets. Secondly, we analyze the ratings distribution based on our 
constructed heatmaps (see Fig. 5).

4 Our replication package contains (1) our final questionnaire, (2) the survey protocol, and (3) the 
survey responses. It can be found at https://doi.org/10.5281/zenodo.5070235. 

https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
https://doi.org/10.5281/zenodo.5070235
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Necessity Our participants did not have a clear tendency whether an antecedent 
is only sufficient or also necessary for the consequent. Among the total of 1,248 
answers, 2.1% correspond to the level “nevertheless,” 46.9% to “also necessary,” 
and 51% for “only sufficient”. That means that more than half of the respondents 
stated that the conditional does not cover how the system is expected to work if the 
antecedent does not occur (i.e., the negative case is not specified). 

Temporality We found that time plays a major role in the interpretation of 
conditionals in requirements. Among the 1,248 answers, only 13% were “temporal 
ordering is irrelevant” for the interpretation. This indicates that conditionals in 
requirements require temporal logics for a suitable formalization. For some study 
objects, the exact temporal relationship between antecedent and consequent was 
ambiguous. For S3, 34 participants selected “during,” 43 “next state,” and 19 
“eventually”. Similarly, we observed divergent temporal interpretations for S2, S5, 
S7, S10, S11, and S12. In contrast, the respondents widely agreed on the temporal 
relationship of S1 (67 survey answers for “next state”), S4 (84 survey answers 
for “during”), S6 (73 survey answers for “during”), S8 (67 survey answers for 
“eventually”), and S9 (83 survey answers for “eventually”). Across all study objects, 
29.8% of survey answers were given for the level “during”, 20.1% for “next state,” 
and 37.1% for “eventually”. 

Agreement Our heatmaps illustrate that there are only a few study objects for 
which more than half of the respondents agreed on a 2-tuple (see Fig. 5). This trend 
is evident across all data sets. The presence or absence of domain knowledge does 
not seem to have an impact on a consistent interpretation. The greatest agreement 
was achieved in the case of S1 (48 survey answers for . 〈necessary, next state. 〉), S6 
(49 survey answers for . 〈necessary, during. 〉), S8 (53 survey answers for . 〈sufficient, 
eventually. 〉), and S9 (56 survey answers for . 〈sufficient, eventually. 〉). However, for 
the majority of study objects, there was no clear agreement on a specific 2-tuple. 
For S5, two 2-tuples were selected equally often, and for S10, the two most frequent 
2-tuples differed by only two survey answers. 

Generally Valid Formalization? Mapping the most frequent 2-tuples in the 
heatmaps to our constructed formalization matrix reveals that all study objects 
cannot be formalized in the same way. The most frequent 2-tuples for each study 
object yield the following six patterns: 

• Pattern 1: . 〈necessary, next state. 〉: S1, S3 
• Pattern 2: . 〈necessary, irrelevant. 〉: S2  
• Pattern 3: . 〈necessary, during. 〉: S6, S10, S11 
• Pattern 4: . 〈necessary, eventually. 〉: (S5) 
• Pattern 5: . 〈sufficient, eventually. 〉: (S5), S7, S8, S9 
• Pattern 6: . 〈sufficient, during. 〉: S4, S12 

One sees immediately that it is not possible to derive a formalization for 
conditionals in general. Especially the temporal interpretations differed between the
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conditionals and the used cue phrases. However, it can be concluded that, except for 
S2, the interpretations of all study objects can be represented by LTL. 

3.2.4 RQ 2: Which Factors Influence the Logical Interpretation of 
Conditional Clauses in Requirements? 

This section reports the results of our chi-square tests. In our contingency tables, no 
more than 20% of the expected counts are . <5. Hence, we satisfy the assumption of 
enough observations per category for the chi-square test [57]. In the following, we 
explain the relationships where the chi-square test indicated a dependency between 
the logical interpretation and a factor. 

The Logical Interpretation Regarding Temporality Depends on RE Experience 
In the group with less than 1 year of experience, there is a tendency to perceive 
the temporal relationship between the events as “during” (36.4%). In the group 
of participants with 4–10 years of experience, most of the respondents rated 
the temporal relationship as “eventually” (41.3%). The . χ2 test reveals that the 
distribution of ratings differs between the experience levels. The calculated . Θ value 
indicates that the strength of the relationship is low. 

The Logical Interpretation Regarding Temporality Is Dependent on How a 
Practitioner Interacts With Requirements Our contingency table reveals that 
the distribution of ratings differs between the interaction levels. Practitioners who 
implement requirements fluctuate mainly between “during” and “eventually,” while 
they rarely selected the other two Temporality levels. A different pattern emerges for 
practitioners who maintain and verify requirements. Across all study objects, they 
choose the levels “during”, “next state,” and “eventually” equally often. A . χ2 test 
indicates a dependency between both variables. The calculated . φ value indicates 
that the strength of the relationship is high. 

The Logical Interpretation Regarding Necessity Is Dependent on Domain 
Knowledge The disagreement about whether an antecedent is only sufficient or 
also necessary holds regardless of domain knowledge. However, the trend differs 
between the data sets with respect to the Necessity levels. In the case of DS 1 
(domain knowledge assumed), more answers were given for “also necessary” 
(54.3%) than for “only sufficient” (45%). In contrast, more ratings were given for 
“only sufficient” in the case of DS 2 (53.1%) and DS 3 (55%). The slight difference 
in the distribution of the ratings regarding Necessity is supported by the . χ2 test. 
However, the strength of the relationships is low. 

The Logical Interpretation Regarding Temporality Is Dependent on Domain 
Knowledge Our contingency table shows that the distribution of ratings regarding 
Temporality differs between the data sets. In the case of DS 1, ratings were mainly 
given for “during” (32.9%) and “next state” (31.3%). In the case of the unknown 
domain (DS 2), ratings were mainly assigned to “eventually” (46.2%), while only 
20.7% were given to “next state” and 22.4% to “during.” In DS 3, where no domain
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knowledge is necessary for the understanding of the conditionals, most ratings were 
given to “during” (34.1%) and “eventually” (47.1%). A . χ2 test shows that there 
is a statistically significant dependency between both variables. According to the 
calculated . φ value, the strength of the relationship is medium. 

3.2.5 RQ 3: Which (if Any) Cue Phrases Promote (Un)Ambiguous 
Interpretation? 

Our analysis reveals that the logical interpretation regarding Temporality depends 
on the cue phrase used to express a conditional. For study objects containing 
“while” (S4, S6, and S12), the respondents largely agreed that the consequent 
occurs simultaneously with the antecedent. In contrast, almost no respondent 
associated simultaneous events in the study objects with the cue phrase “after”. 
Instead, the respondents vacillated between the temporal levels “next state” and 
“eventually”. The largest disagreement, though, was found in the interpretations of 
the conditionals “if” or “when”. Especially in the case of “when”, there was no clear 
agreement across S3, S5, and S11 on whether antecedent and consequent are in a  
“during”, “next state,” or “eventually” temporal relationship. Regarding Necessity, 
we observe that the practitioners, irrespective of the used cue phrase, disagree 
whether the antecedent is only sufficient or also necessary for the consequent. We  
found one outlier in our histograms (S8), where an 80% agreement for the level 
“sufficient” could be achieved. For the remaining study objects, however, there is a 
balanced number of survey answers for both levels. 

3.2.6 Concluding Discussion 

We show that conditionals are interpreted ambiguously by RE practitioners. In 
particular, there is disagreement (1) about whether an antecedent is only sufficient or 
also necessary for a consequent and (2) about the temporal occurrence of antecedent 
and consequent when different cue phrases (such as “when” or “if”) are used. 
Thus, a generic formalization of conditionals will inevitably fail at least some 
practitioner’s interpretation. We see two immediate implications in practice: 

Implications for Automatic Methods Especially (if not limited) for automated 
test case generation, it is vital to understand which behavior is desired if the 
antecedent does not occur. The evidence presented in this chapter refutes the pre-
vailing assumption (cf. [22, 58]) that antecedents can always be treated as necessary 
conditions. Hence, we propose that future methods should display the automatically 
generated positive and negative test cases to practitioners and explicitly verify 
the following: “Is the negative case of your conditional also valid?” This will 
foster the discussion within project teams about the expected system behavior and 
enables to resolve misunderstandings at an early stage. We consider this finding
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when developing our approach for the automatic generation of acceptance tests and 
integrated it into the User Interface of our tool (see Sect. 4.2). 

Implications for Requirements Authors It should be incorporated into RE 
writing guidelines that it does matter which cue phrase is used for the formulation 
of a conditional. “While” is interpreted consistently, but “if” and “when” cause 
misunderstandings about the temporal interpretation of antecedent and consequent. 
This poses a problem especially in the implementation of requirements and even-
tually leads to discrepancies between actual and expected system behavior. Project 
teams should therefore agree early on how they want to interpret the different cue 
phrases to avoid ambiguities. Additionally, our findings provide empirical evidence 
for the claim by Berry et al. [59] and Rosadini et al. [60] that requirements authors 
should always specify the negative case (e.g., by using an else-statement) to prevent 
confusion about the necessity of antecedents. 

4 Extracting Conditionals from Requirements Artifacts 

This section addresses the second problem of the thesis, namely, “the missing 
method and tool support to extract conditionals in fine-grained form”. We present 
our tool-supported approach named CiRA (Conditionals in Requirements Artifacts), 
capable of detecting conditionals in NL requirements and extracting them in fine-
grained form. 

4.1 The CiRA Pipeline 

CiRA consists of two steps: It first detects whether an NL requirement contains a 
conditional. Second, it extracts the conditional in fine-grained form. Specifically, 
CiRA considers the combinatorics between antecedents and consequents and splits 
them into more granular text fragments (e.g., variable and condition), making 
the extracted conditionals suitable for automatic test case derivation. We have 
implemented and compared different methods for both steps and incorporated the 
best-performing methods into the pipeline of CiRA. We describe the functionality 
of CiRA using the following requirement: “If A is valid and B is false, then C is 
true.” 

Step 1: Detection of Conditionals Our experiments showed that enriching input 
sequences with dependency tags leads to a better performance of our conditional 
detection approach. Therefore, in the first step, we use spaCy to assign dependency 
tags to the individual tokens in the sentence. This allows our conditional classifier 
to take into account not only the content of the tokens themselves but also the gram-
matical structure of the sentence when categorizing a sentence into the two classes
� Conditional Present and � Conditional Not Present . In the case of our exemplary
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requirement, the token “If” is assigned the dependency tag mark, indicating that 
“If” introduces a clause subordinate to another clause. After allocating appropriate 
dependency tags to each token in the sentence, the sentence is decomposed using 
the WordPiece tokenizer and enriched with additional synthetic tokens such as the 
CLS token. Finally, we feed each token into the BERT model to generate word 
embeddings. Since we perform conditional detection at the sentence level, we only 
pass the CLS token into the softmax classifier, which computes the probability 
of whether the input sequence contains a conditional. The classifier calculates a 
confidence of 91% that our exemplary requirement contains a conditional. With 
only 9% confidence, our classifier assumes that the input sequence does not contain 
a conditional. Our approach selects the category with the highest confidence and 
classifies our example correctly as � Conditional Present . The detected conditional 
is passed to the next step of the pipeline. 

Step 2: Fine-grained Extraction of Conditionals In the second step, we utilize 
the Byte-Pair Encoding (BPE) tokenizer to convert the detected conditional state-
ment into a form that can be processed by RoBERTa. After decomposing the input 
sequence into individual tokens, we pass each token into the RoBERTa model to 
create word embeddings. Since we perform conditional extraction at the token level, 
we feed the embeddings of all tokens into our sigmoid classifier. Our classifier 
calculates the probability for each class whether a given token should be assigned 
to that class. Since we differentiate between twelve classes, the sigmoid classifier 
calculates twelve probabilities accordingly. We select the classes with a probability 
.≥0.5 as the final classification result. In the case of our exemplary requirement, 
the “If” token is classified as � Not Relevant with the confidence of 99.6%. The 
token “A” is assigned to two classes: On the bottom annotation layer, “A” is 
correctly marked as a � Variable . On the top annotation layer, “A” is identified as 
belonging to � Antecedent 1 . The synthetically added tokens by the BPE tokenizer 
like “<s>” and “<pad>” are correctly identified as � Not Relevant . We follow the 
classifications of our sigmoid classifier and assign the corresponding labels to each 
token of the input sequence. The output of the CiRA pipeline thus represents a list 
of top-layer and bottom-layer labels, allowing us to annotate the conditional in fine-
grained form. 

4.2 Tool Support 

We implemented a corresponding tool support to facilitate easy interaction with 
CiRA. We invite fellow researchers and interested practitioners to employ CiRA 
at www.cira.bth.se/demo/. Our tool does not only allow the use of CiRA for 
the fine-grained extraction of conditionals from NL sentences, but also enables 
the automatic derivation of acceptance tests based on the extracted conditionals. 
Specifically, our tool realizes � Use Case 1 by combining CiRA withCause-Effect-
Graphing to create acceptance tests automatically. As shown in Fig. 6, we produce

www.cira.bth.se/demo/
www.cira.bth.se/demo/
www.cira.bth.se/demo/
www.cira.bth.se/demo/
www.cira.bth.se/demo/
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Fig. 6 Overview of our approach consisting of three steps: (1) detection of conditionals, (2) fine-
grained extraction of conditionals, and (3) CEG creation. Processed REQ: “If A is valid and B is 
false, then C is true ” 

a CEG based on the extracted antecedents and consequents by CiRA.Our web 
application is built as a restful node.js server utilizing the Express framework. The 
backend’s main purpose is executing a Python script, which is a wrapper around 
our conditional classifier and conditional extraction algorithm. Our tool-supported 
approach consists of four components: (1) detection of conditionals, (2)  extraction 
of conditionals, (3)  creation of cause-effect graph, and (4) creation of acceptance 
test. We outline all four components below and use the following requirement as 
our running example: “If the temperature change is requested, then the determine 
heating/cooling mode process is activated and makes a heating/cooling request.” 

Detection of Conditionals The UI provides a text input field in which an arbitrary 
NL sentence can be entered. Upon pressing the “classify”-button, the sentence is 
sent to the backend, where it is processed by the aforementioned wrapped condi-
tional classifier. On return of the REST call, the classification and confidence of the 
model are rendered in the UI. The user may confirm or correct the classifier’s choice. 
The entered sentence and the optional user confirmation or correction are then stored 
in the backend to (1) display the five most recently entered sentences, (2) provide 
preliminary insight into the performance of the classifier on unseen sentences, and 
(3) preserve sentences for future training of the classifier. At this point, we support 
batch learning and plan to implement an online learning algorithm in future research 
to leverage the collected data directly for enhancing our conditional classifier. Our 
exemplary requirement is classified as � Conditional Present with confidence of 
98.72%. After confirming this correct classification, the user is forwarded to the 
second step. 

Extraction of Conditionals In the second step, our pre-trained binary-file con-
ditional extractor is loaded and used to annotate the entered sentence according 
to our fine-grained labeling scheme (see Fig. 7). The predicted labels per token 
are rendered in the UI. We explain each label at the bottom of the UI to inform 
users about the meaning of the labels. For example, the expression “the temperature 
change is requested” is labeled as � Antecedent 1 . On the lower annotation 
layer, “the temperature” is labeled as � Variable and “is requested” is labeled as
� Condition . Further, our extractor has correctly detected that � Consequent 1 and
� Consequent 2 are connected by a conjunction. In total, CiRA assigned nine labels 
to the entered sentence.
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Fig. 7 Overview of the user interface provided by CiRA 

Creation of Cause-Effect Graph In the third step, we create a CEG based on the 
annotated conditional. Specifically, we represent antecedents as cause nodes and 
consequents as effect nodes and relate them to each other using edges. Creating 
the CEG is not a trivial, potentially error-prone task. We integrated a model editor 
into the tool to enable the user to correct potential errors manually or to modify the 
CEG for other reasons. This allows users to add new nodes using simple drag and 
drop or to adjust existing nodes and their edges. Pressing the DEL key can remove 
elements from the CEG. The auto-layout function supports the user in arranging 
the nodes to ensure clarity of the CEG. In the simplest case, antecedents and 
consequents encompass both a variable and condition in the lower annotation layer. 
We then fill the created cause and effect nodes with the corresponding information. 
If either of the two labels is missing, we need to extract the information from the 
nearest referent to correct incomplete nodes. In the given example, the variable 
of � Consequent 2 is not included in the entered sentence. Hence, we enrich its 
corresponding effect node with the variable of � Consequent 1 . 

Creation of Acceptance Test In the last step, we automatically derive the mini-
mum number of test cases required to fully check the entered requirement from the 
created CEG. For this purpose, we consider the findings of our study on the logical 
interpretation of conditionals by RE practitioners. The user can choose whether s/he
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perceives antecedents to be both sufficient and necessary conditions for consequents 
or not (see checkbox below the test case specification). Depending on the selection, 
we filter the derived test cases and display the acceptance test corresponding to 
the user’s interpretation. In the given example, we perceive the antecedent as a 
necessary condition for both consequents. Accordingly, our approach derived two 
test cases from the created CEG. 

5 Industrial Application: Leveraging Conditional Extraction 
for Automatic Acceptance Test Creation 

We aim to investigate whether our approach is suitable for the automatic generation 
of acceptance tests in practice. Specifically, we study the following research 
questions (RQ): 

• RQ 1: Can our automated approach create the same test cases as the manual 
approach? 

• RQ 2: What are the reasons for deviating test cases? 

RQ 1 and RQ 2 inspect the impact of our approach: does it achieve the status quo 
or even lead to an improvement of the manual test case derivation? To this end, 
we conduct a case study with three industry partners in an exploratory fashion and 
compare automatically created test cases with existing, manually created test cases. 
For our study, we follow the guidelines by Runeson and Höst [61] for conducting 
case study research. 

5.1 Study Design 

Case Sampling and Study Objects We apply purposive case sampling augmented 
with convenience sampling [62]. Specifically, we approached some of our industry 
contacts inquiring whether they are interested in exploring the potential of CiRA. 
We were provided with data from three companies operating in different domains: 
Allianz Deutschland AG (insurance), Ericsson (telecommunication), and Leopold 
Kostal GmbH & Co. KG (automotive). Since the data is subject to non-disclosure 
agreements, we are unable to share the provided requirements and test cases. 

Allianz Data We analyze 219 Acceptance Criteria (ACC) describing the func-
tionality of a business information system used for vehicle insurance. 127 of 
these ACC contain conditionals and are therefore suitable for assessing CiRA. 
The remaining ACC specify the expected functionality based on process flows 
(16 criteria) or in a static way (76 criteria). We analyze the acceptance tests 
that were manually created for each of the ACC including conditionals. In total, 
309 test cases were designed, which corresponds to about 2.43 test cases per 
acceptance test.
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Ericsson Data We analyze 109 requirements derived from five Business Use 
Cases (BUCs), which are feature-level units of development at Ericsson. The  
BUCs originate from different functional topics. 49 of these 109 requirements 
contain conditionals, while the remaining requirements are expressed in a static 
way. In total, 65 test cases were manually generated for the 49 requirements con-
taining conditionals, which corresponds to about 1.33 test cases per acceptance 
test. 

Kostal Data We analyze a requirements specification describing a plug interlock 
function, which prevents a charging plug from being disconnected during an 
active charging process of an electric car. The specification includes 135 func-
tional requirements. 79 of these functional requirements contain conditionals, 
while 56 requirements describe the functional behavior in a static way: “The 
signal signalName shall be set to InitValue”. In our case study, we 
focus only on the acceptance tests that were manually created for the 79 
requirements that contain conditionals. In total, 204 test cases were designed, 
which corresponds to about 2.58 test cases per acceptance test. 

We pass all study objects through our pipeline and compare the automatically 
created acceptance tests with the manually created acceptance tests (see Fig. 8). 
Specifically, we investigate five different categories of test cases: 

• Identical: A test case created manually by the test designer and automatically by 
our approach. 

• .AA ∧ rel: A test case that has been missed in manual test design and should be 
included in the acceptance test. 

• .AA ∧ ¬ rel: A superfluous test case that is correctly not included in the manually 
created acceptance test. 

• .MA ∧ rel: A test case that has been missed by our approach and should be 
included in the acceptance test. 

• .MA ∧ ¬ rel: A superfluous test case that is correctly not included in the 
automatically created acceptance test. 

76.1% 22.3% 15.2% 3.5% 
1.6% 

63.1% 36.9% 15.4% 56.9% 

68.1% 27.5% 
4.4% 

11.3% 3.9% 

71.8% 25.8% 
2.4% 

13.8% 9.7% 

Fig. 8 Case study results. Comparison of manually and automatically created test cases
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5.2 Study Results 

5.2.1 RQ 1: Can CiRA Create the Same Test Cases as the Manual 
Approach? 

Findings at Allianz CiRA detected 90.55% of the conditionals in the acceptance 
criteria. Consequently, no test cases were created for the 12 missed criteria contain-
ing conditionals. For the correctly classified criteria, our approach generated 314 test 
cases. This corresponds to about 2.73 test cases per acceptance test. We were able 
to draw a one-to-one relationship between 224 manually and automatically created 
test cases. Additionally, we observed a one-to-many relationship between eleven 
manually created test cases and 32 automatically created test cases. Thus, 76.05% 
of the manually created test cases could be automatically generated. However, 74 
test cases were not created by our approach, of which 27 test cases are related to 
criteria that were incorrectly identified as � Conditional Not Present . According to 
the test designers, the remaining 47 MA test cases can be classified as follows: 42 
are necessary to fully test the system functionality, while 5 test cases are superfluous. 
A comparison of the automatically created test cases with the manually created test 
cases highlights that 58 test cases have not yet been considered in the manual test 
design. According to the test designer, these 58 AA test cases can be clustered as 
follows: 47 are indeed relevant, while 11 should not be included in the acceptance 
test. 

Findings at Ericsson CiRA correctly classified 79.6% of the conditionals in 
requirements but failed to do so for ten requirements. 91 test cases were auto-
matically generated based on these identified requirements, which corresponds to 
about 2.33 test cases per acceptance test. 28 manual test cases were automatically 
created by our approach in a one-to-one, 13 more in a one-to-many relationship, 
resulting in an automatic generation of 41 of 65 test cases (63.1%). However, 24 
test cases were not created by our approach, of which 7 test cases are related to 
criteria that were incorrectly identified as � Conditional Not Present . According to 
the test designer, the remaining 17 MA test cases are all necessary to fully test the 
system’s functionality. A comparison of the automatically created test cases with the 
manually created test cases highlights that 47 test cases have not yet been considered 
in the manual test design. According to the test designer, these 47 AA test cases can 
be clustered as follows: 10 are indeed relevant, while 37 should not be included in 
the acceptance test. 

Findings at Kostal CiRA correctly assigned the label � Conditional Present to 
72 requirements. However, it failed to identify the remaining seven requirements 
containing conditionals. Hence, no test cases were ultimately created for these 
requirements. Regarding the correctly classified requirements, CiRA produced 194 
test cases. This corresponds to about 2.69 test cases per acceptance test. We found a 
one-to-one relationship between 122 manually and automatically created test cases. 
In addition, we could draw a one-to-many relationship between 17 manual test cases
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and 41 automatically created test cases. Thus, 68.14% of the manually created test 
cases could be created automatically. Nevertheless, 65 manually created test cases 
are not included in the automated test cases. Sixteen of these exclusively manually 
created test cases refer to the conditionals in requirements that CiRA missed. In the 
case of the other 49 test cases, we ask test designers at Kostal about their relevance. 
In fact, 81.63% of the exclusively manually created test cases are deemed relevant. 
According to the test designers, nine test cases are superfluous and can be removed 
from the test set. Examining the automatically created test cases, we observe that 31 
test cases have not been considered in the manual creation so far. Interestingly, the 
test designers confirmed that 74.19% of these test cases were indeed missed in the 
manual process. However, eight exclusively automatically created test cases are not 
relevant and thus correctly not included in the manual set.

� Answer to RQ 1: 

Across all case companies, our approach automatically created 71.8% of 
the 578 manually created test cases. Our approach further identified 136 test 
cases missed in manual test design. In fact, 58.8% of these exclusively auto-
matically generated test cases are indeed relevant and should be included in 
the acceptance test. We conclude that our approach can automatically create 
a significant amount of relevant (known and new) test cases. 

5.2.2 RQ 2: What Are the Reasons for Deviating Test Cases? 

Incomplete Requirements We found that the main reason for test cases that 
could not be created automatically lies in the poor information available in the 
requirements. The interviewed test designers confirmed that domain knowledge is 
often required to determine all relevant test cases. In the case of Kostal, 19 out of 79 
requirements were incomplete. We found that our approach could not generate 37 
.MA ∧ rel test cases due to lack of information in these requirements. At Allianz, 16  
out of 127 conditionals in acceptance criteria lack information. Our analysis shows 
that our approach could not generate 31 .MA ∧ rel test cases due to incomplete 
acceptance criteria. At Ericsson, 17  .MA ∧ rel test cases could not be generated 
due to underspecified or missing requirements. 

Incorrect Combinatorics We noticed that some of the exclusively manually 
created test cases are superfluous—they can be merged or are already covered by 
other test cases. The interviews revealed that in these cases, the combinatorics 
of the input and output parameters were interpreted incorrectly. According to the 
test designers, this stems mainly from the fact that test cases are often not created 
systematically but rather based on past experience. Unsystematic test design may 
not only result in superfluous test cases but can also lead to necessary test cases 
being ignored. We observed that test designers tend to create positive cases and
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neglect negative cases. At Kostal, 21 of the 23 AA ∧ rel test cases were actually 
negative cases. Only two positive cases were overlooked in the manual process. At 
Allianz, 36 of the 47 AA ∧ rel test cases were actually negative cases. 11 positive 
cases were missed by the test designers. In the case of Ericsson, all ten AA ∧ rel 
test cases were overlooked negative test cases. 

Infeasible Test Cases Our analysis shows that some of the exclusively automati-
cally created test cases cannot occur in practice. According to the test designers, this 
problem arises mainly for negative test cases where certain scenarios are tested that 
can only occur theoretically. For example, some parameters cannot take the value 
false at the same time, even if this case should be checked from a combinatorial 
point of view. In the case of Kostal, we found that three of the eight AA ∧ ¬ rel 
test cases cannot be checked in practice. At Allianz, five of the eleven AA ∧ ¬ rel 
test cases can only occur theoretically. At Ericsson, 28 of 37  AA ∧ ¬  rel test cases 
fell into this category. 

Errors in Our Pipeline Our approach produced not only errors in the detection of 
the conditionals but also failed in some cases to extract and translate them into the 
CEG. At Kostal, our approach failed to generate three MA ∧ rel test cases and 
instead created five AA ∧ ¬  rel test cases, because the generated CEG reflected 
a wrong conditional statement. In the case of Allianz, we failed to create eleven 
MA ∧ rel test cases and instead generated six AA ∧ ¬ rel test cases. In the case 
of Ericsson, our approach produced nine AA ∧ ¬  rel test cases due to incorrect 
interpretation of the conditional. We found that these errors occurred mainly when 
the conditionals contained three or more consequents.

� Answer to RQ 2: 

In our setting, we observed four reasons for deviating test cases: incomplete 
requirements, incorrect combinatorics, infeasible test cases, and errors in 
our pipeline. We found that incomplete requirements are the main reason 
for test cases that our approach could not create automatically. 

5.3 Concluding Discussion 

Our case study demonstrates that our approach is able to support practitioners in 
deriving relevant test cases from conditionals. Across all industry partners, our 
approach automatically generates more than 70% of the manually created test cases. 
However, our approach does not achieve full automation of acceptance test creation, 
mainly due to incomplete requirements. Our approach is heavily dependent on the 
information contained in the requirements and consequently unable to create test 
cases for which additional domain knowledge is required. Thus, our case study
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confirms the findings of Mendez et al. [63] that incompleteness is still a major 
problem in practice and hinders the automatic processing of requirements.

� 1. Key Take-away: 

In fact, our approach can help to generate acceptance tests automatically. 
However, our approach does not substitute a test designer since domain 
knowledge is often necessary to identify all required test cases. 

According to the test designers, the main benefit of our approach is its ability 
to create test cases automatically based on heuristics. Hence, it is independent of 
human bias and able to identify test cases that may be missed in the manual process. 
We argue that our approach should always be used as a supplement to the existing 
manual process to highlight all test cases that should be tested from a combinatorial 
point of view, in particular negative test cases that were proportionally more often 
overlooked than positive test cases. The automatically generated set of test cases 
may then be manually extended by test cases that require domain knowledge. At 
Ericsson, we observed that a large amount of automatically generated test cases 
were irrelevant since they can only occur theoretically. Hence, when utilizing our 
approach as a supplement to manual test design, test designers need to filter the 
automatically generated test cases. However, we argue that it is easier to discard 
infeasible test cases than to manually identify undetected relevant test cases.

� 2. Key Take-Away: 

Our approach is particularly useful for automatically identifying negative 
test cases, which are often overlooked in the manual creation process. 
However, not all test cases created by our approach are necessarily rele-
vant, requiring subsequent manual review of the automatically created test 
specifications. 

Since CiRA decomposes each sentence using subword tokenization and labels each 
token individually, it is much more robust against grammar errors and is also able 
to process Out-Of-Vocabulary (OOV) words. Nevertheless, studies [64] reveal that 
language models such as BERT show significant performance degradation with 
increasing amounts of noisy data. As a result, we hypothesize that the robustness 
of CiRA against grammatical mistakes is limited to a few errors in a sentence. We 
therefore propose to combine CiRA with requirements smell checkers [65] in the  
future to automatically verify the linguistic quality of requirements before passing 
them into the CiRA pipeline.



38 J. Fischbach and A. Vogelsang

� 3. Key Take-Away: 

Fully automated acceptance test generation is difficult to achieve because 
requirements often suffer from poor quality. RE teams should therefore first 
check the quality of the requirements before processing them with cira. 

CiRA is limited to single-sentence conditionals and is not able to extract conditional 
statements that span multiple sentences. However, two-sentence conditionals may 
arise in practice (e.g., indicated by “therefore”, “hence”), requiring us to extend 
CiRA in future work. According to the test designers, a further challenge in 
the extraction of conditionals relates to the handling of event chains (i.e., linked 
requirements, in which the consequent of a conditional represents a antecedent 
in another conditional). In such cases, it is no longer sufficient to create a single 
CEG. Rather, we must create several Cause-Effect Graphs and connect them to each 
other. Currently, CiRA only allows the creation of acceptance tests for requirements 
that contain conditionals. For full automation of test case design, however, we also 
require approaches capable of processing static requirements and process flows.

� 4. Key Take-Away: 

So far, the feasibility of cira is limited to conditionals that span a single 
sentence. As a consequence, we still need to develop methods for the 
automatic generation of test cases from static requirements and process 
flows. 

Our case study focuses on a quantitative comparison between manually and 
automatically created test cases. However, several other metrics are available to 
benchmark test cases [66]. For example, structural criteria like test understandability 
investigate whether a test is easy to understand in terms of its internal and external 
descriptions. We plan to extend our study to obtain further insights into the quality 
of the test cases generated by CiRA. 

6 Summary and Outlook 

Authors of requirements often use conditionals to specify the desired system 
behavior. Therefore, conditionals contain rich semantic information about potential 
system inputs and expected system outputs. Automatically extracting conditionals 
bears a high potential for requirements engineering as it contributes to an increased 
automation of specific RE tasks. Our study with three industry partners proved that 
automated conditional extraction can help extract acceptance tests automatically. 
Further, besides assisting in automating RE tasks, automatic conditional extraction 
helps identify and reduce misunderstandings in project teams. Since conditionals are
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interpreted differently by RE practitioners, teams must decide whether they consider 
antecedents to be only sufficient or also necessary for the consequent. We argue that 
automatically extracting conditionals from requirements and explicitly displaying 
corresponding positive and negative test cases to users can help foster the discussion 
among practitioners. 

Automated extraction of conditionals is not a trivial task. Shallow rule-based 
systems are not suitable for extracting conditionals as they can be expressed in many 
different forms that are difficult to cover with patterns. Our studies proved that ML-
based and TL-based approaches are better suited for determining conditionals in NL 
sentences and extracting them in fine-gained form. However, simply using ML and 
TL does not automatically lead to a solution of an NLP problem. Rather, the choice 
of an adequate ML and TL model is dependent on the context and the complexity of 
the problem that needs to be solved. This is particularly evident in our comparison 
of ML and TL models for the detection of conditionals. We did not observe a 
great deviation in performance between the best ML model and our best TL model 
in solving this binary classification problem. The benefits of Transfer Learning 
were most noticeable when dealing with the considerably more complex problem 
of conditional extraction. Owing to pre-training on large corpora, the TL models 
acquired a strong language understanding and are therefore capable of reliably 
extracting conditionals in fine-grained form. Our tool-supported approach CiRA 
combines our best-performing TL models and is capable of detecting conditionals 
in NL requirements and extracting them in fine-grained form. CiRA is available at 
http://www.cira.bth.se/demo/. 
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From Design to Reality: An Overview 
of the MontiThings Ecosystem for 
Model-Driven IoT Applications 

Jörg Christian Kirchhof 

Abstract The Internet of Things (IoT) networks everyday objects that can perceive 
and influence their environment using sensors and actuators. Since IoT systems 
are inherently distributed systems, often built on fault-prone hardware and exposed 
to harsh environmental conditions such as vibration or humidity, developing such 
systems is challenging. In recent years, some DSLs for IoT system development 
have been introduced, yet they only slightly improve IoT system development. 
This chapter provides an overview of MontiThings, an ecosystem for model-
driven development of IoT systems that covers the life cycle of IoT systems 
from design in the form of Component and connector (C&C) models, through 
(dynamic) deployment, to failure analysis. MontiThings is designed to handle 
different classes of errors and failures. By being able to make counter-suggestions to 
device owners, the requirement-based deployment algorithm enables device owners 
to customize their IoT systems to their needs. MontiThings also offers an app store 
concept to decouple hardware development from software development in order 
to prospectively reduce problems such as e-waste and security issues that result 
from too close a coupling. Overall, MontiThings demonstrates an end-to-end model-
driven approach to IoT system development. 

Note This chapter summarizes the thesis [16]. Thus, the content of this chapter is 
taken from [16]. In particular, all illustrations were taken from the dissertation and 
the respective papers the dissertation is based on. 
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1 Introduction 

The Internet of Things (IoT) networks everyday objects. Sensors and actuators 
enable them to perceive and influence their environment. The data obtained from 
the sensors is often used to automate processes with the help of the actuators. 
For example, in a smart home, the heating can be switched off automatically as 
soon as the window is opened. Because IoT devices belong to real-world objects, 
IoT systems are inherently distributed systems. The programming languages with 
which such systems are mostly developed today are often the same General-purpose 
programming languages (GPLs) such as C++ or Python with which all other 
types of systems are developed, according to an analysis of GitHub projects [7] 
and developer surveys [10]. These GPLs were not designed with the (primary) 
goal of improving the development of IoT applications. Accordingly, these GPLs 
are not well suited to address the challenges of developing IoT systems [32]. 
According to [32], the differences to programming traditional applications like web 
applications include, among other things, multidevice programming, the always-on 
nature of the system, heterogeneity, and the need to write fault-tolerant software. 

In contrast to GPLs, domain-specific (modelling) languages often focus on 
solving a specific problem. Such modelling languages raise the level of abstraction, 
allowing certain aspects of development to be solved systematically in a way that 
GPLs cannot, since they must provide a certain level of generality. In the last 
decade, quite a few modelling and programming languages have been published 
for the development of IoT applications, including ThingML [13, 24], Ericsson’s 
Calvin [3, 28, 29], Eclipse Mita [11], CapeCode [4], FRASAD [26], and Node-
RED [27]. However, these languages often offer only a low level of abstraction [9], 
ultimately leaving the complexity of challenges such as multidevice programming 
to developers or focus only on early development phases and mostly neglect 
deployment. 

In this chapter, we present MontiThings, an ecosystem for the model-driven 
IoT application development that covers the life cycle from initial prototypes to 
deployment on IoT devices to analysis of deployed applications. MontiThings 
consists of several modelling languages that clearly separate the business logic from 
the technical aspects of development. In doing so, MontiThings supports developers 
through various mechanisms in the development of error-resilient applications. In 
the event that errors do occur, MontiThings offers various analysis procedures. 
Since different instances of an IoT system can differ greatly from each other, 
MontiThings offers device owners the possibility to influence the deployment. In 
its app store concept, MontiThings also decouples the software from the hardware 
development, thus perspectively avoiding e-waste and security problems caused by 
outdated software or required cloud services discontinued by the manufacturer. 

Figure 1 provides a brief overview of the MontiThings ecosystem. At design 
time, the IoT developers are developing various artifacts. Through MontiThings 
C&C architectures, the business logic of the application can be defined. Data 
structures are specified using class diagrams. If the MontiThings C&C language
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is unsuitable to express a certain behavior, handwritten code in a GPL can be used 
as a supplement. Tagging languages can be used to define additional functionalities 
such as digital twins. In addition to these platform-independent artifacts, platform-
specific artifacts, e.g., certain libraries for controlling a sensor, can also be used. All 
these artifacts are uploaded as input to an online repository (e.g., GitLab). There, a 
Continuous integration (CI) pipeline checks the artifacts, performs model-to-model 
transformations if necessary (e.g., to add components for digital twins), and then 
generates C.++ code from the models. The generated code is linked against an RTE 
that provides common functionality such as communication between components. 
The generated code is then containerized and offered via a registry. From there, 
the IoT devices download the container images relevant to them. The Deployment 
Manager decides which images are relevant in each case. The Deployment Manager 
is one of several additional services that are operated at runtime alongside the 
actual application. These additional services enable communication between the 
components, provide digital twins, or offer analysis services, for example. 

The rest of this chapter presents some parts of MontiThings in more detail: 
Sec. 2 first introduces the MontiThings language family. Sec. 3 then explains 
MontiThings’ deployment algorithm. After that, Sec. 4 shows how tagging can be 
used to add digital twins to the application. Sec. 5 introduces MontiThings’ app 
store concept. Sec. 6 shows different methods for error handling and analysis. Sec. 7 
concludes. The MontiThings ecosystem can only be briefly described in this chapter. 
Please find additional information on the respective papers [6, 17–20, 20, 22] and 
dissertation [16]. 

2 The MontiThings Language Family 

The core of MontiThings is a C&C language. This language is used to describe 
the business logic of IoT applications. For this purpose, IoT developers specify 
components that exchange data with other components via typed and directed ports. 
Instances of the components are connected to each other via connectors. 

Figure 2 shows an example of such an application. The example shows a section 
of a fire alarm system. MontiThings uses both a textual and a graphical syntax. 
However, only the textual models are actually processed. The graphical models exist 
only for better understanding. Thus, the top two models are therefore two different 
representations of the same FireAlarm component. 

The behavior of a component can be defined in four different ways: 

1. By instantiating subcomponents and connecting them to the ports of the 
component instantiating them, 

2. through a Java-like behavior language, 
3. using statecharts, 
4. using handwritten GPL code (e.g., in C.++ or Python).
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Fig. 2 An example of the graphical and textual syntax of MontiThings. The graphical syntax is 
only for better comprehensibility. Only the textual version is parsed. Figure adapted from [20] 

Components that define their behavior through subcomponents are also called 
composed components. Components that describe their behavior via one of the other 
three methods are also called atomic components. 

In the graphical syntax, one can see a difference between black and white ports. 
White ports represent a port that exchanges data with other components. Black 
ports represent a port for which the IoT developers have stored handwritten code. 
This handwritten code enables the port to access the hardware (e.g., a sensor). In 
the textual syntax, however, there is no difference between black and white ports. 
This makes it possible to use an override mechanism similar to that used by object-
oriented languages to override base class methods in subclasses. If a port for which
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Fig. 3 Overview of languages from the MontiVerse incorporated by MontiThings’ core language. 
Figure taken from [19] 

handwritten code exists is connected using a connector, the handwritten code is 
automatically ignored, and only the connector is considered. This mechanism makes 
it easier to reuse components in different contexts. For example, a component 
that accesses hardware can be connected in the context of a test case with mock 
components that take on the role of the real hardware for the test. 

MontiThings also serves as an example of how the MontiCore language work-
bench [15] can be used to build large languages. In total, MontiThings combines 46 
grammars from the MontiCore language library in addition to its own grammars. 
An overview can be found in Fig. 3. Besides MontiArc, which is the basis for 
MontiThings, the type system and the expressions are especially worth mentioning. 
MontiThings reuses the primitive types of MontiCore. They are extended by the 
types of the International System of Units (SI) Units language. Hereby, it is possible 
to use SI Units like primitive data types. This can be seen, for example, in the 
middle model of Fig. 2, where . ◦C is used like a normal data type. If two compatible 
but different types are to be converted into each other (e.g., km/h and m/s), 
MontiThings can automatically convert the values into each other in the background. 
This makes components more flexible to use, since the types of connected ports do 
not have to match but only have to be compatible to each other. If more complex data 
types are to be used, they can be defined via class diagrams of the Class diagrams 
for analysis (CD4A) project. MontiThings can import the symbols of such class 
diagrams and thus make them available to the components. These types can be 
instantiated using an object diagram-like syntax similar to Go’s composite literals.1 

Furthermore, MontiThings uses the Object constraint language (OCL) for  
expressions. The main use case here is to enable IoT developers to describe pre- and 
postconditions for component behavior. If an error is detected, the execution can

1 https://go.dev/ref/spec. 

https://go.dev/ref/spec
https://go.dev/ref/spec
https://go.dev/ref/spec
https://go.dev/ref/spec
https://go.dev/ref/spec
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either be aborted at this point or a behavior can be defined to handle the exception. 
For example, a default value or the last measured value could be used if a sensor 
value deviates too much from the expected range. Parts of the OCL can also be used 
within the Java-like behavioral language at points where Boolean expressions are 
provided. For example, an if condition can be specified using the OCL. 

Further language features of MontiThings’ core language such as the definition 
of initial behavior, periodic behavior, or dynamics can be found in [16]. 

Besides the C&C language, the MontiThings project consists of other languages. 
The MontiThings Configuration Language (MTCFG, bottom model of Fig. 2) is a  
tagging language that can be used to customize components depending on their 
target platform. For example, different code templates can be selected for different 
platforms (e.g., Arduino vs. Raspberry Pi). Technical requirements can also be 
specified here (cf. Sec. 3). 

Furthermore, MontiThings includes a language for specifying test cases based 
on [14]. Figure 4 gives an example of this language. Again, the graphical syntax 
is only for easier comprehension. MontiThings only parses textual models. Tech-
nically, MontiThings uses the test models to generate C.++ tests written against 
the GoogleTest framework. Based on MontiCore’s sequence diagram language, the 

Fig. 4 White box test cases can be specified in the form of sequence diagrams that describe the 
message exchange between component instances. The graphical syntax of placing ports below 
components is taken from [14]. Figure taken from [16]
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desired interaction between subcomponent instances of a composed component 
is represented in a sequence diagram. Of course, it is also possible to omit the 
specification of the inner workings and define a pure blackbox test where only 
the inputs and outputs are specified. In the depicted example, a smoke detector 
senses a voltage of 3.8 V and decides based on this voltage that there is a fire and 
informs the FireDetector’s in1 port about it. After a maximum delay of 2 s, the 
FireDetector must have sent a message to the alarm port of the FireAlarm 
component. Then the temperature sensor detects a temperature of .32 ◦C and 
informs the FireDetector about this. Nevertheless, the FireDetector does 
not change its decision as it still has sufficient evidence of a fire based on the 
SmokeDetector’s earlier message. 

3 Requirement-Based Self-Adaptive Deployment 

IoT applications are often distributed applications. Partial applications must be 
deployed to a large number of IoT devices. In the same way, parts of applications 
can also be deployed to a cloud. The interaction of the IoT devices and the cloud 
results in the overall business logic. Furthermore, IoT applications can also include 
user interfaces via which the data of the application can be viewed or commands 
can be sent to the application. Such graphical user interfaces are not considered in 
this chapter. 

IoT devices can be very different from each other. In addition to different 
computing power, they can also have different sensors and actuators. Consequently, 
the sub-applications cannot be deployed arbitrarily on the IoT devices. Instead, 
deployment requires precise planning of which devices should run which software. 
In addition to the purely technical framework conditions, the personal wishes of the 
device owners also play a role. For example, a device owner may wish not to install 
camera software provided by a social network on the devices in his bathroom. Legal 
requirements can also play a role. For example, in some countries, it is necessary 
to install a fire alarm in certain living spaces. A requirement could therefore be to 
install a fire alarm in every room, for example. 

Furthermore, the deployment of IoT applications is not necessarily static. One 
reason for this is that IoT devices—unlike a television, for example, which is sold 
as a complete product—are often sold in extensible form. Many people initially buy 
a small number of IoT devices. If these devices prove successful, more devices are 
purchased. In this way, the IoT system is continuously expanded. The deployment 
of the software must adapt to these changes in the hardware accordingly. On the 
other hand, IoT devices can also fail. IoT devices often consist of inexpensive 
hardware and are often exposed to harsh environmental conditions. These and other 
factors favor a failure of the devices. Furthermore, IoT devices can of course also 
be deliberately removed by their owners. If an IoT device leaves the system, the 
deployment may have to be adjusted accordingly.
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Fig. 5 The deployment manager generates Prolog code that calculates which IoT devices execute 
which images from the container registry based on technical requirements of the components, 
requirements of the device owners, and information about the IoT devices. Figure taken from [22] 

MontiThings relies on a requirement-based deployment process. Figure 5 gives 
an overview of this deployment process. MontiThings distinguishes between tech-
nical requirements and local requirements. Technical requirements define the 
properties that a component must technically fulfill in order to be able to execute 
a component. They are defined by the IoT developers at design time. Local 
requirements, on the other hand, refer to the locality in which a component is 
executed. These requirements can be different for each instance of an application. 
They are defined by the device owners. 

The technical and local requirements are merged in the Deployment Manager. 
In addition, the Deployment Manager receives information about the devices used 
in an IoT system. The Deployment Manager uses all this information to generate 
Prolog code that can be used to calculate a distribution of the software components 
to the IoT devices. In the process, Prolog facts are generated from the information 
about the IoT devices, and queries are generated from the requirements. A special 
feature here is that the generated Prolog code can not only calculate a distribution of 
the software components to the IoT devices but can also make counterproposals 
in the case of unfulfillable requirements. In particular, the purchase of new IoT 
devices and the modification (i.e., weakening) of the requirements can be suggested. 
Once a deployment is agreed upon with the device owner, the Deployment Manager 
communicates it to the IoT devices, which then download the (Docker) containers 
assigned to them according to the deployment. 

Figure 6 shows the deployment process in more detail. First, IoT developers 
model their IoT components using MontiThings. In particular, they also specify 
the technical requirements of the components. If necessary, they also implement 
handwritten code to implement the behavior of the components. The IoT developers 
then upload all these artifacts to an online repository. There, a CI pipeline distributes 
the uploaded artifacts. First, the artifacts are checked for validity. If errors are
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Fig. 6 Deployment process. The artifacts of the IoT developers are checked and provided by a 
CI/CD pipeline. The device owners negotiate with the deployment manager which devices should 
run which software. Figure taken from [20] 

found, the IoT developers are asked to correct the errors with a corresponding error 
message. If the artifacts are accepted as valid, they are then used for code generation. 
The generated code is compiled and packaged into containers. 

The device owners who want to deploy the application on their infrastructure 
must first specify their local requirements. MontiThings currently supports the 
following four types of local requirements: 

1. A component shall (not) be deployed at a specific location, 
2. A location requires a (minimum, maximum, or exact) number of components to 

be deployed there, 
3. Two components may not be deployed to the same device, 
4. A component requires a certain number of components (optionally in a similar 

location, i.e., the same room, floor, or building). 

The Deployment Manager first validates these local requirements. If a valid 
deployment can be found taking into account the requirements, the device owners 
can decide whether they want to install this deployment on their devices. If no 
deployment can be found, the Deployment Manager suggests changes to the device 
owners. It is always possible to reject the proposed changes. In this case, the 
Deployment Manager calculates another proposal. In order not to overload the 
device owners with very similar proposals, the proposals are filtered so that the 
rejection of a proposal automatically counts as a rejection of all supersets of this 
proposal. For example, if the device owners refuse to buy a new fire alarm for the 
bathroom, a theoretically possible proposal to buy one fire alarm for the bathroom 
and one for the kitchen is automatically rejected.
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Fig. 7 Overview of the Prolog code generated by Deployment Manager. Left: high-level work-
flow. Right: applying a single negotiable requirement. Figure taken from [20] 

The process of how the automatically generated Prolog code processes the 
requirements is shown in more detail in Fig. 7. First, Prolog searches the list of 
all known IoT devices for the devices that are currently online and thus available for 
deployment. Based on this list, it then identifies the devices that meet the technical 
requirements. Since the IoT developers are not involved in the deployment process, 
their technical requirements are considered non-negotiable in the process. If a device 
does not meet the technical requirements of a component, it cannot execute the 
component. Device owners cannot overrule this decision. After applying the non-
negotiable requirements, the local requirements are checked. These are assumed 
to be negotiable because the equipment owners are involved in the deployment 
process and can respond to counterproposals. The reaction includes in particular 
the possibility to reject all counterproposals and to cancel the deployment, i.e., to 
consider the local requirements as non-negotiable as well. 

When Prolog considers a local requirement, it first checks whether the require-
ment is already satisfied by the current allocation of components to IoT devices 
(1 in Fig. 7). If this is the case, one can proceed to the next requirement. If the 
requirement is not fulfilled, it is first checked whether too many IoT devices are 
currently executing the corresponding component (2). This can occur, for example,
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if device owners require a particular component to be deployed a maximum of 
5 times. If this is the case, components are removed from IoT devices using 
backtracking, and it is checked whether the requirement can be fulfilled in this 
way while complying with the previously processed requirements (4 and 5). If the 
component is not scheduled too often, it is handled that a component is not yet 
scheduled frequently enough. In this case, it is first checked whether the requirement 
can be met by purchasing more hardware (3). Only if this is not the case is it 
suggested that requirements be reduced (6 and 7). In order not to overload the device 
owners with requests that may not have any influence on the ultimate fulfillment of 
the deployment later in the process, the modification proposals are first collected 
before they are presented to the device owners until a theoretically valid deployment 
is found. The Deployment Manager implicitly assumes that all change requests are 
accepted. Should a valid deployment be found with this, the proposed changes will 
be offered to the device owners in a bundle. 

Creating local requirements requires some knowledge of the software com-
ponents of the IoT system. This is not desirable in some cases. On the one 
hand, because it requires IoT developers to disclose their software architecture 
to a certain extent and, on the other hand, because it requires training from 
device owners. Therefore, to increase the level of abstraction, MontiThings also 
offers an approach based on feature diagrams. Here, IoT developers create a 
feature diagram that models the features they envision in their application and 
their dependencies on each other. They use tagging to relate the features to the 
software components. This is illustrated in Fig. 8. This enables device owners to 
select the desired features based on the abstract feature diagram. Furthermore, 
device owners can run automatic analyses through which feature configurations are 
automatically calculated. For example, the largest possible feature configuration can 
be calculated or the largest possible feature configuration that can be deployed with 
the existing IoT devices. Behind the feature analyses lies the previously described 
requirements-based mechanism, which generates Prolog code from requirements. 

Fig. 8 Feature Diagrams can be used to tag architecture models. In this way, multiple components 
can be combined into a common feature. Device owners can thus select the desired features at a 
higher level of abstraction. Figure taken from [6]
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For this purpose, requirements are generated from the feature configurations, e.g., 
that a certain component must be deployed in the system so that a certain feature is 
fulfilled. 

4 Synthesizing Digital Twins 

Once the components are deployed to the target infrastructure, the next challenge is 
to observe or influence the system. For this purpose, digital twins can be created. In 
this chapter, we will refer to the definition of digital twins that the Chair of Software 
Engineering has developed through several years of discussions and a systematic 
literature review [8]: 

Definition 1 “Digital Twin, V2.1 
A digital twin of a system consists of 

• a set of models of the system and 
• a set of digital shadows, both of which are purposefully updated on a regular 

basis, and 
• provides a set of services to use both purposefully with respect to the original 

system. 

The digital twin interacts with the original system by 

• providing useful information about the system’s context and 
• sending it control commands.” [30] 

MontiThings offers the possibility to create digital twins based on class diagrams 
and C&C architecture models. The class diagram represents the data structure of a 
Digital twin information system (DTIS). In the actual implementation, the business 
logic of the system is created as usual with MontiThings. The information system is 
created with the help of MontiGem [1, 12], a tool for the model-driven creation of 
web applications. Figure 9 gives an overview of the process of synthesizing digital 
twins. After the IoT applications and the web application, and thus MontiThings 
models and class diagrams, have been developed (step 1 and 2 in Fig. 9), a system 
integrator connects the models together (step 3). For this purpose, he connects 
attributes of the class diagram with ports of the MontiThings architecture by means 
of tagging. 

For this purpose, let’s look at exemplary models of a fire extinguishing system 
in Fig. 10. The associated tagging model that the system integrator uses to connect 
the two models is shown in Fig. 11. First, the integrator uses the identify 
keyword to distinguish the different IoT devices from the web system. This can 
be done either by an entry in the database (especially if the digital twin is created 
before the real system) (ll. 1–5) or by the system automatically assigning identifiers 
to the IoT devices and storing them in the database (ll. 6–8). After that, the ports 
of the architecture models are connected to the attributes of the class diagram. The 
direction plays a role here. On the one hand, the real system can have data sent to its
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Fig. 10 An example of a fire alarm application. Left: the data structure of the web application. 
Right: the model of the IoT application. Figure taken from [17] 

Fig. 11 The tagging language associates attributes of a class diagram with ports of a C&C 
architecture (ll. 9-18). Additionally, it defines how the IoT devices identify themselves to the web 
application (ll. 1-8). Figure taken from [17]
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Fig. 12 Model-to-model transformations add components to the C&C architecture that synchro-
nize with the digital twin. Elements created by model-to-model transformations are shown in bold. 
Figure adapted from [17] 

digital twin by sending data from the port to the attribute in the class diagram (and 
thus to the database generated from it) (ll. 9–13). On the other hand, the digital twin 
can send data to its real counterpart by defining the reverse direction in the tagging 
(ll. 14–18). 

Once the models are connected, the next step is to process them through model-
to-model transformations (step 4 in Fig. 9). The transformations give the models 
additional elements that keep the real system and its twin in sync with each 
other. In the following, we will look at the transformations of the architecture. 
Interested readers can find a more detailed explanation of the method and the 
transformations of the web system in [17]. Figure 12 gives an overview of the 
architecture transformations. We distinguish three cases: 

1. Connecting an outgoing port 
2. Connecting an incoming port that currently has no incoming connectors 
3. Connecting an incoming port that already has an incoming connector 

In the first case, we add a new component via transformation that receives all data 
sent through the port and forwards it to the digital twin. In the second case, we 
do the reverse and add a component that receives data from the digital twin and 
forwards it to the port. In the third case, the already-existing connector must be 
resolved. We replace it with a new Injector component. On the one hand, this 
contains a Transceiver component that can both forward data to the digital twin 
and receive data from it. The situation can arise here that the value of the digital 
twin does not correspond to the value that the component receives via the connector 
replaced by the transformation. To resolve this situation, the Injector component 
includes a MUX that decides whether to use the data from the digital twin or from 
the real system. Users can control this MUX in the web interface. It enables them to 
prevent their desired values from being overwritten by the real system in the next
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moment. For example, in our fire alarm, a test alarm can be triggered even if the 
sensors report that there is no fire, and the alarm should therefore be switched off. 

5 IoT App Store Concept 

When IoT devices are sold today, they are usually sold as a single product consisting 
of hardware and software. This gives the provider a great degree of control over 
the IoT devices. Users are usually not free to install new software on their IoT 
devices. If the manufacturer of the IoT devices now decides to change the rules 
of the game after the devices have been purchased, e.g., to introduce a subscription 
model, the user usually has little recourse against this. If the device manufacturer 
decides to shut down the cloud services required to operate the devices or simply 
goes bankrupt, the devices can become electronic waste. This practice is neither 
economically nor ecologically sustainable. 

One way to solve this problem is to introduce an app store that would allow 
software to be installed independently of the hardware manufacturer. Such an 
IoT app store has already been proposed by various scientists, e.g., [2, 5, 25]. 
Consequently, MontiThings also includes a concept for an app store. Figure 13 
shows an overview of MontiThings’ app store concept. This concept is mainly 
based on the deployment algorithm already presented. A key feature of the concept 
is the clear separation between hardware and software development. The software 
developer specifies his application as previously introduced by C&C architecture 
models. In addition, their hardware requirements are specified for each component. 
The hardware requirements are specified thereby with the help of OCL. Thus, 
for example, also ranges of hardware requirements can be defined, e.g., a camera 
with at least 4 megapixels (instead of exactly 4 megapixels). Optionally, other 
models such as a feature diagram can be used to define high-level features. The 
applications specified in this way are transformed into executable container images 
by a CI/Continuous deployment (CD) pipeline. 

On the hardware side, device developers develop their IoT devices and the 
corresponding drivers to access their devices. In addition, they specify the properties 
of their IoT devices in the form of an object diagram. On the software side, the 
IoT devices have the following software stack: A container engine executes the 
containers of the actual IoT application as specified by the deployment algorithm. A 
message broker enables the device-internal communication between the application 
containers and the hardware drivers. The hardware access manager coordinates 
which application containers access which sensors and actuators. This is particularly 
relevant if there is more than one instance of a hardware component, e.g., four 
weight sensors. It ensures that the application containers do not conflict with each 
other. The hardware access manager tells the application containers on which topics 
they can communicate with the requested hardware. The hardware access manager 
is then no longer involved in the subsequent data exchange.
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To determine which hardware can execute which software components, the 
deployment algorithm must now check the OCL requirements of the software 
against the object diagrams that describe the hardware. For integration into our 
deployment algorithm, both are transformed into Prolog. The details can be found 
in [6]. To enable the software and hardware developers to match OCL and object 
diagrams in the end, even if the developers do not know each other, the app store 
provides a hardware ontology in the form of a class diagram. This class diagram 
specifies which types of hardware the app store expects in principle and which 
properties must be defined for such hardware. For example, it can be defined that 
cameras are a type of sensor and a width and height in pixels must be specified 
for each of the images shot. The rest of the deployment process then takes place 
as usual, i.e., device owners can specify additional local rules in a web interface. 
The deployment algorithm then decides which IoT devices should execute which 
software components and the IoT devices download the software accordingly from 
a container registry. 

6 Failure Handling in MontiThings Applications 

IoT devices are often based on low-cost hardware. One disadvantage of this 
hardware is that it is not particularly protected against failures or errors. IoT software 
must therefore be able to deal with the fact that errors occur. Such errors range from 
incorrect sensor values to completely failing devices. 

MontiThings’ C&C models describe the business logic of IoT applications. 
Technical details are not visible at this level of abstraction. Figure 14 shows an 
example of this. Even if the application has been modeled correctly in itself, 
various errors can occur at runtime due to unreliable hardware. Sensors can provide 
incorrect readings, affecting the flow of the system. Similarly, software errors such 
as incorrectly set clocks can affect the system. Network problems can delay or 
completely prevent the delivery of messages. This is especially noticeable on mobile 
devices that must rely on a cellular connection. 

Frameworks for developing IoT applications must therefore be able to handle 
errors. Thus, MontiThings provides several mechanisms for analyzing and handling 
errors, which are summarized in the remainder of this section. 

6.1 Record and Replay for Handling Failing Devices 

The strongest form of failure of an IoT device is its complete failure. MontiThings 
deployment algorithm can detect failing devices by missing heartbeat messages. 
When a device fails, the components that the device was executing before its failure 
(if possible) are reassigned to another IoT device. However, this new device is not 
in the same state as the failed device before its failure.
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Fig. 14 (Hardware) errors that are not caused by the business logic may not be detected directly 
in the C&C architecture. Figure taken from [18] 

Fig. 15 If components fail (due to hardware defects), the components that replace them are not 
necessarily in the same state. MontiThings restores the state of the failed component by resending 
messages sent to the failed component to the new component. Figure taken from [22] 

To address the issue of complete hardware failure, MontiThings uses record-
and-replay. Figure 15 shows an overview of this. MontiThings continuously records 
the messages exchanged between the devices during runtime. If one device fails, 
the deployment algorithm starts the component on another device. When the new 
component is launched, incoming connectors are first connected to a replayer. The 
recorded messages are then used to put the new component in the state of the failed 
component. The replayer plays back the recorded messages. Once the messages 
are replayed and thus the state is restored, the ports are connected to the rest. In 
particular, the outgoing ports are connected only now, so that the messages sent as 
a by-product during state recovery do not affect the rest of the system. 

This procedure has a complexity of .O(n), where n is the number of messages. 
To improve this, components can periodically serialize their state and store it in 
the record-and-replay system. If a component fails, only the constant number of 
messages since the last state serialization has to be replayed. Thus the complexity 
sinks to .O(1).
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6.2 Recording and Transformation-Based Replaying 

In less severe failure cases, only parts of the IoT system fail or misbehave. One 
problem in analyzing such errors is that they often cannot be reproduced under 
laboratory conditions. To analyze such faults, MontiThings therefore offers the 
possibility to record the behavior of the system and reproduce it later under 
deterministic conditions. Figure 16 shows an overview of this procedure. The 
procedure consists of the following steps: 

1. IoT developers model their application through a C&C architecture as usual. 
2. the developers’ models are used to generate (C.++) code that is executed by the 

IoT devices. 
3. during the runtime of the system, a recorder records all messages exchanged 

between the devices. Metadata is also recorded. This includes, for example, 
what time elapsed between sending and receiving a message. As a result, system 
traces are created that contain the recorded system behavior. 

4. a transformation engine uses the architecture models originally used by the 
generator and the system traces to create a new architecture model, the 
reproduction model. This model is a modified form of the original model that 
allows the replay of the system traces. 

5. from the reproduction model, a new (non-distributed) application and (C++) 
code are created. Unlike the original version of the application, this is not a 
distributed application but a single binary. We call this application Reproduction 
Executable. 

6. the Reproduction Executable can now be analyzed by the IoT developer using 
the usual debugging tools such as gdb. In particular, he now also has the 
possibility, for example, to set breakpoints and thus stop the entire system. 
Inspecting the global state of the system like this is not easily possible in a 
distributed system [31]. 

In step 4, the reproduction model was created from the architecture and system 
traces. Figure 17 gives a detailed insight into the relationship between the original 
model and the reproduction model. The transformation engine looks for places in 
the original model where the hardware or the environment affects the execution of 
the IoT system. At these points, the corresponding model elements are replaced 
or extended in such a way that the influences are removed and deterministically 
reproduced for the reproduction. In particular, sensors and actuators are replaced 
by components. By the mechanism described in Sec. 2, it is sufficient to insert new 
components and connect their ports to the black ports for this purpose. The new 
components then mock the real hardware by, for example, replaying recorded sensor 
values at the right time. Where components are connected, new components are 
introduced that simulate the recorded network properties. This means in particular 
delaying or losing messages. Where components execute a computation (atomic 
components), a wrapper is introduced around the components, which maps the
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Fig. 17 The reproduction model (top) replaces hardware- or environment-dependent model 
elements in the original model (bottom) with elements that replay the recorded data. Figure adapted 
from [18] 

delay by the computations of the processor. Further details like the handling of non-
deterministic computations can be read in [18]. 

6.3 Web-Based Failure Tracing 

The method presented in the previous section analyzes faults in an environment 
separated from the real system. Another popular option for debugging is the analysis 
of logs. The difficulty with IoT devices is that they are distributed applications. 
The logs of the individual IoT devices are therefore not necessarily available in a 
coherent form. If errors occur, such as clocks not being perfectly synchronized, the 
logs can be misleading. In order to analyze errors, a large amount of additional 
information must be logged that may not be relevant to the analysis of the problem 
at hand. These log messages further complicate troubleshooting by distracting from 
the relevant messages. 

In practice, error analysis often takes the form of noticing misbehavior at a certain 
point. In the best case, this misbehavior can be detected in the logs. From this point, 
the developers perform a reverse search and try to identify how the error occurred. If 
the application is modeled in the form of a C&C application, the modeled data flow 
yields additional information that can narrow down the error search: by knowing 
which component exchanges data with which other components, log messages can 
be filtered.
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Fig. 18 MontiThings correlates log messages from interacting components. Thus, in large logs, it 
is possible to trace which logs have led to the generation of a log message. Figure taken from [21] 
and based on [23] 

MontiThings offers a tool for this that lets developers interact with the real system 
at runtime. The logs of each individual component are displayed. If a developer 
clicks on a log message, it is displayed which other log messages are related to 
this log message. For this purpose, a graph is built that graphically represents the 
architecture, reducing it to the relevant communication paths. 

Technically, this works as shown in Fig. 18. When a message arrives at a port, 
MontiThings starts to bundle log messages. A unique ID is assigned for each bundle. 
If the component now sends a message on a port in response to the incoming 
message, the ID of the current bundle of log messages is also sent. In this way, 
a graph structure of bundles of log messages can be created. When a developer 
asks for the origin of a particular log message, the log system communicates with 
the components to get the log messages associated with the IDs. Details about this 
process can be found in [21].
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7 Conclusion 

Developing distributed IoT applications based on heterogeneous, error-prone IoT 
devices is complex. GPLs are not designed for this task. Model-driven approaches 
promise to make this problem manageable through abstraction. In this chapter, 
we presented MontiThings, a model-driven ecosystem for developing, deploying, 
and analyzing IoT applications. MontiThings also outlines an app store concept 
that decouples hardware and software development. Overall, MontiThings’ deploy-
ment algorithm and app store concept help give device owners more control 
over their devices. By negotiating deployment with device owners, the deploy-
ment algorithm increases the flexibility of IoT systems. Possible future work 
includes more automated exploitation of cloud services, integration of user-defined 
behavior (including, e.g., through Large Language Models), and generation of user-
understandable explanations for system behavior. 

Source Code 

MontiThings is available on GitHub: https://github.com/MontiCore/montithings. 
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Security Compliance in Model-Driven 
Software Development 

Sven Peldszus 

Abstract To ensure the security of a software system, it is vital to keep up 
with changing security precautions, attacks, and mitigations. Although model-
based development enables addressing security already at design-time, design 
models are often inconsistent with the implementation or among themselves. 
Such inconsistencies hinder the effective realization and verification of secure 
software systems. In addition, variants of software systems are another burden 
to developing secure systems. Vulnerabilities must be identified and fixed on 
all variants or else attackers could be well-guided in attacking unfixed variants. 
To ensure security in this context, in the thesis (Peldszus, Security Compliance 
in Model-driven Development of Software Systems in Presence of Long-Term 
Evolution and Variants. Springer, Berlin; 2022), we present GRaViTY, an approach 
that allows security experts to specify security requirements on the most suitable 
system representation. To preserve security, based on continuous automated change 
propagation, GRaViTY automatically checks all system representations against 
these security requirements. To systematically improve the object-oriented design 
of a software-intensive system, GRaViTY provides security-preserving refactorings. 
For both continuous security compliance checks and refactorings, we show the 
application to variant-rich software systems. To support legacy systems, GRaV-
iTY allows to automatically reverse-engineer variability-aware UML models and 
semi-automatically map existing design models to the implementation. Besides 
evaluations of the individual contributions, we demonstrate applicability of the 
approach in two real-world case studies, the iTrust electronics health records system 
and the Eclipse Secure Storage. This book chapter provides a summary of the thesis, 
focusing on the addressed problems, identified and answered research questions, 
the general solution, and its application of it to two case studies. For details on the 
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individual solutions, please refer to the thesis and the corresponding publications 
referenced in this book chapter. 

1 Introduction 

Software has become a considerable part of today’s life, and we rely on it to be 
safe and secure and respect our privacy. Even in critical domains like healthcare, 
modern medical imaging devices are exposed to the Internet. Furthermore, software 
systems tend to be used on a long-term basis in environments prone to changes, 
and at the same time successors of a software system are developed rapidly. A 
successor is often a variant of the previous system as significant parts are reused. 
Besides, multiple variants of a software system can exist at the same time. In all 
cases, to ensure the security of a software-intensive system, all changes, e.g., due to 
maintenance or extension, have to be continuously reflected in the whole software 
system, including all variants. These circumstances result in significant challenges 
regarding the security of evolving software systems and their variants. 

Traditionally, manufacturers ensure security by implementing security standards 
such as the Common Criteria. Currently, such security standards focus more on the 
processes of how the software is developed than the concrete artifacts. Concerning 
today’s short product cycles and the vast amount of product versions, certifying each 
product manually is impossible. One missing key to improve security is integrated 
tool support covering all software development phases. Furthermore, it can already 
support avoiding security violations during implementation. 

A widely accepted development approach is Model-Driven Development (MDD) 
[3, 10] that allows planning well-structured software systems. To support evolution, 
MDD can include systematic variation points for future extensions or variants. 
Furthermore, it enables us to address security in the early phases of the software 
design using approaches such as UMLsec [14] or SecDFD [43]. Design models 
are annotated with security requirements, and the approaches provide reasoning 
about their consistency. In many domains, establishing appropriately documented 
design-time artifacts is mandatory due to legal requirements, e.g., according to the 
ISO/IEC 62304 for medical device software. Unfortunately, these artifacts are often 
inconsistent with the implementation [11], eventually causing security issues and a 
significant effort for harmonizing all artifacts before a certification. 

One reason for this inconsistency is the way software is developed. Programming 
practices involve successive steps of edits, updates, and refinements to improve the 
implementation and incrementally meet ever-changing requirements [36]. Unfortu-
nately, these changes are often not reflected in the design-time models. In addition, 
this continuous evolution causes internal decay that can lead software systems to end 
up in incomprehensible or even inconsistent states [23]. This continuous evolution 
increases the effort required to extend and maintain a software system and paves 
the way for security problems. Ultimately, this leads to certification issues as the 
implementation does not comply with the security design.



Security Compliance in Model-Driven Software Development 75

In practice, software systems need frequent restructuring to keep them maintain-
able [9]. To support the efficient restructuring of a software system, refactorings 
have been proposed and documented in a human-readable form. Despite intense 
studies and widespread application, a verifiable specification of refactoring oper-
ations and the execution of this specification is still an open problem. The same 
applies to the interaction of refactorings with nonfunctional properties of the 
software system, such as security. 

In summary, the increasing amount of security-critical data and the faster-
changing environments are a burden to develop secure software systems. However, 
there are already some approaches to address the individual sub-problems. However, 
there is a lack of holistic security engineering support throughout the development 
life cycle, especially with respect to tracing security requirements and verifying the 
compliance of all artifacts produced with them. 

2 Background and Problem Identification 

Software security has been addressed in various ways, but the systematic develop-
ment of secure software-intensive systems is still not fully addressed when it comes 
to supporting the entire software development life cycle, as evidenced by frequent 
news of security incidents. Considering existing solutions, we identify four main 
reasons that hinder the effective development of secure software systems. 

2.1 Non-integrated Solutions 

Several approaches have been developed to support the development of secure 
software systems. MDD-based approaches allow planning of the software system 
and allow developers to incorporate security considerations from the beginning, but 
only abstractly [14, 43]. Similarly, common threat modeling approaches, such as 
STRIDE [40], abstractly model the system to identify security threats. In contrast, 
implementation-level approaches support the verification of concrete aspects, such 
as the correct use of cryptographic APIs [15], but not whether these are used 
where needed. In the best case, design-time security considerations should be reused 
until the final product is certified, but in practice, there are many non-integrated 
solutions. Security-related information collected in design or threat models must be 
manually transferred to the implementation in order to use appropriate security tools 
or perform manual code reviews.
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2.2 Inconsistency and Missing Traceability 

Often, the initial security requirements of a software-intensive system and the 
documentation of the system are inconsistent with the implementation, making it 
difficult to reason about security at the system level. Checking whether an object 
in a medical management system contains personal or medical information, and the 
resulting security requirements, can become a nontrivial task. To enable traceability, 
the continuous changes in security assumptions and design must be reflected in 
both the design-time models and the implementation. Currently, developers must 
manually trace between the various artifacts to identify and apply the necessary 
changes in the right places. In practice, this often leads to models not being used at 
all, despite their obvious benefits, such as systematic threat modeling planning for 
secure system designs. Therefore, we need to maintain correspondences between 
artifacts used in all development phases and automate the underlying mapping 
process. 

2.3 Security-Aware Restructuring 

As software systems are continuously subject to changes, we have to continuously 
check their security compliance, e.g., with design-time security requirements. In 
the best case, we can evaluate the desired change before applying it. Current 
refactoring approaches do not consider nonfunctional properties such as security. 
We can only evaluate the impact of a refactoring on security aspects after executing 
the refactoring, e.g., to notice that medical information has been moved to an object 
that is sent over a non-encrypted connection. This entails the risk of not being 
able to undo the change entirely. In summary, security-preserving restructurings are 
required to support the restructuring of security-critical systems without requiring a 
complete re-certification. If changes cannot be checked upfront, we need means to 
efficiently check only security properties that might be affected. 

2.4 Variant-Rich Software Systems 

While existing security approaches can be applied to each product or variant of a 
software product line, due to the vast amount of possible product configurations, 
this is not feasible within a reasonable time. We need means for applying security 
compliance checks and security-preserving refactorings to software product lines 
without enumerating every single variant. Consequently, the intended measures 
discussed above must also support software systems with many variants.
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3 Research Questions 

Based on the problems identified, we formulate five research questions that are 
answered in the thesis [26]. Figure 1 maps the research questions to the development 
artifacts considered by GRaViTY. We introduce the research questions discussed in 
the thesis in detail in what follows. 

3.1 RQ1: How Can Security Requirements Be Traced Among 
System Representations Throughout the Development 
Process? 

During the development of a software system, various artifacts are produced, 
such as models or source code. Following security by design [14, 38], security 
requirements are already planned and validated on the early design artifacts. These 
security requirements specified on model elements have to be addressed on later 
models by planning concrete security measures or their concrete realization in the 
implementation. To ensure the security of a software system, we need to trace the 
specified security requirements through all artifacts created. In doing so, we have to 
take into account continuous changes to the software system, e.g., due to ongoing 
development activities or maintenance, under which we have to preserve the 
validity of the created trace links. Furthermore, we need to identify an appropriate 
granularity of trace links to support security requirements on design-time models 
and code. Early design-time models are at a different level of abstraction than 
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the final implementation of the software system, where individual methods or 
statements may be security critical, e.g., a security requirement on a communication 
link in a deployment diagram that is reflected by a call to a cryptographic API. 

3.2 RQ2: How Can We Apply Model-Based Security 
Engineering to Legacy Projects That Have No or 
Disconnected Design Models? 

Many software systems that were developed decades ago are still in use and are more 
or less actively maintained. For such legacy systems, often, no models are available, 
or the existing models have been created in the early phases of system development 
and are disconnected from the implementation. As most legacy software systems 
have not been developed using the approach presented in the thesis, the question is 
how these legacy systems can switch to using the introduced model-based security 
engineering approach for further development and maintenance. Since tracing 
between design-time models and implementation is essential, we need efficient and 
effective means, automated as much as possible, to reverse-engineer these trace links 
for legacy projects. Thereby, we distinguish between two kinds of legacy projects: 
projects that do not have design-time models and projects for which early models 
were initially created but no traces have been maintained. 

3.3 RQ3: How Can Developers Be Supported in Realizing, 
Preserving, and Enforcing Design-Time Security 
Requirements? 

Various approaches have been developed to plan the required security mechanisms 
in the early stages of software design. However, when it comes to verifying the 
implementation of security requirements in a software system, most checks have to 
be performed in manual code reviews. This is due to the local scope of individual 
security analyses and the lack of automated reuse. To effectively support developers 
in implementing and verifying design-time security, automated reuse of security 
specifications and appropriate checks for verifying security properties on other 
system representations are required. The most relevant question is what we need to 
check and where we have to check it to show that the specified security requirements 
are met. For example, a fundamental security requirement for a medical system 
is that no personal or medical data is accessible to unauthorized entities. In the 
design models, we can identify what we consider to be such sensitive data and 
plan appropriate measures at an abstract level, e.g., that only certain parts in a 
security core of the application are allowed to access this information and that it 
must be encrypted when it leaves that core. Verification of compliance involves
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a variety of checks, including dependency and taint analysis, which must be 
configured according to the specific requirements, as well as verification that the 
information is actually encrypted when required. In addition, it may not be sufficient 
to only statically check the code, as a exchanged library at deployment or a newly 
discovered attack vector may cause security violations in a software system that has 
passed all static security checks. 

3.4 RQ4: How Do Changes Affect a System’s Security 
Compliance, and How Can These Effects Be Handled? 

The development of a software system consists not only of adding new elements 
but also of modifying existing elements. Both changes require the continuous 
update of the traces studied in RQ1. However, as part of RQ1, we do not look at 
how such changes might affect security requirements. Suppose we want to guide 
developers. In that case, we have to inform them if some changes, which have 
automatically been performed by our tool support or manually by them, affect 
security requirements. For example, this is of particular interest in the certified 
software scenario [27, 31], where it has to be ensured that a change violates no 
security requirement. 

3.5 RQ5: How Can We Verify and Preserve Security 
Compliance in Variant-Rich Software Systems? 

Often, software systems come in many variants that share huge parts in common. 
Thereby, the number of possible variants can quickly reach an astronomical scale, 
making the security analysis of every single product infeasible [22]. Nevertheless, 
for every single variant or product, we have to ensure that it does not contain any 
security violation. Furthermore, we have to preserve security compliance also in 
case of changes, e.g., in case of applied restructuring operations. Here, the goal is to 
find means to apply the developed security engineering approach also to variant-rich 
software systems. 

4 Research Methodology 

To answer the presented research questions and provide a solution to the outlined 
problems, we followed the design science research methodology [6, 13, 24]. 
The goal of this research approach is to develop artifacts that overcome current 
boundaries. Thereby, new knowledge is achieved by building and investigating
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the application of the developed artifact. Accordingly, this approach requires that, 
initially, a general solution concept is developed, which is afterward implemented 
and evaluated. If necessary, the developed solution concept is adapted based on the 
observations during application and evaluation until the desired goals are met. We 
divided the topics of the thesis into small sub-problems with individual research 
questions that can be investigated separately for solving the identified problems and 
incorporated them into one approach afterward. 

5 Approach 

To overcome the outlined challenges in developing and maintaining secure software 
systems, we identified five research questions, focusing on aspects required for 
improving the model-based development and maintenance of secure variant-rich 
software systems. To allow continuous model-based security engineering, we 
mainly focus on the automated tracing of security requirements throughout the 
whole development process and their continuous verification. In general, the idea 
of the presented GRaViTY development approach is to automatically create and 
maintain detailed low-level trace links between design and code artifacts. These 
trace links are intended to be processed by the tool and not for direct manual use. 
Developers benefit from the trace links through tool support that uses them for 
automated navigation between different artifacts. In addition, trace links are used 
to propagate security-related information between models and the implementation 
of a software system. Also, the trace links allow to automatically reflect changes on 
any artifact to all other artifacts. Due to this continuous automated synchronization, 
which allows changing all artifacts of a software system at any time, the GRaViTY 
development approach supports both sequential and agile development processes. 

In this section, we discuss from a developer’s perspective how a secure software 
system can be developed with GRaViTY to overcome the identified problems. First, 
we discuss our assumptions on how to allow developers to work efficiently at the 
development of secure software systems. By doing this, we derive key ideas on 
which we will build our solution. Afterward, we show the development process for 
developing secure software systems using GRaViTY. Also, we show the provided 
tool support and how it is integrated into this process. Finally, we demonstrate the 
development using our approach from the perspective of a developer. 

5.1 Key Ideas of the GRaViTY Approach 

Developers play an essential role in the success of a software project. The more 
developers can focus on their tasks, the more efficient they can be in solving these 
tasks. The primary goal of GRaViTY is to enable the successful development and
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maintenance of secure software systems. To achieve this goal, we identified four key 
ideas to be realized in GRaViTY. 

5.1.1 Suitable Views 

The first key idea is that developers should work on the most suitable view for 
their task. For every task, there is a view in which this task can be carried out 
most effectively. For example, when a security expert is planning or updating the 
general security requirements of a software system, an abstract view of the software 
system, such as a thread model or an architectural model, is more likely to be 
appropriate than the source code with all its details. However, due to circumstances 
from the used development process or tooling, all the required information might 
not be available in this view, or the view cannot easily be created. For example, 
while a software system has initially been designed using means to specify security 
requirements and measures on abstract design-time models, such as UMLsec [14] 
or SecDFD [43], due to missing trace links, changes in the security requirements 
have to be specified on the implementation level. Such situations should be avoided 
by the design of our approach and proper tool support. Tool support must ensure 
that software developers and experts, such as security experts or software architects, 
can always work in the view of the system best suited to their task. 

5.1.2 Side Effects 

When working on their task, developers should only focus on their tasks and should 
not have to care about potential side effects. Nearly every task a developer performs 
comes with side effects she has to think about. Accordingly, these side effects draw 
attention from the main task and hinder the development. In the thesis, we explicitly 
consider two kinds of side effects. 

Local side effects: First, side effects within the artifact that a developer is 
changing, e.g., replacing a cryptographic library to better fit the needs at a 
particular location in the source code, requires also updating the other locations 
where the previous library was used. Handling such side effects is essential for 
maintaining the correct behavior of a software system. Automated tool support as 
part of a development approach can help identify such side effects. For example, 
compilers can detect calls to non-existent APIs, and UMLsec checks can detect 
side effects of model-level changes that affect design-time security requirements. 

Global side effects: Second, in addition to local side effects, there might be side 
effects on other artifacts. If these artifacts do not immediately relate to the 
correct function of the software system, developers should not have to care about 
side effects on these. For example, consider a developer optimizing a software 
system’s implementation-level design quality. Most changes might not affect the 
architecture of the software system, since they are too fine-grained and do not
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affect the borders of components. In this case, the developer should not have to 
care about the effects on the architecture during his or her task. 
However, coming back to the suitability of views, an architect should also not 
have to review the local restructurings at the implementation level of the software 
system. Side effects that occurred and changed the architectural level should be 
propagated to the architectural level. 
Furthermore, refactorings might have side effects regarding a software system’s 
security requirements, e.g., by making sensitive information accessible. Here, 
the developer should still be able to focus on the code quality, and tool support 
should take care of preventing changes with such side effects. 

To this end, with GRaViTY, we want to get one step closer to the point where 
developers do not have to think about such side effects. The ultimate goal is to 
automatically propagate all changes made by a developer to all other artifacts and 
then present the propagated changes to an appropriate expert for review. In addition, 
tool support should reduce the risk of changes leading to violations in other artifacts. 

5.1.3 Synchronization 

To avoid the individual artifacts of a software system, such as design-time models 
and code, to diverge, a continuous synchronization in the sense of reflecting every 
change on all artifacts is necessary. Keeping all artifacts synchronized in case of 
changes usually requires a significant manual effort, even when tool support is used, 
and is likely to give rise to inconsistencies. Using GRaViTY, developers should be 
able to change artifacts in arbitrary order, and their changes will be automatically 
propagated by GRaViTY for keeping all artifacts synchronized. Furthermore, this 
step is a prerequisite for allowing developers, architects, and security experts to 
work on the most suitable view of the software system as depicted in the previous 
two ideas. Accordingly, the synchronization of the artifacts should happen as far as 
possible in the background with as few user interactions as possible. 

5.1.4 Continuous Security 

To ensure the security of a software system under development, it is essential to 
check every change for its security implications at some point of time. This can be 
either aggregated before a release, when a commit is pushed to a repository, or, in the 
best case, continuously during the development as part of the live checks provided 
in an IDE. Similar to bugs, the earlier a security violation is discovered, the easier 
and cheaper it is to fix. For this reason, in GRaViTY, developers are continuously 
assisted by automated security compliance checks helping to preserve the security 
of the software system. Due to the needed runtime, which can vary depending on 
the size of the system and the properties selected to be checked from a few seconds 
to multiple hours, security compliance checks of the entire system are provided
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as batch checks but should be also integrated into continuous integration pipelines 
in the future. For live support in an IDE, we discuss how checks can be executed 
incrementally to only consider the changed parts. 

Such continuous automated security checks are also an essential concept in other 
approaches, e.g., SecDevOps [20]. We consider these in GRaViTY, but the goal is to 
go even one step further. Usually, when talking about continuous automated security 
checks, low-level security checks with a limited scopes are meant. In our approach, 
we target the security compliance of the implementation with the specification in 
design-time models. Nevertheless, security checks with limited scopes, such as 
UMLsec that only targets the model-level, are essential to ensure the consistency 
of the security specifications with which we check the compliance. However, these 
automated security checks should not replace manual reviews but support these. 
Also, continuous automated security checks allow to review changes quicker and 
study their effects. This eases incremental reviews. 

To summarize, we need a development process that allows developers to focus 
on their tasks and allows them to perform the tasks on the most suitable view on 
the software system. In addition, such an approach might also assist in performing 
the tasks themselves. The consideration of tool support can be a fundamental part 
of such an approach. However, in the intended GRaViTY approach, tool support 
is not meant to replace developers, security experts, or software architects but to 
assist them. While the desired tool support might not be easy to implement from 
a technical perspective, the main challenges lie in the design of a development 
approach supporting the outlined key ideas and in the underlying challenges that 
have to be solved for realizing the approach. 

5.2 The GRaViTY Development Approach 

Next, we show the general development process using the GRaViTY approach and 
the automatically executed tasks within this sequence. Figure 2 shows a conceptual 
overview of the development using the GRaViTY development approach. 

The artifacts that will be created are shown on the left side of Fig. 2. We  
assume that three levels of design models are used in addition to the concrete 
implementation of the software system. At the most abstract level, a domain model 
captures the essential elements and relationships of a domain, usually in the form 
of a UML class diagram. These elements are then detailed according to the planned 
system and related to the coarse-grained element of the planned system, e.g., in 
an early class model or threat model. In the implementation model, the coarse-
grained elements such as components, classes, or processes from the system model 
are detailed to the point where they can be implemented in source code. 

As soon as a model is created, it is denoted by a circle representing an instance 
of the model or the software system’s source code. Following the figure, we assume, 
that all models are created in the order of their abstraction level, and none is 
temporarily skipped. However, we do not assume that any of these models is
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Fig. 2 Development process of the GRaViTY development approach 

completed before the next one is created. Incrementally, developing the models 
in iterations is explicitly possible and allows the usage of GRaViTY in agile 
development processes. 

In agile development, the main development process has three initialization 
steps in which initial versions of all models are created. In the fourth step, the 
development and maintenance phase is reached, in which we iterate until the 
software system has been developed. If we want to consider the maintenance of 
the software system, we stay in this step and iterate until the software system’s end 
of life. 

The blue area above the main development process arrow contains all artifacts 
available in the current step of the main development process. Whenever a change 
is applied to any of the artifacts, this change is propagated to all other artifacts that 
have been developed automatically. The corresponding development activities are 
denoted in the figure by blue arrows. 

A software system’s development is supported by security and quality reports 
covering all artifacts that have been developed. While working in the way as 
presented above, trace links are created and maintained continuously that will be 
leveraged for selecting and executing security compliance checks. The security and 
quality aspects derived this way are centrally reported into the main development 
process, which is denoted by red, dotted arrows. 

5.3 Developer Perspective on Using GRaViTY 

In Fig. 3, we show the interaction of a developer with the software system under 
development while using GRaViTY. The software system under development is 
depicted in the center of the figure. Thereby, the software system consists out of
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Fig. 3 A developer performing changes using GRaViTY 

the discussed development artifacts, namely, different design models and the source 
code of the software system. These artifacts as well as their relations are shown in 
the center of the figure. 

The GRaViTY framework is indicated by a cylindrical shape on the figure’s 
right side. This shape connects all development artifacts and operates invisibly for 
a developer in the background. It takes care of synchronizing all artifacts in case of 
changes, the propagation of security requirements, and security checks. 

On the left of the figure, a developer is shown that can directly interact with the 
development artifacts of the software system. In our case, interaction means that 
the single artifacts of the software system can directly be edited by the developer, 
using an IDE into which GRaViTY is integrated. This integration comprises user 
interfaces allowing developers to make use of the GRaViTY tool support, e.g., by 
using refactorings for restructuring the implementation. Currently, only Java in the 
Eclipse IDE in combination with the Papyrus model editor [16, 42] for UML models 
and data flow diagrams is supported. 

Within this IDE, GRaViTY continuously provides reports to developers. For 
example, this reporting comprises details on security violations currently present 
in the software system in the form of error markers on the models and code but also 
more detailed reports via an integration with the UMLsec tooling. For other cases, 
such as details on the effects of planned refactoring operations, the information is 
immediately provided as part of the refactoring UI. Based on the reports, developers 
and experts can plan improvements to the software system. For the generation of 
reports, GRaViTY considers all artifacts present in the software system.
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Whenever a developer edits a development artifact, e.g., by deleting and adding 
elements in models or source code, these changes are propagated to all other artifacts 
by GRaViTY. For example, the developer’s addition to the design model leads to 
a derived addition in the source code, and a deletion of elements in the source 
code leads to deletions in the implementation model and design model. After every 
change, an updated report is created and presented to the developer. This report can 
then be used for estimating the impact of the change but also be shared with experts, 
e.g., software architects or security experts. 

While working with GRaViTY, there should be no difference between working 
on a single product or a variant-rich software system. A developer can still change 
the software product line in his or her preferred way. Also, security and quality 
reports are continuously provided but now consider the whole software product line. 

6 Research Outcomes 

In the thesis, we present GRaViTY, an integrated approach for continuous security 
compliance checks at model-driven development. While answering the research 
questions, the approach addresses the challenges identified at problem discussion. 

6.1 Inconsistency and Missing Traceability 

While we use standard UML technologies for tracing among UML models with 
different levels of abstraction, we employ Triple Graph Grammars (TGG) [39], 
a bidirectional graph transformation technology, for tracing between models and 
code. Based on transformation rules, TGGs build a correspondence model and allow 
changes to be synchronized between models and code. While the TGG rules allow 
us to abstract details from the statement level, we still end up with very detailed 
models that need to be connected to more abstract, manually created instances, for 
which we provide tool support. However, in combination, this approach allows us 
to automatically prevent inconsistencies throughout software development (RQ1) 
and allows developers to work on the more abstract instances [25, 28, 29]. We 
also discuss semi-automated traceability recovery and reverse engineering of UML 
models (RQ2) [33, 44]. 

6.1.1 Continuous Tracing 

In the thesis, we have shown that we can propagate arbitrary security requirements 
within UML models of different abstraction but also between UML models and 
the implementation and an implementation-level program model. For this purpose, 
we investigated two different mechanisms for tracing security requirements. First,
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we extended the TGG transformation to create corresponding security requirements 
in the implementation as Java annotations. Second, we looked at dynamic tracing 
using the correspondence model. In both variants, the TGGs allow to automatically 
propagate changes to keep all artifacts synchronized. 

The dynamic tracing avoids enriching the implementation with additional anno-
tations, but it can have the disadvantage of being inefficient. Since the metamodels 
of the considered models are given, the trace links contained in the correspondence 
model can point to elements from the different models, but are not directly 
accessible from them, resulting in a search for all trace links pointing to an element 
of interest. If only a few traces are required across the correspondence model or an 
efficient cache has been created, dynamic tracing should be used to avoid distracting 
developers. However, if many annotations are required for analysis, the propagation 
is more likely to be efficient. Also, the created annotations are available at runtime. 
Altogether, small local lookups should be realized using dynamic tracing, while for 
full compliance checks or at deployment, the UMLsec security requirements should 
be propagated into the implementation using additional TGG rules. 

To conclude, we provide an automated mechanism to preserve consistency 
between different program representations for managing evolving Java programs. 
As a result, we obtain a model-based framework for arbitrarily interleaving program 
evolution and maintenance steps while ensuring consistency. Furthermore, we can 
use this approach to also translate and synchronize security requirements of model 
elements between different system representations, thereby providing traceability 
of security requirements. Our evaluation on real-world software projects up to 200k 
LOC shows that our approach allows efficient synchronization between code and 
models after changes with a speedup of 95% compared to extracting the models 
after the change. 

6.1.2 Restoring Traceability 

For legacy projects, we discussed the application of GRaViTY considering two 
different scenarios. First, we considered software projects in which no design-time 
models exist. Here, we discussed how the required models and correspondence 
models between the design-time models and the implementation can be reverse-
engineered using GRaViTY’s synchronization mechanism [25]. Second, we consid-
ered legacy projects in which early design models are available but are disconnected 
from the implementation. To restore this connection in terms of a correspondence 
model, we introduced a semi-automated mapping approach [33, 44] that provides 
the user with suggestions for correspondences and learns from its decisions. 

The two approaches can be used complementary in projects containing early 
design models. First, developers can reverse-engineer UML class diagrams using 
the TGGs and, afterward, reconstruct the correspondence model between early 
data flow diagrams (DFD) and the implementation. These correspondence models 
can then be used to create trace links between the DFDs and reverse-engineered 
UML class diagrams, which is again supported by suggestions that are provided
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by tooling. This allows to transfer security requirements from security annotations 
on the DFDs (using the SecDFD notation [43]) into the class diagrams and avoids 
specifying these again, preventing potential errors. 

To conclude on the application of GRaViTY on legacy projects, the proposed 
reverse-engineering approaches allow reconstructing models and correspondence 
models that allow the application of GRaViTY. The reverse-engineered UML 
class diagrams can continuously be synchronized with the implementation using 
GRaViTY’s synchronization mechanism without any adaptions. We evaluated the 
scalability of the reverse engineering on real-world Java projects up to a size of 
200k LOC. The correspondence model created between early design models and 
the implementation is a snapshot of the current state and cannot be automatically 
synchronized. However, as outlined, they build a basis for propagating security 
requirements and reconstructing the model hierarchy used by GRaViTY. For the 
semi-automated approach, we have shown in our evaluation on five open-source 
projects that we already reach a precision of .50.5% and recall of .69.8% in the 
first iteration, reaching .87.2% and .92% after a few iterations. Thereby, the user 
has on average an impact on the recall of .7.9% and provides new input for the 
automatization. Notice that on average, .75% of all correct correspondences are 
suggested to the user and do not have to be manually defined. All in all, the user is 
not only guided through the implementation by our tool but also assisted in creating 
the correspondence model between SecDFDs and their implementations. 

6.2 Non-integrated Solutions 

To overcome non-integrated solutions, for ensuring security compliance, we connect 
design-time security with implementation-level security. The presented automation 
allows us to effectively check security at low cost by allowing security experts 
to only specify security requirements once in combination with an automated 
propagation based on our tracing mechanism (RQ3) [1, 25, 34, 44]. We leverage 
design-time security requirements for static and dynamic implementation-level 
security checks. Besides newly developed checks, specifically tailored for verifying 
considered design-time security requirements, we also discussed how state-of-
the-art taint analysis can be improved by connecting design-time security with a 
data flow analyzer [2]. Finally, we present a runtime monitor for detecting and 
mitigating violations of design-time security requirements. Furthermore, we support 
an adaption of the design models to allow an inspection of observed security 
violations. 

6.2.1 Static Security Checks 

We introduce a novel approach for tackling the problem of automating the code-
level verification of planned security mechanisms. In particular, we have developed
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a solution with tool support for executing security compliance checks between 
an abstract design model and its implementation (in Java). Once defined, the 
correspondence model is leveraged for an automated security analysis of the 
implementation against the security design. Two types of security compliance 
checks are executed: a check whether cryptographic operations are used at the 
expected locations and a local data flow check for data processing contracts specified 
in the model. The results of the compliance checks (convergence, absence, and 
divergence) are lifted to the attention of the user via the user interface of our tool. 
Similarly, the mapped design is also leveraged to initialize and execute a state-of-
the-art data flow analyzer over the entire Java project. We can optimize and automate 
taint analysis by automatically identifying sources of sensitive information while 
improving precision by identifying allowed sinks in the design. 

Our approach was evaluated with two studies on open-source Java projects, 
focused on assessing the performance from different angles. The rule-based security 
compliance checks are very precise (.100%) and rarely overlook implemented 
cryptographic operations (recall is .94.5%). In addition, the local data flow checks 
are fairly precise (.79.6%) but may overlook some implemented flows (recall is 
.65.6%), due to the large gap between the design-time SecDFD models and the 
implementation. Further, our approach enables a project-specific data flow analysis 
with up to 62% fewer false alarms. 

6.2.2 Dynamic Security Checks 

To ensure security compliance at runtime, we introduce an approach for coupling 
model-based security analyses with the code level at runtime and supporting round-
trip engineering by providing feedback into the models [35]. We realized support 
for checking secure call dependencies at runtime, by extending the realization of 
UMLsec Secure Dependency, which could only be checked statically (and thus 
partly) by now. We provide a runtime monitor that leverages the implementation-
level security annotations discussed above for enforcing the design-time secure 
dependency security property. Reaction to detected security issues is supported by 
passive reactions like call trace logging or actively by providing modified return 
values to protect real application data. Round-trip engineering is supported both 
by feeding additional associations monitored during execution back into the model 
and automatically generating sequence diagrams of attacks to support developers in 
investigating attacks with graphical support and related to the model. Thus, software 
system evolution detection is also tackled. 

We evaluated the effectiveness and applicability of the security monitoring 
against real CWEs and DaCapo benchmark. Results show that we support realistic 
application scenarios and real-world software systems. Further, a user survey shows 
that the generated sequence diagrams are useful for investigation security violations 
that were observed or mitigated.
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6.3 Security-Aware Restructuring 

To detect security violations after changes, we introduce security violation patterns 
that encode implementation-level security checks against design-time security 
requirements as graph patterns (RQ4) [34]. Especially, we discuss their incremental 
execution for efficiently verifying security compliance instead of full-security 
compliance checks. In addition, we provide security-preserving refactorings for 
ensuring security compliance at restructuring (RQ3 & 4). The security-preserving 
refactorings allow checking security compliance before modifying the implementa-
tion [28, 29, 37]. 

While the refactoring of a software system is already challenging, this challenge 
even gets greater on security-critical software systems. We have shown how refac-
torings can be formalized using graph transformation languages [28, 29]. Existing 
works show that such formalizations allow reasoning about the correctness of the 
refactorings regarding them not changing a software system’s behavior [19]. Also, 
such formalization allows checking the applicability of the refactorings upfront. 
However, the correctness of the refactored implementation could not be guaranteed 
as the refactorings had to be performed manually on the implementation. Here, 
we show how to overcome this gap using the program model and synchronization 
mechanism introduced in the thesis. Finally, we have shown how the formalized 
refactorings can be extended with security constraints, leveraging design-time 
security requirements. 

In summary, the presented solutions allow the restructuring of security-critical 
software systems as part of the GRaViTY development approach. In our evaluation, 
we show that the incremental execution of the security violation patterns provides a 
significant speedup against security compliance checks of the entire system (which 
did not terminate within a reasonable time). During refactoring, the discussed 
security extensions allow to automatically prevent security-violating refactorings. 
Further, we have shown that our refactoring approach also prevents behavior-
changing refactorings that are executed by the Eclipse IDE. 

6.4 Variant-Rich Systems 

Finally, we investigated the application of GRaViTY to variant-rich software 
systems (RQ5). To verify UMLsec security requirements in model product lines, we 
have encoded the checks as OCL constraints and applied a template interpretation 
approach [32]. Developers verifying their product lines can use the our OCL 
constraints as a black box and do not have to look into the complicated logic. 
Detected violations are automatically presented on a concrete variant containing 
the violation, and other affected variants are listed. To apply arbitrary pattern-based 
checks, such as security violation patterns or security-preserving refactorings, we 
have extended the Henshin graph transformation engine to support variability within 
transformation rules and models at the same time [41].
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6.4.1 Design Time Variability 

We provide a comprehensive methodology for the model-based security analysis of 
software product lines. We extended our UMLsec to also support variability within 
the security requirements by adding presence conditions to the security annota-
tions [32]. Users specify security requirements as well as variability information 
as part of the design-time system models. Furthermore, we investigated how we can 
detect security violations on the UML product lines without iterating all products. 
For this purpose, we specified UMLsec checks as OCL constraints and evaluated 
these using a state-of-the-art template interpretation technique [7]. This way, our 
analysis addresses the scalability issues encountered in this setting by lifting the 
analysis to the level of the entire product line rather than individual products. In 
our evaluation, this solution enables the analysis of realistic product lines where the 
naive approach terminated without a result; a user study indicates the usefulness of 
our methodology. 

6.4.2 Variability on the Implementation Level 

To allow the application of refactorings and security violation patterns to SPLs, 
we introduce a multivariant model transformation approach allowing applying 
variability-based transformation rules to software product lines. To be more precise, 
we propose a methodology for software product line transformations in which not 
only the input product line but also the transformation system contains variability. 
At the heart of our methodology, a staged rule application technique exploits reuse 
potential concerning shared portions of the involved products and rules. We present 
a formalization of our technique, including an optimization that supports an efficient 
checking of negative application conditions (an advanced transformation feature). 
We demonstrated practical benefit by applying our technique to two scenarios from 
a software evolution context. We observed speedups in all considered cases, in some 
of them by one order of magnitude. As part of this evaluation, we have shown 
how our methodology can be used for refactoring software product lines using 
security-preserving refactorings. The application of security violation patterns to 
SPLs works analogously. The proposed multivariant transformation approach is not 
only applicable to our two scenarios but to every variability-based transformation 
rule and product line. For example, the variability-supporting UMLsec checks, 
currently expressed by us using OCL constraints, could also be implemented using 
this technique. 

7 Case Studies 

In addition to the individual evaluations, we applied GRaViTY in two case studies 
to demonstrate that the approach works as a whole. The first case study is the 
Electronics Health Management System iTrust, and the second case study is the
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Eclipse Secure Storage of the Eclipse IDE. As the developers of iTrust provide 
complete documentation and models are available in existing research, we used 
iTrust to demonstrate the feasibility of the GRaViTY approach for developing a new 
software system taking security into account. While the Eclipse IDE also provides 
good documentation of the implementation, there are no requirements or models 
available. For this reason, we applied the GRaViTY approach to Eclipse Secure 
Storage to demonstrate its feasibility on legacy projects. 

7.1 Case Study 1: iTrust 

The iTrust case study comprises a realistic and working electronic health records 
system that has been developed and maintained in university classes over 25 
semesters and is compliant with the HIPAA Security and Privacy Rules [12, 18]. The 
main documentation is provided as requirements describing use cases of the iTrust 
system. The software system itself has been implemented in Java using Java Server 
Pages (JSP). This project has been used as a subject in various research projects, 
resulting in the creation of design-time models in addition to the original source 
code [4, 5, 12]. 

In this case study, we simulate the implementation of the iTrust system using 
GRaViTY from the very beginning, starting with requirements engineering. After 
the initial development of the software system, we focus on the restructuring of 
iTrust as part of the maintenance. Finally, we showcase the conversion of iTrust into 
an SPL. In all steps, we reuse the existing iTrust artifacts and create all required 
artifacts following the GRaViTY development approach. 

7.1.1 Requirements Engineering 

Usually, the development of a software system starts with an analysis of the domain 
as part of the requirements engineering. The knowledge about entities and relations 
within the software system’s domain is captured in a domain model. The domain 
model elements are then used to specify their realization in the software system. 
Here, the specification of the software system’s intended functionality is one of 
the first steps of requirements engineering. For this purpose, the UML provides 
the notation of use case diagrams. To simulate the requirements engineering, we 
manually recreated iTrust’s use case diagram based on iTrust’s requirements by 
redrawing a diagram in less than an hour. Thereby, we took a domain model as 
given and refined it by specifying the use case diagram. The used domain model 
shows basic concepts in a hospital such as doctors treating patients. Whenever 
there was a refinement relation between the use case diagram and the domain 
model, we explicitly modeled this relation. In the next step, the domain model 
and use case diagrams are refined further to specify an architecture that allows the 
implementation of the specified use cases.
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7.1.2 Software Architecture and Security Modeling 

After requirements engineering, based on the requirements models and the textual 
requirements, the software system’s architecture is specified. Following the princi-
ple of security by design, we have to consider security requirements explicitly in 
this step. Accordingly, we discuss the simulation of the architecture specification 
for the iTrust system. To this end, we focus on the feasibility of refinements for 
specifying software architecture and security engineering. Starting from the models 
developed at requirements engineering, we iteratively refine these models until we 
reach a detailed specification of the iTrust system. 

After every extension step, comprising the addition of a coherent set of model 
elements, a security engineering step takes place. Here, we considered the security 
engineering using UMLsec and SecDFDs. As the SecDFD and UMLsec specifica-
tions and checks are known from the literature, we do not focus on their usage but 
the Secure Realization security-refinement mechanism introduced in the thesis. 

As part of our case study, we simulated these steps by selecting parts of the 
design and implementation models and iteratively rebuilding the models. Whenever 
we added a new part to the models, we also created the corresponding refinement 
relations. We started our simulation with a domain model already containing 
fundamental security requirements, such as that personal data has to be classified 
at the security level of secrecy. Based on this model, we simulated three evolution 
steps: 

1. In the first step, we defined classes in the design model refining persons and 
actors of the domain model and use case diagram. 

2. Afterward, we added the data classes for storing medical information about 
patients to the design model. 

3. Finally, we added classes and operations for implementing the functionality of 
the use cases. 

Figure 4 shows on the right-hand side of the figure a corresponding excerpt of 
the domain model of the healthcare domain in which sensitive information such as 
the home address of a person is classified using UMLsec. On the left-hand side, the 
figure shows the design of iTrust and using realization edges how it realizes to the 
elements from the domain model. 

7.1.3 Implementation 

After reaching a state in which the design-time models are detailed enough, we have 
to start implementing the software system. Thereby, tracing is required from the first 
written line of code for applying the GRaViTY approach. For this reason, we focus 
on the integration of GRaViTY’s tracing approach into software development. 

Using the synchronization mechanism of GRaViTY, we generated an early 
Java class layout from the implementation model. Afterward, we filled this layout 
manually with functionality. During this step, the implementation model has been
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Fig. 4 Refinement relations between the design model of iTrust and a domain model of the 
healthcare domain 

kept synchronized by GRaViTY with the manual changes. We performed this 
manual extension by copying and pasting implementation fragments of the iTrust 
implementation into the generated class layout. However, as the MoDisco parser is 
not incremental, in addition, we had to simulate these changes on the MoDisco 
model by manually copying the corresponding changes into this model. After 
every set of source code changes, we generated a MoDisco model and copied the 
changes into the MoDisco model previously used by GRaViTY, making the changes 
processable for the used TGG this way. 

7.1.4 Security Compliance 

The continuous verification of the planned and implemented security is an essential 
contribution of GRaViTY. As part of this case study, we investigate how these 
verification steps integrate into the software development process. 

Comparable to the incremental specification of the software system’s architec-
ture, we also interleaved security verification steps with the implementation steps. 
These implementation steps have been discussed as the subject of the previous part 
of this case study. After synchronizing every change made on the implementation 
with the design models, we manually executed all security compliance checks. 

As in the generated class design and the first pasted code fragments, no security 
mechanisms have been contained, and all have been reported as absent. For this 
reason, initially, we faced a long list of absences regarding the planned security 
design. However, as we incrementally added more functionality from iTrust’s 
implementation, the size of the lists of absences reduced until we got rid of all 
absences. Thereby, the absences functioned as a kind of to-do lists for security-
related tasks and as selection criteria for the next code fragments to paste. For 
example, Fig. 5 shows a screenshot of the corresponding tooling with detected 
issues at the bottom. In the example, the security-critical change password process 
considered in the design represented as data flow diagram has not been implemented
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in the implementation yet. As the source code inserted this way was always security 
compliant, no other violations have been reported. 

7.1.5 Restructuring 

After reaching the state in which our case study system’s implementation was 
identical to the original iTrust implementation, we investigated this implementation 
regarding possibilities for restructuring the software system. Thereby, we only 
focused on restructuring in terms of refactorings. 

To find additional refactoring opportunities, we executed the search-based opti-
mization tool GOBLIN [37]. Thereby, we added all three refactorings introduced in 
the thesis (Create Superclass, Pull-Up Method, and Move Method) to GOBLIN. 
Besides, the optimization criteria considered in the summarized experiment of 
Ruland et al. (design-flaws [31], coupling/cohesion, visibilities, and the number of 
changes), we also added the Critical Design Proportion metric discussed in the 
thesis as an optimization criterion. Due to iTrust’s architecture along with the Java 
server pages, most times, the implemented functionality was already well located, 
and we only rarely found additional beneficial refactoring opportunities. 

7.1.6 Variability Engineering 

As the last part of this case study, we considered the re-engineering of iTrust into an 
SPL. In this case study, we mainly focus on the specification of an SPL in terms of 
the variability within all artifacts of the software system. However, we also consider 
the security checks for SPLs. 

We started on the use case diagrams with the identification of possible features 
and ended in assigning individual use cases to features. Afterward, we investigated 
two different approaches for realizing the identified features in the software system: 
first, a top-down approach by specifying variability on the models and propagating 
it to code and, second, a bottom-up approach in which we specified variability on 
the source code and propagated it into the design-time models. After realizing the 
variability in the iTrust system, we executed the SecPL checks to verify the security 
of the iTrust SPL. 

7.2 Case Study 2: Eclipse Secure Storage 

Our second case study focuses on applying GRaViTY to relatively small (2,900 
LLOC) but security-critical part of the Eclipse IDE. Eclipse Secure Storage [8] is  
used by Eclipse plugins such as the Eclipse git client to store confidential data like 
passwords. The Eclipse Secure Storage is implemented as an Eclipse plugin itself 
using Java. How exactly the secure storage works is described in the help document
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of Eclipse [8]. However, this description is rather high level and complemented by 
the low-level API documentation. We consider Eclipse Secure Storage due to its 
security criticality, good documentation, and wide usage in practice. 

In this case study, we focused on migrating legacy projects to GRaViTY. In what 
follows, we first discuss the reverse engineering of the Eclipse Secure Storage to 
create a state in which the application of the GRaViTY approach is possible. Next, 
we discuss security engineering, aiming at making security requirements explicit 
and checking the software system regarding compliance with them. Finally, we 
discuss the runtime monitoring of the Eclipse Secure Storage based on a fictive 
malicious Eclipse plugin and the adaption of the reverse-engineered models. 

7.2.1 Reverse Engineering of Models 

As there are no models available for Eclipse Secure Storage, the first step of this 
case study was the reverse engineering of models. For the reverse engineering of 
models, we followed a three-step approach. First, based on the documentation of 
Eclipse Secure Storage, we manually created data flow diagrams and UML activity 
diagrams, which are similar to the DFDs but include control flow, for two use 
cases, accessing a value from the secure storage and resetting a password. As 
usual in threat modeling, these diagrams are at a high level of abstraction and 
are limited to the essential elements; in our case, they include only 7 assets per 
diagram and 7 or 10 nodes, respectively. Afterward, we automatically reverse-
engineered a detailed UML class diagram from the source code of Eclipse Secure 
Storage using GRaViTY. Finally, we used the semi-automated mapping approach 
to establish refinements between the manually created diagrams, the automatically 
reverse-engineered class diagram, and the software system’s implementation. 

7.2.2 Static Security Specification and Checks 

One of the two main goals of applying GRaViTY to legacy projects is to create 
artifacts that allow an easier specification of security requirements, compared to 
their specification on the implementation, and the security compliance checks with 
these security requirements. The other main goal is to continue with the continuous 
verification of the software system’s security after the initial state has been proven 
to be secure. In this part of the case study, we focus on creating such an initial secure 
state using GRaViTY. 

After reverse engineering, we started to annotate the models with security 
requirements. Here, we started by specifying essential security requirements on 
the DFDs, which were automatically propagated to the detailed reverse-engineered 
class diagram. These propagated security requirements served as starting points for 
the specification of detailed security requirements with annotations according to 
UMLsec Secure Dependency, which was guided by the UMLsec tooling.
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Unlike the iTrust case study, there is only one level of inheritance, which still 
simplified this step, but required us to look into the very detailed UML model more 
often than it was necessary in the iTrust case, where almost all detailed security 
requirements were propagated from more abstract models. After this specification, 
the propagation to the source code worked without problems, and as expected, the 
compliance checks showed no issues. Technically, we demonstrated the feasibility 
of the tools for annotating the models and, in particular, of GRaViTY’s synchroniza-
tion mechanism for propagating the security requirements to the implementation. 
An extension of the tooling with clustering approaches to generate additional more 
abstract models could be helpful. 

7.2.3 Runtime Monitoring 

In the last part of this case study, we focused on leveraging the specified security 
requirements to enforce these at runtime. In the implementation of a software system 
specified by a UML model, the dependencies stereotyped with «call» are usually 
implemented as method calls and field accesses. Even if a model does not contain 
violations, at runtime, it has to be guaranteed that the security requirements specified 
at design time are not violated. Furthermore, detecting all dependencies which can 
occur at runtime is statically undecidable, e.g., due to the use of Java reflection [17, 
21]. What can also not be foreseen from a static perspective are violations caused 
by an exchanged library or malicious code. 

In Eclipse, for example, every installed plugin can access the password store. 
Which plugins a developer installs into his or her Eclipse IDE is not predictable. 
However, considering the discussed security annotations, only plugins that comply 
with the secrecy security level should be allowed to access the password store. 

To conduct this part of the case study, we implemented a malicious plugin that 
attempts to illegally access passwords stored in Eclipse Secure Storage. In addition 
to the security requirements annotated to the design models discussed above, 
we extended the Eclipse Secure Storage implementation with countermeasures to 
actively prevent illegal accesses that violate these security requirements. Based 
on this, we monitored Eclipse for security violations with respect to UMLsec 
secure dependency and executed the malicious plugin. The runtime monitoring 
successfully detected and mitigated the security violations caused by the malicious 
Eclipse plugin we prepared. In addition, the models were modified as expected, 
providing details about the operation of our malicious plugin and allowing a detailed 
investigation of the security violation. 

7.3 Observations 

In the two case studies, we demonstrated the technical suitability of the developed 
approach to work as a whole and being technically applicable for developing 
secure software systems. Although some parts of the case studies required manual
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simulations of parts of the approach, our case studies revealed that the current 
implementation of GRaViTY already provides much support for effectively and 
efficiently aiding the development of secure software systems. As for most research 
prototypes, especially the user interface should be improved for practical application 
and there is room for automation to more seamlessly integrate into the workflow, 
currently, most tooling that could run automatically has to be triggered manually. 
Altogether, the case studies demonstrated the technical feasibility of GRaViTY. 

Considering the key assumptions on users of the GRaViTY approach, we made 
the following observations. 

Suitable Views: As part of the case studies, we were able to specify security 
requirements mainly on design models, as we suggest security experts do. While 
it was necessary to specify some security requirements on a fairly detailed 
version of these models, it was often possible to specify security requirements 
on abstract models and propagate them to more detailed models and the 
implementation. It may be that we have enforced working on the model rather 
than the code, but this still shows technical feasibility. However, we agree that 
the usability should be improved, but this is only partly related to our own tools, 
but mainly to the Papyrus UML editor used. 

Side effects: While conducting the case studies, we explicitly tried not to let our 
actions be influenced by their potential side effects, to inspect if we would be 
notified about them. As expected due to this behavior, there were some situations 
where we had to resolve conflicts caused by side effects, but they were always 
prominently presented to us by the tool support. For example, a dependency 
added due to an implementation-level change caused a security problem on the 
design models but was detected by the continuous security checks and displayed 
as an error marker. Therefore, we believe that this approach allows us to focus 
more on security engineering or implementation, but it remains to be verified 
with external developers. 

Synchronization: In the case study, we were always able to synchronize our 
changes without any technical problems. This is not surprising, as our case 
studies mainly contained changes that resided at the detailed source code level, 
and TGGs can propagate all changes from a more detailed to a more abstract 
model. The opposite direction is more challenging, as changes cannot be reflected 
one to one and sometimes ended up with the change being applied to the source 
code but requiring manual post-processing. For example, when we deleted a 
dependency in a design model to fix a security issue due to an illegal access, 
the source code was adjusted accordingly by deleting a method call, but the 
variable to which the method’s return value was assigned was now unassigned. 
We considered this to be intentional and not a significant problem, since the 
method had to be changed as a result of a design decision. Instead of accepting 
this compilation error, the entire body of the method could be automatically 
commented out and a to-do added as a more elegant solution. In practice, there 
may be cases where large changes to the UML models that need to be propagated
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to the implementation, or parallel changes, may cause synchronization problems. 
However, what such cases are is explicitly discussed in the thesis. 

Continuous Security: Throughout the case studies, the primary goal of being 
able to continuously check for compliance with security requirements was 
possible. After the initial specification of security requirements, we were able to 
continuously check the software system for security violations and were notified 
of violations. However, this only demonstrates the technical feasibility of the 
approach and the ability to tailor implementation-level security checks based 
on design-time security requirements in all situations we faced. Based on the 
case study, we can only state that we did not receive any false positives for 
security violations, but we cannot judge whether the results were always correct 
or whether security issues were missed. 

8 Outlook 

In the thesis, we mainly looked at individual software systems that are located in 
critical domains. In these domains, standards such as ISO/IEC 62304 for medical 
device software, which was relevant to our first case study, require developers 
to deliver all of the artifacts that are created when following MDD and are also 
considered in GRaViTY. However, there are still many domains with individual 
challenges that need to be addressed. Also, the approach is designed in principle 
not to be limited to the Java world but any object-oriented language, which remains 
to be confirmed. 

One particularly relevant domain that requires extremely complex software-
intensive systems and is utmost security and safety critical toward which we are 
currently expanding GRaViTY is autonomous driving. While autonomous driving 
systems are in principle located in a strongly regulated domain that would guarantee 
the perfect applicability of GRaViTY due to standards such as the IEEE 26262 on 
functional safety management, most autonomous driving projects, especially the 
open-source projects such as Autoware.auto or Baidu Apollo, do not seem to follow 
strict model-based development processes. The same also applies to many other 
domains such as mobile apps, and we have to identify more lightweight tracing 
approaches to allow an easy application of GRaViTY to these domains. 

Further, autonomous vehicles are extremely distributed systems as well on 
the individual vehicle as on external systems that are communicating with the 
autonomous vehicle. Popular robotic middlewares, such as the Robotic Operation 
System (ROS), which is the basis for Autoware.auto, foster the realization of such 
systems as a multitude of individually running nodes that are deployed on the 
vehicle itself or on external servers and communicate through a message API of 
the middleware with each other. In the thesis, we have already seen that we can 
extract much information about the borders of the system, e.g., to optimize security 
checks with information that is not contained in the source code. Leveraging such
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information becomes even more important for effective security checks in such 
massively distributed systems. Also, we have to integrated different kinds of checks 
on different nodes. Especially in autonomous driving, there is a significant use of 
machine learning approaches for tasks such as perception of the environment and 
prediction of behavior. Here, we have to work with assumptions on the machine 
learning-based nodes when checking other nodes that interact with these. For 
checking these nodes themselves, we have to create more dynamic verification 
approaches. However, as already shown in the thesis even for handwritten code, 
many aspects cannot be verified statically. We have to develop approaches to 
trace nonfunctional requirements throughout the entire development process to the 
runtime and to verify them in all phases to provide developers with a holistic picture. 

Finally, we are currently extending our approaches to consider not only security 
but also other nonfunctional requirements such as safety. In most software-intensive 
systems, the various nonfunctional requirements do not stand alone, but there is 
significant interaction. For example, in autonomous driving, a successful attack will 
potentially lead to a malfunction of the car’s behavior, e.g., because some nodes 
of the system do not provide required data. Such a malfunction is obviously also 
safety critical, and we cannot consider these two aspects completely separately. Our 
ultimate goal is to provide an approach that allows the selection of relevant domain-
specific profiles of nonfunctional requirements, such as safety and security, and 
provides a holistic verification of whether the system satisfies all these requirements. 
In combination with the demonstrated change handling and incremental verification, 
this will form the basis for an incremental certification framework. 

9 Summary 

In the thesis, we present the GRaViTY approach for continuously supporting 
developers with automated propagation of changes to avoid security-critical incon-
sistencies. Based on this synchronization, security experts can specify security 
requirements on the most suitable system representation. We can verify and 
enforce these security requirements on all system representations using automated 
security checks, allowing us to check the implementation’s security compliance, as 
needed in certifications. To preserve this compliance when restructuring the system, 
we provide semantics-preserving refactorings that are enriched with security-
preserving constraints. For both security checks and refactorings, we show their 
application to variant-rich software systems. To support legacy systems, we show 
how UML models can be reverse-engineered also for systems with variants and 
how existing early SecDFD design models can be semi-automatically mapped to 
the implementation. In addition to an evaluation of the single parts of the approach, 
the overall approach is demonstrated in two real-world case studies, the iTrust 
electronics health records system and the Eclipse Secure Storage.
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Abstract This chapter presents LEMMA (Language Ecosystem for Modeling 
Microservice Architecture). LEMMA enables the application of Model-Driven 
Engineering (MDE) to Microservice Architecture (MSA). LEMMA mitigates the 
complexity of MSA by decomposing it along four viewpoints on microservice 
architectures, each capturing the concerns of different MSA stakeholders in dedi-
cated architecture models. LEMMA formalizes the syntax and semantics of these 
models with specialized modeling languages that are integrated based on an import 
mechanism, thus enabling holistic MSA modeling. LEMMA also bundles its own 
model processing framework (MPF) to facilitate model processor implementation 
for technology-savvy MSA stakeholders without a background in MDE. 

We describe the design and development of LEMMA and exemplify the usage 
of its modeling languages and MPF for a case study microservice architecture. 
In addition, we present practical applications of LEMMA for microservice code 
generation, architecture reconstruction, quality analysis, defect resolution, and 
establishing a common architecture understanding. A comparison of LEMMA with 
related approaches reveals that LEMMA has particular strengths in (i) language-
level extensibility, allowing model-based reification of architectural patterns; (ii) 
model processing, by bundling sophisticated code generators and static quality 
analyzers; and (iii) versatility, making LEMMA applicable in microservice devel-
opment, operation, architecture reconstruction, and quality assessment. 
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1 Introduction 

Microservice Architecture (MSA) [65] is an approach to architecting distributed 
software systems that promotes system decomposition into microservices. The  
notion of microservice comprises all characteristics of a service, i.e., it is a 
functional software component that (i) minimizes dependencies to other compo-
nents; (ii) clusters coherent business logic; (iii) agrees on contracts that specify 
communication relationships with other components by means of interfaces; and 
(iv) interacts with other components to realize coarse-grained tasks [23]. While 
MSA emerged from Service-Oriented Architecture (SOA) [17, 23], other than an 
SOA service, a microservice aims to maximize service-specific independence. From  
the aspects that are concerned by this maximization, the notion of microservice can 
be defined as follows [6, 13, 14, 17, 44, 64, 65, 93, 101]: 

Definition 1 (Microservice) A microservice is a service with the following char-
acteristics: 

• It provides a distinct capability to other components, and all of its functionalities 
address a single concern of either functional or infrastructure nature. 

• It is as independent as possible from other components in terms of implementa-
tion, data management, testing, deployment, and operation. 

• It is fully accountable for its interaction with other components including, e.g., 
the actual decision for interaction, communication protocol determination, data 
format conversion, and failure handling. Without a sound technical reason, 
a microservice supports at most two communication protocols—one for syn-
chronous one-to-one and one for asynchronous one-to-many interactions. 

• It is owned by exactly one team. The team is fully responsible for all aspects 
related to the microservice’s design, implementation, and operation. 

Starting from these characteristics, MSA is expected to benefit the architectures 
of distributed software systems in several ways. First, microservices can improve 
performance efficiency, and especially scalability [42], making it possible to scale 
heavily frequented functionalities independently and horizontally [19]. Second, 
microservices may have a positive impact on maintainability and, more precisely, 
modifiability [42], because they facilitate isolated replacement of functionality as 
long as interfaces remain stable [65]. Third, MSA can increase the testability [42] 
of software systems by demanding stand-alone component executability. 

While performance efficiency and maintainability are the most important quality 
attributes of MSA and key drivers for its adoption [17, 119], microservices can 
benefit further quality attributes [42] such as (i) reliability, due to each microservice 
being expected to include its own failure handling mechanisms for preventing failure 
cascades across service boundaries [13, 65]; (ii) portability, by deploying microser-
vices using lightweight virtualization technologies like containers [9, 18, 111]; and 
(iii) compatibility, as independent executability and standardized communication 
protocols foster interoperability and gradual migration of legacy systems toward 
MSA [13, 119].
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However, these benefits come at the cost of an increased complexity that affects 
architecture design, implementation, and operation [109]. For example, granularity 
determination is a major challenge in MSA design as too fine-grained microser-
vices induce frequent interactions and thus network overhead [119]. Concerning 
implementation, MSA aggravates technology management by supporting dedicated 
technology choices per service and delegation of decisions for technology stacks 
to microservice teams [52]. The resulting increase of technology heterogeneity [65] 
also concerns operation because the corresponding infrastructure of a microservice 
architecture usually consists of loosely coupled components for diverse tasks like 
service discovery, API provisioning, load balancing, and monitoring [7]. 

Model-Driven Engineering (MDE) [15] is an approach to software engineering 
that leverages models as a means to abstract from selected details of a software 
system to mitigate complexity. More precisely, MDE focuses on the systematic 
construction, evolution, and maintenance of software models, and making them 
actionable within one or more phases of the software engineering process. For a 
certain set of purposes, models can then act as substitutes of more complex artifacts. 
For instance, models may abstract from implementation details of the conversion 
between data-format-specific network messages and data-format-agnostic in-
memory objects. Yet they can enable the automated derivation of source code 
for this purpose [94]. On another note, models are well suited to reify structures of 
software systems and facilitate reasoning about them, e.g., for quality assessment 
and improvement [16]. 

As an orthogonal approach to software architecting that strives for purposeful 
complexity mitigation, MDE is a predestined means for the description, devel-
opment, and analysis of complex software systems [28, 104]. Indeed, it has 
successfully been applied in different domains of software architectures such as 
cyber-physical systems [62], Industry 4.0 [127], Internet of Things [51], and 
SOA [2]. Hence, it is evident to investigate the applicability of MDE-for-MSA [31]. 

This chapter presents recent findings of this investigation by (i) summarizing 
the main results of a corresponding dissertation [93], which manifested in the 
Language Ecosystem for Modeling Microservice Architecture (LEMMA) [108]; 
and (ii) showing how LEMMA stimulates ongoing research on MDE-for-MSA 
beyond the dissertation. 

The remainder of the chapter is structured as follows. Section 2 presents 
background information on MDE-for-MSA. Section 3 describes LEMMA’s design 
and implementation. Section 4 focuses on its applications, e.g., for microservice 
code generation, architecture reconstruction, and defect resolution. Sections 5 and 6 
compare LEMMA with related works and conclude the chapter. 

2 Preliminaries 

This section describes challenges in MSA engineering (Sect. 2.1), the MDE 
paradigm (Sect. 2.2), and the adoption of MDE to tackle MSA engineering 
challenges (Sect. 2.3).
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2.1 Challenges in Microservice Architecture Engineering 

Following the taxonomy for pains of microservices by Soldani et al. [109], we 
summarize challenges in MSA engineering along the dimensions Design (Sect. 
2.1.1), Implementation (Sect. 2.1.2), and Operation (Sect. 2.1.3). Given MSA’s 
impact on development organizations [64], we also consider the Organization 
dimension (Sect. 2.1.4). 

2.1.1 Design Challenges 

The identification of microservices is pivotal in MSA design [29, 109, 119]. It 
entails the decomposition of functionality and is closely related to granularity 
determination (see below). Domain-Driven Design (DDD) is a popular methodology 
for microservice identification [24, 30, 56, 57, 64, 65]. It provides model-based 
techniques and patterns to identify coherent parts in an application domain and 
eventually derive bounded contexts from them. A bounded context clusters coherent 
domain concepts, their structures, and relationships in a domain model [24]. Similar 
to microservices, bounded contexts gather coherent functionality, belong to one 
team, and require interactions via well-defined interfaces. Despite the perceived 
closeness of DDD and MSA [65], the adoption of the former in the context of 
the latter is often considered complex [13, 29] and additional effort when domain 
models act as mere documentation artifacts [24]. 

Determining the optimal granularity of a microservice is a major challenge in 
MSA design [109, 119]. Besides the vague suggestion to align a microservice to 
a distinct capability (Definition 1), there exist no broadly accepted guidelines on 
how to tailor a microservice’s responsibilities. Additionally, the independence of 
microservice teams fosters divergent intuitions of microservice granularity and, in 
the worst case, may result in a centralized architecture team that balances varying 
granularities by frequent refactoring [13]. On the other hand, certain microservices 
may intentionally be more coarse-grained than others to decrease network load, 
eliminate interaction dependencies, or reduce the number of microservices [13, 18]. 

By contrast to SOA, MSA considers APIs as contracts [128], thereby rendering 
the formal specification of interactions and explicit contract negotiation [66] redun-
dant. Instead, the interaction relationship between two microservices concludes 
an implicit service contract, which reduces design complexity. As a drawback, 
microservices are confronted with API versioning and assuring consumer compli-
ance [109]. Moreover, the waiver of explicit contracts fosters ad hoc communication 
and thus the accidental occurrence of cyclic service dependencies [118]. 

2.1.2 Implementation Challenges 

As already mentioned (Sect. 1), MSA can increase the technology heterogeneity of 
a software system. While it may be beneficial that each microservice can rely on
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those implementation technologies that are the most suitable for its capability [65], 
this level of freedom in technology choices incurs risks for increased technical 
debt, additional maintainability costs, and steeper learning curves for new team 
members [13, 52, 118]. 

Moreover, MSA’s emphasis on loose coupling also leads to a decoupling of 
technical concerns [38]. Hence, technology management is additionally aggravated 
due to an increased number of technology variation points [95] like the following: 

• Programming languages: The programming language of a microservice is 
opaque to clients. Java, JavaScript, and C# are among the most popular service 
programming languages [106]. However, certain specifics of a service’s capa-
bility can motivate the adoption of an alternative programming language. For 
instance, the built-in support for data collection handling and the availability of 
sophisticated frameworks for scientific computing or time series processing make 
Python a viable choice for corresponding microservices [46, 54, 95]. 

• Database management systems (DBMSs): To decrease coupling, each 
microservice should have its own database [63, 102]. A service’s capability 
may also favor DBMS mechanisms like NoSQL or graphs over the relational 
paradigm [52]. 

• Communication protocols: A microservice architecture should employ at most 
two communication protocols (Sect. 1). However, some situations may require 
more than two protocols, e.g., when gradually modernizing legacy systems [58]. 

• Data formats: The interaction scenario or choice of a communication protocol 
may impact the selection of a format for data encoding and decoding. 

2.1.3 Operation Challenges 

Microservices are usually packaged, deployed, and executed in virtualized contain-
ers [111]. Containers enable the combined deployment of software components 
and pre-configured runtime environments while being more resource-efficient than 
virtual machines due to kernel and library sharing with the host operating system. 
Containers benefit microservices’ scalability and portability [18] but typically 
require additional orchestration platforms, e.g., to fulfill elasticity requirements [40, 
52]. These platforms expose microservice architectures to continuous service 
partitioning and relocation with additional effort to keep track of [109]. 

Next to container orchestration platforms, MSA requires additional infrastructure 
components, e.g., for service discovery, API provisioning, load balancing, and 
monitoring [7]. The loose coupling of these components increases technology 
heterogeneity on the operation level. Furthermore, each component may have its 
own requirements w.r.t. configuration and life cycle management [109].



110 F. Rademacher et al.

2.1.4 Organizational Challenges 

MSA assumes an alignment of the development organization with the software 
architecture to be effective [4]. A common practice is to decompose homogeneous 
development organizations into teams, possibly assembled from members with 
heterogeneous skill sets, of which each is responsible for one or more microservices. 
Consequently, MSA fosters DevOps [64] and thus faces challenges like establishing 
and maintaining a collaborative culture, automation, and knowledge sharing [55]. 

2.2 Model-Driven Engineering 

To unfold its potential for complexity mitigation, MDE anticipates systematic model 
construction, evolution, and maintenance. Modeling languages specify models’ 
syntaxes and semantics [15]. The syntax consists of an abstract syntax and one or 
more concrete syntaxes. The former defines modeling concepts’ structures, relation-
ships, and tool-internal representation. The latter determine user-facing notations 
of modeling concepts, e.g., as graphical constituents of box-and-line diagrams or 
grammar-based textual strings. Modeling language syntaxes may impose constraints 
on model well-formedness, thus contributing to the definition of language-specific 
model validity. The semantics of a modeling language assigns meaning to modeling 
concepts and their instantiation as model elements; and can restrict the set of valid 
models even further [37]. 

Model processors turn models into actionable software engineering artifacts [15]. 
Code generation is often perceived to drive MDE adoption because of an expected 
increase of development productivity [123]. However, there exists a plethora of 
other model processing approaches with relevance to software architecting, e.g., 
reverse engineering [117] and static model analysis [15]. Most of these approaches 
resort to model transformation [15], i.e., the (semi-) automated conversion of one 
or more source models into one or more target models based on transformation 
rules [59]. The syntaxes of source and target models may differ, e.g., when model 
elements are transformed into programming language constructs (code generation) 
or implementation artifacts are transformed into models (reverse engineering). 

2.3 Employing Model-Driven Engineering to Cope with 
Challenges in Microservice Architecture Engineering 

Table 1 maps MDE means (Sect. 2.2) to MSA engineering challenges (Sect. 2.1) and 
substantiates our hypothesis that MDE-for-MSA can cope with MSA’s complexity. 

Sections 2.3.1 to 2.3.4 describe the mapping per MSA engineering dimension.
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Table 1 Mapping of supportive MDE means to MSA engineering challenges [93] 

Dimension Challenge Summary MDE means 

Design 

C.1 Managea services’ granularities Modeling languages 

C.2 Facilitate domain-driven 
service identification 

Modeling languages 

C.3 Increase the value of domain 
models 

Model processing 

C.4 Manage services’ APIs Modeling languages 

C.5 Cope with cyclic service 
dependencies 

Context conditions, static 
analysis 

Implementation C.6 Manage technology 
heterogeneity 

Abstraction, code 
generation 

Operation 

C.7 Cope with complexity in 
service partitioning and 

location 

Abstraction 

C.8 
Manage architecture 

components for service 
deployment and infrastructure 

provisioning 

Modeling languages 

Organizational 
C.9 Automate as much manual 

tasks as possible 
Model processing 

C.10 Provide formats and guidelines 
for knowledge sharing 

Modeling languages 

. a In the context of the table, the term “manage” covers the actions elicitation, adaptation, and 
consistent documentation of managed entities 

2.3.1 Design 

Modeling languages have proven suitable for granularity and API specification in 
other approaches to service-based architecting [2, 94]. Hence, they can tackle Chal-
lenges C.1 and C.4. Modeling languages are also a natural choice for Challenge C.2 
because DDD (Sect. 2.1) constructs domain models with modeling languages [24]. 
Model processing then increases domain models’ value (Challenge C.3) by elevat-
ing them from documentation artifacts to first-class citizens in software engineering. 
When resorting to MDE-based microservice design, the detection of cyclic service 
dependencies (Challenge C.5) is possible at design time using (i) context conditions 
that constrain model validity to non-cyclic service dependencies; and (ii) static 
analysis to detect cycles across models. 

2.3.2 Implementation 

MDE’s abstraction from technology [70] predestines it for coping with technology 
heterogeneity (Challenge C.6). Nonetheless, model-based technology abstraction 
can be tailored per stakeholder group [95, 110]. Code generation then produces
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technology-specific code from technology-agnostic models [15, 96]. For MSA, 
code generation can even increase maintainability (Sect. 1) by automating steps in 
migrating microservice implementations to other technology stacks. 

2.3.3 Operation 

For Challenge C.7, we rely on abstraction as it allows capturing of service 
partitioning and location agnostic to deployment and orchestration technologies. For 
Challenge C.8, the existence of model-based approaches to operation environment 
specification [25, 67] proves modeling languages well suited for infrastructure 
management in MSA. 

2.3.4 Organizational 

Model processing supports task automation and is therefore inherently suited to 
deal with Challenge C.9. Modeling languages facilitate sharing of architecture 
knowledge (Challenge C.10) by formalizing its model-based expression [123], 
especially in combination with stakeholder-oriented viewpoints for knowledge 
decomposition [28]. 

3 LEMMA—A Language Ecosystem for Modeling 
Microservice Architecture 

Here, we present LEMMA [93] in detail. Section 3.1 specifies architecture view-
points [43] for MSA to which LEMMA’s modeling languages (Sect. 3.2) and model 
processing facilities (Sect. 3.3) align. Section 3.4 illustrates LEMMA’s usage. 

3.1 Microservice Architecture Viewpoints 

We leverage the notion of architecture viewpoint (“viewpoint” henceforth) from 
ISO 42010 [43] to decompose MSA’s complexity (Sect. 2.1). A viewpoint frames 
stakeholder concerns toward a software system. It prescribes languages and tech-
niques to construct architecture models as well as operations to process them [43]. 

For LEMMA, we focused on the following stakeholder groups and their concerns 
in MSA engineering [13, 29, 36, 38, 102]: 

• Domain experts: Domain experts demand a software that covers the relevant 
domain-specific requirements in a cost-effective manner in the expected quality.
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• Microservice developers: Microservice developers implement and test owned 
microservices w.r.t. specifications, e.g., of requirements or the architecture. 

• Microservice operators: Microservice operators are concerned with microser-
vice and operation infrastructure deployment and configuration. 

• Software architects: Software architects deal with architecture specification and 
examination to assess quality attribute satisfaction. In addition, they communi-
cate with and across development teams. 

From these stakeholders and their concerns, we derived viewpoints for the 
model-based description of microservice architectures: 

• Domain viewpoint: This viewpoint supports the construction of domain models 
for microservice architectures. Following DDD, domain model construction may 
be a collaborative activity by domain experts and microservice developers [24]. 

• Technology viewpoint: This viewpoint reifies the technology heterogeneity of 
microservice architectures. It captures the concerns of microservice developers 
and operators toward technology management within technology models. 

• Service viewpoint: The viewpoint addresses the concerns of microservice 
developers by the construction of service models for microservices, their inter-
faces, and operations. Service models may refer to technology models to reify 
technology decisions. To enable model reuse and facilitate technology exchange, 
the viewpoint also considers the construction of service technology mapping 
models, which externalize technology decisions from service models. 

• Operation viewpoint: This viewpoint allows microservice operators the captur-
ing of microservice deployment and operation in operation models. 

To increase information content and reusability, MSA models are composable 
by element references. For example, operation parameters in service models may 
refer to domain concepts in domain models as types. Figure 1 shows LEMMA’s 
viewpoints and composition relationships between model kinds of different view-
points. Model composition inherently addresses the concerns of software architects 
by fostering architecture specification and examination with a coherent architecture 
representation. 

3.2 Modeling Languages 

Following ISO 42010, we devised modeling languages (Sect. 2.2) for the construc-
tion of MSA viewpoint models (Fig. 1). Figure 2 shows the language development 
process. 

Sections 3.2.1 to 3.2.5 describe the activities of the development process.
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Domain Viewpoint 

Domain Model Kind Operation Model Kind 

Service Viewpoint 

Service Model Kind 

Service Technology Mapping Model Kind 

technology mapping 
of domain concepts 

typing of service 
operation parameters 

assignment of 
microservices to 
operation nodestechnology mapping 

of domain concepts 

technology mapping 
of microservices 

technology 
mapping of 
microservices 

Domain 
Experts 

Microservice 
Developers 

Software 
Architects Operators 

Technology Viewpoint 

Technology Model Kind 

Technology Model Kind 

Operation Viewpoint 

Microservice 

Fig. 1 LEMMA’s MSA viewpoints and reference-based composition relationships between model 
kinds of different viewpoints. The relationships are depicted as dashed arrows from referencing to 
referred model kinds. Colored icons on a viewpoint box identify the stakeholder groups whose 
concerns are framed by the viewpoint [43] 

6 

SBSA Modeling Concepts 

357 

Conceptual 
SBSA Frameworks 

Open Source 
Architectures 7 

Concept 
Clusters 6 

5 
LEMMA Language 

Metamodels incl. 
Context Conditions 

Grammar Specification 

5 
LEMMA Modeling 
Languages 

Viewpoint-Based 
Metamodel Specification 

SBSA Modeling Concept 
Extraction 

SBSA Modeling Concept 
Clustering 

Practicability Analysis 

Fig. 2 BPMN diagram [69] of LEMMA’s language development process 

3.2.1 SBSA Modeling Concept Extraction 

We identified and extracted an initial set of potential modeling concepts for 
LEMMA’s modeling languages from six conceptual frameworks [10, 60, 66– 
68, 121] for the model-based description of service-based software architectures 
(SBSAs) [23]. We selected these frameworks because they explicitly consider 
various stakeholder groups, viewpoints, and engineering phases, without prescribing 
a certain solution architecture. In total, we extracted 357 SBSA modeling concepts 
and their definitions [92].
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Table 2 Count of SBSA 
modeling concepts per 
Essential SOA Elements 
category 

Essential SOA Elements category Concept count 

Contract 53 

Governance 19 

Implementation 31 

Infrastructure & Management 77 

Interface 177 

SLA 19 

Not classifiable 58 

Sum 434 

3.2.2 SBSA Modeling Concept Clustering 

We clustered the SBSA modeling concepts into the categories of the Essential SOA 
Elements taxonomy [2], i.e., “Contract,” “Governance,” “Implementation,” “Infras-
tructure & Management,” “Interface,” and “Service Level Agreement (SLA).” For 
the clustering, we relied on concepts’ definitions extracted in the previous activity. 
The clustering enabled us to relate a concept to one or more of the MSA model 
kinds described in Sect. 3.1. Table 2 summarizes the clustering results. 

The mismatch between the sums of clustered modeling concepts (434) and 
extracted modeling concepts (357) stems from ambiguous concept definitions. For 
example, based on its definition, SoaML’s Capability concept [68] was clustered 
into the Implementation and Interface categories. On the other hand, some concept 
definitions were too narrow to permit classification, e.g., the Clipped Structural 
Modeling Connector concept from the Service-Oriented Modeling Framework [60]. 
Section 4.3.1 and Appendix B of the dissertation that conceived LEMMA [93] 
provide more details on the clustering activity. 

3.2.3 Practicability Analysis 

The previous activities established a conceptual baseline for LEMMA’s model 
languages on the basis of SBSA modeling concepts. This focus on SBSA was 
necessary as no conceptual frameworks for MSA modeling existed. To assess 
the applicability of the extracted SBSA modeling concepts for MSA engineering 
and balance conceptual rigor with practice orientation, we analyzed concepts’ 
manifestation and actual usage in seven open-source microservice architectures. We 
derived the set of these architectures by joining two subsets of microservice archi-
tectures that (i) provide their source code on GitHub;1 and (ii) have already been 
academically investigated to gain insights about MSA implementation concepts 
and patterns [63, 100]. Table 3 lists the considered architectures. They account for 
51.35% of the overall lines of code of all architectures in the unified set. For further

1 https://www.github.com. 

https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
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Table 3 Open-source microservice architectures selected for practicability analysis of SBSA 
modeling concepts. Table entries are arranged in descending order by the value in the “Lines of 
Code” column as of February 1st, 2020 

Architecture name Academic 
reference GitHub patha 

Programming 
languages Lines of code 

eShopOnContainers [100] /dotnet-archi-
tecture/eSho-
pOnContainer-
s/tree/20238d53 

C#, JavaScript 94,660 

Micro company [63] /idugalic/mi-
cro-compa-
ny/tree/5a4ee50 

Java, JavaScript 83,685 

Lakeside Mutual 
Insurance company 

[100] /Microservice-API– 
Patterns/Lakeside-
Mutual/tree/35a67ac 

Java, JavaScript 83,181 

Pitstop - garage 
management 
system 

[63, 100] /EdwinVW/pit-
stop/tree/e3afc74 

C#, JavaScript 53,591 

Microservices 
reference 

[63] /mspnp/mi-
croservices-ref-
erence-implementa-
tion/tree/69a8f63 

C#, Java, JavaScript 18,751 

WeText [63] /daxnet/we-tex-
t/tree/6bab01c 

C#, JavaScript 18,523 

FTGO - restaurant 
management 

[100] /microservices-pat-
terns/ftgo-applica-
tion/tree/9f85c77 

Cucumber, Java, 
JavaScript 

15,069 

. a Relative to host https://www.github.com 

details, we refer to Sect. 4.3.2 and Appendix C of the dissertation that conceived 
LEMMA [93]. 

3.2.4 Viewpoint-Based Metamodel Specification 

For each of the viewpoint-specific model kinds in Fig. 1, we defined the abstract 
syntax of a LEMMA modeling language (Sect. 2.2) as  metamodel [15]. Conse-
quently, LEMMA comprises five modeling languages, each targeting a different 
MSA viewpoint. Table 4 provides an overview of these languages. 

LEMMA’s modeling languages support MSA stakeholders as follows: 

• Domain Data Modeling Language (DDML): The DDML enables the col-
laborative construction of domain models by domain experts and microservice 
developers (Sect. 2.1). It integrates constructs for the model-based expression of 
domain concepts and their augmentation with DDD patterns. 

• Technology Modeling Language (TML): The TML addresses microservice 
developer and operator concerns (Sect. 3.1) in capturing technology decisions.

https://www.github.com/dotnet-architecture/eShopOnContainers/tree/20238d53
https://www.github.com/idugalic/micro-company/tree/5a4ee50
https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/35a67ac
https://www.github.com/EdwinVW/pitstop/tree/e3afc74
https://www.github.com/mspnp/microservices-reference-implementation/tree/69a8f63
https://www.github.com/daxnet/we-text/tree/6bab01c
https://www.github.com/microservices-patterns/ftgo-application/tree/9f85c77
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
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Table 4 LEMMA’s languages per stakeholder group, viewpoint, and model kind 

Stakeholder group Viewpoint 

Modeling languages 
(# Modeling concepts/ 
context conditions) Model kind 

Domain experts Domain Domain Data Modeling 
Language (28/36) 

Domain Model Kind 

Microservice developers 

Domain Domain Data Modeling 
Language 

Domain Model Kind 

Service 
Service Modeling Lan-
guage (24/39) 

Service Model Kind 

Service Technology 
Mapping Modeling 
Language (20/39) 

Service Technology 
Mapping Model Kind 

Technology Technology Modeling 
Language (24/37) 

Technology Model Kind 

Microservice operators 
Operation Operation Modeling 

Language (12/36) 
Operation Model Kind 

Technology Technology Modeling 
Language 

Technology Model Kind 

Software architects All All All 

• Service Modeling Language (SML): The SML targets microservice developer 
concerns. Service models constructed with the SML thus specify microservice 
APIs including operation signatures and physical or logical endpoints. 

• Service Technology Mapping Modeling Language (STMML): The STMML 
enables the construction of service technology mapping models to augment 
service model elements with technology information, thereby keeping service 
models technology-agnostic and reusable across technologies. 

• Operation Modeling Language (OML): The OML supports operators in 
specifying microservice deployment, infrastructure configuration and usage. 

We base the composition relationships between model kinds (Fig. 1) on imports, 
i.e., specific elements in a model can refer to specific elements in imported models. 

For each LEMMA modeling language, Table 4 also shows the number of model-
ing concepts and context conditions [15] that prescribe model well-formedness. 

Figure 3 shows an excerpt of the SML’s metamodel and thus illustrates the 
influence of the practicability analysis on the eventual definition of metamodel 
concepts. 

An SML ServiceModel comprises an arbitrary number of Microser-
vices, each having a name, type, visibility, and, optionally, a version. 
A microservice can require other microservices to express service dependencies. 
Required microservices may originate from the same or an imported service 
model (Import and PossiblyImportedMicroservice concepts). A non-
imported microservice has one or more Interfaces. The  notImplemented 
flag specifies whether an interface lacks an implementation, which is useful for 
iterative API refinement prior to API exposure. An interface has one or more 
Operations that model the respective microservice’s behavioral signatures. An
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Fig. 3 Excerpt of the SML’s metamodel with concepts’ structures and relationships in a UML 
class diagram [73]. The term “dominated” identifies the driving source for a concept’s eventual 
metamodel reification 

operation consists of incoming or outgoing Parameters. Each parameter has 
a CommunicationType that allows, e.g., modeling of synchronously activated 
operations that yet exhibit asynchronous behavior. With its ApiOperationCom-
ment and ApiParameterComment concepts, the SML supports API documen-
tation. Since LEMMA relies on aspects [105] to augment model elements with 
metadata, the SML associates microservices with ImportedServiceAspects. 
While originally intended for capturing technology decisions, aspects can also 
incorporate architectural patterns into LEMMA models [93]. 

Listing 1 illustrates our usage of OCL [71] to specify metamodel constraints that 
exceed class diagram expressivity. 

Listing 1 Excerpt of the OCL-based [71] context conditions for the SML’s metamodel 
1 -- Imports in a service model must be unique 
2 context ServiceModel inv uniqueImports: 
3 self.imports->forAll(i1, i2 | i1 <> i2 implies 
4 i1.name <> i2.name and i1.importURI <> i2.importURI) 
5 -- Aspects on microservices must have the correct join point 
6 context Microservice inv validJoinPointTypes: 
7 self.aspects->forAll(a | a.importedAspect.joinPoints 
8 ->includes(technology::JoinPointType::MICROSERVICES)) 
9 -- Interfaces must define at least one operation 
10 context Interface inv notEmpty: self.operations->size() > 0



Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 119

We used the Eclipse Modeling Framework (EMF) [116] and, more precisely, 
Xcore2 and Xbase3 for metamodel implementation. All LEMMA metamodel 
implementations can be found on Software Heritage [86–90]. 

3.2.5 Grammar Specification 

We specified concrete syntaxes [15] for LEMMA’s metamodels to make the 
resulting modeling language practically usable. Based on our experiences with the 
development and application of a graphical MSA modeling language [98, 114], 
we decided for textual concrete syntaxes. Since microservice architectures usually 
involve many services and infrastructure components, graphical models quickly 
become unclear. 

We employed the Xtext framework [11] for grammar specification. Listing 2 
shows an excerpt of the Xtext grammar for LEMMA’s SML. 

Listing 2 Excerpt of the Xtext grammar for LEMMA’s SML 
1 enum Visibility returns Visibility: 
2 INTERNAL=’internal’ | ARCHITECTURE=’architecture’ | PUBLIC=’public’; 
3 enum MicroserviceType returns MicroserviceType: 
4 FUNCTIONAL=’functional’ | UTILITY=’utility’ | 
5 INFRASTRUCTURE = ’infrastructure’; 
6 Microservice returns Microservice: 
7 visibility=Visibility? type=MicroserviceType 
8 ’microservice’ name=QualifiedNameWithAtLeastOneLevel 
9 (’version’ version=ID)? ’{’ interfaces+=Interface+ ’}’; 

First, the grammar determines keywords for the literals of the metamodel 
enumerations Visibility and MicroserviceType (Fig. 3). Next, it specifies 
the grammar for the Microservice metamodel concept. A microservice is 
introduced by a visibility modifier and type, followed by the microservice 
keyword and the service’s name, which must exhibit at least one qualifying level to 
support service clustering. The version keyword sets the service’s version. The 
interface keyword introduces an interface definition of the service within curly 
brackets. Listing 3 illustrates the SML’s usage for modeling the OrderService 
of the microservice architecture used by Richardson to exemplify MSA [102] 
(Sect. 3.4). 

Listing 3 Example of a microservice definition based on the metamodel (Fig. 3) and concrete 
syntax (Listing 2) of LEMMA’s  SML  
1 public functional microservice org.example.OrderService { 
2 interface Orders { . . .  } 
3 } 

The grammar specifications of LEMMA’s modeling languages and the SML code 
for the OrderService can be found on Software Heritage [76–80, 91].

2 https://wiki.eclipse.org/Xcore. 
3 https://wiki.eclipse.org/Xbase. 
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Fig. 4 Built-in phases of LEMMA’s MPF 

3.3 Model Processing Framework 

We devised a modeling processing framework (MPF) to make LEMMA models 
actionable as envisioned by MDE (Sect. 2.2). The MPF targets technology-savvy 
MSA stakeholders, e.g., Microservice Developers and Operators (Sect. 3.1), who 
not necessarily have an MDE background. Therefore, the MPF (i) structures model 
processing into phases w.r.t. the Phased Construction pattern [53]; (ii) focuses on 
Java as the most popular service programming language [13, 106]; (iii) supports 
programming approaches common in Java-based microservice development, e.g., 
annotation-based Inversion of Control (IoC) [47] in combination with the Abstract 
Class pattern [107]; (iv) abstracts from MDE technologies used by LEMMA; and 
(v) yields stand-alone executable model processors for continuous integration [48]. 

Figure 4 shows the MPF’s model processing phases. It is possible to add custom 
phases for other model processing purposes like simulation [15]. 

The phases’ responsibilities are as follows: 

• Source/Intermediate Model Parsing: These phases parse LEMMA models 
(source models; Sect. 3.2) and their intermediate representations (intermediate 
models). LEMMA intermediate models incorporate preprocessed data such 
as explicit configuration values resulting from implicit default values. Model 
processors thus need not calculate this data, which also imposes consistency in 
model processing. Moreover, intermediate models expressed in the generic XML 
Metadata Interchange format [72] decouple model processors from EMF. 

• Source/Intermediate Model Filtering: These phases allow the selection of 
model elements for subsequent processing phases. Each phase expects an OCL 
file whose queries [71] are evaluated against the source or intermediate model. 
The MPF then applies follow-up phases only on elements matching the queries. 

• Source/Intermediate Model Validation: These phases support the provisioning 
of model validity checks with specific severities. Source model validation may 
also happen interactively via the Language Server Protocol (LSP).4 That is, MPF-
based model processors leverage the LSP to connect with the Eclipse editor of 
the respective LEMMA modeling language to display validation results during 
model construction. Hence, modelers need not invoke a processor separately 
from the IDE and trace validation results to erroneous model elements manually.

4 https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification. 
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• Code Generation: The MPF incorporates this phase as code generation is one 
of the key drivers for MDE adoption [5, 61, 123]. 

The Kotlin5 -based MPF can be found on Software Heritage [83]. 

3.4 Illustrative Example 

We illustrate the construction of a microservice with LEMMA’s modeling lan-
guages (Sect. 3.2) and the processing of the resulting models with LEMMA’s MPF 
(Sect. 3.3). 

Listing 4 shows four coherent LEMMA model excerpts in the DDML, TML, 
and SML (Sect. 3.2). The complete models can be found on Software Heritage [81]. 
They cover the Order and Restaurant microservices of Richardson’s MSA case 
study [102]. 

Listing 4a contains the domain model of the Order microservice in LEMMA’s 
DDML. The model consists of the two bounded contexts (Sect. 2.1), Order and 
API. 

The Order context comprises two domain concepts. Order is a structured 
domain concept that consists of five fields of which four have the built-in primitive 
type long, while the state field is typed by the enumeration domain concept 
OrderState (Lines 11–16). LEMMA’s DDML also integrates keywords for DDD 
patterns [24], e.g., Aggregate and Entity. The Order structure combines both 
these patterns. As an aggregate, its instances cluster instances of other domain 
concepts, which are only accessible from the Order instance. As an entity, two  
Order instances are distinguishable by a domain-specific identifier (see the 
id field in Line 4).  

The API context comprises three domain concepts for the Order microser-
vice’s interactions. The CreateOrderRequest concept is a DDD valueOb-
ject [24], i.e., its instances transport information between architecture compo-
nents. Therefore, all of its fields are immutable and receive a value once during 
instance initialization. 

Listing 4b shows a technology model for Java and Spring6 in the TML (Sect. 3.2). 
The types section defines technology-specific type synonyms for LEMMA’s 
built-in primitive types. During model processing, these synonyms replace all 
instances of LEMMA primitive types in models that apply the technology model. 
Since LEMMA’s type system is based on Java [33], the mapping of built-in 
types to technology-specific synonyms Listing 4b is straightforward. For example, 
the boolean type has the synonym Boolean (Lines 4–5). The technology 
model also specifies the PostMapping aspect (Lines 20–21). It maps to the

5 https://www.kotlinlang.org.
6 https://www.spring.io. 
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Listing 4 Example models in LEMMA’s (a) DDML, (b, c) TML, and (d) SML. The models are 
excerpts from the models for the order and restaurant microservices of Richardson’s MSA case 
study [102] used to illustrate LEMMA’s model processing capabilities [81]
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eponymous Spring annotation7 and is applicable to microservice operations (for 
operations) exactly once (singleval). 

Listing 4c constructs a technology model with the rest protocol for the 
REST architectural style [26]. REST is often applied in synchronous microservice 
interactions [13]. The rest protocol uses the JSON data format [21] and is 
the default synchronous protocol when a microservice applies the technology 
model. 

Listing 4d shows a service model in the SML. It exemplifies the imported-
based composition of LEMMA models (Sect. 3.2) as it imports the domain model 
in Listing 4a under the alias OrderDomain, and the two technology models in 
Listing 4b and c under the aliases JavaSpring and Protocols (Lines 2– 
4). The two technology models are applied to the OrderService microservice 
(Line 8) by the built-in @technology annotation. These applications lead to 
implicit replacement of types with synonyms (Listing 4b) and the assumption of 
default protocols (Listing 4c). 

The OrderService has a public visibility, which allows its exposure to 
external clients, and a functional type, which identifies the service’s capability 
to stem from the application domain. The OrderService consists the Orders 
interface (Lines 10–20) with a rest endpoint (Line 9). In LEMMA, an endpoint is a 
combination of a protocol from a technology model being applied to a microservice 
(Line 7 and Listing 4c) and one or more addresses, i.e., “/orders” (Line 9). 

The Orders interface consists of the create operation (Lines 16–19). The 
API comment (Lines 11–14) informs about the operation’s function. create 
defines the synchronous input parameter request and the synchronous output 
parameter response. The type of the former is the structured domain concept 
CreateOrderRequest imported from the domain model in Listing 4a. The 
type of the latter is the response-specific counterpart of CreateOrderRequest, 
i.e., CreateOrderResponse [81]. create applies the PostMapping aspect 
from the technology model in Listing 4b to specify that the operation is invokable 
by HTTP POST requests [27]. 

Listing 5 shows excerpts from an MPF-based model processor (Sect. 3.3), whose 
complete Java sources are available on Software Heritage [81]. The processor 
yields the number of microservices’ interfaces in a LEMMA service model and 
also distinguishes between interfaces with only asynchronous or synchronous 
operations. Such classifications of interfaces are crucial to MSA-specific quality 
metrics [22]. 

Listing 5a shows the Java class of the processor’s source model validator 
(Sect. 3.3). The annotation @SourceModelValidator allows LEMMA’s MPF 
to find source model validators on the classpath. A source model validator must 
extend AbstractXtextModelValidator and override its getSupport-
edFileExtensions method to inform the MPF about the validator’s supported

7 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/ 
bind/annotation/PostMapping.html. 
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Listing 5 Example model processor written in Java based on LEMMA’s MPF. For each microser-
vice in the input service model, the processor (a) prints an information message; and (b) generates 
a file with the overall interface count as well as with the share of asynchronous and synchronous 
interfaces. The code in (c) shows the processor’s entry point
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model file types. Methods with the @Check annotation are validation methods. The 
types of their first parameters must correspond to the metamodel concepts for whose 
instances in a model the validation methods shall be invoked by the MPF. Thus, 
the checkMicroservice method in Lines 9–12 validates Microservice 
instances in LEMMA service models (Fig. 3). 

Listing 5b contains a code generation module of the example model processor. 
The MPF modularizes the Code Generation phase (Sect. 3.3) to enable separation 
of concerns in complex model processors [49]. A code generation module is a Java 
class that (i) exhibits the @CodeGenerationModule annotation; (ii) extends 
AbstractCodeGenerationModule; and (iii) overrides the getLanguage-
Namespace method to signal the MPF the namespace of the metamodel targeted 
by code generation. In case of the module in Listing 5b, this namespace identifies 
the intermediate representation of LEMMA service models (Sects. 3.2 and 3.3). The 
execute method (Lines 9–42) implements the module’s logic. The for-loop in 
Lines 17–29 iterates over all microservices and interfaces in the given intermediate 
service model and counts the number of interfaces whose operations have only 
asynchronous or synchronous parameters. Lines 30–36 map this information to a 
string and buffer it in the resultFileContents variable. Finally, Lines 38–41 
inform the MPF about the generated file content for its eventual serialization. 

Listing 5c comprises the processor’s entrypoint, i.e., a Java class that inherits 
from AbstractModelProcessor and has a main method that delegates 
execution to the MPF. This delegation informs the MPF about the processor’s Java 
package that shall be scanned for phase implementations like those in Listing 5a 
and b. 

4 Applications of LEMMA 

This section presents applications of LEMMA for microservice code generation 
(Sect. 4.1), model-based architecture reconstruction (Sect. 4.2), static quality analy-
sis (Sect. 4.3), defect resolution by model refactoring (Sect. 4.4), and establishing a 
common architecture understanding (Sect. 4.5). 

4.1 Plugin-Based Generation of Technology-Specific 
Microservice Code 

MSA’s technology heterogeneity (Sect. 1) not only concerns architecture models 
(Sect. 3.1) but also microservice implementations [95]. Therefore, we devised a 
code generator for Java-based microservice programming that maps LEMMA 
models in their intermediate representations (Sect. 3.3) to basic Java abstract syntax 
trees (ASTs). Besides Java, these basic ASTs are technology-agnostic in that
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they do not leverage a specific microservice implementation technology. For the 
specification of the mapping between intermediate LEMMA model element types 
and Java AST node types, we refer to Appendix K of the dissertation that conceived 
LEMMA [93]. 

Our Java Base Generator (JBG) [82] draws on LEMMA’s MPF and is also a 
framework for the development of technology-specific code generation plugins, 
called Genlets. The JBG may load an arbitrary number of pre-compiled Genlets 
and execute them in a specific order after the creation of basic Java AST nodes from 
traversed intermediate model elements. Genlets consist of a set of code generation 
handlers, which are Java classes that exhibit the @CodeGenerationHandler 
annotation and implement the GenletCodeGenerationHandlerI interface. 

A Genlet requests the JBG to invoke it for a combination of model element type 
and AST node type and pass to it both the element and the mapped node. The JBG 
then passes the element and node to the Genlet for technology-specific adaptation 
after which the JBG integrates the adapted node in the Java AST. After the execution 
of all given Genlets, the JBG serializes the adapted Java ASTs, which may involve 
a reordering of the ASTs to comply with patterns that preserve manual changes to 
generated code upon re-generation [35]. 

Figure 5 exemplifies the interaction between the JBG and its Genlets in the 
context of the Orders interface from Listing 4d. 

The JBG maps an interface modeled in LEMMA’s SML to an eponymous Java 
class (NormalClassDeclaration instance [33] in Compartment 1 of Fig. 5). 
Modeled operations become Java methods (MethodDeclaration instance [33] 
in Compartment 1). The Spring Genlet adapts the generated class to behave as 
a REST controller that invokes the create operation when receiving an HTTP 
POST request (Compartment 2 in Fig. 5). This adaptation follows from the modeled 
rest endpoint of the Orders interface (Listing 4d) and the application of 
the PostMapping aspect to the create operation. In the serialization phase 
(Compartment 3 in Fig. 5), the JBG adapts the AST to be compatible with the 
Generation Gap to preserve manual changes to generated code. Next to this pattern, 
the JBG also supports its extended variant [35], which reduces the amount of 
pattern-specific boilerplate code. 

LEMMA currently bundles Genlets for Spring, the Kafka message broker,8 

DDD, and the Domain Event and CQRS patterns [75, 102]. Since a Genlet is 
inherently a LEMMA model processor, it can leverage functionality provided by the 
MPF including stand-alone execution for interactive model validation (Sect. 3.3). 
We applied the JBG in a research project from the Electromobility domain and were 
able to generate the implementations of all domain concepts, microservice inter-
faces, and extensible infrastructure for asynchronous interaction. The generation 
efficiency ranged between 5.90 and 6.26, i.e., from one line of LEMMA model, 
roughly six lines of Java microservice code were producible, making generative 
microservice development with LEMMA basically efficient. For details, we refer to

8 https://kafka.apache.org. 
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Fig. 5 Sample Java AST enrichment with the JBG and the Spring Genlet [99] 

Sect. 8.7 of the dissertation that conceived LEMMA [93]. Recent works leveraged 
the JBG and its Genlets to derive microservice code from underspecified domain 
models [96], integrate blockchain technology into microservice architectures [122], 
and realize asynchronous microservice interactions [99]. 

4.2 Model-Based Reconstruction of Microservice Architectures 

MSA’s emphasis on service-specific independence (Sect. 1) may lead to service 
proliferation and the subsequent erosion of the anticipated architecture design 
because teams can autonomously advance different architecture parts [13]. Soft-
ware Architecture Reconstruction (SAR) [8] is thus an important area in MSA 
research [1]. This section describes the design, development, and evaluation of 
an extensible LEMMA-based SAR approach that automates the translation of the 
source code of existing microservice architectures into LEMMA models, thereby
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Fig. 6 Core components of our LEMMA-based SAR approach 

facilitating the reasoning about the architecture and enabling the application of 
MDE techniques like quality assessment (Sect. 4.3) and defect resolution (Sect. 4.4). 

4.2.1 An Extensible Approach for LEMMA-Based Microservice 
Architecture Reconstruction 

Figure 6 depicts the core components of our LEMMA-based SAR approach. 
The Reconstruction Framework (RF) orchestrates the SAR process according to 

Bass et al. [8]. 
In the first phase, the RF recovers architecture information from the artifacts of a 

microservice architecture including its source code and deployment specifications. 
To this end, the RF iterates over all artifacts of a given architecture and invokes 
reconstruction plugins on artifacts. These plugins cover different microservice tech-
nologies and LEMMA viewpoints. They are responsible for extracting architecture 
information from given artifacts, translate the information into the format expected 
by the RF, and return it to the RF. In the sense of Bass et al., the plugins perform a 
raw view extraction [8]. 

In the second phase, the RF stores all extracted architecture information in a 
reconstruction database. For this purpose, we specified data formats for each MSA 
viewpoint (Sect. 3.1). The database enables the RF’s future extension by dynamic 
analyses where gathered architecture information originates from continuous mon-
itoring. This phase corresponds to database construction and view fusion in the 
SAR process of Bass et al. [8] where heterogeneous architecture information are 
harmonized and stored in a common format. 

In the third phase, the RF enables subsequent, LEMMA-based processing of 
reconstructed architecture information. In a first step, the RF invokes the LEMMA 
model extractor [97] to serialize information from the reconstruction database 
into LEMMA model files for the reconstructed viewpoints (Sect. 3.2). Starting 
from these reconstructed view models, software architects can perform efficient
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architecture analyses, e.g., for quality assessment (Sect. 4.3) or defect detection 
(Sect. 4.4), as suggested by Bass et al. [8]. 

4.2.2 Evaluation of the LEMMA-Based Reconstruction Approach 

We evaluated our LEMMA-based SAR approach on Lakeside Mutual,9 which is 
an MSA case study application for a fictitious insurance company. The architec-
ture consists of a generic Customer Core microservice and four more specific 
microservices for customer, policy, and risk management as well as customer 
self-service. The Customer Self-Service and Policy Management microservices 
interact via asynchronous messaging. All remaining microservices rely on HTTP-
based interaction. The services (i) use a registry to discover each other; (ii) are 
primarily implemented in Java and Spring (Sect. 3.4); (iii) produce logs for runtime 
monitoring; and (iv) store information in their own databases. We selected Lakeside 
Mutual for the evaluation of our SAR approach because its architecture is well 
documented [129, 130]. 

Table 5 shows the results of the evaluation of our SAR approach on Lakeside 
Mutual. The evaluation used reconstruction plugins for Java and Spring that cover 
LEMMA’s Domain and Service viewpoints (Sect. 3.1 and Fig. 6). We use the Recall, 
Precision, and F.measure metrics to assess the preciseness of the reconstruction 
process. 

The evaluation showed that the current implementation of our SAR approach is 
able to reconstruct four of the five microservices of Lakeside Mutual in LEMMA 
service model. The RF did not recover the Risk Management microservice because 
it is based on Node.js10 and our reconstruction plugins currently target Java. 
However, all expected interfaces and operations of the reconstructed microservices 
could be recovered with reconstructed data structures in LEMMA domain models 
originating from operations’ parameter types (Sect. 3.4). The discrepancy between 
expected and recovered structures results from classes defined in external depen-
dencies whose source code is currently not available to the RF. 

4.3 Assessment of Microservice Maintainability with Static 
Model Analysis 

Next to scalability, maintainability is the most crucial quality attribute in MSA [17, 
119] (Sect. 1). There exist several metrics suites that define metrics for maintain-
ability assessment of microservices [3, 22, 39, 41]. While the majority of these 
metrics does not target MSA, but SOA [3, 41] or REST [39], they are still known

9 https://www.github.com/Microservice-API-Patterns/LakesideMutual/tree/bc79075. 
10 https://www.nodejs.org. 
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to be applicable to MSA [12]. We were interested in the assessment of these 
metrics by static LEMMA model analysis to provide fast feedback about modeled 
microservices’ quality. 

We investigated the LEMMA-based calculation of each of the 26 metrics from 
the aforementioned four metrics suites. They can be characterized as follows: 

• Hirzalla et al. [41]: Hirzalla et al. define ten metrics for single SOA services 
and complete architectures. Among such metrics are (i) NOVS (Number of 
Versions per Service), which measures architecture complexity by calculating the 
ratio between service versions and services; and (ii) SRP (Service Realization 
Pattern), which measures the share of services exposed by intermediaries in 
the overall share of exposed services with a lower share hinting at lesser 
complexity. While NOVS is directly assessable from LEMMA service models, 
SRP requires operation models and a notion of intermediary like API gateway or 
edge server [7]. 

• Athanasopoulos et al. [3]: This suite consists of three metrics that measure 
service interface cohesion on the message, conversation, and domain level. 
Cohesion is important for microservices as it has a direct impact on maintainabil-
ity [109, 119]. All metrics of the suite rely on interface-level graphs (ILG) which 
are undirected, labeled, and weighted graphs whose vertices represent interface 
operations and whose weighted edges inform about operations’ similarity. The 
ideal ILG is a complete ILG with similarity weight 1, i.e., all interface operations 
are maximal similar. The lack of interface-level cohesion is then computable as 
the relative difference between the ILG and the ideal ILG. 

The metrics in the suite differ by their calculation rules for ILG similarity 
weights. For instance, the Message-Level Cohesion Lack metric considers the 
similarity of operations’ message types, whereas the Domain-Level Cohesion 
Lack metric focuses on operation similarity based on domain terms. All metrics 
in the suite are directly computable from LEMMA service models. 

• Haupt et al. [39]: Haupt et al. define seven metrics for structural REST API 
analysis. The metrics rely on managed resources, i.e., objects of information 
maintained via REST [26]. For their LEMMA-based computation, the majority 
of the metrics require a technology model that indicates REST application 
(Sect. 3.4) as well as domain and service models. For example, to assess the 
Number of Resources metric, it is mandatory to identify REST operations 
(technology and service model; cf. Listing 4) and managed resources as structural 
types of service operation parameters (domain model). 

• Engel et al. [22]: This suite comprises six metrics for MSA core principles like 
loose coupling. Those metrics include Number of (A)Synchronous Interfaces 
and Average Size of Asynchronous Messages. While the former is computable 
from LEMMA service models (Listing 5b), the latter requires runtime moni-
toring and is only heuristically assessable. That is, parameter types of modeled 
asynchronous operations allow lower-bound assessment of message sizes. 

From the 26 metrics defined in the presented suites, 20 were computable from 
LEMMA models. The remaining six metrics either require dynamic analysis or
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process modeling, which is currently out of LEMMA’s scope. For details, we refer 
to Sects. 9.5.2 to 9.5.5 of the dissertation that conceived LEMMA [93]. 

We implemented a library for the computation of supported metrics [84] and 
an MPF-based static analyzer [85] (Sect. 3.3) allowing the library’s usage. We 
evaluated the analyzer on the LEMMA reconstruction models of Lakeside Mutual 
(Sect. 4.2) and revealed weaknesses in service cohesion. In our ongoing works, we 
integrate the analyzer library with LEMMA’s Eclipse plugins (Sect. 3.2) to provide 
MSA stakeholders with ad hoc visual feedback about microservice maintainability. 

4.4 Defect Resolution by Model Refactoring 

Defects of a software architecture refer to issues in its design that may cause 
unwanted behavior of the implemented system. They are often made unintentionally, 
and without the awareness of software architects and developers [74]. Furthermore, 
their manifestation and occurrence is impacted by the architectural style, e.g., MSA. 
For defect resolution, the architecture design and implementation usually need to 
undergo a refactoring process. In the following, we describe a preliminary approach 
for the LEMMA-based detection and resolution of security defects in microservice 
architectures [125]. 

We illustrate our approach for a common security defect in MSA, i.e., Publicly 
Accessible Microservices (PAM), where interfaces are not exposed in a restricted 
and controlled fashion by an intermediary but are instead freely accessible by 
architecture-external clients [74]. This public and complete exposure of service 
interfaces increases the risk for confidentiality violations and other security issues 
significantly. To resolve the defect, an intermediary for interface exposure, e.g., an 
API Gateway [7], should be integrated into the architecture. 

Listing 6 shows LEMMA technology and operation models (Sect. 3.2) that allow 
detection of the PAM defect and eventually resolve it. 

The technology model in Listing 6a defines aspects that allow the enrichment of 
infrastructure nodes in LEMMA operation models with functional seman-
tics. For instance, the isApiGateway aspect can be used to communicate the 
intent that a certain infrastructure node represents an API Gateway independent 
of the actual technology used to realize this capability. Listing 6b is technology 
model for a concrete API Gateway technology, i.e., Zuul.11 Listing 6c is a LEMMA 
operation model that applies the technology models in Listing 6a and b to specify 
a Zuul-based infrastructure node called Gateway and identify it as an API 
Gateway using the isApiGateway aspect. Listing 6d contains an operation model 
with a specification for container-based microservice deployment. More precisely, 
it models the Docker12 deployment of the Lakeside Mutual’s Customer Core

11 https://github.com/Netflix/zuul. 
12 https://www.docker.com. 
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Listing 6 Example models for LEMMA-based defect resolution. We rely on aspects to assign 
semantics to infrastructure components (a). The technology model in (b) describes a concrete API 
Gateway technology used in the operation model in (c) by an infrastructure node denoting an API 
Gateway. The operation model in (d) captures the Docker-based deployment of a microservice that 
does not use the API Gateway, whereas (e) shows the refactored operation model resolving this 
defect 

microservice (Sect. 4.2). The depends on directive (Line 5) shows that the Docker 
container only depends on a service registry from another imported operation model. 
Hence, it does not leverage the capabilities of an API Gateway, thereby introducing 
the PAM defect. 

For the detection of defects in LEMMA models, we implemented a model 
processor using LEMMA’s MPF (Sect. 3.3). The processor’s validation phase 
identifies defects in given LEMMA models and reports them to the user by hinting 
at the defect-inducing model element. In order to facilitate defect resolution, we 
implemented an Eclipse plugin that enriches defect issues reported by the processor 
with quick fixes that are applicable to resolve the detected defect via automated 
model refactoring. For the PAM defect, the corresponding refactoring is the addition 
of an API Gateway and its usage by concerned microservices [74]. Listing 6d 
illustrates the defect resolution by adding the Gateway from Listing 6c to the nodes 
on which the container depends (Line 5).
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We are currently working on integrating the defect resolution processor with 
LEMMA’s JBG (Sect. 4.1) such that refactored models can directly be mapped to 
microservice code and configuration artifacts. As a result, we can eventually provide 
MSA stakeholders with means for defect detection, resolution, resolution reasoning, 
and evaluation, including the subsequent generation of code for the most suitable 
resolution. 

4.5 Model Transformations for a Common Architecture 
Understanding 

MSA poses challenges to organizations in restructuring their development processes 
to cope with service-specific independence and ownership (Definition 1). The 
division into different teams, each of which being holistically responsible for one 
or more microservices, can lead to a lack of architectural understanding across 
team boundaries. This lack of understanding can have a negative effect, e.g., when 
setting development priorities. We have observed this effect especially in small-
and medium-sized enterprises, whose service landscapes evolve together with their 
development organizations [113]. 

Model-driven approaches such as LEMMA are particularly suitable for doc-
umenting and transferring knowledge [15]. Therefore, we argue that LEMMA 
constitutes an effective means to create and maintain a common and organization-
wide architecture understanding by making (partial) MSA models available to teams 
and support their active exchange. For this purpose, due to microservices fostering 
technology heterogeneity (Sect. 2.1), the application of MDE technologies and tech-
niques, e.g., code generation (Sect. 4.1) or model-based reconstruction (Sect. 4.2), 
cannot be assumed. However, LEMMA provides bidirectional model transforma-
tions [59] to derive LEMMA models from microservice API specifications based 
on OpenAPI13 (synchronous APIs) or Apache Avro14 (asynchronous APIs) and 
vice versa. Consequently, these transformations allow knowledge documentation 
and communication without requiring microservice teams to develop their services 
with MDE. 

In the following, we (i) describe a development process for small- and medium-
sized enterprises that supports both code-first and model-first microservice develop-
ment in an integrated fashion; and (ii) how LEMMA’s OpenAPI model transforma-
tion enables this process. For more details regarding the process, the transformation, 
and the corresponding artifacts, we refer to our previous work [115].

13 https://www.openapis.org. 
14 https://avro.apache.org. 
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Fig. 7 Code-first vs. model-first microservice development in cross-functional teams 

4.5.1 Code-First vs. Model-First Microservice Development 

Figure 7 compares code-first with model-first microservice development in two 
cross-functional MSA teams [7]. 

Team A applies the code-first approach to microservice development in which 
source code is a first-class citizen and models are used, if at all, for mere 
documentation and communication. That is, Team A starts to implement a service 
by writing its source code, followed by the automated generation of interface 
specification. The latter step follows from insights of an exploratory study [113] 
in which we found that MSA teams in industry rarely and reluctantly create manual 
documentation of their interfaces but instead rely on automated approaches, e.g., 
Swagger15 to generate OpenAPI specifications. With LEMMA, it is now possible 
to automatically transform generated interface specifications into corresponding 
LEMMA domain, service, and technology models (Sect. 3.2). Team A may then 
refine the derived LEMMA models, if desired, and eventually share them with 
other teams to stimulate the creation of a common architectural understanding 
by exploiting MDE’s abstraction facilities (Sect. 2.2) and to support model-first 
development approaches. With the support of model generation in a code-first 
approach, thus enabling teams to communicate, share knowledge, and create a 
common understanding, LEMMA addresses a possible lack of expertise on the 
part of developers, which is a common challenge for the success of MDE tools 
in practice [124]. 

Team B in Fig. 7 practices model-first microservice development, which uses 
LEMMA models as first-class citizens, thereby directly following MDE’s line of 
thought. From such models and their intermediate representations, a code generator

15 https://www.swagger.io. 
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like the JBG (cf. Sect. 4.1) can be used to produce refinable code. As for the code-
first approach, both LEMMA model and source code artifacts exist in the end. 

4.5.2 OpenAPI Model Transformation 

LEMMA realizes the code-first approach (Fig. 7) through multiple model-to-model 
(M2M) transformations [15], which we detail on the example of the OpenAPI-to-
LEMMA transformation in Fig. 8. 

The M2M transformation process starts with an OpenAPI-conform interface 
specification in a file with the extension “.json” or “.yaml”. This specification is 
parsed into an in-memory API Model fueling multiple M2M transformations. Since 
the intended use of OpenAPI is to describe HTTP resource APIs, corresponding 
specifications include utilizable information about data, interfaces, and transfer-
specific technology information like media types. This information is translated 
into LEMMA domain, service, and technology models by means of dedicated M2M 
transformations. 

In detail, the Data transformation operates on schemas objects in OpenAPI 
specifications and generates a data structure in a LEMMA domain model for 
each traversed schema. The Service transformation processes OpenAPI tags and 
paths objects. It creates a LEMMA service model that is populated with interfaces 
for each encountered tag. Paths corresponding to a tag result in interface operations 
with request and response parameters. Furthermore, the Service transformation gen-
erates matching LEMMA collection types for each OpenAPI array. The Technology 
transformation analyzes the OpenAPI paths object for specific media types and 
creates a corresponding LEMMA technology model. Subsequently, the resulting in-
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memory LEMMA models are serialized as files by specialized extractors and are 
thus immediately usable by MSA teams. 

5 Related Work 

Table 6 compares LEMMA with related MDE-for-MSA approaches. Additional 
details can be found in Sects. 4.6 and 5.6 of the dissertation that conceived 
LEMMA [93]. 

While related approaches cover some of the MSA viewpoints (Sect. 3.1), 
LEMMA is the only approach to support them all, including viewpoint-specific 
modeling languages and holistic MSA modeling by viewpoint integration 
(Sect. 3.2). A further strength of LEMMA is its extensibility on the language 
level, enabled by the aspect-oriented metadata mechanism of the TML. This 
extensibility allows, e.g., model-based reification of architecture patterns and 
selective technology-specificity, which is essential for agile modeling [103]. 

In comparison, LEMMA also facilitates model processing by bundling a special-
ized MPF (Sect. 3.3) and sophisticated model processors. Additionally, LEMMA 
has proven to be exceptionally versatile in a variety of MSA engineering scopes, 
ranging from development and operation over reconstruction to quality assessment 
(Sect. 4). 

6 Conclusion and Future Work 

This chapter presented LEMMA (Language Ecosystem for Modeling Microservice 
Architecture) [93]—an approach for the application of Model-Driven Engineering 
to Microservice Architecture (MSA) engineering. LEMMA mitigates the complex-
ity of MSA (Sect. 2) by first decomposing it along four viewpoints on microservice 
architectures, each capturing the concerns of different MSA stakeholders in dedi-
cated architecture models (Sect. 3.1). The Domain viewpoint supports the collabora-
tive construction of domain models by domain experts and microservice developers. 
Domain models cluster all domain concepts relevant to a microservice architecture. 
The Technology viewpoint focuses on the concerns of microservice developers and 
operators and enables them to capture technologies for microservices and operation 
nodes within technology models. The Service viewpoint provides microservice 
developers with modeling facilities for microservices, their interfaces, operations, 
and endpoints. The Operation viewpoint addresses the concerns of microservice 
operators in deployment and infrastructure operation modeling. We accompanied 
each viewpoint with a specialized modeling language that formalizes the syntax 
and semantics of viewpoint-specific MSA models (Sect. 3.2). LEMMA’s modeling 
languages are integrated by means of an import mechanism so that elements in one 
model can refer to elements in imported models, e.g., to configure the container-
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based deployment of a modeled microservice within an operation model. The 
modeling languages are practically usable as plugins for the Eclipse IDE. LEMMA 
also bundles its own model processing framework (MPF; Sect. 3.3). The MPF 
facilitates model processor implementation for technology-savvy MSA stakeholders 
by decoupling model processing into phases and allow phase implementation 
by mechanisms that are popular in MSA engineering, e.g., Java and annotation-
based Inversion of Control [47]. We exemplified the usage of LEMMA’s modeling 
languages and MPF in the context of a case study microservice architecture 
(Sect. 3.4). Section 4 presented practical applications of LEMMA for microservice 
code generation (Sect. 4.1), architecture reconstruction (Sect. 4.2), quality analysis 
(Sect. 4.3), defect resolution (Sect. 4.4), and establishing a common architecture 
understanding (Sect. 4.5). Section 5 compared LEMMA to related approaches and 
concluded that LEMMA has particular strengths in (i) holistic MSA modeling 
based on viewpoint integration; (ii) language-level extensibility, enabling model-
based reification of architecture patterns and selective technology-specificity; (iii) 
model processing, by bundling a specialized MPF together with sophisticated 
model processors for code generation and quality analysis; and (iv) versatility, 
making LEMMA applicable in microservice development, operation, architecture 
reconstruction, and quality assessment. 

In our ongoing and future works, we combine LEMMA with formal techniques 
for correct microservice behavior specification [31, 32]. Moreover, while we have 
already empirically shown that LEMMA is effective for MSA modeling [112], 
we plan to evaluate it further in industry-related development processes of small-
and medium-sized enterprises. In addition, two doctoral students currently improve 
LEMMA to (i) better integrate with distributed and non-modeling microservice 
teams [113, 115]; and (ii) increase the coverage and correctness of LEMMA-based 
reconstruction processes [126]. 

References 

1. Alshuqayran, N., Ali, N., Evans, R.: Towards micro service architecture recovery: An 
empirical study. In: 2018 IEEE International Conference on Software Architecture (ICSA), 
pp. 47–56. IEEE, Piscataway (2018). https://doi.org/10.1109/ICSA.2018.00014 

2. Ameller, D., Burgués, X., Collell, O., Costal, D., Franch, X., Papazoglou, M.P.: Development 
of service-oriented architectures using model-driven development: a mapping study. Informat. 
Softw. Technol. 62, 42–66 (2015). Elsevier. https://doi.org/10.1016/j.infsof.2015.02.006 

3. Athanasopoulos, D., Zarras, A.V., Miskos, G., Issarny, V., Vassiliadis, P.: Cohesion-driven 
decomposition of service interfaces without access to source code. IEEE Trans. Serv. Comput. 
8(4), 550–562 (2015). IEEE. https://doi.org/10.1109/TSC.2014.2310195 

4. Ayas, H.M., Leitner, P., Hebig, R.: Facing the giant: A grounded theory study of decision-
making in microservices migrations. In: Proceedings of the 15th ACM / IEEE International 
Symposium on Empirical Software Engineering and Measurement (ESEM), ESEM ’21. 
Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3475716. 
3475792

https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1016/j.infsof.2015.02.006
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792
https://doi.org/10.1145/3475716.3475792


140 F. Rademacher et al.

5. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large industrial context — Motorola 
case study. In: Briand, L., Williams, C. (eds.) Model Driven Engineering Languages and 
Systems, pp. 476–491. Springer, Berlin (2005). https://doi.org/10.1007/11557432_36 

6. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables DevOps: 
migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016). IEEE. https://doi. 
org/10.1109/MS.2016.64 

7. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures using 
microservices: An experience report. In: Celesti, A., Leitner, P. (eds.) Advances in Service-
Oriented and Cloud Computing, pp. 201–215. Springer, Cham (2016). https://doi.org/10. 
1007/978-3-319-33313-7_15 

8. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn. Addison-
Wesley, Boston (2013) 

9. Bass, L., Klein, J.: Deployment and Operations for Software Engineers, 1st edn. Self-
published (2019) 

10. Benguria, G., Larrucea, X., Elvesæter, B., Neple, T., Beardsmore, A., Friess, M.: A platform 
independent model for service oriented architectures. In: Doumeingts, G., Müller, J., Morel, 
G., Vallespir, B. (eds.) Enterprise Interoperability, pp. 23–32. Springer, London (2007). 
https://doi.org/10.1007/978-1-84628-714-5_3 

11. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, 2nd edn. Packt 
Publishing, Birmingham (2016) 

12. Bogner, J.: On the evolvability assurance of microservices: metrics, scenarios, and patterns. 
Ph.D. Thesis (2020). https://doi.org/10.18419/opus-10950 

13. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Microservices in industry: Insights into 
technologies, characteristics, and software quality. In: 2019 IEEE International Conference on 
Software Architecture Companion (ICSA-C), pp. 187–195. IEEE, Piscataway (2019). https:// 
doi.org/10.1109/ICSA-C.2019.00041 

14. Cerny, T., Donahoo, M.J., Trnka, M.: Contextual understanding of microservice architecture: 
current and future directions. SIGAPP Appl. Comput. Rev. 17(4), 29–45 (2018). ACM. 
https://doi.org/10.1145/3183628.3183631 

15. Combemale, B., France, R.B., Jézéquel, J.M., Rumpe, B., Steel, J., Vojtisek, D.: Engineering 
Modeling Languages: Turning Domain Knowledge into Tools, 1st edn. CRC Press, Boca 
Raton (2017) 

16. Cortellessa, V., Eramo, R., Tucci, M.: From software architecture to analysis models and back: 
model-driven refactoring aimed at availability improvement. Informat. Softw. Technol. 127 
(2020). https://doi.org/10.1016/j.infsof.2020.106362 

17. Di Francesco, P., Malavolta, I., Lago, P.: Research on architecting microservices: Trends, 
focus, and potential for industrial adoption. In: 2017 IEEE International Conference on 
Software Architecture (ICSA), pp. 21–30. IEEE, Piscataway (2017). https://doi.org/10.1109/ 
ICSA.2017.24 

18. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R., Safina, 
L.: Microservices: Yesterday, today, and tomorrow. In: Mazzara, M., Meyer, B. (eds.) Present 
and Ulterior Software Engineering, pp. 195–216. Springer, Berlin (2017). https://doi.org/10. 
1007/978-3-319-67425-4_12 

19. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.: Microservices: 
How to make your application scale. In: Petrenko, A.K., Voronkov, A. (eds.) Perspectives of 
System Informatics, pp. 95–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
74313-4_8 

20. Le, D.M., Dang, D.-H., Nguyen, V.-H.: Domain-driven design using meta-attributes: A DSL-
based approach. In: 2016 Eighth International Conference on Knowledge and Systems 
Engineering (KSE), pp. 67–72. IEEE, Piscataway (2016). https://doi.org/10.1109/KSE.2016. 
7758031 

21. Ecma International: The JSON data interchange syntax. Standard ECMA-404, Ecma 
International (2017)

https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.1007/978-1-84628-714-5_3
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.18419/opus-10950
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1016/j.infsof.2020.106362
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031


Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 141

22. Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice architec-
tures: A metric and tool-based approach. In: Mendling, J., Mouratidis, H. (eds.) Information 
Systems in the Big Data Era, pp. 74–89. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-92901-9_8 

23. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology and Design, 1st edn. 
Prentice Hall, Hoboken (2005) 

24. Evans, E.: Domain-Driven Design, 1st edn. Addison-Wesley, Boston (2004) 
25. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven provi-

sioning, deployment, monitoring, and adaptation of multi-cloud systems. In: 2013 IEEE 
Sixth International Conference on Cloud Computing, pp. 887–894. IEEE, Piscataway (2013). 
https://doi.org/10.1109/CLOUD.2013.133 

26. Fielding, R.T.: Architectural styles and the design of network-based software architectures. 
Ph.D. Thesis (2000) 

27. Fielding, R.T., Reschke, J.F.: Hypertext Transfer Protocol (HTTP/1.1): Semantics and 
content. RFC 7231, RFC Editor (2014) 

28. France, R., Rumpe, B.: Model-driven development of complex software: A research roadmap. 
In: 2007 Future of Software Engineering, FOSE ’07, pp. 37–54. IEEE, Washington, (2007). 
https://doi.org/10.1109/FOSE.2007.14 

29. Francesco, P.D., Lago, P., Malavolta, I.: Migrating towards microservice architectures: An 
industrial survey. In: 2018 IEEE International Conference on Software Architecture (ICSA), 
pp. 29–38. IEEE, Piscataway (2018). https://doi.org/10.1109/ICSA.2018.00012 

30. Garriga, M.: Towards a taxonomy of microservices architectures. In: Cerone, A., Roveri, 
M. (eds.) Software Engineering and Formal Methods, pp. 203–218. Springer, Cham (2018). 
https://doi.org/10.1007/978-3-319-74781-1_15 

31. Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F.: Model-driven generation of 
microservice interfaces: From LEMMA domain models to Jolie APIs. In: ter Beek, M.H., 
Sirjani, M. (eds.) Coordination Models and Languages, pp. 223–240. Springer, Berlin (2022). 
https://doi.org/10.1007/978-3-031-08143-9_13 

32. Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F., Sachweh, S.: Jolie and LEMMA: 
Model-driven engineering and programming languages meet on microservices. In: Damiani, 
F., Dardha, O. (eds.) Coordination Models and Languages, pp. 276–284. Springer, Cham 
(2021). https://doi.org/10.1007/978-3-030-78142-2_17 

33. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., Smith, D., Bierman, G.: The Java 
language specification: Java se 17th edn. Specification JSR-392 Java SE 17, Oracle America, 
Inc. (2021) 

34. Granchelli, G., Cardarelli, M., Francesco, P.D., Malavolta, I., Iovino, L., Salle, A.D.: 
Towards recovering the software architecture of microservice-based systems. In: 2017 IEEE 
International Conference on Software Architecture Workshops (ICSAW), pp. 46–53. IEEE, 
Piscataway (2017). https://doi.org/10.1109/ICSAW.2017.48 

35. Greifenberg, T., Hölldobler, K., Kolassa, C., Look, M., Mir Seyed Nazari, P., Müller, K., 
Navarro Perez, A., Plotnikov, D., Reiss, D., Roth, A., Rumpe, B., Schindler, M., Wortmann, 
A.: Integration of handwritten and generated object-oriented code. In: Desfray, P., Filipe, J., 
Hammoudi, S., Pires, L.F. (eds.) Model-Driven Engineering and Software Development, pp. 
112–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27869-8_7 

36. Gu, Q., Parkin, M., Lago, P.: A taxonomy of service engineering stakeholder types. In: 
Abramowicz, W., Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.) Towards a 
Service-Based Internet, pp. 206–219. Springer, Berlin (2011). https://doi.org/10.1007/978-3-
642-24755-2_20 

37. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of “semantics”? Computer 
37(10), 64–72 (2004). IEEE. https://doi.org/10.1109/MC.2004.172 

38. Haselböck, S., Weinreich, R., Buchgeher, G.: Decision models for microservices: Design 
areas, stakeholders, use cases, and requirements. In: Lopes, A., de Lemos, R. (eds.) 
Software Architecture, pp. 155–170. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-65831-5_11

https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-031-08143-9_13
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-319-27869-8_7
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1007/978-3-642-24755-2_20
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11
https://doi.org/10.1007/978-3-319-65831-5_11


142 F. Rademacher et al.

39. Haupt, F., Leymann, F., Scherer, A., Vukojevic-Haupt, K.: A framework for the structural 
analysis of REST APIs. In: 2017 IEEE International Conference on Software Architecture 
(ICSA), pp. 55–58. Springer, Berlin (2017). https://doi.org/10.1109/ICSA.2017.40 

40. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: What it is, and what 
it is not. In: Proceedings of the 10th International Conference on Autonomic Computing 
(ICAC 13), pp. 23–27. USENIX, San Jose (2013). https://www.usenix.org/conference/icac13/ 
technical-sessions/presentation/herbst 

41. Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: A metrics suite for evaluating flexibility 
and complexity in service oriented architectures. In: Feuerlicht, G., Lamersdorf, W. (eds.) 
Service-Oriented Computing – ICSOC 2008 Workshops, pp. 41–52. Springer, Berlin (2009). 
https://doi.org/10.1007/978-3-642-01247-1_5 

42. ISO/IEC: Systems and software engineering — Systems and software Quality Requirements 
and Evaluation (SQuaRE) — System and software quality models. Standard ISO/IEC 
25010:2011(E), International Organization for Standardization/International Electrotechnical 
Commission (2011) 

43. ISO/IEC/IEEE: Systems and software engineering — Architecture description. Standard 
ISO/IEC/IEEE 42010:2011(E), International Organization for Standardization/International 
Electrotechnical Commission/Institute of Electrical and Electronics Engineers (2011) 

44. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: The journey so 
far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018). IEEE. https://doi.org/10.1109/ 
MS.2018.2141039 

45. JHipster: JHipster Domain Language (JDL) (2023). https://www.jhipster.tech/jdl 
46. Johanson, A., Flögel, S., Dullo, C., Hasselbring, W.: OceanTEA: Exploring ocean-derived 

climate data using microservices. In: Proceedings of the 6th International Workshop on 
Climate Informatics: CI 2016. National Center for Atmospheric Research (2016) 

47. Johnson, R.E., Foote, B.: Designing reusable classes. J. Object-Oriented Programm. 1(2), 
22–35 (1988). SIGS Publications 

48. Jongeling, R., Carlson, J., Cicchetti, A.: Impediments to introducing continuous integration 
for model-based development in industry. In: 2019 45th Euromicro Conference on Software 
Engineering and Advanced Applications (SEAA), pp. 434–441. IEEE, Piscataway (2019). 
https://doi.org/10.1109/SEAA.2019.00071 

49. Kahani, N., Bagherzadeh, M., Cordy, J.R., Dingel, J., Varró, D.: Survey and classification of 
model transformation tools. Softw. Syst. Model. 18(4), 2361–2397 (2019). Springer. https:// 
doi.org/10.1007/s10270-018-0665-6 

50. Kapferer, S., Zimmermann, O.: Domain-specific language and tools for strategic domain-
driven design, context mapping and bounded context modeling. In: Proceedings of the 8th 
International Conference on Model-Driven Engineering and Software Development - Volume 
1: MODELSWARD, pp. 299–306. INSTICC, SciTePress (2020). https://doi.org/10.5220/ 
0008910502990306 

51. Kirchhof, J.C., Rumpe, B., Schmalzing, D., Wortmann, A.: Montithings: Model-driven 
development and deployment of reliable IoT applications. J. Syst. Softw. 183, 111087 (2022). 
https://doi.org/10.1016/j.jss.2021.111087 

52. Knoche, H., Hasselbring, W.: Drivers and barriers for microservice adoption – a survey among 
professionals in Germany. Enterprise Modell. Informat. Syst. Architect. 14(1), 1–35 (2019). 
German Informatics Society. https://doi.org/10.18417/emisa.14.1 

53. Lano, K., Kolahdouz-Rahimi, S.: Model-transformation design patterns. IEEE Trans. Softw. 
Eng. 40(12), 1224–1259 (2014).. IEEE https://doi.org/10.1109/TSE.2014.2354344 

54. Le, V.D., Neff, M.M., Stewart, R.V., Kelley, R., Fritzinger, E., Dascalu, S.M., Harris, F.C.: 
Microservice-based architecture for the NRDC. In: 2015 IEEE 13th International Conference 
on Industrial Informatics (INDIN), pp. 1659–1664. IEEE, Piscataway (2015). https://doi.org/ 
10.1109/INDIN.2015.7281983 

55. Luz, W.P., Pinto, G., Bonifácio, R.: Building a collaborative culture: A grounded theory 
of well succeeded DevOps adoption in practice. In: Proceedings of the 12th ACM/IEEE 
International Symposium on Empirical Software Engineering and Measurement, ESEM ’18,

https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://www.jhipster.tech/jdl
https://www.jhipster.tech/jdl
https://www.jhipster.tech/jdl
https://www.jhipster.tech/jdl
https://www.jhipster.tech/jdl
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.5220/0008910502990306
https://doi.org/10.5220/0008910502990306
https://doi.org/10.5220/0008910502990306
https://doi.org/10.5220/0008910502990306
https://doi.org/10.5220/0008910502990306
https://doi.org/10.5220/0008910502990306
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.1016/j.jss.2021.111087
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.18417/emisa.14.1
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/TSE.2014.2354344
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/10.1109/INDIN.2015.7281983


Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 143

pp. 6:1–6:10. ACM, New York (2018). https://doi.org/10.1145/3239235.3240299 
56. Márquez, G., Villegas, M.M., Astudillo, H.: A pattern language for scalable microservices-

based systems. In: Proceedings of the 12th European Conference on Software Architecture: 
Companion Proceedings, ECSA ’18, pp. 24:1–24:7. ACM, New York (2018). https://doi.org/ 
10.1145/3241403.3241429 

57. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic software 
architectures. In: 2017 IEEE International Conference on Web Services (ICWS), pp. 524– 
531. IEEE, Piscataway (2017). https://doi.org/10.1109/ICWS.2017.61 

58. Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S.T., Dustdar, S.: Microser-
vices: migration of a mission critical system. IEEE Trans. Serv. Comput., 1–14 (2018). IEEE. 
https://doi.org/10.1109/TSC.2018.2889087 

59. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electron. Notes Theoret. Comput. 
Sci. 152, 125–142 (2006). Elsevier. https://doi.org/10.1016/j.entcs.2005.10.021 

60. Methodologies Corporation: Service-oriented modeling framework (SOMF) version 2.1. 
(2011) 

61. Mohagheghi, P., Dehlen, V.: Where is the proof? - A review of experiences from applying 
MDE in industry. In: Schieferdecker, I., Hartman, A. (eds.) Model Driven Architecture – 
Foundations and Applications, pp. 432–443. Springer, Berlin (2008). https://doi.org/10.1007/ 
978-3-540-69100-6_31 

62. Mohamed, M.A., Challenger, M., Kardas, G.: Applications of model-driven engineering in 
cyber-physical systems: a systematic mapping study. J. Comput. Lang. 59, 1–54 (2020). 
https://doi.org/10.1016/j.cola.2020.100972 

63. Márquez, G., Astudillo, H.: Actual use of architectural patterns in microservices-based open 
source projects. In: 2018 25th Asia-Pacific Software Engineering Conference (APSEC), pp. 
31–40. IEEE, Piscataway (2018). https://doi.org/10.1109/APSEC.2018.00017 

64. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice Architecture: Align-
ing Principles, Practices, and Culture, 1st edn. O’Reilly, Sebastopol (2016) 

65. Newman, S.: Building Microservices: Designing Fine-Grained Systems, 1st edn. O’Reilly, 
Sebastopol (2015) 

66. OASIS: Reference architecture foundation for Service Oriented Architecture version 1.0. 
Standard OASIS Committee Specification 01, Organization for the Advancement of Struc-
tured Information Standards (2012) 

67. OASIS: Topology and orchestration specification for cloud applications version 1.0. Standard, 
Organization for the Advancement of Structured Information Standards (2013) 

68. OMG: Service oriented architecture Modeling Language (SoaML) specification version 1.0.1. 
Standard, Object Management Group (2012) 

69. OMG: Business Process Model and Notation (BPMN) version 2.0.2. Standard formal/2013-
12-09, Object Management Group (2013) 

70. OMG: Model Driven Architecture (MDA) MDA Guide rev. 2.0. Standard ormsc/2014-06-01, 
Object Management Group (2014) 

71. OMG: Object Constraint Language version 2.4. Standard formal/2014-02-03, Object 
Management Group (2014) 

72. OMG: XML Metadata Interchange (XMI) specification. Standard formal/2015-06-07, Object 
Management Group (2015) 

73. OMG: OMG Unified Modeling Language (OMG UML) version 2.5.1. Standard formal/17-
12-05, Object Management Group (2017) 

74. Ponce, F., Soldani, J., Astudillo, H., Brogi, A.: Smells and refactorings for microservices 
security: a multivocal literature review. J. Syst. Softw. 192, 111393 (2022). https://doi.org/ 
10.1016/j.jss.2022.111393 

75. Rademacher, F.: Genlets for LEMMA’s JBG on Software Heritage. https://archive. 
softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/? 
origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators 

76. Rademacher, F.: Grammar specification of LEMMA’s Domain Data Modeling Language 
on Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_

https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1007/978-3-540-69100-6_31
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1016/j.cola.2020.100972
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext


144 F. Rademacher et al.

url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/ 
lemma/data/DataDsl.xtext 

77. Rademacher, F.: Grammar specification of LEMMA’s Operation Modeling Language on 
Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_ 
url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/ 
lemma/operationdsl/OperationDsl.xtext 

78. Rademacher, F.: Grammar specification of LEMMA’s Service Modeling Language on 
Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_url= 
https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ 
ServiceDsl.xtext 

79. Rademacher, F.: Grammar specification of LEMMA’s Service Technology Mapping 
Modeling Language on Software Heritage. https://archive.softwareheritage.org/browse/ 
origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma. 
technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext 

80. Rademacher, F.: Grammar specification of LEMMA’s Technology Modeling Language on 
Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_url= 
https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/ 
de/fhdo/lemma/technology/TechnologyDsl.xtext 

81. Rademacher, F.: LEMMA model processing example on Software Heritage. https://archive. 
softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/ 
lemma&path=examples/model-processing 

82. Rademacher, F.: LEMMA’s Java Base Generator on Software Heritage. https://archive. 
softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/? 
origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo. 
lemma.model_processing.code_generation.java_base 

83. Rademacher, F.: LEMMA’s Model Processing Framework on Software Heritage. https:// 
archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/ 
SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing 

84. Rademacher, F.: LEMMA’s static analysis library on Software Heritage. https://archive. 
softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/? 
origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib 

85. Rademacher, F.: LEMMA’s static analyzer on Software Heritage. https://archive. 
softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/? 
origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer 

86. Rademacher, F.: Metamodel implementation of LEMMA’s Domain Data Modeling Language 
on Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_ 
url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/ 
model/DataViewpointModel.xcore 

87. Rademacher, F.: Metamodel implementation of LEMMA’s Operation Modeling Language 
on Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_ 
url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/ 
model/OperationViewpointModel.xcore 

88. Rademacher, F.: Metamodel implementation of LEMMA’s Service Modeling Language on 
Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_url= 
https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ 
ServiceViewpointModel.xcore 

89. Rademacher, F.: Metamodel implementation of LEMMA’s Service Technology Mapping 
Modeling Language on Software Heritage. https://archive.softwareheritage.org/browse/ 
origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma. 
technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore 

90. Rademacher, F.: Metamodel implementation of LEMMA’s Technology Modeling Language 
on Software Heritage. https://archive.softwareheritage.org/browse/origin/content/?origin_ 
url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl. 
metamodel/model/TechnologyDefinitionModel.xcore

https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl/src/de/fhdo/lemma/operationdsl/OperationDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.servicedsl/src/de/fhdo/lemma/ServiceDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl/src/de/fhdo/lemma/technology/mappingdsl/MappingDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl/src/de/fhdo/lemma/technology/TechnologyDsl.xtext
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=examples/model-processing
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=code%20generators/de.fhdo.lemma.model_processing.code_generation.java_base
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.model_processing
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer.lib
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/directory/7dccb79b9804d8d9459c86ba9721e1197f59b865/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.analyzer
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.data.datadsl.metamodel/model/DataViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.operationdsl.metamodel/model/OperationViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=/de.fhdo.lemma.servicedsl.metamodel/model/ServiceViewpointModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.mappingdsl.metamodel/model/TechnologyMappingModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/SeelabFhdo/lemma&path=de.fhdo.lemma.technology.technologydsl.metamodel/model/TechnologyDefinitionModel.xcore


Model-Driven Engineering of Microservice Architectures—The LEMMA Approach 145

91. Rademacher, F.: Service model for the OrderService on Software Heritage. 
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/ 
frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-
example-and-intermediate-models/Order/Order.services 

92. Rademacher, F.: An overview of modeling concepts for service-based software architectures. 
In: Software Engineering Publications. Kasseler Online Bibliothek, Repository und Archiv 
(KOBRA) (2020). https://doi.org/10.17170/kobra-202008191601 

93. Rademacher, F.: A language ecosystem for modeling microservice architecture. Ph.D. Thesis, 
University of Kassel (2022). https://doi.org/10.17170/kobra-202209306919. https://kobra. 
uni-kassel.de/handle/123456789/14176 

94. Rademacher, F., Peters, M., Sachweh, S.: Design of a domain-specific language based on a 
technology-independent web service framework. In: Weyns, D., Mirandola, R., Crnkovic, I. 
(eds.) Software Architecture, pp. 357–371. Springer, Cham (2015). https://doi.org/10.1007/ 
978-3-319-23727-5_29 

95. Rademacher, F., Sachweh, S., Zündorf, A.: Aspect-oriented modeling of technology hetero-
geneity in microservice architecture. In: 2019 IEEE International Conference on Software 
Architecture (ICSA), pp. 21–30. IEEE, Piscataway (2019). https://doi.org/10.1109/ICSA. 
2019.00011 

96. Rademacher, F., Sachweh, S., Zündorf, A.: Deriving microservice code from underspecified 
domain models using DevOps-enabled modeling languages and model transformations. In: 
2020 46th Euromicro Conference on Software Engineering and Advanced Applications 
(SEAA), pp. 229–236. IEEE, Piscataway (2020). https://doi.org/10.1109/SEAA51224.2020. 
00047 

97. Rademacher, F., Sachweh, S., Zündorf, A.: A modeling method for systematic architecture 
reconstruction of microservice-based software systems. In: Nurcan, S., Reinhartz-Berger, 
I., Soffer, P., Zdravkovic, J. (eds.) Enterprise, Business-Process and Information Systems 
Modeling, pp. 311–326. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-49418-
6_21 

98. Rademacher, F., Sorgalla, J., Wizenty, P., Sachweh, S., Zündorf, A.: Graphical and textual 
model-driven microservice development. In: Bucchiarone, A., Dragoni, N., Dustdar, S., Lago, 
P., Mazzara, M., Rivera, V., Sadovykh, A. (eds.) Microservices: Science and Engineering, pp. 
147–179. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-31646-4_7 

99. Rademacher, F., Sorgalla, J., Wizenty, P., Trebbau, S.: Towards an extensible approach for 
generative microservice development and deployment using LEMMA. In: Scandurra, P., 
Galster, M., Mirandola, R., Weyns, D. (eds.) Software Architecture, pp. 257–280. Springer 
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-15116-3_12 

100. Rahman, M.I., Panichella, S., Taibi, D.: A curated dataset of microservices-based systems. 
In: Joint Proceedings of the Inforte Summer School on Software Maintenance and Evolution, 
pp. 1–9. CEUR-WS (2019). http://ceur-ws.org/Vol-2520/paper1a.pdf 

101. Richards, M.: Software Architecture Patterns, 1st edn. O’Reilly, Sebastopol (2015) 
102. Richardson, C.: Microservices Patterns, 1st edn. Manning Publications, Shelter Island (2019) 
103. Rumpe, B.: Agile Modeling with UML, 1st edn. Springer, Berlin (2017) 
104. Ruscio, D.D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Developing next 

generation ADLs through MDE techniques. In: 2010 ACM/IEEE 32nd International 
Conference on Software Engineering, vol. 1, pp. 85–94. IEEE, Piscataway (2010). https:// 
doi.org/10.1145/1806799.1806816 

105. Schauerhuber, A., Schwinger, W., Kapsammer, E., Retschitzegger, W., Wimmer, M., Kappel, 
G.: A survey on aspect-oriented modeling approaches. Technical Report, Vienna University 
of Technology (2007) 

106. Schermann, G., Cito, J., Leitner, P.: All the services large and micro: Revisiting industrial 
practice in services computing. In: Norta, A., Gaaloul, W., Gangadharan, G.R., Dam, H.K. 
(eds.) Service-Oriented Computing – ICSOC 2015 Workshops, pp. 36–47. Springer, Berlin 
(2016). https://doi.org/10.1007/978-3-662-50539-7_4

https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://archive.softwareheritage.org/browse/origin/content/?origin_url=https://github.com/frademacher/dissertation-supplemental-material&path=chapters-5-6-concrete-syntax-example-and-intermediate-models/Order/Order.services
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202008191601
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://doi.org/10.17170/kobra-202209306919
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://kobra.uni-kassel.de/handle/123456789/14176
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1007/978-3-319-23727-5_29
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1109/SEAA51224.2020.00047
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
https://doi.org/10.1007/978-3-031-15116-3_12
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
http://ceur-ws.org/Vol-2520/paper1a.pdf
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1145/1806799.1806816
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-3-662-50539-7_4


146 F. Rademacher et al.

107. Sobernig, S., Zdun, U.: Inversion-of-control layer. In: Proceedings of the 15th European 
Conference on Pattern Languages of Programs, EuroPLoP ’10, pp. 1–22. ACM, New York 
(2010). https://doi.org/10.1145/2328909.2328935 

108. [Software] Florian Rademacher: Language Ecosystem for Modeling Microservice 
Architecture (LEMMA). VCS: https://www.github.com/SeelabFhdo/lemma, SWHID: 
<swh:1:dir:4ac248661825a16a18a88b976734455f601e0d85;origin=https://github.com/ 
SeelabFhdo/lemma;visit=swh:1:snp:f57caa7209e46735adc66f1cb937a606b4466556; 
anchor=swh:1:rev:22fd04c6b8a4cb126334db40c331f90ca9730606> (2022) 

109. Soldani, J., Tamburri, D.A., Heuvel, W.J.V.D.: The pains and gains of microservices: a 
systematic grey literature review. J. Syst. Softw. 146, 215–232 (2018). Elsevier. https:// 
doi.org/10.1016/j.jss.2018.09.082 

110. Soliman, M., Riebisch, M., Zdun, U.: Enriching architecture knowledge with technology 
design decisions. In: 2015 12th Working IEEE/IFIP Conference on Software Architecture, 
pp. 135–144. IEEE, Piscataway (2015). https://doi.org/10.1109/WICSA.2015.14 

111. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based operating 
system virtualization: A scalable, high-performance alternative to hypervisors. In: Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 
2007, EuroSys ’07, pp. 275–287. ACM, New York (2007). https://doi.org/10.1145/1272996. 
1273025 

112. Sorgalla, J., Rademacher, F., Sachweh, S., Zündorf, A.: Modeling microservice architecture: 
A comparative experiment towards the effectiveness of two approaches. In: Proceedings of 
the 35th Annual ACM Symposium on Applied Computing, SAC ’20, p. 1506–1509. ACM, 
New York (2020). https://doi.org/10.1145/3341105.3374065 

113. Sorgalla, J., Sachweh, S., Zündorf, A.: Exploring the microservice development process in 
small and medium-sized organizations. In: Morisio, M., Torchiano, M., Jedlitschka, A. 
(eds.) Product-Focused Software Process Improvement, pp. 453–460. Springer, Cham (2020). 
https://doi.org/10.1007/978-3-030-64148-1_28 

114. Sorgalla, J., Wizenty, P., Rademacher, F., Sachweh, S., Zündorf, A.: AjiL: Enabling model-
driven microservice development. In: Proceedings of the 12th European Conference on 
Software Architecture: Companion Proceedings, ECSA ’18, pp. 1:1–1:4. ACM, New York 
(2018). https://doi.org/10.1145/3241403.3241406 

115. Sorgalla, J., Wizenty, P., Rademacher, F., Sachweh, S., Zündorf, A.: Applying model-driven 
engineering to stimulate the adoption of devops processes in small and medium-sized 
development organizations. SN Comput. Sci. 2(6), 459 (2021). https://doi.org/10.1007/ 
s42979-021-00825-z 

116. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework, 
2nd edn. Addison-Wesley, Boston (2008) 

117. Stoermer, C., Rowe, A., O’Brien, L., Verhoef, C.: Model-centric software architecture 
reconstruction. Softw. Practice Exper. 36(4), 333–363 (2006). Wiley. https://doi.org/10. 
1002/spe.699 

118. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Softw. 35(3), 
56–62 (2018). IEEE. https://doi.org/10.1109/MS.2018.2141031 

119. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating to 
microservices architectures: an empirical investigation. IEEE Cloud Comput. 4(5), 22–32 
(2017). IEEE. https://doi.org/10.1109/MCC.2017.4250931 
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Usefulness of Automatic Static Analysis 
Tools: Evidence from Four Case Studies 

Alexander Trautsch 

Abstract Automated Static Analysis Tools (ASATs) are an additional tool avail-
able to developers in their pursuit of high-quality software. ASATs match source 
code against configured rules and produce a warning when a rule is violated. 
However, the evaluation of the warnings by developers as well as the resolution 
of warnings requires time. This raises the question of whether we are able to 
evaluate the usefulness of ASATs empirically. Within this chapter, we present 
the results of four case studies, which investigate different aspects regarding the 
impact of ASATs on software quality and the perception of the developers thereof. 
We present results regarding the evolution of ASAT warnings from a longitudinal 
study of 54 open-source projects. To evaluate the impact on defects, we present 
results from two studies. The first study is evaluating predictive models in the 
context of defect prediction with ASAT-based features. The second study provides a 
statistical investigation of the differences between changes that induce a defect and 
all other changes. In order to observe the developer’s perspective regarding ASAT 
warnings and other software quality metrics, we include the results of a study of 
developer intent, which compares changes where the developers intend to improve 
the quality of the code base with all other changes to see which quality metrics and 
ASAT warnings change in which way. We employ methods of empirical software 
engineering research to investigate these relationships and provide evidence-based 
information for researchers and practitioners alike. Within our studies, we can 
show empirically that we are able to measure an impact on quality. However, the 
effect is surprisingly small. Moreover, our investigation of developer intents yield 
information about the magnitude of bug fixing as a driver for complexity in software. 
Our results can help practitioners estimate the possible impact of introducing an 
ASAT on defects, as well as provide guidelines for managing the complexity of 
software. 
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1 Introduction 

Automated Static Analysis Tools (ASATs) parse source code into internal represen-
tations and match these representations against a predefined set of rules. If a rule 
is matched, a warning is triggered, which shows a position in the source code and 
the rule that was triggered. Depending on the type of ASAT, the rules range from 
stylistic issues to patterns of known bugs. Rules can be defined in the configuration 
of the ASAT. In summary, ASATs are providing a type of automatic inspection of 
the source code [66]. 

Within our studies, we predominantly investigate a commonly used static analy-
sis tool for Java: PMD.1 The reason for this is that PMD has been used for a long 
time, which allows for a rich source of historical data. It also directly works with 
the source code instead of the bytecode, which is an advantage as older revisions of 
open-source projects might not be compilable anymore [60]. PMD also provides a 
diverse set of rules, which range from code style issues to best practices to known 
problems. This combination makes PMD an ideal tool for our studies. While ASATs 
can be helpful, they can have problems with false positives, i.e., warnings about code 
that is not problematic, which may hinder adoption by developers [10, 26]. This led 
to many studies concerned with classification of ASATs into potential false positives 
or actionable warnings, e.g., [19, 29, 31]. While the results of this research were not 
transferred to practice, the authors of ASATs are always interested in improving 
the tools by considering bug reports about false positives. However, there may be 
a different definition of false positive; some studies, e.g., [4, 20, 63] define false 
positives as every warning, except the ones which the developer believes could 
lead to significant program misbehavior. Others defined false positives as warnings 
that were not resolved in a bug fix change after a certain time, e.g., [29], which 
brings its own validity problems. Ayewah et al. [4] also discuss the issue of false 
positives and summarize that simply classifying into true and false positives is an 
oversimplification of the issue. There may be coding style-related warnings that are 
good to resolve, but may not necessarily lead to errors. Other studies try to find real 
defects, e.g., [52] or [18]. Thung et al. [52] investigated three open-source projects 
and linked bug reports to fixes. They found that PMDmisses bugs in 3.9% (AspectJ), 
15% (Rhino), and 50% (Lucene) of cases. FindBugs (a bug focused ASAT) misses 
33.6%, 10% and 71.4%. Habib and Pradel [18] used Defects4J [27] and found that 
SpotBugs [50] (successor to FindBugs [17]) is able to find 18 of the 594 bugs in 
the extended Defects4J dataset. These numbers provide some insight into the recall. 
However, given that we are also interested in warnings that do not necessarily cause 
a defect, this is not ideal for our approach. Lee et al. [32] provide some numbers for 
false positives (10% of about 10,000). However, in their study, they only check six 
in house checks for C/C. ++, which do not necessarily apply to Java, e.g., check for 
double-free.

1 https://pmd.github.io. 

https://pmd.github.io
https://pmd.github.io
https://pmd.github.io
https://pmd.github.io
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Regardless of the problem of false positives, many developers still believe that 
static analysis tools have a positive impact on software quality [11, 61]. This invites 
the question whether using ASATs provides a net-benefit regarding software quality 
and how large the benefit might be. Some researchers investigate this impact via 
predictive models for defects in software, e.g., [33, 38, 41, 43, 45]. This is an angle 
we also cover in our own research [55]. Other researchers investigate whether they 
are able to find defects directly, e.g., [18, 52, 62]. 

However, for predictive models as well as finding defects, validity problems need 
to be considered. Finding defects, even with full access to the Issue Tracking System 
(ITS) and Version Control System (VCS), can be problematic. Usually a variant 
of the Śliwerski Zimmermann Zeller (SZZ) algorithm [48] is used to link defects 
to bug fixes and subsequently to the bug inducing change, i.e., the change that is 
responsible for the bug. While the SZZ algorithm provides bug fixes and from there 
bug-inducing changes, the data that is provided contains noise, e.g., in the form of 
mislabeled issue types in the ITS [3, 24], faulty links from bug report to bug-fixing 
or bug-inducing changes [15, 46] or tangled changes, i.e., a bug-fixing change that 
is tangled with unrelated changes to the code [23, 25, 36]. 

Most data validity problems require manual investigation of the data to mitigate 
the noise. Building upon previous work [59], we extended the existing data mining 
platform SmartSHARK with additional data and features [56] to aid us and other 
researchers in his endeavor. Using the SmartSHARK mining ecosystem with its 
many plugins and manual validation frontend, we were able to provide a feature-
rich, new dataset for researchers, which also addresses data validity problems. 
Within our case studies, we applied the results and data of several previous studies, 
which investigate data validity problems including manually investigating noisy 
data. We use an improved SZZ variant, which also includes manually validated issue 
types [22]. In addition, we include manually validated bug-fixing lines to mitigate 
tangling noise, i.e., unrelated changes alongside a bug fix, from a large investigation 
into effects of tangling [21]. 

Within this chapter, we present and combine the results of four large peer-
reviewed empirical studies to investigate different aspects of ASATs. We provide 
empirical data on the evolution of ASAT warnings, impact on defects, as well as the 
perspective of the developers regarding quality and ASATs. The presented results 
are acquired over multiple years and use manually validated data where possible to 
mitigate noise in the data and provide a clearer picture of the results. We are able 
to present empirical data for a very common case, that of using a well-known static 
analysis tool (PMD) for the Java programming language and its impact on quality. 
Within this chapter, we will use PMD and ASAT interchangeably. 

Multiple empirical methods are available to researchers to investigate these ques-
tions [64]. In the results presented in this chapter, we apply empirical methods to 
gather evidence in an evidence-based software engineering context. Kitchenham et 
al. [30] introduced the term evidence-based software engineering by borrowing the 
idea of it from medicine. In evidence-based medicine, the practitioner takes current 
research into consideration and weighs the data presented in empirical studies to 
improve his ability to provide treatments for patients. Evidence-based software
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engineering aims to do the same for practitioners in software engineering. More 
concretely, “. . . to  provide  the  means by which current best evidence from research 
can be integrated with practical experience and human values in the decision-
making process regarding the development and maintenance of software”[30]. 

To this end, evidence-based software engineering can provide empirical data 
for practitioners to base their decisions on, e.g., whether to use a certain tool or 
methodology. In this chapter, we provide evidence for practitioners regarding the 
use and configuration of ASATs within the results of the studies we combine. In 
addition to the data provided for research, this gives a very practical insight into 
the impact of ASATs in a general overview that applies to every practitioner that 
programs in Java and considers static analysis. 

This chapter is based on four peer-reviewed publications [54, 55, 57, 58] and my 
PhD thesis [53]. The rest of this chapter is organized as follows: Sect. 2 summarizes 
the results of our studies, while Sect. 3 summarizes limitations of the studies and 
the data. Section 4 sets our studies into the context of their respective related work. 
Section 5 summarizes this chapter and provides a short outlook on future work. 

2 Results 

In this chapter, we will present results together, which are published separately. This 
allows us to connect to them and emphasize why each of the parts was needed for 
a better picture of the overall topic. The study subjects of all studies discussed here 
are shown in Table 1. For the sake of brevity, we do only include short descriptions 
of the methodology. 

In Sect. 2.1, we investigate changes in the evolution of static analysis warnings 
and how they are correlated with the size of the project or changes in the config-
uration of the ASAT. In Sect. 2.2, we investigate ways to measure the correlation 
between ASAT warnings and defects via building defect prediction models using 
features based on ASAT warnings as well as a statistical comparison of ASAT 
warning density between bug-inducing and other changes over the lifetime of open 
source repositories. Section 2.3 observes developers of open-source projects “in the 
wild” and whether they connect removing static analysis warnings and static source 
code metrics with quality improvements in the code base. 

2.1 Evolution of ASAT Warnings 

The first question we ask in our investigation of static analysis tools is whether 
we have to account for a change over time regarding static analysis warnings. We 
therefore investigate the change of ASAT warnings over time in multiple open 
source projects.
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Table 1 Study subjects used in our studies and the sections in which they are used 

Project Section 2.1 Section 2.2.1 Section 2.2.2 Section 2.3 

ant-ivy No Yes Yes No 

archiva Yes Yes No Yes 

calcite Yes Yes No Yes 

cayenne Yes Yes No Yes 

commons-bcel Yes Yes Yes Yes 

commons-beanutils Yes Yes Yes Yes 

commons-codec Yes Yes Yes Yes 

commons-collections Yes Yes Yes Yes 

commons-compress Yes Yes Yes Yes 

commons-configurations Yes Yes Yes Yes 

commons-dbcp Yes Yes Yes Yes 

commons-digester Yes Yes Yes Yes 

commons-imaging Yes No No Yes 

commons-io Yes Yes Yes Yes 

commons-jcs Yes Yes Yes Yes 

commons-jexl Yes Yes No Yes 

commons-lang Yes Yes Yes Yes 

commons-math Yes Yes Yes Yes 

commons-net Yes Yes Yes Yes 

commons-rdf Yes No No Yes 

commons-scxml Yes Yes Yes Yes 

commons-validator Yes Yes Yes Yes 

commons-vfs Yes Yes Yes Yes 

deltaspike No Yes No No 

eagle Yes Yes No Yes 

falcon Yes No No Yes 

flume Yes No No Yes 

giraph Yes Yes Yes Yes 

gora Yes Yes Yes Yes 

helix Yes No No Yes 

httpcomponents-client Yes No No Yes 

httpcomponents-core Yes No No Yes 

jena Yes No No Yes 

jspwiki Yes Yes No Yes 

knox Yes Yes No Yes 

kylin Yes Yes No Yes 

lens Yes Yes No Yes 

mahout Yes Yes No Yes 

manifoldcf Yes Yes No Yes 

mina-sshd Yes No No Yes 

(continued) 
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Table 1 (continued) 

Project Section 2.1 Section 2.2.1 Section 2.2.2 Section 2.3 

nutch No Yes No No 

opennlp No Yes Yes No 

parquet-mr No Yes Yes No 

pdfbox Yes No No Yes 

phoenix Yes No No Yes 

ranger Yes No No Yes 

roller Yes No No Yes 

santuario-java Yes Yes Yes Yes 

storm Yes No No Yes 

streams Yes No No Yes 

struts Yes No No Yes 

systemml Yes Yes No Yes 

tez Yes No No Yes 

tika Yes Yes No Yes 

wss4j Yes Yes Yes Yes 

zeppelin Yes No No Yes 

Table 2 Correlation coefficients and p-values between LLOC and the number of static analysis 
warnings. Adapted from Trautsch et al. [54], used under Creative Commons CC-BY license 

Method Coefficient P-value 

Spearman’s .ρ 0.57509 . <0.0001 
Kendall’s .τ 0.71654 . <0.0001 

Statistically significant p-values are bolded 

First, however, is the question of whether the size of the project correlates 
with the number of ASAT warnings. We therefore correlate the changes in ASAT 
warnings with the Logical Lines of Code (LLOC), i.e., the number of lines of code 
without comments and empty lines. 

Table 2 shows the correlation between the number of ASAT warnings and the 
size of the project in LLOC for Spearman’s . ρ [49] and Kendall’s . τ [28]. Both are 
non-parametric correlation metrics, which are appropriate for our data. The results 
show that the number of static analysis warnings grow as the size of the open-source 
project is growing. If we look at the number of warnings per LLOC of the system 
.wd(s) = #warnings

LLOC
as warning density, we find that it is decreasing. 

Table 3 shows the averaged results over all years of project history. We can see 
that warning density is decreasing. Over all study subjects, 3.5 ASAT warnings per 
1k LLoC are resolved per year. If we only measure subjects and years in which 
PMD is included in the build, we measure a number of 2.3 ASAT warnings. We 
only measure full years in which PMD was included, not years in which it was 
introduced into the project because all measurements were per year; this means we 
may be missing the cleanup phase after the introduction of an ASAT. Even though



Usefulness of Automatic Static Analysis Tools: Evidence from Four Case Studies 155

Table 3 Mean changes per year for all study subjects. Adapted from Trautsch et al. [54], used 
under Creative Commons CC-BY license 

Method Change per year per kLLoC 

Mean warning density . −3.5035 

Mean warning density after PMD introduction . −2.2913 

we measure a value of 2.3, we still find that the majority of study subjects retain a 
positive trend of ASAT warning evolution a year after they introduced PMD into the 
build process. 

2.2 Impact on Defects 

As we are interested in whether PMD has an impact on software quality, we 
investigate defects as the “de facto standard measure of software quality” [16]. 
We investigate different views with respect to defects. Section 2.2.1 summarizes 
results from a study that investigates feature sets for predictive models to investigate 
whether features previously not considered, e.g., based on static analysis warnings 
and static source code metrics, can improve the prediction of defects. Section 2.2.2 
compares bug-inducing changes, i.e., changes which require a bug fix later, with 
all other changes, therefore, shedding light on whether static analysis warnings are 
more common in these kinds of changes. 

2.2.1 Predictive Models 

A large branch of research that investigates the relationship between defects and 
metrics in the form of process metrics, e.g., number of changes, and static source 
code metrics, e.g., cyclomatic complexity, is categorized as defect prediction 
research. Within this category, predictive models are built, which aim to predict 
faulty code at different granularity using data collected about the code or the process 
of developing the code. Pascarella et al. [40] introduced a fine-grained just-in-time 
defect prediction model, which is a good fit for our study, as it is concerned with 
changes on a file level instead of change level or release level. However, it is only 
investigating change features on a per-file basis. Therefore, we extend this approach 
with additional features to investigate the impact of source code metrics and ASAT 
warnings through the lens of change-based defect prediction research. We build 
predictive models with different sets of features and evaluate them to compare their 
performance including different labeling strategies. 

As shown in the previous section, static analysis warnings are resolved over time, 
on average. Therefore, we introduce features that take this into account to investigate 
ASAT warnings as part of the features for the predictive models. To achieve this, we 
do not simply use the sum of ASAT warnings as it increases in most cases or the



156 A. Trautsch

Table 4 Feature sets used in the predictive models. ©2020 IEEE. Adapted, with permission, 
from Trautsch et al. [55] 

Name Feature set description 

combined All features combined 

jit Change features commonly used in just-in-time defect prediction adapted for a 
fine-grained scenario by Pascarella et al. [40] 

static Static source code metrics by OpenStaticAnalyzer. A full list is available onlinea 

pmd Static analysis warnings by PMD also collected via OpenStaticAnalyzer. A full 
list is available onlinea 

a See footnote 2 

Table 5 Additional warning density based features introduced in our case study. ©2020 IEEE. 
Adapted, with permission, from Trautsch et al. [55] 

Name Formula Description 

wd(s) .wd(s)t The warning density (wd) of the system (s) at the current 
change (t) 

swd(f) .
∑

t wd(f )t − wd(s)t The cumulative difference between warning density of the 
file and the system over all changes (t) up to the current 
change 

swd(a) .
∑

t wd(a)t − wd(a)t−1 The cumulative sum of the changes in warning density by 
the author (a) 

warning density as it declines in most cases. We calculate the difference between 
the warning density of the current file and the rest of the system at that point in time 
as a feature for the predictive models. 

Table 4 shows a short description of the feature sets used in the model 
evaluations. The study makes heavy use of OpenStaticAnalyzer2 via the 
SmartSHARK [56, 59] infrastructure. Moreover, we also use two common defect 
labeling strategies used in research, ad-hoc SZZ, which is only based on keywords 
within the commit message to identify bug fixes, and ITS SZZ, which requires a 
direct link between the ITS and the bug fix commit as well as the correct, manually 
validated issue type, i.e., bug instead of enhancement. 

Within this study, we use model performance metrics based on the confusion 
matrix, true positives, T P ; false positives, FP ; false negatives, FN ; and true 
negatives, T N . We aggregate them as precision . T P

T P+FP
, recall . T P

T P+FN
, and a 

combination F-measure . 2·precision·recall
precision+recall

. In addition, we use AUC, the area under 
the Receiver Operating Characteristic (ROC) curve, which is the false-positive rate 
against the true-positive rate. 

Table 5 shows aggregated warning density-based features in addition to the 
sum of static analysis warnings simply aggregated by their warning type already 
contained in the pmd feature set. As we have seen in Sect. 2.1, warning density 
is decreasing, so we may encounter time effects. Therefore, we aggregate warning

2 https://www.sourcemeter.com/resources/java/. 

https://www.sourcemeter.com/resources/java/
https://www.sourcemeter.com/resources/java/
https://www.sourcemeter.com/resources/java/
https://www.sourcemeter.com/resources/java/
https://www.sourcemeter.com/resources/java/
https://www.sourcemeter.com/resources/java/
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density via differences between the file and the system or aggregate the sum of the 
differences per author. 

Figure 1 shows the model performance metrics F-measure and AUC for all 
feature sets and labeling strategies. Complementary to the critical distance diagram 
in Fig. 1, we include Table 6. We can see that the combined feature set is ranked first 
with a significant distance to the second rank except for F-measure with the ITS SZZ 

Fig. 1 Ranking of model performance metrics in an interval approach. ©2020 IEEE. Adapted, 
with permission, from Trautsch et al. [55] 

Table 6 Ranking of model 
performance metrics, median 
(MED), mean absolute error 
(MAD), confidence interval 
(CI), effect size; effect size 
magnitudes are negligible (n), 
small (s), medium (m), large 
(l). Bolding denotes a 
statistically significant 
difference to the first rank. 
©2020 IEEE. Adapted, with 
permission, from Trautsch 
et al. [55] 

Ad-hoc SZZ 

A
U
C
 

Feature MED MAD CI Effect size 

combined 0.707 0.121 [0.685, 0.732] 0.000 (n) 

jit 0.695 0.136 [0.664, 0.716] 0.078 (n) 
static 0.681 0.126 [0.657, 0.709] 0.110 (n) 
pmd 0.625 0.123 [0.597, 0.645] 0.351 (n) 

F-
M
ea
su
re
 

Feature MED MAD CI Effect size 

combined 0.350 0.236 [0.304, 0.400] . −0.000 (n) 

static 0.333 0.225 [0.286, 0.382] 0.015 (n) 
jit 0.320 0.250 [0.273, 0.370] 0.063 (n) 
pmd 0.272 0.227 [0.233, 0.320] 0.158 (s) 

ITS SZZ 

A
U
C
 

Feature MED MAD CI Effect size 

combined 0.759 0.170 [0.730, 0.795] 0.000 (n) 

static 0.733 0.162 [0.703, 0.773] 0.088 (n) 
pmd 0.697 0.186 [0.657, 0.727] 0.202 (s) 
jit 0.672 0.199 [0.632, 0.716] 0.247 (s) 

F-
M
ea
su
re
 

Feature MED MAD CI Effect size 

combined 0.086 0.128 [0.049, 0.126] 0.000 (n) 

static 0.091 0.135 [0.055, 0.127] . −0.011 (n) 

pmd 0.062 0.091 [0.029, 0.100] 0.057 (n) 
jit 0.054 0.080 [0.000, 0.087] 0.119 (n) 
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labeling approach. This shows that we are able to improve the fine-grained just-in-
time defect prediction approach introduced by Pascarella et al. [40], which only 
considers jit features with additional features over multiple labeling approaches. 

If we only consider a comparison between static and the aggregated ASAT 
warnings, we find that the combined set is ranked first in both labeling approaches 
for AUC, while only the static set is ranked first in F-Measure. However, the distance 
between both is not significant, and the number of features is vastly different 
(207 static source code features vs. 3 aggregated ASAT features). In addition, we 
calculated the feature importance for the two models used in the study, a regularized 
logistic regression model and a Random forest model. We found that for the ITS 
SZZ labeling approach as well as the ad-hoc SZZ labeling approach, the aggregated 
warning density metrics .wd(s), .swd(f ) and .swd(a) were in the top 10 most 
important features. 

Overall, our research points to the predictive power of the additional features, 
especially static source code features, which can enhance just-in-time defect 
prediction approaches, e.g., Rosen et al. [47] or Yan et al. [65]. 

2.2.2 Statistical Observation 

In Sect. 2.2.1, we did get some hints that adding features based on ASAT warnings 
can improve predictive models, however, only slightly. In a more direct investigation 
of this phenomenon, we specifically look at differences between bug-inducing 
changes in files and all other changes in files over the lifetime of a repository. 

We aggregate the different warning types by summation on a per-file basis as 
described in Table 7. In addition, we also discern between two sets of rules for the 
ASAT. If nothing is added to the description, we use all rules available; if (default) 
is added, we only use the default rules. This categorization increases the amount 
of information while at the same time mitigating the risk of subgroup analysis. 
Figure 2 shows negative values for both .f d(f ) and .df d(f ); this shows that we 
can still see an effect of decreasing warning density with differences in warning 
densities. However, we can also see that bug-inducing changes have a slightly higher 
warning density for default warning. When looking into the data, we can see that 
files changed reduce warning density over time, while files not changed often retain 
a higher warning density. 

Figure 3 and Table 8 shows the final results and statistical tests for the comparison 
between bug-inducing changes and other file changes for all study subjects. We can 

Table 7 Warning density based metrics compared in this section 

Name Formula Description 

.f d(f ) .wd(f )t − wd(s)t The difference in warning density between the file f and 
the system at current change 

.df d(f ) .
∑j=t 

j=1 
wd(f )j −wd(s)j 

t−j+1 The linearly discounted cumulative warning density of the 
file and the system up to the current change t 
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Fig. 2 Box plot of .f d(f ) and .df d(f ) for only default warnings of all bug-inducing files before 
and after the bug-inducing change, median value in parentheses. Fliers are omitted. From Trautsch 
et al. [58], used under Creative Commons CC-BY license 

Fig. 3 Box plots of .f d(f ) and .df d(f ) for only default warnings of all bug-inducing changes and 
all other file changes, median value in parentheses. Fliers are omitted. Adapted from Trautsch et al. 
[58], used under Creative Commons CC-BY license 

Table 8 Median values, Mann-Whitney U test p-values, and effect sizes for all warning density 
metrics. From Trautsch et al. [58], used under Creative Commons CC-BY license 

WD Metric Median other Median bug inducing P-value Effect size 

.f d(f ) . −0.0440 . −0.0300 . <0.0001 0.05 (n) 

.f d(f ) (default) . −0.0098 . −0.0072 . <0.0001 0.10 (n) 

.df d(f ) . −0.0948 . −0.0661 0.0247 – 

.df d(f ) (default) . −0.0228 . −0.0170 . <0.0001 0.07 (n) 

Statistically significant p-values are bolded 

see that while the difference is statistically significant, the effect size is negligible 
for all. If we only look at default warnings, we see that the effect size is slightly 
higher. This indicates that with our metrics, there is a difference in warning density 
between bug-inducing changes and all other changes, even though it is likely very 
small. In addition, using the default rules provided increases the effect size and is 
statistically significant in all measured metrics. This means that the configuration of 
rules has an impact and is something practitioners and researchers should consider. 
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2.3 Perception of the Developers 

In our investigation of static analysis warnings, we also want to look at whether 
developers are really perceiving ASAT warnings as quality improving. To achieve 
this, we are looking into changes where the developer intends to improve the quality, 
either by fixing a bug (corrective) or an internal quality improvement (perfective) 
e.g., by refactoring, cleanup, or simplifications. We decided to name the categories 
perfective and corrective after Swanson [8] to ease the readability. To determine the 
intent of the developers, two researchers manually classified a random sample of 
2,533 commit messages into these categories. This data was then used to fine-tune 
a BERT [12] large language model and to evaluate its performance. The fine-tuned 
model is then used to classify the rest of the commit messages into these categories. 
After this categorization, we are comparing the differences between these categories 
to see whether ASAT warnings are removed when developers intend to improve the 
quality of the codebase. 

In addition to ASAT warnings, we also compare these categories of changes via 
other software quality metrics from the most recent version [6] of a software quality 
model [5]. This includes complexity metrics such as cyclomatic complexity [35] 
and object-oriented metrics after Chidamber and Kemerer [9]. Table 9 shows all 
software quality metrics used in this section as well as a short description. In this 
section, the ASAT warnings are aggregated by their severity rating, analogous to the 
quality model [6]. 

2.3.1 Size of Perfective and Corrective Changes 

As a first step, we are interested in whether we can see differences in perfective 
and corrective changes regarding the size of the change. Previous work finds that 
corrective and perfective changes are smaller than other changes [1, 37, 42]. We can 
also see that this is the case in our own data in Table 10. Our data shows that the 
difference is statistically significant for the number of lines added and deleted even 
though the effect size is small. 

Figure 4 visualizes the differences between all changes, only perfective changes 
and corrective changes. We can see that corrective changes add less lines than other 
changes, while perfective changes remove more lines of code than other changes. 

Due to these differences in size between the categories of changes, we will 
correct for size using the number of changed lines going forward, analogous to using 
warning density in previous results. However, we can already note that our results 
replicate previous research, which suggests that our study setup and data collection 
are valid.
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Table 9 Static source code metrics and static analysis warning severities used in this results 
section. Adapted from Trautsch et al. [57], used under Creative Commons CC-BY license 

Name and description Abbrev. 

Cyclomatic Complexity [35] 

The number of independent control-flow paths McCC 

Logical Lines of Code 

Number of lines in a file without comments and empty lines LLOC 

Nesting Level else-if 

Maximum of nesting level in a file NLE 

Number of parameters in a method 

The sum of all parameters of all methods in a file NUMPAR 

Clone Coverage 

Ratio of code covered by duplicates CC 

Comment lines of code 

Sum of commented lines CLOC 

Comment density 

Ratio of CLOC to LLOC CD 

API Documentation 

Number of documented public methods, . +1 if class is documented AD 

Number of Ancestors 

Number of classes, interfaces, enums from which the class is inherited NOA 

Coupling between object classes 

Number of used classes (inheritance, function call, type reference) CBO 

Number of Incoming 

Invocations Other methods that call the current class NII 

Minor static analysis warnings 

E.g., brace rules, naming conventions Minor 

Major static analysis warnings 

E.g., type resolution rules, unnecessary/unused code rules Major 

Critical static analysis warnings 

E.g., equals for string comparison, catching null pointer exceptions Critical 

Table 10 Statistical test results of comparing perfective and corrective commits to non-perfective 
and non-corrective, Mann-Whitney U test p-values, and effect size with category (n is negligible, 
s is small). Statistically significant p-values are in bold. Adapted from Trautsch et al. [57], used 
under Creative Commons CC-BY license 

Perfective Corrective 

Metric P-value Effect size P-value Effect size 

#lines added . <0.0001 0.20 (s) . <0.0001 0.21 (s) 

#lines deleted . <0.0001 0.15 (s) . <0.0001 0.16 (s) 

#files modified 0.2081 – . <0.0001 0.22 (s) 

#hunks . <0.0001 0.01 (n) . <0.0001 0.22 (s) 
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Fig. 4 Commit size distribution over all projects for all perfective and corrective commits. Fliers 
are omitted. From Trautsch et al. [57], used under Creative Commons CC-BY license 

2.3.2 Differences in Perfective and Corrective Changes 

While the size is important to determine whether we need to account for different 
sizes between our categories, the more important question we ask in this section is 
whether there are differences between perfective, corrective, and all other changes. 
More to the point, we are interested in whether ASAT warnings are reduced in 
perfective and corrective changes and whether we can compare the magnitude of 
this effect with other traditional source code quality metrics (see Table 9). This 
comparison should yield insights into whether developers regard ASAT warnings 
as important to quality by exploring whether the developers remove the warnings 
when they intend to improve the quality of the source code. 

Figure 5 shows the differences between all changes, only perfective and only 
corrective changes. We can already see that corrective changes tend to be more 
complex when we look at the McCC and NLE metrics, for example. We can 
also see that perfective changes are less complex as shown in multiple software 
quality metrics, e.g., McCC, NLE, CBO. These results are somewhat expected, 
however, the magnitude of the effect for corrective changes and complexity was 
not expected when setting up the study. While we expected that corrective changes 
would increase the complexity, we did not expect such a magnitude especially 
when correcting for size and in comparison to all changes, which also include 
types of change that we would expect a high complexity from, e.g., feature 
additions. Having done a visual analysis of the distributions of all groups, we are 
interested in the differences between perfective, corrective, and their counterparts, 
e.g., perfective against all non-perfective changes, especially whether they are 
statistically significantly different and the effect size of the differences. 

Table 11 shows the differences between perfective, corrective, and their coun-
terparts over the full history of all study subjects. We can see that static analysis 
warnings are removed in perfective as well as in corrective changes. While the effect 
size is higher in perfective changes, this hints at evidence that developers in fact do 
remove static analysis warnings or improve the code that generated the warnings 
when they intend to improve source code quality. 

Table 11 emphasizes, for us, an unexpected result of the study. McCC, LLOC, 
and NLE are not reduced in corrective commits when compared with all other non-
corrective commits. While we did not expect complexity and size to be reduced 
in corrective changes, the comparison here is one of statistical dominance over all 
other changes, including feature additions. This means that corrective changes are
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Fig. 5 Static source code metric value changes in all perfective and corrective commits divided by 
changed lines. Fliers are omitted. From Trautsch et al. [57], used under Creative Commons CC-BY 
license 

Table 11 Statistical test 
results of comparing 
perfective and corrective 
commits to non-perfective 
and non-corrective commits, 
Mann-Whitney U test 
p-values, and effect size with 
category (n is negligible, s is 
small, m is medium). 
Statistically significant 
p-values are in bold. All 
values are normalized for 
changed lines. Adapted 
from Trautsch et al. [57], used 
under Creative Commons 
CC-BY license 

Perfective Corrective 

Metric P-value Effect size P-value Effect size 

McCC . <0.0001 0.39 (m) 1.0000 – 

LLOC . <0.0001 0.45 (m) 1.0000 – 

NLE . <0.0001 0.27 (s) 1.0000 – 

NUMPAR . <0.0001 0.25 (s) . <0.0001 0.09 (n) 

CC 1.0000 – . <0.0001 0.12 (s) 

CLOC . <0.0001 0.16 (s) . <0.0001 0.05 (n) 

CD 1.0000 – . <0.0001 0.16 (s) 

AD . <0.0001 0.02 (n) . <0.0001 0.08 (n) 

NOA . <0.0001 0.08 (n) . <0.0001 0.07 (n) 

CBO . <0.0001 0.19 (s) . <0.0001 0.06 (n) 

NII . <0.0001 0.19 (s) . <0.0001 0.02 (n) 

Minor . <0.0001 0.19 (s) . <0.0001 0.05 (n) 

Major . <0.0001 0.12 (s) . <0.0001 0.05 (n) 

Critical . <0.0001 0.05 (n) . <0.0001 0.03 (n) 
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not less complex or smaller than all other changes even when corrected for size via 
changed lines. 

2.3.3 State Before Perfective and Corrective Changes 

After we have investigated the differences in Sect. 2.3.2, we also want to investigate 
the state of the changed files before the changes were applied. This gives us the 
information which types of files with regard to software quality metrics and static 
analysis warnings are the target of perfective or corrective changes. Figure 6 shows 
the distribution of all metrics before any change, perfective change, or corrective 
change is applied. We can see some results we would have expected, e.g., the 
cyclomatic complexity is higher before a corrective change is applied. We can also 
see that other complexity metrics are slightly higher, e.g., CBO, NOA, NLE, as well 
as the different severities of static analysis warnings. 

Nevertheless, we also see some results we did not expect. For example, the files 
which are the target of perfective changes are on average less complex and smaller 
even before the change is applied. Table 12 gives the median of the changes. If we 

Fig. 6 Static source code metrics divided by the number of changed files before the change is 
applied. Fliers are omitted. From Trautsch et al. [57], used under Creative Commons CC-BY 
license
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Table 12 Median metric 
values per file before the 
change is applied. 
From Trautsch et al. [57], 
used under Creative 
Commons CC-BY license 

Metric All Perfective Corrective 

McCC 21.78 18.78 33.23 

LLOC 186.98 163.75 264.18 

NLE 9.60 8.33 14.00 

NUMPAR 16.06 15.00 22.00 

CC 0.04 0.04 0.05 

CLOC 46.25 55.00 54.00 

CD 0.25 0.32 0.25 

AD 0.50 0.67 0.46 

NOA 1.00 1.00 1.00 

CBO 9.67 8.00 14.00 

NII 8.00 8.50 9.50 

Minor 7.00 6.00 9.67 

Major 2.00 1.25 3.00 

Critical 0.00 0.00 0.00 

Table 13 Statistical test 
results for perfective and 
corrective commits regarding 
their average metrics before 
the change, Mann-Whitney U 
test p-values, and effect size 
with category (n is negligible, 
s is small, m is medium). 
Statistically significant 
p-values are in bold. Adapted 
from Trautsch et al. [57], used 
under Creative Commons 
CC-BY license 

Perfective Corrective 

Metric P-value Effect size P-value Effect size 

McCC . <0.0001 0.05 (n) . <0.0001 0.08 (n) 

LLOC . <0.0001 0.05 (n) . <0.0001 0.05 (n) 

NLE . <0.0001 0.04 (n) . <0.0001 0.07 (n) 

NUMPAR 0.6367 – 0.0218 – 

CC . <0.0001 0.01 (n) 0.0011 – 

CLOC . <0.0001 0.12 (s) . <0.0001 0.06 (n) 

CD . <0.0001 0.15 (s) . <0.0001 0.15 (s) 

AD . <0.0001 0.17 (s) . <0.0001 0.15 (s) 

NOA 0.5109 – . <0.0001 0.02 (n) 

CBO . <0.0001 0.09 (n) . <0.0001 0.07 (n) 

NII . <0.0001 0.05 (n) . <0.0001 0.04 (n) 

Minor . <0.0001 0.04 (n) . <0.0001 0.02 (n) 

Major . <0.0001 0.09 (n) . <0.0001 0.04 (n) 

Critical . <0.0001 0.05 (n) . <0.0001 0.03 (n) 

combine these with the results presented in Sect. 2.3.2, this means that complex files 
are more often the target of bug-fixing operation. However, bug fixing in the form 
of corrective changes also increases the complexity of the file. Moreover, we have 
shown that complex files are not necessarily the target of perfective changes. This 
combination yields the unfortunate result that files only get more complex and that 
we need the focus perfective improvements more on the complex files than on the 
simpler files like it is shown in our data now. 

In addition to the visualization of the distribution in Fig. 6 and medians in 
Table 12, we provide statistical test results in Table 13. These show that while the 
differences are statistically significant, the effect size is negligible to small in all 
cases.
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3 Limitations 

We acknowledge several limitations in the presented results and studies. Our results 
are focused on PMD for Java as the ASAT of choice due to its broad use, age, 
excellent documentation, and ability to work with source code directly. A different 
ASAT as well as a different type of language, e.g., interpreted, may yield completely 
different results. We only used an ASAT for a compiled language. Using an ASAT 
for an interpreted language, e.g., JavaScript with JLint, could yield a larger effect on 
defects, as the compiling step for Java already takes care of a lot of source of errors. 
This view is shared by Beller et al. [7] as mentioned in their results. 

Moreover, due to the nature of our work, we only include open-source projects. 
While open-source projects provide a convenient source of data, it may also 
influence the results, and investigating closed-source industry projects may yield 
different results. In addition, we are only able to investigate software repository 
data. If a developer uses an ASAT offline or within the IDE, which is not also in the 
build configuration, we are not able to detect it. However, this would only decrease 
the measurable effect instead of increasing the risk of overestimating our findings. 

Data validity is necessarily limited by the available time and personnel for study. 
Some aspects require manual validation, e.g., issue types in the ITS, lines which 
contribute toward the bug fix or the intent of the developer as expressed in the 
commit message. In the data for our studies, we mitigate this by including the 
best currently available manually validated data either directly in the study, e.g., 
for developer intents [57], for issue types [22], or data from a large labeling study 
regarding tangling for bug fix lines [21]. 

4 Related Work 

Multiple researchers investigated ASATs over time. In this section, we summarize 
their work and how it relates to our studies. Due to the different viewpoints, we 
divide the related work into different categories. Section 4.1 contains related work 
regarding the evolution of static analysis warnings. Section 4.2 contains related work 
regarding the impact of ASATs or ASAT warnings on defects. Section 4.3 contains 
related work regarding the perspective of developers on ASATs. 

4.1 Evolution 

Beller et al. [7] investigate the state of static analysis tools. They explore howASATs 
are used in open-source projects in different programming languages and how their 
rules evolve. They found that about 60% of the most popular projects make use 
of ASATs, dynamically typed languages profit more from ASATs, and that default
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rules seem to be a good fit for most projects. In our work, we are also investigating 
rule changes. However, we are more interested in the actual warnings that an ASAT 
produces. In contrast to Beller et al. [7], we retroactively run an ASAT for each 
revision of our study subjects to investigate the actual warnings produced. 

Marcilio et al. [34] investigate resolution times of ASAT warnings and developer 
engagement on the example of SonarQube.3 While they do not provide information 
about general trends in the paper, we were able to use the provided replication kit 
to reproduce our results of increasing number of warnings in most projects. The 
data does not contain a size measure, so we were not able to reproduce warning on 
density-based results. 

Some ASATs contain rules that are focused on security. Di Penta et al. [13] study 
the evolution of three open-source projects regarding the warnings produced by 
three security ASATs. The authors used vulnerability density and found that they 
were not able to discern a general trend of reducing density. In contrast to Di Penta et 
al. [13], our results contain a reducing warning density trend. However, we explore 
a general-purpose ASAT, which is not focused on security warnings, which might 
explain this difference. 

Aloraini et al. [2] investigate security ASATs over two snapshots, one at 2012 and 
one at 2017 of 116 open-source projects. The authors also come to the conclusion 
that warning density is constant, which is in contrast to our own non-security 
focused results. This hints at a possible difference between security warnings and 
general-purpose warnings regarding their removal trends. 

4.2 Defects 

ASATs are investigated in many different ways regarding possible defects that can 
be identified in research. One avenue of investigation is whether ASATs can identify 
existing defects as part of their warnings. Thung et al. [52] manually validate all 
lines responsible for a bug for 439 bugs. The authors note the difficulties of this 
approach regarding tangling but were able to identify all lines for 200 of the 438 
bugs. After this, the authors were able to execute static analysis tools to investigate 
whether the tools do find these bugs fully (all lines) or partially. When combining 
three ASATs, the authors find that between 1.9% and 50% of bugs are missed on 
three open-source projects with large variations between projects. In addition, the 
authors find that PMD and FindBugs perform best, but note that their warnings are 
very generic. 

Habib and Pradel [18] conduct a similar study with an extension4 of the 
Defects4J [27] dataset. The authors investigate three ASATs and the question 
whether they are able to indicate each bug from the dataset. The authors found 
that only 27 of 594 bugs were found by at least one of the ASATs. Due to our

3 https://www.sonarqube.org. 
4 https://github.com/rjust/defects4j/pull/112. 

https://www.sonarqube.org
https://www.sonarqube.org
https://www.sonarqube.org
https://www.sonarqube.org
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
https://github.com/rjust/defects4j/pull/112
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usage of SmartSHARK [59] and the large-scale study it enabled [21], we are able to 
investigate 1,723 bugs for which all lines were manually validated and agreed upon 
by least three researchers. In contrast to both studies, we are concerned with general 
trends and whether we are able to measure a net-benefit of a general-purpose ASAT 
over multiple years of project evolution. 

A different avenue of investigation is an indirect exploration of extending pre-
dictive models with data from ASATs. Nagappan and Ball [38] explore predicting 
defect density with static analysis warnings in a case study with Microsoft. They 
find that static analysis warnings can be used to predict defect prone modules in 
which to focus quality assurance efforts. In contrast to Nagappan and Ball [38], we 
investigate an open-source general-purpose ASAT and open-source projects. 

Plosch et al. [41] investigate correlations between ASAT warnings and the 
number of bugs in each file for three releases of Eclipse JDT. The authors find that 
PMD performs better than FindBugs with correlation values between 0.25 and 0.34, 
which is a weak to slightly moderate correlation. 

Rahman et al. [45] compare the ASATs FindBugs and PMD with a logistic defect 
prediction model. They analyze 34 releases from 5 open-source projects and find 
that while FindBugs outperforms the predictive model PMD does not. However, the 
reported precision is low in all cases. The authors find that they were not able to 
improve their predictive model with additional data from the ASATs, which is in 
contrast to our own findings. The reason for this, aside from the data and age of 
releases, could be that we create aggregated features from ASAT warnings, which 
Rahman et al. [45] do not. 

While Rahman et al. [45] used a release-level defect prediction approach, Querel 
and Rigby [43] investigate whether they can improve an existing just-in-time defect 
prediction approach implemented in commit guru [47]. The authors add ASAT 
warnings as features to the just-in-time defect prediction model. Their results 
indicate that they were able to improve the predictive model. A later study [44] 
finds that the magnitude of the effect of ASAT warnings is likely small. Our own 
results replicate this outcome with different data and models. This indicates that 
there may be a correlation between bugs and static analysis warnings, even for a 
general-purpose ASAT such as PMD even if it is likely small. 

4.3 Developers 

The perspective of the developers on source code quality improvements is investi-
gated in numerous studies. We focus in this section on studies which extracted the 
intent of the developers to increase quality and after the change measured an effect 
on software quality attributes. Stroggylos and Spinellis [51] investigate intended 
refactorings via commit messages and measured a change via several source code 
metrics. The authors find that refactoring often decreases source code quality 
metrics, i.e., the intent of the developer does not match the resulting measurements. 

Fakhoury et al. [14] compare the intent of developers to increase the readability in 
the code base with the change of readability measured with an existing readability
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model. The authors show that the intent of the developers is not matched by the 
readability model. The readability improvement perceived by the developers is not 
matched by the results of the measurements by the readability model. 

Pantiuchina et al. [39] compare the intent of developers to increase certain 
software quality metrics with actual measurement of these metrics. The authors 
also find that the intent of the developer is not captured by the value change of 
the software quality metric. In contrast to Pantiuchina et al. [39], Fakhoury et 
al. [14], and Stroggylos and Spinellis [51], our study measures a more generic 
improvement intent by the developer. Refactoring, readability, and the mention 
of static source code metric improvement are part of our classification schema. 
Moreover, we include ASAT warnings as part of the measurement of the outcome of 
the change. All of the studies mentioned in this section measure a mismatch between 
intent of developer and actual measurement. This can mean that the intent was 
misunderstood, the change was badly implemented, or that the measured metrics or 
models used may not be as accurate as assumed. In our work, we show that most of 
the changes for perfective quality improvements actually match the measurements 
as expected. Corrective quality improvements did yield unexpected results however. 

5 Summary 

In this section, we summarize the chapter and link our results from Sect. 2 together 
with the results briefly discussed in the related work in Sect. 4 in a loose qualitative 
meta-analysis. Within this chapter, we have presented results of several large studies 
of ASATs and static software metrics associated with quality. We are using empirical 
methods, statistical analysis, and large-scale studies to produce empirical data and 
ultimately evidence to be used by researchers and practitioners. Estimating the 
usefulness of static analysis tools can help practitioners select tooling based on 
empirical evidence; this is the idea behind evidence-based software engineering. 
Moreover, general trends or lessons extracted from research can improve software 
development processes, i.e., an indication on where to focus perfective maintenance 
within a software project. 

We use our extended version [56] of the SmartSHARK mining ecosystem [59] 
to mine and validate large amounts of open-source software development data. 
The data is used to investigate different aspects of ASATs and their impact on 
software quality from different perspectives. With the help of SmartSHARK, we 
conducted several large studies that required manual validation [21, 22, 57] that 
were enabled by our implementations inside the SmartSHARK frontend. In addition 
to the replication kits of each publication, all of the raw data is made public for other 
researchers or practitioners on the SmartSHARK website.5 

5 https://smartshark.github.io/dbreleases/.

https://smartshark.github.io/dbreleases/
https://smartshark.github.io/dbreleases/
https://smartshark.github.io/dbreleases/
https://smartshark.github.io/dbreleases/
https://smartshark.github.io/dbreleases/
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We can show that while the sum of static analysis warnings is steadily increasing 
and correlated to the number of LLOC, the warning density is decreasing in most 
of our study subjects. A steady increase of the number of static analysis warnings is 
also found in previous research [34], however not explicitly mentioned in the paper. 
Our results contain a decrease in warning density; overall, each project resolves 
about 3.5 ASAT warnings per kLLOC per year, which means that if we think of 
warning density as an indicator of source code quality, source code quality improves 
over time. 

While we are the first to report warning density for a general-purpose ASAT, 
Aloraini et al. [2] and Di Penta et al. [13] found no decrease in warning density for 
security-focused ASATs. A reason for this could be a difference in removal effort 
between general-purpose ASAT warnings and security-focused ASAT warnings. 
Regardless, our findings indicate that we have to account for changes in general 
warning density of open-source projects for longitudinal studies, which utilize 
source code evolution data. 

Our investigation into the impact of ASATs on quality from the perspective 
of predictive models as well as statistical comparisons yields a surprisingly small 
effect. However, this small effect is replicated by other researchers for predictive 
models [44] or simple correlation measures [41], increasing the evidence toward a 
small effect of ASATs on defects. In addition, our research indicates that a subset of 
rules provides a larger effect size, which hints toward differences in rules regarding 
their impact. 

Previous work has shown that the perception of source code quality by the 
developers and the actual measurements of static source code quality metrics does 
not always match. In our research, we found that ASAT warnings are not only 
associated with quality by developers in questionnaires as in [10, 61] but that static 
analysis warnings are in fact reduced when developers intend to improve code 
quality. We measured an effect that is not as high as static source code metrics 
commonly associated with quality, e.g., McCC or CBO. In the course of this study, 
we also noticed a small effect where corrective changes increase complexity of 
already complex files, but perfective changes, which reduce complexity, are only 
applied on already less complex files. 

Combining our results, we can draw several conclusions for practitioners. The 
number of ASAT warnings is going to increase with the size of the code base. 
Adopting a metric-like warning density for Continuous Integration (CI) systems can 
therefore be a more helpful measure for a general overview. We presented data on 
the impact on defects, which can help practitioners weight the benefits against the 
cost of introducing and maintaining ASATs. While our results only point to a very 
small effect on defects, there may still be more positive influence of ASATs not part 
of our study, e.g., readability of code. Our results also show a higher effect for the 
default subset of warnings, indicating that this configuration is a good starting point 
when using PMD for Java. 

Fixing a bug is a complex operation, while maintenance that reduces complexity 
is predominantly focused on less complex parts of the code. To dissolve this 
contradiction, maintenance activities should be focused on files that were part of a
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Fig. 7 Knowledge transfer from studies to practitioners 

bug-fixing operation. Another solution would be to reserve resources for perfective 
maintenance on overly complex files; these could be indicated by tooling using 
thresholds from our research. This would reduce complexity and can also lead to 
a reduced number of bugs as indicated in our research. 

The SmartSHARK mining infrastructure and the data collected can be further 
utilized by researchers for all topics that rely on software repository data as well as 
manual validation via web frontend. We will continue to support and enhance this 
platform in the future. 

Given the results of our empirical studies and the implementations required to 
conduct them, we are able to proceed in various directions. Our research can be 
utilized inside the IDE via Language Server Protocol (LSP) integration. Figure 7 
depicts such a scenario in which the data acquired from research is transferred to 
the practitioner. This allows thresholds from research, e.g., complexity or types of 
ASAT warnings, to be displayed while working on the source code of a file and 
show hints and recommendations to the developer. 
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