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Abstract 

In this work, the HIgh REsolution Slope Stability Simula-
tor (HIRESSS) model was applied to predict the occur-
rence of shallow landslides on a regional scale. HIRESSS 
is a physically based distributed slope stability simulator 
for analyzing the occurrence of shallow landslides during 
a rainfall event. The modeling software consists of two 
parts: hydrological and a geotechnical. The hydrological 
model is based on an analytical solution of an 
approximated form of the Richards equation, while the 
geotechnical stability model is based on an infinite slope 
model that accounts for unsaturated soil conditions. The 
model was applied in the Aosta Valley region, located in 
the northwest of the Alpine chain. The Aosta Valley is 
highly susceptible to landslides, especially shallow, rapid 
landslides and rockfalls. The geotechnical and hydrologi-
cal characteristics of the slopes were recorded in two field 
measurement campaigns at 12 measurement points. To 
account for the effects of vegetation on landslides the 
soil reinforcement due to the presence of roots was also 
taken into account. The model was applied in back analy-
sis for an event that affected the Aosta Valley in 2009, 
triggering several fast shallow landslides. In this work the 
model setup and the validation of the model outcomes are 
described. 
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1 Introduction 

Shallow landslides are often harbingers of an impending 
major debris flow. They usually begin as shallow mass 
movements, involving only a few tens of cubic meters of 
terrain, but can develop into rapid mass movements that take 
on characteristics of debris flows and avalanches (Masi et al. 
2023). Shallow landslides are triggered by intense rainfall, 
and multiple and diffuse landslides are often triggered in the 
region affected by the rainfall. 

There are two approaches for predicting shallow 
landslides at the regional scale: (a) the use of precipitation 
thresholds based on statistical analysis of rainfall and 
landslides, and (b) the use of physically based deterministic 
models (Salvatici et al. 2018). The first category of models is 
based on a statistical approach by searching for functional 
relationships between triggering factors (such as precipitation 
intensity/duration) and actual events in a given area to define 
warning thresholds. The second category includes the physi-
cally based approaches that combine hydrological models 
and slope stability analysis to predict hazard areas. The 
stability model is usually based on the infinite slope model. 
Soil moisture dynamics are usually based on a modified 
version of the steady-state wetness index (Arnone et al. 
2011) or an approximation of the Richards equation (Baum 
et al. 2002; Simoni et al. 2008). Such models typically 
provide slope stability assessments based on the factor of 
safety (FS) (e.g., Baum et al. 2002). While the former 
approach is currently used primarily at the regional scale 
(Aleotti 2004; Martelloni et al. 2012; Lagomarsino et al. 
2013), the latter approach is more commonly applied at the 
slope or catchment scale (Pack et al. 2001; Baum et al. 2002, 
2010; Lu and Godt 2008; Simoni et al. 2008; Arnone et al. 
2011; Salciarini et al. 2017; Park et al. 2013; Rossi et al. 
2013). The insufficient knowledge of the spatial distribution 
of hydrological and geotechnical parameters caused by the 
extreme heterogeneity and inherent variability of the soil at 
large scales (Tofani et al. 2017) means that the application of
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physically based models is generally avoided at regional 
scales. Conversely, physically based models allow spatial 
and temporal prediction of landslide occurrence with high 
accuracy, producing accurate hazard maps that can aid in 
landslide risk assessment and management (Salvatici et al. 
2018). 
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Insufficient knowledge of the spatial distribution of hydro-
logical and geotechnical parameters caused by the extreme 
heterogeneity and inherent variability of soil properties at 
large scales hinders the application of physically based 
models at regional scales. 

The uncertainty related to hydrological and geotechnical 
parameters (such as cohesion, internal friction angle, and 
hydraulic conductivity) can be overcome using a probabilis-
tic approach, supported by the combined use of Monte Carlo 
simulations. In this case, the output is a distributed probabil-
ity of failure, i.e., the probability of having the factor of safety 
below a defined threshold (usually one). 

The interpretation of the results is already problematic, 
since a calibration and validation procedure must be taken 
into account to define the value of the failure probability for 
distinguishing between stable and unstable pixels and, in 
view of possible application purposes, to transform the prob-
abilistic results into warnings related to larger spatial units 
(e.g., catchments or warning zones). In order to provide 
reliable results to stakeholders involved in hazard manage-
ment, it might be advisable to reaggregate across spatial units 
(e.g., catchments, slope units, and municipalities) and tempo-
ral units-a strategy followed by much work focused on oper-
ational applications of slope stability models. In particular, 
for spatial aggregation of probabilistic results, a calibration 
procedure must be performed to define how many pixels 
(over a value of failure probability to be defined) are required 
to consider a spatial unit unstable. 

In this work, we apply the physically based HIRESSS 
(HIgh REsolution Slope Stability Simulator) model (Rossi 
et al. 2013) in the eastern portion of the Aosta Valley region 
(Italy), in order to test the capacity of the model to forecast 
the occurrence of shallow landslides at the regional scale. In 
particular, the HIRESSS code will be tested in back-analysis, 
modelling a rainfall event that has occurred in 2009 and that 
triggered several shallow landslides in the study area. The 
specific objectives of the study are: (i) model set-up, 
(ii) analysis and validation of the model outcome. 

2 HIRESSS Model and Study Are a 

2.1 HIRESSS Model 

The HIRESSS model (Rossi et al. 2013) is composed of two 
different modules—hydrological and geotechnical. The 
hydrological model receives the rainfall data as dynamical 

input and provides the pressure head as a perturbation to the 
geotechnical model, that provides results in terms of failure 
probabilities. The structure of the software is inspired by the 
work of Iverson (Iverson 2000) also used in the TRIGRS 
software. The hydrological model is based on an analytical 
solution of an approximated form of Richards equation under 
the wet condition hypothesis, and it is introduced as a 
modelled form of hydraulic diffusivity. The geotechnical 
model is based on an infinite slope model that considers the 
unsaturated conditions. During the stability analysis, the pro-
posed model considers the increase in strength and cohesion 
due to matric suction in unsaturated soil due to negative 
pressure head. Moreover, the soil mass variation on partially 
saturated soil caused by the water infiltration is modelled. 
The model then provides for Monte Carlo simulations to 
manage the typical geotechnical parameters uncertainty. 
The Monte Carlo simulation manages a probability distribu-
tion of the input parameter, and the ending results of the 
simulator are slope failure probabilities. Applications of 
HIRESSS in different geological-geomorphological contexts 
and soil typologies have been presented in Rossi et al. 2013; 
Tofani et al. 2017; Salvatici et al. 2018; Cuomo et al. 2021. 

The HIRESSS model needs the following spatially 
distributed input data: slope gradient, effective cohesion, 
root cohesion, friction angle, dry unit weight, soil thickness, 
hydraulic conductivity, initial soil saturation, soil water reten-
tion curves, and rainfall intensity. 

HIRESSS considers the effect of the root reinforcement to 
the stability of slopes. The root reinforcement was modelled 
as a component of the total cohesion of soil (e.g., Operstein 
and Frydman 2000; Giadrossich et al. 2010). Original FS 
(factor of safety) equations (Rossi et al. 2013) were modified 
considering the root reinforcement (Masi et al. 2023). 

The HIRESSS model has several features that make it 
suitable for landslide prediction at regional scale and an 
important tool for early warning such as (i) the capability of 
computing the factor of safety at each time step and not only 
at the end of the rainfall event; (ii) the variable-depth compu-
tation of slope stability; (iii) high processing speed even for 
extensive area analysis; (iv) high spatial and temporal 
resolution. 

2.2 Study Area 

The Valle d’Aosta region (3200 km2 ) is part of the alpine 
chain, passing through the principal Europe-vergent 
Austroalpine-Penninic structural domain of the Western 
Alps. The geomorphology of the study area is characterized 
by steep slopes and valleys shaped by glaciers. The glacial 
modelling is shown in the U-shape of the Lys and Ayas 
valleys, and the erosive depositional forms found in the 
Ayas Valley. The three valleys’ watercourses, the Lys



Creek, the Evançon Creek, and the Dora Baltea River, 
contributed to the glacial deposits modelling with the forma-
tion of alluvial fans. 
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The region is very prone to landslides due to the high 
steepness of slopes and abundant mean annual precipitation 
(800–900 mm/y during the decade 2000–2009): rockfalls, 
deep-seated gravitational slope deformations, rocks 
avalanches, debris avalanches, debris flows, and debris slides 
are the main mass movements to which the area is subjected. 

As typical in alpine valleys, the study area has a preva-
lence of highly vegetated areas, while human settlement 
distribution is located at the valley bottom. The land cover 
is prevalently represented by forest, natural grassland, and 
rocky outcrops with little or no vegetation (Fig. 1). 

The HIRESSS model has been tested in a portion of the 
Valle d’Aosta region, the eastern part called “alert zone B” by 
the regional civil protection authorities. The area is 
characterized by three main valleys: Champorcher Valley, 
Gressoney or Lys Valley, and Ayas Valley. The first is 
located on the right side of the Dora Bal- tea catchment and 
represents the southern part of the study area. The second and 
third valleys show a north–south orientation and are 
delimited to the north by Monte Rosa Massif (4527 m a.s.l.) 
and to south by the Dora Baltea River. 

This area has been affected in 2009 by an intense rainfall 
event. In particular between the 26 and the 28 of April 2009 
highly intense rainfall and snowfall had fallen in the Alert 
zone B causing multiple landslides (9 landslides of different 
types in the Alert zone B were reported, 26 landslides in the 
Region) with a maximum of rainfall of 268 mm in three days 
was recorded by on the meteorological station in the area. 

Fig. 1 (a) Aosta valley in the nortwest Italy and alert zone B in red, (b) Lithology and survey points, modified from Salvatici et al. 2018 and Masi 
et al. 2023 

3 Data Collection and Preparation 

The input parameters can be divided in two classes: the static 
data and the dynamical data. Static data are geotechnical and 
morphological parameters while dynamical data are 
represented by the hourly rainfall intensity. 

The HIRESSS input is in raster, which means that point 
data and parameters have to be adequately spatially 
distributed. In this application the spatial resolution was 
10 m. 

The soil parameters were derived from the in situ and 
laboratory geotechnical tests and analysis. 

3.1 Static Data 

The slope gradient was calculated from the a DEM with a 
resolution of 10 m. Effective cohesion, friction angle, 
hydraulic conductivity, effective porosity, and dry unit 
weight were obtained and spatialized according to lithology. 
The soil parameters were derived from the in situ and labora-
tory geotechnical tests and analysis. 

In particular, the properties of slope deposits were deter-
mined by in situ and laboratory measurements (Bicocchi 
et al. 2016; Tofani et al. 2017) at 12 survey points. 

Location of survey points and results of the measurements 
are reported in Fig. 1 and Table 1 respectively. 

Details about data collection from the in-situ surveys to 
the laboratory analyses and methods of data elaboration to 
product input maps had been reported in Salvatici 
et al. (2018).



Lithological classes Soil Type ) c’ (Pa) n (%) ) hb (mH2O) qr λ
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Table 1 Geotechnical parameters of each lithological class as input for the HIRESSS model 

ϕ’ 
(° 

γd 
(kN m-3 ) 

ks 
(m s-1 

Calcareous schist Sand with gravelly silt 31 1000 16.5 39 1.1E-05 0.1466 0.041 0.322 

Alluvial deposits Sand with gravel and silt 26 1000 14.0 46 3.0E-06 0.1466 0.041 0.322 

Glacial deposits Sand with silty gravel 31 1000 15.3 41 2.7E-06 0.1466 0.041 0.322 

Colluvial deposits Sand with silty gravel 25 1000 13.7 47 2.5E-06 0.1466 0.041 0.322 

Granites Sandy gravel 30 1000 17.6 32 4.0E-06 0.1466 0.041 0.322 

Mica schists Sandy silty gravel 30 1000 17.7 32 6.0E-06 0.1466 0.041 0.322 

Pietre Verdi Gravel with silty sand 32 1000 16.3 37 4.6E-06 0.1466 0.041 0.322 

Root cohesion variation map had been elaborated using 
for the plant species distribution the land use map Corine 
Land Cover 2012. Values adopted for the simulations varies 
from 0.1 to 19 kPa. 

3.2 Dynamic Data 

The dynamic data consist of the precipitation intensities read 
by the model to calculate the soil saturation and consequently 
the matrix suction and pressure head of each pixel for each 
time step. The initial distribution of soil saturation can be 
provided to the model if available. Otherwise, it is possible to 
insert an initial soil saturation of zero for each pixel of the 
area, the model starts at zero and, through the hydrological 
equations on which it is based, calculates the soil saturation 
for each time step. It is worth noting that zero soil saturation 
is not realistic even for very permeable coarse soils, espe-
cially under the climatic conditions of the study areas. There-
fore, it is important to have sufficient backward extension of 
precipitation data with respect to a given time period of 
interest for the simulation to ensure that the saturation 
conditions reconstructed by the hydrological model are 
hardly affected by the notional initial soil saturation (Masi 
et al. 2023). 

In the study area of the Valle d’Aosta, the hourly rainfall 
data from 27 rain gauges were available. The rainfall data had 
been elaborated applying the Thiessen polygon methodology 
(Rhynsburger 1973) modified to consider catchment basins 
to spatialize the data set and generate the raster maps 
(Salvatici et al. 2018). The periods of rainfall considered to 
perform the stability simulations is from 02/04/2009 to 
30/04/2009. 

Between April 26 and 28, 2009, the VdA region experi-
enced intense rainfall that particularly affected the southeast-
ern areas and caused numerous landslides. 

The Lillianes Granges weather station recorded 268 mm 
of cumulative rainfall over the three days, 208 mm of which 
fell on April 27 alone (Fig. 2). 

4 HIRESSS Simulation and Analysis 
of the Results 

The HIRESSS input data were entered into the HIRESSS 
model to obtain hourly or daily maps of the landslide 
occurrence. 

4.1 Monte Carlo Simulations 

A study on the preferable number of Monte Carlo iterations 
had been performed. The Monte Carlo iterations performed 
by HIRESSS to manage the spatial uncertainty of the input 
parameters is a fundamental aspect of the forecasting proce-
dure, the setting of which strongly affects the resulting 
failures probabilities. The higher the number of iterations, 
the higher the reliability of the forecasts. On the other hand, a 
higher number of iterations considerably slows down the 
processing calculations, so that the question here is finding 
the best compromise between processing time and reliability 
of the results (Masi et al. 2023). 

To determine an appropriate number of iterations in the 
context of the present study, four simulations of the Valle 
d'Aosta 2009 event were performed with the same input 
values of the parameters but with different numbers of 
iterations (10, 100, 1000, 10000 shoots). The simulation 
results were then compared considering the number of unsta-
ble pixels calculated in the three cases for the same days of 
the event and the processing times (Fig. 3). The caution value 
of 1.2 for the safety factor and 80% for the failure probability 
(FP) were chosen as the threshold values for the instability of 
a pixel. The threshold of 80% was chosen based on previous 
HIRESSS applications (Rossi et al. 2013; Salvatici et al. 
2018). 

The difference between the 10- simulation and the 100-
simulation resulted in about 100000 fewer unstable pixels for 
the latter, while there was an average difference of 25000 
pixels between the 100s simulation and the 1000s simulations



(again, the simulation obtained by a higher number of 
iterations had fewer unstable pixels). In contrast, the 
differences between the 1000 simulation and the 10000 sim-
ulation were so small that they can be considered negligible, 
while they represent a significant difference in terms of 

processing time. The 1000 simulation took 2346 min 
(39 h), while the 10000 simulation took 21039 min (350 h). 
The convergence of the results and the quite different 
processing times led to the choice of 1000 iterations for the 
successive simulations. 
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Fig. 2 Intensity and cumulative 
rainfall per day from for second 
till 30th of April 2009. Daily and 
cumulative rainfall referring to the 
whole area had been calculated as 
mean values of the data registered 
by the 27 rain gauges 

Fig. 3 Results of simulations 
with a different number of Monte 
Carlo iterations. Colored curves 
represent trend of unstable pixels 
(resulting having a daily max 
failure probability higher than 
80%) (modified from Masi et al. 
2023)
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4.2 Analysis of the Model Output 
and Validation 

The simulation of the 2009 event was carried out at 1000 
Monte Carlo iterations with a resolution of 10 m × 10 m. 

To validate the model outcomes the inventory, comprise 
9 landslides, recorded as points or instability areas. 

The HIRESSS output selected for validation is the 24-hr 
map of failure probabilities for the day of April 27 (Fig. 4). 
The 24-h step was preferred over the 1-h step in view of the 
fact that the temporal localization of occurred events rarely 
achieves such accuracy. Within the range of three days on 
which the disruptions are reported (April 26-28), the day of 
April 27 was selected, during which the most intense precip-
itation peaks were recorded. 

The study area was subdivided into sub-basins (Fig. 5) 
whose dimensions were set in order to be able to contain the 
average size of the typical shallow landslides in the area and 
at the same time not to be too large. 

The shapefile produced and selected for the purpose of 
spatial aggregation is characterized by sub-basins whose 
most downstream node collects the flow of at least 3000 

pixels, this threshold allowed to obtain spatial units whose 
average size is equal to 0.37 km2 . 

Fig. 4 HIRESSS 24-hr map of failure probabilities for the day of April 27 

Finally, the spatial units were superimposed on the 
polygons of the rain gauges in the area in order to exclude 
sub-basins that were within the polygons for which rainfall 
data for the period April 2-30, 2009 are not available (due to 
temporary malfunctions of the data collection systems some 
rain gauges may not present continuous rainfall data), since 
the landslide triggering probabilities calculated by HIRESSS 
for these areas are for obvious reasons unreliable. 

In order to carry out the calibration procedure and to 
identify how many pixels are necessary to define a spatial 
unit unstable three different combination of threshold of 
failure probability and number of pixels have been defined; 
80%/250 pixels, 80%/300 pixels, 80%/350 pixels. 

The final stage of the test related to the spatial aggregation 
of the outputs consisted of validating the different pairings of 
pixel number/probability threshold by spatial comparison of 
the spatial units identified as unstable according to the differ-
ent combinations and the location of the actual landslide 
events resulting in the construction of the contingency table 
(data related to correct alarms, missed alarms, false alarms, 
correct non-alarms) (Table 2).
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Fig. 5 Spatial units with more 
than 250 pixels with failure 
probability equal to 80%. Green 
points and areas are landslides, 
black lines are spatial units 

The combination that returned the highest value of correct 
alarms was the one that predicted the value of 250 pixels with 
failure probability greater than 80% as the threshold of insta-
bility, with 88.9% true positives the modeling in this case was 
able to predict 8 landslides out of the 9 recorded in reality. At 
the same time this combination produced the highest value of 

false alarms, which was 13.9% in this case. The lowest value 
of false alarms was found for the 80%/350 pixel pairing, a 
combination that also, however, produced the lowest value of 
correct alarms, with 66.7% true positives such aggregation 
allowed the modeling to detect 6 out of 9 landslides. 

Table 2 Contingency matrix for 
the validation of the model results. 
TP true positive, FN false 
negative, TN true negative, FPs 
false positive 

Failure probablity/ 
Number of pixels 

80/250 88.9% 11.1% 86.1% 13.9% 

80/300 77.8% 22.8% 88.6% 11.4% 

80/350 66.7% 33.3% 89.9% 10.1%
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It is worth noticing that the distribution of the landslide 
events recorded and used for validation are all located near 
the most important infrastructures in the area: this leads to the 
hypothesis that the landslide database used lacks all those 
events that although they occurred (during the three days 
investigated April 26–28) were not recorded because they 
occurred in more remote areas and therefore were not 
intercepted. This hypothesis could likely be the cause of the 
values of correct and false alarms found, which while good 
do not match the potential of the modeling procedure using 
HIRESSS and aggregation that have been verified in other 
contexts. 

5 Conclusion 

The HIRESSS code (a physically based distributed slope 
stability simulator for analyzing shallow landslide triggering 
conditions in real time and over large areas) was applied to 
the eastern sector of the Aosta Valley region in order to test 
its capability to forecast shallow landslides at the regional 
scale. The model was applied in back analysis for an event 
occurred in 2009. 

In order to run the model two campaigns of on-site 
measurements and laboratory experiments were performed 
at 12 survey points. The data collected contributed to the 
generation of an input map of parameters for the HIRESSS 
model according to lithological classes. The effect of vegeta-
tion on slope stability in terms of root reinforcement was also 
taken into account, based on the plant species distribution and 
literature values of root cohesion, to product a map of root 
reinforcement of the study area. 

The outcomes of the model are daily failure probability 
maps with a spatial resolution of 10 m. The HIRESSS code 
incorporates the Monte Carlo simulation in order to take into 
account the uncertainty of input parameters. 

The test on the number of Monte Carlo iterations showed 
that the best compromise between the accuracy of the results 
and the time required for HIRESSS to conclude the 
processing is represented by the value of 1000 iterations: in 
fact, requiring the model to perform this number of iterations 
gives results not dissimilar to those obtainable through 10000 
iterations but in a considerably shorter time. 

The aggregation procedure was applied and validated with 
reference to the event of intense rainfall that occurred in alert 
area B between April 26 and 28, 2009 on HIRESSS model 
outputs obtained through 1000-iterations simulation. The 
procedure involved classifying spatial units according to 
different thresholds of number of pixels contained within 
their perimeter having model-calculated failure probabilities 
greater than 80%. 

The best result between high value of correct alarms 
(TP) and low value of false alarms (FP) produced by the 

aggregation procedure was obtained with the combination 
probability of triggering 80%/250 pixels within the 2009 
event (24h output of April 27, 2009) with 88.9% and 13.9% 
respectively. 

The application has also highlighted some drawbacks that 
are mainly related to the validation of the model performance. 
In particular, a satisfactory validation of the model is only 
possible if a complete event database of landslides with 
spatial and temporal resolution equal to the HIRESSS 
model resolutions is available. 
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