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Abstract 

Time prediction methods based on monitoring surface 
displacement (SD) are effective for early warning against 
shallow landslides. However, failure time prediction by 
Fukuzono’s original inverse-velocity (INV) method is less 
accurate due to variation in the inverse-velocity (1/v) 
caused by noise in the measured SD, which amplifies the 
fluctuation in the resultant 1/v. Therefore, the present 
study incorporates pre-analysis to acquire better prediction 
by reducing the effect of noise on the measured SD. The 
data extraction (DE) and moving average (MA) methods 
are used to filter the measured SD for better smoothing of 
1/v. The root mean square error (RMSE) and determining 
factor ( f ) values are used to select the optimum SD 
interval (Δx) in the DE method. The RMSE and f values 
are used to evaluate the reproducibility of the measured 
data and the scattering in the relationship between velocity 
and acceleration in an orderly. The data, treated by the DE 
and MA methods, are utilized to predict the failure time 
based on the INV method and the relationship between 
velocity and acceleration on a logarithmic scale (VAA) 
method. Accordingly, Δx gives the smallest sum of the 
normalized RMSE and normalized (1-f ), which offers a 
better prediction. When the SD at failure changes, Δx is 
changed. The best prediction is obtained by DE 
preprocessing with the VAA method because it minimizes 
the effect of the individual 1/v by reducing the scatter in 
the relationship between velocity and acceleration. How-
ever, the time prediction using data processed by the MA 
method shows poor prediction due to some scattering of 
the inverse velocity. In some cases, the prediction by the 
VAA method using MA data provides better prediction 
than the results of the INV method. 
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1 Introduction 

The time prediction of a landslide occurrence is an important 
task for early warning against landslide disasters, but there is 
still uncertainty about its precision. However, slope scale 
prediction is a necessity in the framework of landslide risk 
reduction. In this regard, prediction based on monitoring 
displacement data is generally used in practice. Displacement 
monitoring in indoor model slopes and field experiments 
using a rainfall simulator have been adopted in recent studies 
related to shallow landslide failure mechanisms and the fore-
cast time of failure for early warning. For example, Fukuzono 
(1985) monitored the surface displacement (SD) using 
extensometers on large-scale indoor model slopes. Further-
more, Moriwaki et al. (2004) conducted the experiments 
using a full-scale model slope by monitoring the SD with 
displacement meters. Ochiai et al. (2021) reported the moni-
toring displacement using extensometers of a field experi-
ment on a natural slope in the city of Futtsu, Chiba Prefecture. 

Many researchers have adopted time prediction methods 
based on monitoring the displacement of slopes (Saito 1965; 
Fukuzono 1985; Varnes 1982; Voight 1988; Crosta and 
Agliardi 2003; Rose and Hungr 2007). As mentioned 
above, the prediction method of the onset of landslide is 
based on the monitoring of slopes, which is based on the 
relationship between the time and SD of a slope before the 
failure occurs, as shown in Fig. 1. Accordingly, the time 
variation in creep behavior consists of three phases, namely, 
primary creep, secondary creep and tertiary creep. Among the 
time prediction methods adopted to date, the method pro-
posed by Fukuzono (1985) has been widely adopted in prac-
tice due to its simplicity and convenience of use. He proposed 
a relationship between the velocity and acceleration of SD

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44296-4_14&domain=pdf
mailto:sasahara@kochi-u.ac.jp
https://doi.org/10.1007/978-3-031-44296-4_14#DOI


just before failure (for the tertiary creep stage) in a large-scale 
model slope under sprinkling water, as shown in Eq. 1. 

270 I. Ariyarathna and K. Sasahara

Fig. 1 Relation between time and SD of the soil before failure under 
constant stress conditions (Saito 1965) 

dv 
dt 

= a ∙ vα ð1Þ 

where v and t are the velocities of the SD and corresponding 
times, respectively. In addition, a and α are the experimental 
constants that result from the intercept on the vertical axis and 
gradient of the relationship line, respectively, when the veloc-
ity and acceleration of the SD data are plotted over time 
(Fig. 2). 

Based on the above relationship, he introduced a predic-
tion method called inverse-velocity method (INV), which 

was created by integrating the relationship between the veloc-
ity and acceleration of SD by time just prior to failure (Eq. 2). 

Fig. 2 Relationship between the velocity and acceleration of the SD 
(Fukuzono 1985) 

1 
v 
= a α- 1ð Þf g  1 

α- 1 tr - tð Þ  1 
α- 1 ð2Þ 

where tr is the predicted failure time. Fukuzono (1985) noted 
that the inverse velocity reached zero just before failure. 
Therefore, the failure time of a slope by the INV method 
could be determined by extrapolating the resultant curves to 
cross the time axis. 

The past literature reveals that many researchers have 
adopted the INV method to forecast the failure time of 
landslides and that some of them achieved precise prediction, 
while some of them did not succeed completely. For exam-
ple, Carla et al. (2019) predicted the failure time of a natural 
rockfall by the GBInSAR method using the INV method, and 
they conveyed that the INV method gives precise results. 
Mazzanti et al. (2015) highlighted that an improved version 
of the INV method called ADF (average data Fukuzono) is 
necessary to achieve the best results. ADF incorporates the 
moving average of the displacement data over time and 
effectively minimizes the prediction error due to scattering 
of inverse-velocity values. Furthermore, Zhou et al. (2020) 
emphasized that the time prediction effectiveness using INV 
is limited for actual landslides and that accuracy can be 
improved by introducing controllable variables. He proposed 
the modified INV method, which improves the accuracy of 
the predicted failure time by avoiding earlier prediction than 
actual failure time. That report noted that the forecasting 
effectiveness of the INV methods directly depends on the 
quality of the measured displacement data. Accordingly, the 
time prediction by Fukuzono’s original INV may succeed in 
some cases but not in others because the results are widely 
affected by the quality of the measured data, as the displace-
ment noise amplifies the resultant velocity. If the error in 
displacement data is not so considerable, the velocity varia-
tion, which is calculated using the same displacement data, 
becomes higher. This results in causes several peak values 
with up and down variations in velocities over time before 
failure. Hence, the present study focuses on improving the 
failure prediction by minimizing the influences of the inverse 
velocity fluctuation by introducing the preprocessing of dis-
placement data before the prediction. 

2 Methodology 

2.1 Methods for Raw Data Preprocessing 

Data preprocessing is introduced to obtain a better prediction, 
which reduces the sudden fluctuation of 1/v values by 
decreasing the effect of noise on the measured SD. Two



approaches called the data extraction method (DE) and 
moving average method (MA) are utilized in the present 
study. 

Procedure of Data Processing for the Improvement of Failure Time Prediction of a. . . 271

2.1.1 Data Extraction Method (DE) 
The DE method is carried out to determine the optimal 
displacement interval (Δx) for extracting the data to predict 
the failure time, which minimizes the scattering of 1/v values 
by avoiding the noise of the measured SD. The root mean 
square error (RMSE) and determining factor ( f ) values are 
used as supportive parameters to evaluate the reproducibility 
of the measured data and scattering in the relationship 
between velocity and acceleration in order to select Δx for 
the DE method. The RMSE values are calculated by Eq. 3. 

RMSE= 
1 
N 

N 

i= 1 
F1 -A1ð Þ2 ð3Þ 

where N is the total number of the data, Fi is the measured SD 
at time ti, Ai is the extracted SD at time ti, and (Fi - Ai) 
indicates an error between the measured and extracted 
SD. Suppose there are no data at the time ti for the extracted 
data. In that case, data corresponding to ti are projected by 
considering the proportional distribution of the extracted data 
before and after time ti, as shown in Fig. 3. Generally, when 
the data extracting SD interval (ΔSD) is increased, the repro-
ducibility of the measured data is decreased, and the calcu-
lated RMSE values become larger. 

The f values measure how well the regression line fits with 
the velocity and acceleration data on a logarithmic scale 
(Fig. 2). The linear regression line was obtained using 
Microsoft Excel for the relationship between velocity and 
acceleration on a logarithmic scale utilized to get the 
f values. It expresses how much percentage of the total 
variation in acceleration (vertical axis) is described by the 
velocity variation (horizontal axis) in the relationship 
between velocity and acceleration on a logarithmic scale 
which is always between 0.0 to 1.0. A value of 1.0 indicates 

a higher relationship strength. It means the lowest value of 
(1-f ) gives the lowest scattering. However, calculated RMSE 
and (1-f ) are not in the same range, which causes the weight 
ratio between RMSE and (1-f ), is changed depending on the 
ΔSD. So, in the case of RMSE, though the minimum value is 
zero, the maximum value is changed by more than 1.0. In that 
case, the maximum and minimum value difference is equal to 
the one and calculate all values within the range of 0.0 to 1.0 
as normalized RMSE (RMSEÞ. So, both values are 
normalized into the same range, 0.0 to 1.0, assigning the 
weight ratio 1:1 between RMSE and (1-f ), as shown in 
Fig. 4. The ΔSD increases, the discrepancy between 
measured and extracted. 

Fig. 3 The comparison of the time variation of displacement for the 
measured SD and SD extracted in 1 mm intervals 

Fig. 4 RMSE and (1- f ) value variation with different data extracting 
SD interval (ΔSD) 

data increases, and scattering in the relationship between 
the velocity and acceleration decreases. Considering the opti-
mum displacement interval (Δx), it gives at the lowest sum-
mation of (RMSEÞ and normalized (1-f ), (1- f ). 

2.1.2 Moving Average (MA) Method 
The moving average inverse velocity (1=v) values (calculated 
by considering consecutive 1/v values) are used to smooth the 
time variation of 1/v in the MA method. In this regard, we 
calculate (1=v ) by considering different consecutive values 
and select the best consecutive value, which gives the best 
smoothing time variation of 1/v. The (1=v) at time step, l, is 
calculated using Eq. 4. 

1=v 
l 
= 

1=vð Þl þ 1=vð Þl- 1 þ . . .  1=vð Þl- n- 1ð Þ  
n

ð4Þ 

where n is the number of time steps, l is the present time step, 
and 1/v is the inverse velocity value at the corresponding time 
step. As an example, when calculating the (1=v) by consider-
ing two (n = 2) 1/v values, (1=v)  is  defined as the summation 
of the 1/v values at present and previous time steps divided by 
two. As shown in Fig. 5, if the disturbance of SD is not 
significant, the 1/v variation calculated using the same SD



ð

Þ
Þ

becomes higher. However, the individual fluctuation is lower 
when considering (1=v), which gives a smoother curve. 
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Fig. 5 Time variation of the inverse velocity derived from both the 
measured 1/v and smoothed inverse velocity (1=v) and the SD 

2.2 Prediction of the Failure Time 

2.2.1 Calculation of Velocity and Acceleration 
Values 

The calculation of the velocity and acceleration from the 
measured SD and time data is explained below. First, the 
velocity is defined as the SD difference between the previous 
and present time steps divided by the corresponding time step 
difference. Second, the acceleration is defined as the velocity 
difference between the previous and present time steps 
divided by the corresponding time step difference. 

2.2.2 Failure Prediction from Fukuzono’s 
Original Inverse-Velocity (INV) Method 

The INV method is based on the relationship between 1/v and 
time, which reaches zero just before failure. Therefore, the 
failure time prediction can be predicted by extrapolating 
resultant curves to cross the time axis, which is given by 
the time differentiation 1/v in Eq. 2 and some arrangement to 
produce the ratio of 1/v to the increment of the inverse 
velocity, as shown in Eq. 5. 

1 
v 

= 
d 1=vð Þ  
dt 

= - α- 1ð Þ  tr - tð Þ 5Þ 

The failure time can be calculated using the ratio of the 1/v to 
its increment ratio at two different times, as shown in Eq. 6, 
which is the process of the INV method initially proposed by 
Fukuzono (1985). 

tr = 
t2 1=vð Þ1= d 1=vð Þ=dtð Þ1 - t1 1=vð Þ2= d 1=vð Þ=dtð 2 

1=vð Þ1= d 1=vð Þ=dtð Þ1 - 1=vð Þ2= d 1=vð Þ=dtð 2 
ð6Þ 

2.2.3 Failure Prediction from the Relationship 
Between Velocity and Acceleration (VAA) 
Method 

The failure time prediction by the VAA method can be 
derived from the rearrangement of Eq. 2 to Eq. 7. 

tr = tþ 1 
a α- 1ð Þ  

1 
v 

α- 1 

ð7Þ 

The failure time can be derived by substituting the present 
time (t) and corresponding inverse-velocity values (1/v) with 
a and α values into Eq. 7. The a and α values are derived from 
the relationship between velocity and acceleration on a loga-
rithmic scale from linear regression analysis as shown in 
Fig. 2. 

2.3 Landslide Field Experiment on a Natural 
Slope in Futtsu, Chiba Prefecture 

2.3.1 Experimental Setups 
A landslide field experiment on a natural slope in Futtsu, 
Chiba Prefecture, was conducted on 12 December 2018 
using a rainfall simulator as requested by NHK, Nippon 
Hoso Kyokai (Japan Broadcast Corporation). The experi-
mental site was sparsely forested with hardwoods with a 
slope of approximately 40 degrees. The ground surface was 
a smooth slope surface covered with Simon bamboo and ivy, 
and part of the lower edge of the slope had previously been 
quarried for sand. The behavior of the slope was monitored 
and filmed with multiple cameras during the main 
experiment. 

The grain size distribution of the surface soil layer is 
shown in Fig. 6. Accordingly, the majority of the soil consists 
of sand particles (75%), and the rest are silts particles (23%) 
and clay particles (2%). The mean diameter of the soil 
particles is 0.1509 mm. The physical properties of the soil 
are shown in Table 1. Accordingly, soil particle density is 
2.574 g/cm3 , and the minimum and maximum density of the 
soil is between 1.082 to 1.361 g/cm3 . The thickness of the 
surface soil layer was approximately 1 m based on the results 
of a portable penetration test (Japanese Geotechnical Society, 
2017) using a number of blows (10 cm penetration) with a 
5 kg weight dropped from a height of 50 cm. During the 
experiment, artificial rainfall was supplied to an area 10 m 
long and 10 m wide. The pre-experiment with a precipitation 
intensity of 140 mm/h was conducted for around 1 h on 
11 December 2018 to fine-tune the distribution of the



precipitation. A total of six extensometers at three locations 
along two survey lines were installed (Fig. 7a). 
Extensometers 1, 2, and 3 were placed on line 1 (Fig. 7b), 
and the others were placed on line 2. A detailed explanation 
of the experiment can be found in Ochiai et al. (2021). 
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Fig. 6 Grain size distribution of the surface soil at the experimental site 

2.4 In-door Small-scale Model Slope 
Experiment 

2.4.1 Experimental Setups 
The data obtained from the in-door small-scale model slope 
at Kochi University was utilized in this study. Figure 8a, b 
show the lateral view and longitudinal section of the small-
scale model slope and monitoring device arrangement, 
respectively, at Kochi University. The model was 110 cm 
and 55 cm long, respectively, in slope and horizontal sections 
with a width of 60 cm and depth of 12 cm. The model slope’s 
base plate consisted of steel blades with a height of 1 cm and 
length equal to the width of the base plate by every 20 cm 
from 10 cm to 90 cm from the upper boundary in the slope 
section and from 7.5 cm to 47 cm from the end of the lower 
boundary in the horizontal section of the model slope and 
coarse sand to prevent sliding between the soil and the base 
plate. The model slope’s dry unit weight, and upper slope 
inclination were 1.32 g/cm3 , and 40 degrees, respectively. 
The experiment was carried out under sprinkling water with 
constant discharge from the rainfall simulator, and its inten-
sity was expressed in mm/h. Accordingly, 108 mm/h rainfall 

intensity was used for the experiment. Well-graded sand with 
fine (The Japanese Geotechnical Society, 2015) with a grain 
size distribution shown in Fig. 9 was used to prepare the 
model slope and other physical properties are shown in 
Table 2. 

Table 1 Physical properties of 
the natural slope in Futtsu 
experiment 

Soil particle density (g/cm3 ) 2.574 

Minimum density (g/cm3 ) 1.082 

Maximum density (g/cm3 ) 1.361 

Minimum void ratio of the soil, emin 0.891 

Maximum void ratio of the soil, emax 1.379 

Coefficient of uniformity 2.3 

The SD was measured using three displacement gauges 
fixed at the lateral boundary of the flume from the distance of 
25 cm, 55 cm, and 80 cm away from the upper boundary of 
the flume. The SD data and their corresponding time at the 
55 cm (middle) displacement gauge were utilized for the 
analysis. The displacement gauge’s capacity and resolution 
are 100 mm and 0.2 mm, respectively and data were logged 
every 10 s by a data logger. The displacement gauges are the 
SDP-100CT, strain-generating cantilever type displacement 
transducer from the Tokyo Sokki Kenkyujo Company, and 
measure the tension displacement using a hook bolt. 

3 Results 

This section presents only the results corresponding to exten-
someter No. 5 (orange colour in Fig. 10) in the natural slope 
experiment, Futtsu, and the displacement gauge, installed at 
55 cm from the upper boundary of the model slope in the 
small-scale model slope experiment. 

3.1 Experimental Results 

A landslide occurred at field experiment on a natural slope in 
Futtsu, after 4 h and 25 min of rainfall with an intensity of 
140–300 mm/h, and the depth of the landslide was approxi-
mately 1 m, according to Ochiai et al. (2021). Furthermore, 
Fig. 7b shows the cross-section before (black colour line) and 
after (pink colour line) failure and reveals that the failure was 
a sliding-type landslide. 

Although six extensometers were installed on the experi-
mental slope, only Nos. 1 and 5 were within the landslide 
mass, and the others were out of the landslide area. Therefore, 
the SD measured at their corresponding times by 
extensometers Nos. 1 and 5 was used for the present study. 
Extensometers No. 1 (blue colour) and No. 5 (orange colour) 
show the movement along the surface approximately 275 mm



to 204 mm just before the failure (Fig. 10). Figure 11 shows 
the slope geometry after the failure. The landslide initiation 
boundary is demarcated using yellow colour dotted line and 
red color arrows showing the debris moving direction. A 
closer view of the landslide crest area shows in the upper 
left corner of Fig. 11. Ochiai et al. (2021) mentioned that the 
groundwater levels on the upper slope increased again along 
with the accelerated movements in the middle slope, which 
led to the landslide initiation. The failure was initiated after 
the 7,090 s in the in-door small-scale model slope experiment 
and it was a sliding type failure. 
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Fig. 7 (a) Front view of the 
natural slope in Futtsu and 
arrangement of displacement 
gauges, and (b) longitudinal 
section along line 1 at 
experimental slope at Futtsu (with 
the locations of displacement 
gauges Nos. 1, 2, and 3) 

3.2 Data Preprocessing 

3.2.1 Data Extraction Method (DE) 
Figure 12a, b show RMSE and (1- f ) values variation with 
the different SD intervals (ΔSD) in the DE method for orderly 
natural slope experiment, Futtsu, and small-scale model 
slope. In the natural slope experiment and small-scale 
model slope, recorded SD and time at failure were 
204.4 mm and 34.79 mm, and 22,680 s and 7090 s, respec-
tively. According to the results of the DE method, 3.0 mm 

and 1.0 mm SD intervals are the optimum displacement 
interval (Δx) for data extraction corresponding to the natural 
slope experiment and small-scale model slope orderly to 
failure time prediction. The analysis is carried out by 
selecting a SD interval from 0.1 mm to 1.0 mm by a 
0.1 mm difference and then a 1.0 mm interval difference 
until 10.0 mm for the natural slope experiment and a SD 
interval from 0.2 mm to 1.0 mm by a 0.1 mm difference and 
then a 1.0 mm interval difference until 5.0 mm for small-scale 
model slope. Because the accuracy of the displacement gauge 
used for the in-door small-scale model slope experiment is 
0.2 mm, 0.2 mm is used for the minimum ΔSD value in the 
DE process. 

Figure 12a shows that RMSE values gradually increase 
when the ΔSD is increased except at the 0.1 mm interval and 
3.0 mm interval. The calculated RMSE at the 3.0 mm interval 
is a similar value, 0.30, with the 2.0 mm interval. The param-
eter (1- f ) gradually decreases as the ΔSD increases, but a 
small increase of less than 0.03 can be observed until 0.8 mm 
from 0.5 mm. Subsequently, the (1- f ) values suddenly drop 
until reaching 2.0 mm and then decrease smoothly. However, 
the sum of RMSE and (1- f ) shows the lowest value at



3.0 mm as 0.37. The 2.0 mm interval also shows a closer 
value, 0.38 to 3.0 mm, as the sum of RMSE and (1- f ). 
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Fig. 8 (a) Lateral view of the model slope, (b) longitudinal section of 
the model slope and arrangement of measurement devices at Kochi 
University 

Figure 12b shows that RMSE and (1- f ) values increase 
and decrease in an orderly with increasing the ΔSD, but not 
gradually, and shows some up and down values. The RMSE 
values increase gradually, with a decreasing value at 0.7 mm 

and approximately similar at the nearest ΔSD, 0.5 mm and 
0.9 mm, with 0.6 mm and 1.0 mm, respectively. 1- f ) 

values suddenly drop from 0.3 mm to 1.0 mm, while showing 
peak values at 0.6 mm and 0.8 mm. After the 1.0 mm, ΔSD, 
1- f ) values show some fluctuation within the range of 0.0 
to 0.19. However, the sum of RMSE and (1- f ) values show 
the lowest value at 1 mm as 0.16. The 0.9 mm interval also 
shows a closer value, 0.17 to 1.0 mm, as the sum of RMSE 
and (1- f ). 

Fig. 9 Grain size distribution of 
the model slope’s soil 

Fig. 10 The time variation of the surface displacement (SD), measured 
by extensometer Nos. 1 and 5 

3.2.2 Moving Average (MA) Method 
Figure 13a, b show the time variation of 1/v and (1=v), which 
is calculated by considering the different number of 
consecutives 1/v to select the best smooth time variation of 
(1=v) in the MA method for orderly natural slope experiment, 
Futtsu and in-door small-scale model slope. Accordingly, 
moving average velocities are calculated using 2, 5, 10, and 
20 consecutives (2MA, 5MA, 10MA, and 20MA). The 
results reveal that when the considered number of consecu-
tive increases, the smoothness of the resultant time variation 
(1=v) curves is improved, especially just before the failure. 
Accordingly, the results obtained from the natural slope 
experiment (Fig. 13a) highlighted that the significant increase 
of 1/v from 19,880 s to 20,990 s and fluctuation until



21,540 s, instead of decreasing causes, making a peak in the 
time variation (1=v) curve. 
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Fig. 11 A photograph of the 
experimental slope, Futtsu after 
landslide occurred 

3.3 Prediction of Failure Time 

In the present study, the time remaining to failure (tr-t) 
approaching zero just before failure is considered an indicator 
for failure prediction. Though the time variation of the 
predicted failure time (tr) can be used as an indicator, experi-
mental results reveal that it increases and approaches actual 
failure time with time instead of the constant time variation of 
predicted failure time. In that scenario, the time just before 
the failure cannot be easily identified using the time variation 
of predicted failure time. In contrast, the time variation (tr-t) 
leads to a more precise prediction. 

3.3.1 Prediction Results by the INV Method 
Figure 14a, b show the failure time prediction by the INV 
method using the data processed by the DE method for the 
natural slope experiment, Futtsu and small-scale model slope 
experiments in an orderly. Figure 14a contains the time 
variation of (tr-t) by the INV method using the DE processed 
data by only the data extracting SD intervals (ΔSD), 0.1 mm, 

0.6 mm, 3 mm, and 10 mm for the natural slope experiment. 
It shows that the predicted (tr-t) by the INV method using DE 
data for the natural slope experiment tends to lie along the 
time axis with some up and down fluctuation in the 0.1 mm 
extracted data. However, upon comparing the results of 
higher ΔSD, the prediction shows the values away from the 
time axis, suggesting that when the ΔSD is higher, the method 
gives a later prediction. However, the prediction using the 
INV method and DE data for the natural slope experiment 
shows negative values throughout the prediction in all ΔSD, 
which means that the prediction results indicate that slope 
failure has already occurred during the experiment. 
Figure 14b presents the time variation of (tr-t) by the INV 
method using the DE processed data by only ΔSD, 0.2 mm, 
0.6 mm, 1 mm, and 5 mm for the small-scale model slope 
experiment. The predicted (tr-t) using ΔSD, 0.2 mm, 0.6 mm, 
and 1 mm shows similar behaviors as the natural slope 
experiment results. But the predicted (tr-t) with the 5 mm 
interval extraction data shows a gradually decreasing trend 
with time. It used only the five SD values to predict the failure 
time from 6000 s to collapse, and among them, two values 
were negative (tr-t) just before the failure (around 6925 s and 
6978 s). 

Table 2 Physical properties of 
the model slope 

Soil particle density (g/cm3 ) 2.651 

Maximum density (g/cm3 ) 1.733 

Minimum density (g/cm3 ) 1.344 

Minimum void ratio of the soil, emin 0.420 

Maximum void ratio of the soil, emax 0.833 

Coefficient of uniformity 12.98 

Water content of the model slope, w (%) 3.64
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Fig. 12 RMSE and (1- f ) values 
variation with the different data 
extracting SD interval (ΔSD) in  
the DE method for (a) natural 
slope experiment, Futtsu, and (b) 
in-door small-scale model slope 
experiment 

Figure 15a, b show the failure time prediction by the INV 
method using the data processed by the MA method for the 
natural slope experiment, Futtsu, and small-scale model slope 
experiments in an orderly. The predictions were carried out 
using the MA method by calculating the moving average 
velocities (1=v) using 2, 5, 10, and 20 consecutives, respec-
tively, 2MA, 5MA, 10MA, and 20 MA. In this regard, the 
variation of (tr-t) with time is the same pattern in both 
experiments. The results obtained from the INV method 
prediction, using MA data, are more scattered than those 
obtained from the DE data. However, the results from MA 
data by the INV method prediction show negative values 
throughout the prediction by the (1=v ) using the different 
number of consecutives. Therefore, the prediction by the INV 
method, with both DE and MA data, shows less precision 
because the results still show scattering and negative values 
just before failure. 

3.3.2 Prediction Results by the VAA Method 
Figure 16 shows the time variation of (tr-t) by the VAA 
method from the data processed by the DE method. In 
order, Fig. 16a, b refer to the time variation of (tr-t) for the 
natural slope experiment, Futtsu, and small-scale model slope 
experiment just before the failure. The results of the natural 
slope experiment revealed that the predicted (tr-t) is generally 
decreasing and closer to zero just before failure by the data 
extracted SD interval (ΔSD) of 0.1 mm, 0.6 mm, 3 mm, and 
10 mm (Fig. 16a). The prediction using ΔSD, 0.1 mm, and 
0.6 mm show some scattering compared with the results 
obtained from 3 mm and 10 mm. The fluctuation of time 
remaining to failure (tr-t) from the ΔSD using 3 mm and 
10 mm intervals is minimal compared with the other 
predictions. When comparing the results from 3 mm and 
10 mm intervals, the 3 mm interval gives a better linear 
decreasing trend than the 10 mm interval. Therefore 3 mm



is the optimum displacement interval (Δx) for DE 
corresponding to the natural slope experiment, as it offers 
the best results for failure prediction by the VAA method. 
Figure 16b shows the time variation of (tr-t) predicted using 
ΔSD, 0.2 mm, 0.6 mm, 1 mm, and 5 mm, just before the 
failure. The prediction using 0.2 mm shows some negative 
predictions, which means that the slope has already collapsed 
during the experiment monitoring. The ΔSD, 0.6 mm, and 
5 mm predictions show relatively higher scattering than the 
1 mm. The prediction results by 1 mm show the general trend 
of decreasing with time and getting closer to zero. Therefore 
1 mm is  Δx for DE, corresponding to the small-scale model 
slope experiment, as it offers the best failure prediction by the 
VAA method. 
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Fig. 13 Time variation of 1/v and 
(1=v), for, (a) natural slope 
experiment, Futtsu, and (b) 
in-door small-scale model slope 
experiment (different number of 
consecutive velocity values, used 

for calculating 1=v , 

considering 2, 5, 10 and 
20 adjacent values are referred in 
orderly 2MA, 5MA, 10MA, and 
20MA in the MA method) 

Figure 17a, b show the time variation of (tr-t) by the VAA 
method for the data processed by the MA method in an 
orderly natural slope experiment, Futtsu, and small-scale 
model slope experiment, just before the failure. Figure 17a 
highlights that the VAA method’s prediction using the 2MA 
and 10MA processed data gives the general trend of decreas-
ing (tr-t) while 5MA and 20MA give the predicted (tr-t) with 
negative values and along the time axis, respectively. 

However, the results obtained from the 5MA and 20MA 
show poor prediction. The predicted (tr-t) obtained from the 
small-scale model slope experiment (Fig. 17b) highlighted 
that the VAA method’s prediction using the MA method’s 
processed data gives negative predictions, even just before 
the failure, regardless of the number (n) used for calculating 
the moving average. The time variation of (tr-t) by 5MA 
processed data shows a general decreasing trend just before 
the failure. 

The VAA method’s prediction using the MA shows 
decreasing trends in the latter time before the failure com-
pared with the results of the VAA method using DE data. On 
the other hand, the results obtained from the VAA method 
using the MA show a higher scatter just before the failure, 
while the VAA method using DE gives relatively less scatter. 
Furthermore, the prediction given by the VAA method using 
MA data has uncertainty and depends on the conditions, 
which could not be ensured in every case. In the natural 
slope experiment, Futtsu revealed that the time variation of 
(tr-t) decreases only by 2MA and 10MA processed data, and 
the small-scale model slope experiment shows a decreasing 
trend of (tr-t) with time by only 20MA processed data. For



example, if the prediction by the VAA method using 2MA 
and 10MA gives a decreasing trend, then 5MA gives a poor 
prediction. Based on the present analysis, the prediction 
given by the VAA method using 10MA gives a linearly 
decreasing trend compared to 2MA with the above-explained 
complications. Therefore, the best prediction is obtained from 
the VAA method using data processed by the DE method. 
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Fig. 14 Time variation of the 
time remaining to failure (tr-t) by  
the INV method using the data 
processed by DE method for, (a) 
natural slope experiment, Futtsu, 
and (b) in-door small-scale model 
slope experiment (0.1 mm_DE, 
0.2 mm_DE, 0.6 mm_DE, 
1 mm_DE, 3 mm_DE, 5 mm_DE, 
and 10 mm_DE represent the 
results from the DE by SD 
intervals of 0.1 mm, 0.2 mm, 
0.6 mm, 1 mm, 3 mm, 5 mm, and 
10 mm) 

The failure time prediction made using the VAA method 
gives better results than the INV method because it utilizes 
the linear regression analysis in the relationship between 
velocity and acceleration and causes less influence from the 
individual variation of the inverse velocity values. But still, 
some scattering remained, resulting from the noise of the 
measured SD. Therefore, the data preprocessing method 
was introduced to acquire better prediction by reducing the 
effect of noise on the measured SD. The prediction using DE 
processed data gives better results than MA processed data. 
So, time prediction based on the VAA method with DE 
preprocessing data can be used to monitor the real-time data 
with better precision than others. The prediction results, the 
VAA method with DE processed data by comparing with 
other methods, leads to reduce the fluctuation of predicted 

failure time and minimizes the disturbance to decreasing 
trend. It does not mean all fluctuations can be avoided, but 
it reduces and improves more than other methods. For exam-
ple, the prediction by the VAA method using 3 mm extracted 
data for natural slope experiment, Futtsu, decreasing trend 
shows two gradients (Fig. 16a pink colour) during its general 
decreasing trend of predicted time remain to failure (tr-t) with 
time. But results are more precise than the others. 

4 Conclusions 

The present study predicted the failure time using two 
methods with different preprocessing data methods to evalu-
ate the effectiveness of the preprocessing data methodologies 
to improve the failure prediction using field experiment data 
on a natural slope in Futtsu, Chiba Prefecture. During the 
study, the following conclusions could be drawn. 

1. The failure prediction by the VAA method using DE 
preprocessing gives the best prediction because it 
minimizes the individual velocity variation. In the process
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Fig. 15 Time variation of the 
time remaining to failure (tr-t) by  
the INV method using the data 
processed by MA method, for, (a) 
natural slope experiment, Futtsu, 
and (b) in-door small-scale model 
slope experiment 

of DE, not only reproducibility but also equal priority is 
given to reducing the scatter in the relationship between 
velocity and acceleration. 

2. The optimal displacement interval (Δx) by the DE method 
corresponds to the smallest sum of RMSE and (1- f ), 
which gives the best prediction using the data extracted by 
the VAA method. The Δx changes depending on the 
distance moved by the landslide. Therefore, more studies 

on a different scale of landslides are needed to obtain the 
relationship between Δx and the moved displacement. 

3. Best smoothing of the time variation of the inverse veloc-
ity curve is obtained from the moving average inverse 
velocities calculated by a larger number of consecutive 
inverse velocities than a small number of consecutive 
inverse velocities. However, the time prediction using 
data processed by the MA method shows poor prediction 
due to some scattering of the inverse velocity.
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Fig. 16 Time variation of the 
time remaining to failure (tr-t) by  
the VAA method using the data 
processed by the DE method for 
(a) natural slope experiment, 
Futtsu, and (b) in-door small-scale 
model slope experiment
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Fig. 17 Time variation of the 
time remaining to failure (tr-t) by  
the VAA method using the data 
processed by the MA method for 
(a) natural slope experiment, 
Futtsu, and (b) in-door small-scale 
model slope experiment 
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