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Abstract. Floating-point arithmetic is counter-intuitive due to inherent
rounding errors that potentially occur at every arithmetic operation. A
selection of automated tools now exists to ensure correctness of floating-
point programs by computing guaranteed bounds on rounding errors
at the end of a computation, but these tools effectively consider only
straight-line programs over scalar variables. Much of numerical codes,
however, use data structures such as lists, arrays or matrices and loops
over these. To analyze such programs today, all data structure operations
need to be unrolled, manually or by the analyzer, reducing the analysis
to straight-line code, ultimately limiting the analyzers’ scalability.

We present the first rounding error analysis for numerical pro-
grams written over vectors and matrices that leverages the data struc-
ture information to speed up the analysis. We facilitate this with our
functional domain-specific input language that we design based on a
new set of numerical benchmarks that we collect from a variety of
domains. Our DSL explicitly carries semantic information that is use-
ful for avoiding duplicate and thus unnecessary analysis steps, as well as
enabling abstractions for further speed-ups. Compared to unrolling-based
approaches in state-of-the-art tools, our analysis retains adequate accu-
racy and is able to analyze more benchmarks or is significantly faster,
and particularly scales better for larger programs.
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1 Introduction

Floating-point arithmetic is notorious for being unintuitive due to its special
values as well as rounding operations, the latter inevitably introducing errors at
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most arithmetic operations. While special values (Not-a-Number and Infinity)
can be explicitly and relatively easily detected during a computation, rounding
errors are more tricky as, in general, one does not have results of an exact,
infinite-precision computation available for comparison. Static analysis tech-
niques that soundly bound rounding errors for all possible inputs, i.e. that com-
pute a guaranteed upper bound on the errors, are thus essential especially for
safety-critical systems.

Providing a reasonably accurate sound rounding analysis that tightly bounds
rounding errors without extensive over-approximation is intricate already for
non-linear straight-line code, as the number of recent efforts and tools demon-
strates [7–9,13,30,31]. Effectively analyzing finite precision beyond straight-line
code, and scaling to larger programs is an open challenge [8,9].

Much of numerical code operates over data structures such as arrays and
matrices using some form of loop, for instance when computing statistics during
data analyses, performing signal processing or Fourier and stencil transforms in
embedded systems, calculating dot products in neural networks, etc. In principle,
it is possible to ‘unroll’ such operations into straight-line code, by assigning indi-
vidual array elements to scalar variables and unrolling all loops. Existing tools
either expect this transformation to be done manually by the user in a tedious
and error-prone process [9], or allow the user to specify programs imperatively
as loops over arrays and unroll automatically when instructed to do so [13].
One way or another, the rounding error analysis itself is reduced to one over a
potentially huge straight-line program, limiting the analyses’ scalability.

The alternative standard approach for verifying programs with arrays that
abstracts all data structure elements by a single representative are, in general,
unsuitable for finite-precision rounding error analysis. The reason for this is
that the magnitude of rounding errors directly and significantly depends on
the magnitudes of the program inputs. Abstracting data structure elements of
different sizes by a single value, resp. interval, leads to over-approximations of
the rounding errors, and thus to inaccurate and possibly unusable error bounds.

This paper presents the first rounding error analysis with explicit support for
operations and bounded loops over array-like data structures (i.e. vectors or lists
and matrices). To facilitate this analysis we design a functional domain-specific
input language (DSL) with operations over lists and matrices that allows to
express many commonly used patterns in numerical computing and that serves
as the input to our tool.

The benefit of a functional input language is two-fold. First, it allows users
to succinctly express their computations and reduces the possibility of common
(off-by-one) indexing errors. More importantly, however, a functional language
carries semantic information that can be leveraged by the analysis, removing
the need to unroll many operations. For example, loops applying a function to
each value in a list (functional map(λx.f(x))) do not propagate errors between
iterations, and a rounding error analysis only has to analyze the loop body once.
An unrolling of the loop would lose that high-level information and effectively
re-compute the analysis for each loop iteration. For operations that do require
unrolling, we show how to use the semantic information to avoid recomputing
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analysis information that can be effectively over-approximated, further reducing
the burden on the analysis. Our abstraction is designed for rounding errors
and accounts for different variables’ ranges and thus provides a viable tradeoff
between analysis accuracy and performance.

We design our input DSL based on a new set of numerical benchmarks that
we collected from a variety of domains. We implement our rounding error analysis
for this DSL in a tool called DS2L and show that compared to a baseline analysis
that unrolls all operations, it can substantially reduce analysis time with little
impact on analysis accuracy.

Note that all loops in our DSL are bounded: they are loops over the ele-
ments in a data structure (e.g. via higher-order functions). We specifically do not
attempt to solve the general problem of rounding errors in unbounded loops [8],
but focus on providing an efficient analysis for commonly used operations over
data structures.

Our focus is on scalability and we thus compare DS2L against the two most
scalable (available) rounding error analysis tools Fluctuat [13] and Satire [9]. Our
evaluation shows that for benchmarks with large data structure sizes, DS2L
scales significantly better: it can analyze many more benchmarks (has fewer
timeouts, overflows and infinite error bounds) and is several times faster.

While we evaluate DS2L only on floating-point code to permit a comparison
with existing tools, our analysis extends to fixed-point arithmetic as well and
DS2L only requires a simple implementation change.

Contributions. In summary, this paper makes the following contributions:

– a new open-source finite-precision benchmark set;
– a fully automated, sound rounding error analysis for programs written in a

functional DSL (Sect. 4);
– an open-source implementation of this analysis (Sect. 5);
– an evaluation against state-of-the-art analysis tools (Sect. 6).

The artifact with the benchmark set, DS2L’s source code and scripts to run the
experiments is available under https://zenodo.org/record/8179028, the source
code is also available at https://github.com/malyzajko/daisy.

2 State-of-the-Art in Rounding Error Analysis

Before we explain our own approach, we first provide background on existing
rounding error analysis tools that work for straight-line code with arithmetic
operations on scalar values. Our own analysis (explained in Sect. 4) re-uses this
baseline for straight-line arithmetic expressions, and we use it also for comparison
in the evaluation (Sect. 6). The vast majority of existing sound rounding error
analyses abstract the IEEE-754 [17] floating-point operations with the following
equation:

x ◦F y = (x ◦ y)(1 + e) + d, |e| ≤ εM , |d| ≤ δM (1)

https://zenodo.org/record/8179028
https://github.com/malyzajko/daisy
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where ◦ ∈ {+,−, ∗, /}, ◦F is the respective floating-point operation, εM is
the machine epsilon and δM captures the error due to subnormal numbers.
εM = 2−53 and δM = 2−1075 for double-precision floating-point arithmetic that
we assume in this paper. e(x◦y)+d then bounds the worst-case absolute round-
ing error of an operation x ◦ y.1 Errors on individual operations thus depend
on the magnitude of the intermediate expressions (such as x ◦ y), and further-
more propagate through subsequent operations where they may get magnified
or diminished, depending on the operation and the ranges.

State-of-the-art rounding error analyses use one of two approaches: data-
flow based as implemented in the tools Fluctuat [13] and Daisy [7], or global
optimization-based as implemented in FPTaylor [30], Precisa [31] or Satire [9].

The baseline analysis that we choose for straight-line arithmetic operations
is of the dataflow type. To compute the overall error, a forward dataflow analysis
tracks two abstract domains: one for the (real-valued) ranges at each intermedi-
ate operation, and one for the accumulated errors. These are typically computed
using interval arithmetic [27] and affine arithmetic [11], respectively. Affine arith-
metic can track linear correlations between variables and often (but not always)
computes more accurate error bounds than interval arithmetic.

The alternative analysis phrases the computation of the rounding error as
a global nonlinear real-valued optimization problem [9,30,31]. We specifically
choose a dataflow approach as our base analysis for several reasons. First, it
is unclear how to effectively use semantic information from the iterators in the
global error constraint. Additionally, we identified optimization opportunities
when the range information is available separately from the errors. Finally, even
though in this paper we focus on floating-point arithmetic for simplicity, dataflow
analysis is immediately applicable to fixed-point arithmetic as well, making our
analysis more widely applicable. A global symbolic error constraint optimization
works well for floats whose dynamic range allows them to represent many values.
However, an efficient usage of fixed-points requires the integer and fractional
bits to be assigned individually for each subexpression. To do that, one needs to
know the full range of values taken by a (sub-)expression. While it is technically
possible to obtain this information also for the symbolic error constraint (for
instance, with some other analysis), this incurs significant overhead. Therefore,
the global optimization-based approach is only applied to floating-points.

3 DSL for List-Like Data Structures

Before designing our functional domain-specific language for numerical computa-
tions (Sect. 3.2), we collected a new set of benchmarks that informed the design
of our DSL, and specifically the set of supported operations (Sect. 3.3).

1 We compute absolute errors. While relative errors may seem a more appropriate
error measure and some analyses exist [18,29], in practice their computation is lim-
ited to applications where 0 does not occur as a possible value (otherwise leading to
undefined errors), severely limiting their applicability.
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3.1 Benchmark Set

Rounding error analysis on programs that contain operations on data structures
such as arrays and loops over them is an open challenge, and correspondingly
there is no standard benchmark set yet. The existing FPBench benchmarks [6]
cover only straight-line code and a few while-loops but no data structures. We
therefore create a new benchmark set that covers different domains where numer-
ical computations are frequent:

– statistical computations: avg, stdDeviation, variance
– linear and nonlinear digital filters: roux1, goubault, harmonic and nonlin{1–

3} [25]
– differential equations: lorenz, pendulum [8,9]
– signal processing: alphaBlending (image mask), fftvector, fftmatrix (two ver-

sions of forward Fourier transform)
– stencil computations: convolve2d_size3, sobel3, heat1d [8,9]
– neural networks: lyapunov, controllerTora [20]

Some of the benchmarks from FPBench contain loop bodies of control loops,
which we rephrase as loops over arrays of sensor data. Other benchmarks have
been collected from scientific publications [8,9,20,25] as well as open-source
implementations in different programming languages.

3.2 A Functional DSL

Many verification techniques face the dilemma of either adapting the techniques
to work on legacy code and (possibly) giving up some precision, or requiring
to rewrite the code with verification in mind and being able to reason about a
program in more detail. In this work, we choose the second option, and note that
our domain-specific language uses Scala syntax and is similar to other existing
functional languages and we thus expect it to be largely familiar to developers.

The goal of our DSL is to allow a convenient way to 1) write programs that
perform operations on array-like data structures and 2) to analyze them. Our
main insight is that a functional style of programming covers both aspects: it
allows for a more succinct representation of programs and it retains high-level
semantic information of the operations that can be leveraged by the analysis.

heat1d Example. We illustrate the succinctness of our DSL on one of the bench-
marks that we collected from related work [9]. Figure 1 shows the function heat1d
in the input formats of two different tools. The heat1d function takes as input a
temperature distribution and computes the temperature at a coordinate x0 after
32 units of time. The computation requires temperature values for neighboring
coordinates which must be repeatedly recomputed, which is essentially a stencil.

The original straight-line version of the heat1d benchmark comes from Satire
analyzer [9] and includes 1094 lines of code, 67 of which specify input ranges
of (individual) variables, the rest are unrolled loops. Unrolled computations are
not only lengthy, but also error-prone and unnatural for a user to write. A more
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Fig. 1. heat1d benchmark in input formats for different tools

natural choice when implementing the same algorithm in an imperative style
is to use two nested loops. Figure 1a shows the same algorithm written in C
formatted for the tool Fluctuat [13]. A loop representation is more succinct—
14 lines of code with computations, however it requires loop bounds to be set
manually and may lead to index-out-of-bounds errors.

We show the same function heat1d written in our functional DSL in Fig. 1b.
It uses a sliding window over a list (slideReduce operation, explained in more
detail in Sect. 3.3) and passes the new values into a recursive call. In contrast
to alternative implementations, a functional style program is much shorter—6
lines of code—and eliminates index-out-of-bounds errors as it does not require
users to explicitly write elements’ indices.

DSL Design. Our DSL is designed for writing numerical algorithms on array-
like data structures and was inspired by the popular libraries Lift [15] and Ten-
sorFlow [23]. It includes commonly occurring operations on vectors and matrices
from the collected benchmarks. When naming DSL functions, we have re-used
the names used by Lift and TensorFlow whenever possible and attempted to
make other functions’ names self-explanatory. We do not expect our current
DSL to exhaustively cover all possible numerical programs; rather it serves as a
starting point already covering a variety of operations that can and should be
extended in the future.
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Data Types. Following previous work in rounding error analysis, all values
and operations in our DSL are real-valued (as opposed to finite precision), i.e.
they have a Real type2. Real-valued algorithms are more intuitive for a user to
write, and easier to analyze as they provide a clear reference semantics. Our DSL
provides two data types: a Vector is an indexed sequence of Real scalar values,
and a Matrix corresponds to a sequence of vectors of the same length. In the
following, we refer to lists (Vectors) as vectors, and vectors and matrices as data
structures (DSs), for simplicity. Our DSL is purely functional, and as such all
data structures are immutable.

To analyze a real-valued program, a user should specify the finite precision,
for which the rounding error will be computed. By default our analysis computes
the error for a uniform double floating-point precision. Alternative precision
assignments can be passed as an additional parameter to our tool and are not a
part of the DSL itself.

Input Ranges. Any rounding error analysis requires information on ranges of
input variables. Both scalar and DS input ranges can be specified using the
require clause. The specification should ideally be as precise as possible and
provide tight ranges that can be different for some DS elements. We therefore
allow two ways to specify input ranges for DSs. If all elements have the same
input range, it is enough to specify the range once for the whole DS (1.0 <=

ax && ax <= 2.0). Additionally, it is possible to specify individual input ranges
for subsets of DS elements. For vector elements these ranges are specified as
a tuple ((loInd , hiInd), range), where loInd and hiInd are the smallest and the
largest index of consecutive elements with the input range range. For example,
to specify that the first and the second element of ax in heat1d have the input
range [0.0, 0.5], we would write ax.range(0, 1)(0.0, 0.5). We also allow indi-
vidual range specifications on matrices, however, specifying a lower and upper
bound of an index range is ambiguous for a matrix. Therefore, we choose a more
natural way for specifying special input ranges on matrices: a user has to list the
indices of elements for that range. For example, to convey that the first element
in the first and second row of a matrix m should have the range [−0.5, 0.5], we
write m.specM(Set(Set((0,0),(1,0)),(-0.5,0.5))).3

DS Size. To analyze operations that traverse a DS, the analysis also needs to
know the number of elements in the DS. Our DSL allows to specify the expected
maximum size of an input data structure—length of a vector, number of rows
and columns for a matrix. Having the upper bound on the number of elements
in the DS allows us to compute sound results: reported ranges and rounding
errors subsume the ranges and errors of programs with input DSs smaller than
the specified size.

2 Precisely, all fractional numbers have the type Real, while DS sizes and indices have
the integer type Int.

3 Admittedly, the Set() notation is not the most user-friendly way of input for small
specifications. We use it for simplicity of implementation; the notation can be
improved with extensions to our parser.
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3.3 DSL Functions

Our DSL uses Scala syntax (a representative subset is available in the appendix
in Fig. 5); semantically we can roughly split its functions into four groups:

1. element-wise functions, such as arithmetic operations and transcendental
functions applied to individual elements of a DS;

2. standard functions, such as map, fold and filter;
3. domain-specific functions, e.g., stencil-like filters, matrix multiplication;
4. non-numerical operations, e.g., appending or flipping elements in DS.

Additionally, our DSL supports recursive calls with specific conditional state-
ments. To avoid rounding errors in conditional expressions, we currently limit
them to (integer) DS size comparisons dssize ≤ c. Since we only handle bounded
loops, the DS size must be finite and decreasing in each recursive iteration. Next,
we explain the concrete semantics of the DSL functions using pseudocode that
makes indices explicit (while they are typically implicit in our DSL). We choose
to present the semantics with pseudocode (and not sets of rules), because it is
more concise and because it expresses how the operators are ultimately evalu-
ated, which is important for the rounding error analysis.

The semantics of most of our DSL operators is standard. Additionally, our
analysis does not depend on exactly this DSL’s syntax and semantics. We there-
fore expect our analysis to be applicable to other (intermediate) representations
or languages with similar semantics. Such representation must (only) be purely
functional (immutable variables and DS, no side-effects) and provide a syntactic
distinction between different iterators, precisely, the functionality of an iterator
must be unambiguous without an additional analysis of the iterator’s body.

Element-Wise Functions. They cover arithmetic operations applied to a sin-
gle DS or a pair of DS, for instance v1+v2, where v1, v2 are vectors. Semantically
these operations are the same as arithmetic operations on scalar numbers. The
only difference is that for binary operations on two DS, the operands must have
the same dimension. Element-wise operations are defined for both vectors and
matrices: the operation is applied to the elements in the operand DSs with the
same indices. We also define element-wise operations with constants.

For all unary (uop) and binary (bop) arithmetic operations the semantics is:

a bop b = [a[i] bop b[i] | ∀i∈Indices(a), #Indices(a) == #Indices(b)]

uop(a) = [uop(a[i]) | ∀i∈Indices(a)]

In our example function heat1d in Fig. 1b (line 8) the expression coef*v is an
element-wise multiplication of vectors coef and v: the i-th element of the output
vector contains the result of multiplying the i-th element of coef with the i-th
element of v.

Standard Functions. Classic functional-style functions map, fold, filter pre-
serve their semantics. map and fold are defined on vector elements, and for a
matrix on both rows and elements. We add a function ds.sum() as syntactic
sugar for fold with an addition operator to compute a sum of DS elements.
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We also extend the map on matrix rows to support indexed iterations with
enumRowsMap(λi,x.f(i,x)). The function maps over rows of the matrix and applies
f to both row’s index and elements:

m.enumRowsMap(f) = [f(i, m[i,j]) | ∀i∈Rows(m), (i,j)∈Indices(m)]

filter is defined to apply the conditional to vector elements, and to matrix
rows. We do not allow a filter on individual matrix elements, as it may result
in modified and uneven matrix dimensions.

Domain-Specific Functions. Our DSL defines operations required for imple-
menting neural networks (i.e. matrix multiplication), stencils and image process-
ing filters. We describe the most interesting operations below.

Stencil operations usually require a more complex transformation than map

or fold can provide. The transformations involve an outlook of several ele-
ments before and after the current element of a DS, as opposed to accessing
a single element in one iteration of map and fold. Such an outlook is com-
monly called a sliding window. Our DSL defines it on vectors and matrices
with ds.slideReduce(size, step)(λx.f(x)), where a window of size size shifts by
step indices at every iteration. For vectors a window is a subset of consecu-
tive elements of length size, for matrices a window is a matrix with dimensions
size×size. A user-supplied function f(x) is then applied to the created window,
it returns a scalar value that is saved at the corresponding index of the newly
created DS. Intuitively, it is similar to applying a fold to a sliding window.

Our example benchmark heat1d in Fig. 1b creates a sliding window of 3 vector
elements and shifts the window by 1 index at every iteration; the resulting vector
updCoefs contains results of the sum() operation. The pseudocode below explains
ax.slideReduce(3,1)(f) using explicit indices of the vector ax:

k=0

∀ i∈ {1..size(ax)-2}:

v = [ ax[i-1], ax[i], ax[i+1] ]

updCoefs[k] = coef[0]*v[0] + coef[1]*v[1] + coef[2]*v[2] // f(v) = (coef*v).sum()

k++

The pseudocode contains two indices: i is the index of elements in the original
DS ax, and k is the index of a sliding window over ax and the output vector
updCoefs.

Our DSL also allows a combination of a sliding window and a map, which
is useful for implementing signal filters such as the fast Fourier transform. The
function enumSlideFlatMap(n)(λi,x.f(i,x)), defined on vectors, creates a sliding win-
dow of size n that shifts by n indices every iteration. The resulting windows are
enumerated and a function f(i, x) transforms every element in the window and
saves the results into a new vector. In the FFT implementation in Fig. 2, the
sliding window includes 2 elements of the vector evens and computes vectors
resleft and resright of the same size as evens. The window index k is used
for accessing elements of the vector odds and for computing the filtered val-
ues (lines 16 and 22). The pseudocode below explains with explicit indices how
evens.enumSlideFlatMap(2)(f(k,xv)) iterates over the vector evens:
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Fig. 2. Fast Fourier transform filter implemented in our DSL

k=0

∀ i∈ {0,2,4,...,size(evens)-2}:

xv = [ evens[i], evens[i+1] ]

tmp = f(k, xv) // where tmp is a vector

res[i] = tmp[0]; res[i+1] = tmp[1]

k++

Non-numerical. Such operations include obtaining a subset of elements
(v.slice(i,j)), reordering (m.flipud(), m.fliplr()), appending and prepending
elements and rows (v.+:(elt), m :+ v). Additionally, our DSL allows to add a zero-
padding around a vector or a matrix, and obtain smallest and largest elements of a
DS. A special variant of a subset operation ds.everyNth(n, fromInd) creates a new
DS by taking every n-th element of a vector (or row of a matrix) starting from the
index fromInd . Our FFT benchmark in Fig. 2 uses the everyNth function to obtain
subsets of signal values at even and odd indices (lines 11 and 12).

4 Data-Structure Guided Analysis

While a baseline range and error analysis for straight-line code can handle
unrolled iterators, it does not make use of implicit additional information that
is present in a high-level specification. In an unrolled program each iteration
makes up independent expressions to be evaluated, regardless of whether values
in consecutive iterations depend on one another. This may result in redundant
computations; for instance, a map performs the same computation over all ele-
ments in a vector and when all those elements have the same specified input
range, we only need to analyze the rounding error of the computation once. The
same holds for matrix multiplication: each element of the resulting matrix is
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computed with the same arithmetic expression, but it would appear as a new
independent computation if unrolled. When sets of involved elements have the
same ranges, it is sufficient to analyze the rounding error of the resulting matrix
element once.

We observe that while concrete DS inputs will in general not be the same,
a specification of a function to be analyzed will typically provide ranges that
in practice often tend to be identical for many inputs. We leverage this in our
analysis and compute the ranges and error bounds as rarely as possible. Even
though it is not possible to directly apply this approach to iterators where iter-
ation values have dependencies, like fold, the analysis can be optimized based
on groups of elements with the same specification by introducing suitable over-
approximations (see Sect. 4.4).

We first introduce our DS-based concrete and abstract domains before
explaining how expressions are analyzed and their analysis is optimized.

4.1 DS-Based Concrete Domain

The goal of our analysis is to collect information about ranges and rounding
error bounds for groups of elements. To do so, our concrete domain tracks a
tuple (r, f) for each value in a program, where r is the ideal value if a program
would be executed with a real numbers semantics, and f is the same value if the
program is executed with the finite-precision semantics.

We denote all valid indices of data structures as Inds(n) = N
n, where n ≥ 0

is the dimension of the DS: n = 1 for vectors and n = 2 for matrices. For scalar
values the set of indices is empty, n = 0. Using the indices we define elements of
a DS as V(n) = Inds(n) �→ (R,F). Given a set of elements’ values V

(n) we define
our concrete domain as C

(n) = 2V
(n)

, for each dimension of data structures n.

4.2 DS-Based Abstract Domain

We then abstract each tuple (r, f) using a pair of real-valued intervals: α((r, f)) =
(IR × IR), where the first interval denotes a range of real values that contains r,
and the second tightly bounds the difference between r and f . Here the difference
between a real number r and a finite-precision number f represents the rounding
error.

Lifted to the DS with dimension n we obtain abstract element’s values:
D

(n) = Inds(n) ↪→ (IR × IR). Note that we are only interested in abstract
values of elements with valid indices (as opposed to all possible indices), and use
a partial mapping ↪→ to express it in our domain. For invalid indices the map-
ping is undefined. The abstract domain for our analysis combines all D(n) with
for scalar values, vectors and matrices: D = (D(n))n≥0. Join and meet operators
use standard definitions of join and meet on intervals, and are lifted to all valid
indices point-wise.

An abstract state D(n) soundly describes a concrete state C(n), that is:
C(n) ⊆ γ(D(n)), where concretization function is defined as follows. Given a set
of indices S and a set of mappings from these indices D(n) = {i �→ (Ii, Ei)|i ∈ S}:
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γ(D(n)) = {{i �→ (rj , fj)|i ∈ S}|∀j.rj ∈ Ii, |rj − fj | ∈ Ei} (2)

The abstraction function α is defined as an adjoint of γ: α(c) = ⊔{a | c ∈ γ(a)},
so they form a Galois connection. Each transformation of the abstract state is
parametrized with an expression to be evaluated, a mapping of variables’ values
and computes a new abstract state:

[[·]]� = Expr(n) → (V ars
n�→ D

∗) → D
(n), (3)

where n�→ D
∗ is a type-preserving mapping that assigns D(0) values to scalar

variables, and D(1), D(2) values to vector and matrix literals respectively.

Theorem 1 Soundness. Given an abstract state D ∈ D
(n), {i �→ (R,E)} ∈ D

there exists no concrete state C ∈ C
(n) such that C ⊆ γ(D), {i �→ (r, f)} ∈ C

and r �∈ R ∨ |r − f | �∈ E. Moreover, if D ∈ α(C), [[e]]C = C ′, and [[e]]�D = D′,
then D′ ∈ α(C ′).

Proof. (sketch) The theorem states that there is no unsound abstract state
in our analysis, and given a sound starting state, our abstract transformations
result in a sound end state. The first part follows directly from the definition of
interval abstraction and concretization.

The transformations [[·]]� on data structures are defined for each individual
element, which reduces them to transformations on basic blocks. The conditional
expressions allowed in the language do not introduce instabilities or discontinu-
ity errors [8,31] and thus do not require special treatment. Precisely, our DSL
allows only two types of conditionals: 1) an integer comparison of the DS size
with a constant in the recursive call, and 2) a comparison with a constant x ≤ c
inside the filter function. As explained later in more detail, our analysis over-
approximates the results of filter by keeping all DS elements that may satisfy
the condition. Hence, the result of [[filter]]� is at least as large as the result-
ing DS size in concrete semantics, while the DS elements themselves remain
unchanged. The result is consistent with the semantics of the input DS size
specification and can be used by further iterators over the “filtered” DS. As
the conditionals do not introduce instability and all iterators can be unrolled,
soundness of our analysis follows from the soundness of the underlying baseline
analysis for straight-line code. �

Our functional DSL defines all DS to be immutable, therefore each element
of a DS is only assigned once. Our abstract domain does not require updates
to individual element’s ranges, and all recursive calls are unrolled. Since our
analysis handles only bounded loops by design, we can unroll all operations, if
needed, which is why we do not provide an additional widening operator. While
widening in general allows the analysis to terminate quickly, for rounding error
analysis the performance/accuracy trade-off is too costly. As our experiments
with Fluctuat show (Sect. 6.1), for rounding error bounds, precision lost with
widening cannot be recovered, hence an analyser that uses widening in the vast
majority of cases reports infinite error bounds, which is sound but not especially
meaningful.
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4.3 DS Analysis

Both concrete and abstract domains partition DS elements in groups based on
their real value and value range respectively. Our implementation describes a
group of elements using a set of indices. The indices in one group need not
be consecutive, the only condition is that they correspond to unique and valid
indices of DS elements. Thus when analyzing an operator such as map, adding or
multiplying by a constant, we only need to run the analysis once per group.

The initial grouping of elements is defined by user range specifications on the
input DS. For intermediate variables in the computations, numerical indices for
an abstraction of DS elements are inferred during the analysis. Note that the
grouping does not change the semantics of functions and operators. As our DSL
operates on real numbers, for commutative operations on DS elements their order
does not matter. Whenever the analysis encounters an operation where the order
of elements does matter, e.g. when computing an accumulator value in fold, we
sort and split the groups to only contain consecutive elements’ indices.

Whenever the expression under analysis contains only scalar values and
operations, our analysis re-uses the baseline dataflow rounding error analysis,
described in Sect. 2. We next describe how our analysis handles different kinds
of DS operations.

Example. We illustrate our abstraction using the running example program in
Fig. 3. This contrived example is not part of our benchmark set, we use it here
purely for demonstrating the relevant DSL details in a succinct way. Function
fun takes two input vectors x and y, both of size 5. An abstraction for vector x

keeps track of separate ranges for the first two elements and the remaining ones
(with indices 2,3,4), i.e. D

(1)
x = {{0, 1} �→ [0.5, 1.5], {2, 3, 4} �→ [0, 10]}. For the

input vector y the abstraction also has two groups, but indices in the first group
are not consecutive: D

(1)
y = {{0, 4} �→ [−1, 2], {1, 2, 3} �→ [0, 1.5]}.

Map and Element-Wise Operations. Our domains group elements that have
the same real range by their indices, such that we can perform range evaluation
once for each group. The most prominent example where such evaluation makes
a difference for performance is the map function, such as on line 4 in Fig. 3. The
program multiplies all the elements of the list resulting from x + y by 2.0 and
adds 1.5. The individual multiplications and additions are independent of each
other, i.e. they do not propagate through iterations. For DS elements in one
group we thus evaluate the range and error of i*2.0 + 1.5 only once.

We use a similar approach for element-wise arithmetic operations between
two vectors (or two matrices), such as x + y in Fig. 3. In contrast to map, element-
wise operations are binary and we need to take into account pairs of ranges. For
each unique pair of ranges of operands we compute the range (and error) once.

Matrix Multiplication. Evaluation of matrix multiplication is similar to the
element-wise operations, where we compute pairs of ranges. Except, for matrix
multiplication the elements, for which we need to know the ranges are located
at the left-hand-side matrix row and the right-hand-side matrix column. We
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Fig. 3. Example program in our DSL

construct an expression for computing the resulting matrix elements internally.
For each unique pair of ranges we only evaluate this expression once.

Filter. Filter also takes advantage of the element grouping; our analysis evalu-
ates the condition on each group of DS elements only once. However, filter is
different from the rest of the functions in our DSL, because its abstract semantics
do not exactly mirror the concrete. In the concrete semantics, ds.filter(λx.f(x))
partitions the DS ds into two disjoint sets: elements that satisfy f(x), and that
satisfy its negation. In the abstract semantics these sets are not necessarily dis-
joint. Our evaluation eval returns an over-approximation of a set of elements
from ds: the elements that may satisfy the condition f(x). Currently we limit
expressions in f(x) to simple comparisons x ≤ c and x ≥ c, where x is the DS
element and c is a scalar variable or a constant. More complex arithmetic oper-
ations are likely to introduce rounding error inside the condition itself, which
may lead to a discontinuity error—elements that would have satisfied f(x) in a
real-valued expression, do not satisfy it under floating-point semantics (or vice
versa). We note that complementary techniques for bounding this discontinuity
error [8,31] exist that may be integrated into our analysis.

Unrolled Operations. Naturally, not all operations can benefit from a grouping
of DS elements alone. The “once-per-range” evaluation cannot be applied on oper-
ations that propagate values through multiple iterations (fold, slideReduce) or
use fresh values at each iteration (for example, loop counters in enumSlideFlatMap,

enumRowsMap). For these functions, the abstraction-guided analysis falls back to
the baseline version. It unrolls the iterators and performs range and error evalu-
ation once for each iteration, we then join the ranges (for values and, separately,
for errors) to ensure that our results subsume all evaluated iterations. Our analy-
sis handles recursive calls in the same way and unrolls each call as one iteration.
Note that for our analysis to terminate, a recursive function must contain an
exit condition that uses the (decreasing) length of a DS.
In our running example the analysis unrolls z.fold and evaluates ranges and
errors of the unrolled expression:

1.0 * sqrt(z.at(0)) * sqrt(z.at(1)) * sqrt(z.at(2)) * sqrt(z.at(3)) * sqrt(z.at(4)).

Non-numerical Operations. Operations that do not involve arithmetic com-
putations do not introduce new errors, however, they do affect our abstrac-
tion. For example, a prepend operation x.+:(8.0) will add an element with
index 0 and range [8, 8] to the abstraction and shift all indices of x by one.
If we apply x.+:(8.0) to the x in the running example, the resulting abstrac-
tion will become D

(1)
x = {{0} �→ [8, 8], {1, 2} �→ [0.5, 1.5], {3, 4, 5} �→ [0, 10]}.



Scaling up Roundoff Analysis of Functional DS Programs 385

Similarly, the pad operation adds elements with range [0, 0] around a vec-
tor or matrix and re-scales the original elements’ indices. Another interest-
ing case of the non-numerical operations is the x.everyNth(n,k) function that
constructs a new DS by appending every n-th vector element (or every n-
th matrix row) starting from the index k and assigning new indices to them.
Evaluating x.everyNth(2,0) on the D

(1)
x from our running example will result in

D
(1)
nth = {{0} �→ [0.5, 1.5], {1, 2} �→ [0, 10]}.

4.4 Optimized Evaluation of fold

The fold function cannot be evaluated only once per range group, since the
accumulator’s value changes at every iteration. For analysis, it would thus have
to be unrolled. We observed, however, that in many applications the function
passed to fold has a rather simple structure, such as summing up all elements
of the DS. For such simple iterator bodies, the explicit unrolling can be replaced
with an optimized evaluation that benefits from grouping of elements.

Our optimization over-approximates the accumulator, thereby effectively
eliminating the change in input values from iteration to iteration. The analy-
sis then computes one range per group of elements using a closed-form formula.
In general, it is also possible to use approximation of an accumulator and a DS
element for the whole loop, not only per group of elements with the same range.
However, such a computation will introduce an even larger over-approximation
in the result. To keep the bounds reasonably tight, we choose to apply over-
approximations rarely. We have implemented this optimization for the most
common special cases of lambda functions f() that follow next.

Linear Loop. In a linear loop, i.e. f(ac, el) = a · el + b · ac + c, if f is executed
on a group of elements with the same range range(el), then we can compute the
resulting range after n iterations with:

rangen = a · range(el) ·
n−1∑

i=0

(bi) + bn · init + c ·
n−1∑

i=0

(bi), (4)

where init is the initial value of the accumulator for the current group of ele-
ments. The initial accumulator value changes from group to group: it starts with
the input parameter of fold and for each consecutive group it is replaced with
the result of the previous computation. To account for all combinations of signs
of linear coefficients a,b,c, we take their ranges to be symmetrical around zero.
For generic linear loops, the order of computations matters, therefore we sort
and split the groups in the abstraction D(n), such that each group only contains
elements with consecutive indices, and the computation is applied to each group
in the natural order: starting with the group containing index 0.

There is no simple closed-form equation to compute the rounding errors for
linear loops. We therefore unroll the loop for error computations, but we use
the over-approximated range of acc, pre-computed using Eq. 4. Note that such
an evaluation is faster than the full unrolling, since we pre-compute the ranges
necessary for error computations.
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Sum. A sum of all elements in a vector or matrix is a special case of a linear
loop, but in the absence of linear coefficients the range computations are much
simpler. For a function f(acc, el) = acc + el, we compute one range per group of
elements in D(n) abstraction using the formula: n ·range(el)+ init, where n is the
number of elements in the group, and init is the initial value of the accumulator
for the current group. Note that here the order of groups does not matter, as our
DSL specifies a program over real numbers and real-valued sum is associative. The
error computation is performed similar to linear loops: we over-approximate the
value of acc and use the range to compute the error on the unrolled fold.

5 Implementation

We implement our analysis in a tool called DS2L in the Scala programming lan-
guage. For performance reasons, we implement all internal computations using
intervals with arbitrary-precision bounds (with outwards rounding for sound-
ness), using the MPFR library [12] with 128 bits of precision. We use the intervals
for both range and error computation, and sacrifice some of the error accuracy
compared to affine arithmetic that is used by most state-of-the-art analyzers.

We choose to implement the partitioning using sets of indices, among other
alternative representations: linear inequalities [3,16], difference-bound matri-
ces [3], and sets of other simple symbolic expressions [5]. We choose a set rep-
resentation because it does not depend on patterns to group the elements. We
have empirically confirmed that on our benchmarks the set representation of
index groups performs better than symbolic ranges of consecutive indices. This
is because our range evaluation often needs to obtain the range of a DS ele-
ment with a given index4, which is a simple inclusion check for sets, but requires
additional computation of numerical bounds from symbolic expressions in other
representations.

In this paper, we consider only the natural order of evaluation (left-to-right
with call-by-value), exactly as it syntactically appears in the program under
analysis. For this natural order, DS2L generates executable Scala code and for
that code the analysis is sound. Our analysis can also be adapted to other, more
efficient, evaluation orders, but determining that order is an orthogonal issue.

6 Experimental Evaluation

We evaluate our DS-based analysis in DS2L in terms of performance and accu-
racy, focusing on the following research questions:

RQ1 How does DS2L compare to state-of-the-art tools (on large programs)?
RQ2 How does DS-based abstraction affect the accuracy/performance tradeoff?

Benchmarks. We evaluate DS2L on the new benchmark set we collected
(Sect. 3.1). The original codes were written in different programming languages.
4 For instance, taking a single element’s range or a range of a group of elements when

unrolling an iterator.
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Table 1. Benchmarks description: usage of DSL functions and unrolled program sizes
for different DS size configurations (in lines of code)

Benchmark
DSL usage max #ops Benchmark sizes

map fold slideRed. enum* rec matMul in line small medium large
vector benchmarks

avg � 1 101 1001 10001
variance � 3 202 2002 20002
stdDev � 3 202 2002 20002
roux � 3 100 1k 10k
goubalt � 3 100 1k 10k
harmonic � 3 200 2k 20k
nonlin1 � 7 200 2k 20k
nonlin2 � 8 200 2k 20k
nonlin3 � 6 200 2k 20k
heat1d � � � 5 257 1025 65537
fftvector � � � � � 4 96 9596 48636

matrix benchmarks
pendulum � 4 404 4004 40004
alphaBlend � 4 100 1k 250k
fftmatrix � � � � 8 64 6012 30204
conv.2d_sz3 � 1 162 1458 118098
sobel3 � 3 972 8748 708588
lorentz � 6 141 211 281
lyapunov � � (20,200,1000)† 11 101 501
control.Tora � � (20,200,1000)† 31 301 1501

† The benchmark contains matrix multiplication, the maximum number of arithmetic
operations in one line of code depends on the size of multiplied matrices. Reported values
are for (small, medium, large) input DSs.

We have translated them into our functional-style DSL for the purpose of our
evaluation and validated our translation with testing. Table 1 displays in more
detail which elements of our DSL were used in which benchmarks. Many of the
benchmarks operating on vectors have been repurposed from controller loops
used in previous work [6] and therefore have similar structure. As an artifact of
this translation, our vector-based benchmarks use fold frequently.

For each benchmark, we create 12 variants by varying the following:

Size of the Input DS. Input vectors are assigned 100(small), 1k (medium), or
10k (large) elements. Input matrix sizes are 10× 10 (small), 100× 100 (medium)
and 500 × 500 (large). For benchmarks where the size of a DS is predefined
by the algorithm, we take the sizes closest to 10, 100 and 500 (for example,
the input matrix for fftmatrix has 8 × 2, 128× 2 and 512× 2 elements for the
small, medium and large setting, respectively). The benchmark input DS size
influences the number of operations to be evaluated by the analysis. To give an
unambiguous measure of complexity of the programs under analysis, we report
the sizes of unrolled programs in Table 1. The reported numbers are lines of
code if all operations on DSs would be unrolled to scalar operations, i.e. the
number of iterations times number of lines of code computing a scalar value
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inside each iterator. Since in the absence of DSs there would be no need for
non-numerical functions as concatenation of vectors or changing the order of
elements in a matrix, we only count lines of code with numerical operations and
let-statements. Such unrolled programs could, for example, be used by state-of-
the-art rounding error analyzers that operate on straight-line code. Additionally
we report the maximum number of arithmetic operations in one line of unrolled
code.

Our goal is to efficiently analyze large benchmarks. We include small and
medium sizes for completeness and to demonstrate scalability, but do not con-
sider DS2L to be necessarily the analysis tool of choice for these.

Range Specification Granularity. We vary the amount of individually speci-
fied ranges per DS. The input ranges are specified with either one, i.e. the same,
interval for all elements (AllSame), different intervals for all elements (AllDiff ),
or for some. When specifying individual ranges for subsets of elements we vary
the amount of new range specifications to be 10% and 30% of the input DS
size (Diff10P and Diff30P). For instance, if an input vector has 100 elements
Diff10P configuration will have 10 additional range specifications, each with an
arbitrary amount of elements in it, and the Diff30P will have 30 additional range
specifications. To avoid any bias by using input ranges that are easier for the
analyzer to compute with, we generate all input ranges randomly. Similarly, the
amount of elements in one group with special ranges is determined randomly.
The smaller ranges of more refined specifications are subsumed by the ranges in
AllSame specification.

Experimental Setup. To answer our research questions we evaluate differ-
ences in accuracy and performance between a baseline analysis, our new DS
abstraction-guided analysis and state-of-the-art tools. To do so, we normalize
the reported worst-case rounding error and the running time of the analysis
(separately) with respect to a baseline (different for each comparison). Such a
normalization is necessary since the running times and error magnitudes vary
widely between different benchmarks due to their diverse complexity. We then
evaluate the normalized worst-case errors and analysis times.

As running time, we use the reported analysis time of each tool. This is a
subset of the total wall-clock running time and excludes, for instance, parsing
of the input programs. Since the formats of the input programs differ widely,
we consider the analysis time a more meaningful measure for a comparison. We
report analysis time averaged over 3 runs. We consider that a tool failed on a
benchmark if it either timed out with 30min, reported an infinite error bound,
or encountered some other error. Timeouts were always consistent across all runs
on each configuration. Note that the timeout applies to the total running time,
including parsing, pre- and post-processing of the results.

As accuracy measure, we use reported absolute worst-case rounding error
bounds of each tool for double floating-point precision. For the 13 benchmarks
where the return type is a vector or a matrix we take the maximum error of all
output DS elements.
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All experiments were run on an Intel Xeon machine with 8 CPUs @ 3.50 GHz,
32G of RAM under the OS Ubuntu 22.04. We run both DS2L and a baseline
straight-line code analysis in a JVM with 2G memory and 1G stack space.

6.1 State-of-the-Art Tools

We compare DS2L against the state-of-the-art rounding error analyzers Fluc-
tuat [13] and Satire [9]. We choose these two tools, because they are the only
tools that natively support data structures and loops over them (Fluctuat), or
that analyze straight-line code, but whose abstractions were designed specifically
for large program sizes (Satire). In these two dimensions that are relevant for
our comparison, Fluctuat and Satire are the state-of-the-art. Satire does include
approximations such as not considering higher-order terms that technically affect
its soundness, but we ignore this here. DS2L and Fluctuat are ‘fully sound’.

We note that an entirely fair comparison is not possible due to the different
input formats, as well as different implementation choices such as programming
language in which the tools themselves are implemented. Each of our high-level
benchmarks written in our functional DSL can be translated to Fluctuat’s and
Satire’s imperative formats in different ways that each may or may not affect
the results (no guidelines exist). We manually translate our benchmarks into the
tool’s input formats by choosing the way that we consider to be natural for a
programmer, and so a regular user of the tools would choose, and validate the
translation with testing.

In our comparison, we use relative performance and accuracy as a measure of
success. DS2L and Fluctuat are deterministic and always report the same error
bounds. On some benchmarks Satire reported slightly different errors, we take
the largest reported error across the runs. Note that the differences were on the
order of 10−12, and taking the average or the smallest error across the runs does
not affect the qualitative results.

Fluctuat. Fluctuat can both unroll loops internally and abstract the loop
behavior by applying widening. We use the latest available version of Fluctuat
provided to us in October 2022.

Fluctuat takes C-programs as input and is itself implemented in C. When
translating our benchmarks, we tried to preserve as much functional-style seman-
tics as possible, but had to give up the DS immutability and replace all recursive
calls by loops. Furthermore, Fluctuat’s library did not support a max() function
required for implementing the ReLU function in the neural network benchmarks
lyapunov and contr.Tora. We replaced the call to max() with an explicit if-then-
else statement. Fluctuat does not have a dedicated way of specifying input ranges
for data structures, only for scalar values. We therefore assign a range to each
element separately, and use loops to assign repeating ranges for the AllSame
specification. Each benchmark is implemented in a separate function that is
called from main. We compare DS2L with Fluctuat on all 19 benchmarks.

We run Fluctuat with several different settings:
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1. loop iterations are evaluated separately, results joined (merge over all paths—
MOP—solution)

2. loops are unrolled until 50k iterations. The largest number of iterations in
our benchmarks is 62.5k, however, Fluctuat’s setting did not allow us to set
the unroll limit higher than 50k.

3. loops are abstracted by widening, nothing is unrolled
4. automatic setting, where Fluctuat finds a suitable number of loop unrollings

before applying joins and widening.

Out of all configurations the overall best results were achieved with MOP
(which is effectively unrolling) and the explicit unrolling configuration. Fluctuat
with MOP and unrolling has timed out less often than other configurations and
whenever Flucutat computed non-trivial error bounds, they were exactly the
same for all settings. Surprisingly, the automatic configuration of Fluctuat had
the highest timeout rate: it failed to produce results within 30min on 33% of
specifications. The pure widening configuration performed better with only 16%
rate of timeouts. Since all other settings provided worse or the same results, we
compare DS2L’s results only to the MOP setting of Fluctuat.

Satire. We use the latest version of Satire available in the open-source GitHub
repository5. Satire’s open-source benchmark set contains pre-processed large
unrolled loops, but no original programs that were unrolled. Unfortunately, the
original programs with loops were not available (upon request). We have there-
fore reverse-engineered the loops over data structures from their unrolled versions
for two benchmarks lorenz, and heat1d. Additionally, we translated some of our
benchmarks into Satire’s input format, which is an imperative DSL that speci-
fies floating-point precision for each variable assignment. We only compare the
results on a subset of benchmarks, since we are required to manually unroll the
loops, and translate functional operators into imperative code. This translation
process is non-trivial, tedious and error prone, especially for complex functions.

Overall, we translated 9 benchmarks that contain a fold over an input vector.
For these 9 benchmarks we used the same variations in configurations, described
above: small, medium, large input DS sizes, and AllSame, Diff10P, Diff30P,
AllDiff specification granularities. We took Satire’s original benchmarks as is:
heat1d had only one version, that corresponds to our input specification with
small input DS and one input range for all elements. The lorentz benchmark
was available in three different sizes of input DS (20, 30 and 40), and all of them
had the same input range for all elements of DS (AllSame). In total, we have
compared our results on 112 benchmark variations.

We ran Satire with its default parameters and both with and without abstrac-
tion. The version with abstraction predictably produced results faster and had
fewer timeouts. We therefore compare to the version of Satire with abstraction
enabled.

5 We use the version with the commit hash 8a4816aac6fad4fb86c2af8dc8e634bf0291
2b90.
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Table 2. Relative accuracy/performance of state-of-the-art tools compared to DS2L
with DS abstraction.

Benchmark
size

Accuracy Performance # fails # fails
DS2L

total #
of bench.min median max min median max

Fluctuat
Small 2.11e−07 0.557 3.55 0.07 0.36 7.22 2 10 76
Medium 2.83e−04 0.639 2.91 0.23 1.98 4636.52 22 12 76
Large 3.60e−02 0.555 2.91 0.66 24.41 339.55 60 25 76

Satire
Small 2.98e−07 0.737 3.54 6.33 24.68 449.33 6 6 38
Medium 2.07e−10 0.153 3.54 6.32 39.90 507.45 12 8 37
Large 3.94e−02 0.953 1.34 8.95 259.64 767.13 32 10 37

6.2 RQ1: Comparison to State-of-the-Art Tools

We compare relative performance and accuracy of state-of-the-art tools normal-
ized against DS2L’s results and provide cumulative values in Table 2. The values
greater than 1 denote individual benchmarks where DS2L was faster (respec-
tively, more accurate) than the state-of-the-art tool. For instance, value 24.41
means that DS2L is median 24.41 faster than Fluctuat. As it is ambiguous to
compute the relative value if one of the tools did not report results, we do not
include these cases into the minimum, median and maximum values. Instead we
report the number of failures per tool (timeouts, infinite error bounds, overflows).
We mark in bold the smaller number of fails per comparison, and median values
where DS2L did better than competitors. Note that we provide comparison on
small and medium benchmarks for completeness, while our focus lays on large
benchmarks.

In addition to normalized values, we present absolute values of our experiments
on large benchmarks in Table 3. ‘TO’ denotes timeouts, other times are reported in
seconds. We additionally mark the benchmarks, for which a tool reported overflow
or an infinite error bound. For the original Satire benchmark lorentz, the missing
configurations Diff10P, Diff30P, AllDiff with individual ranges for input DS ele-
ments are marked with ‘na’ (non-applicable). Another original benchmark heat1d
is only defined for a small size of input DS. We provide absolute experimental val-
ues for small and medium benchmarks in the appendix.

Accuracy. As expected, state-of-the-art tools often computed tighter error
bounds on small and medium benchmarks. However, DS2L was consistently
more accurate on the stdDeviation benchmark, and the larger (among the two
in our set) neural network controllerTora. Additionally, Fluctuat reports infinite
errors on all medium and large-sized variations of the FFT filter (fftvector, fftma-
trix ), while DS2L successfully computes rounding error bounds. Both Fluctuat
and DS2L implement—in principle—the same analysis on the unrolled programs,
and the DS abstractions do not affect accuracy (see Sect. 6.3). The differences
in accuracy come from 1) the optimized evaluation of folds; 2) DS2L’s use of
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Table 3. Experimental results on large benchmarks. Reported error bounds are
rounded to two digits after decimal point, time is in seconds. “TO” denotes a time-
out, “na” stands for non-applicable. Bold marks ‘winning’ values.

AllSame Diff10P Diff30P AllDiff
Benchmark error time error time error time error time

DS2L
avg 5.82e−11 1.90 2.86e−11 5.48 1.87e−11 19.73 1.51e−11 157.63
variance 7.39e−05 119.28 1.92e−05 248.64 9.68e−06 412.39 6.37e−06 1144.74
stdDev 9.01e+03 118.98 9.35e−06 244.51 4.86e−07 410.50 2.70e−07 1141.30
roux1 7.21e−14 3.86 2.46e−13 10.78 2.64e−13 29.88 2.32e−13 184.44
goubault 7.46e−14 3.93 8.39e−14 9.92 8.39e−14 27.98 8.39e−14 172.90
harmonic 3.64e−08 6.55 1.42e−08 28.40 1.13e−08 100.32 1.12e−08 713.85
nonlin1 overflow – overflow – overflow – overflow –
nonlin2 overflow – overflow – overflow – overflow –
nonlin3 1.08e+74 766.73 2.66e+73 1446.47 – TO – TO
pendulum 4.69e+81 1583.05 – TO – TO – TO
heat1d 1.14e−13 222.82 7.26e−14 830.00 7.14e−14 874.28 7.13e−14 857.08
conv.2d_size3 3.15e−10 63.29 2.88e−10 111.15 2.62e−10 158.94 – TO
sobel3 DivByZero – DivByZero – DivByZero – DivByZero –
fftmatrix 4.39e−08 325.93 4.24e−08 387.76 3.95e−08 386.29 2.97e−08 399.04
fftvector 2.02e−08 262.99 1.62e−08 266.15 1.13e−08 269.89 9.84e−09 278.46
lorentz 3.42e−12 2.33 3.27e−12 2.32 3.27e−12 2.21 1.25e−12 2.27
alphaBlend 3.14e−13 1.83 3.14e−13 47.81 3.14e−13 225.50 – TO
contr.Tora 2.61e−04 386.38 – TO – TO – TO
lyapunov 7.02e−08 104.21 – TO – TO – TO

Fluctuat
avg 2.57e−11 516.00 1.83e−11 475.50 1.63e−11 462.00 1.51e−11 490.50
variance – TO – TO – TO – TO
stdDev – TO – TO – TO – TO
roux1 2.10e−13 1310.00 2.10e−13 1302.00 7.52e−14 1212.50 1.09e−13 1295.50
goubault 6.50e−14 695.50 6.45e−14 726.50 6.45e−14 711.00 1.87e−14 716.50
harmonic – TO – TO – TO – TO
nonlin1 – TO – TO – TO – TO
nonlin2 – TO – TO – TO – TO
nonlin3 – TO – TO – TO – TO
pendulum – TO – TO – TO – TO
heat1d – TO – TO – TO – TO
conv.2d_size3 – TO – TO – TO – TO
sobel3 – TO – TO – TO – TO
fftmatrix ∞ 71.33 ∞ 71.33 ∞ 71.67 ∞ 71.00
fftvector ∞ 35.67 ∞ 37.67 ∞ 116.00 ∞ 107.33
lorentz 1.23e−13 2.00 1.21e−13 2.00 1.21e−13 2.00 1.02e−13 1.50
alphaBlend – TO – TO – TO – TO
contr.Tora – TO – TO – TO – TO
lyapunov – TO – TO – TO – TO

Satire
avg 3.47e−11 1456.27 2.72e−11 1421.63 2.22e−11 1419.89 2.02e−11 1410.32
variance – TO – TO – TO – TO
stdDev – TO – TO – TO – TO
roux1 – TO – TO – TO – TO
goubault – TO – TO – TO – TO
harmonic – TO – TO – TO – TO
nonlin1 – TO – TO – TO – TO
nonlin2 – TO – TO – TO – TO
nonlin3 – TO – TO – TO – TO
lorentz 1.35e−13 1327.65 na na na na na na
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intervals instead of affine arithmetic; and 3) internal implementation differences
that for the closed-source Fluctuat are not evident. We note that both Fluctuat’s
and DS2L’s reported errors are itself small, and thus practically useful.

Satire reported more accurate results for non-linear benchmarks. On two
configurations where DS2L reported overflow for the small input DS size (All-
Same, Diff10P for nonlin1 and Diff10P, Diff30P for nonlin2 ), Satire success-
fully reported rounding errors. Predictably, on benchmarks where DS2L used
over-approximation of folds Satire’s reported errors were also smaller. However,
on all linear benchmarks except harmonic DS2L’s accuracy could be recovered
by using a non-optimized evaluation of fold (while still being faster than Satire,
but by a smaller factor). Despite the over-approximation, DS2L was consistently
more accurate on the linear goubault. Interestingly, DS2L was 3x more accurate
than Satire on its original benchmark heat1d. Note that the original benchmark
heat1d corresponds to the AllSame specification granularity and the small DS
size. Experimental data for this setting is available in the appendix in Table 4.

Performance. The performance comparison shows that DS2L scales better to
larger programs: it reports results on 50% more large benchmarks than Fluctuat
and on 59% more than Satire. Additionally, DS2L is faster than Fluctuat on most
large and medium-sized benchmarks with a median speedup factor of 25x and
2x respectively. A notable outlier is alphaBlending, where DS2L is 4636x faster
than Fluctuat. This is due to the benchmark’s internal structure: it contains
element-wise operations on matrices, where DS2L’s abstraction is particularly
efficient.

Satire timed out more often than DS2L on all sizes of benchmarks, and par-
ticularly on large benchmarks where it failed to report results on all benchmarks
except avg and lorentz (see Table 3). Moreover, Satire was slower than DS2L by
at least 6x and median 36x across different sizes of benchmarks including its
original benchmarks heat1d and lorentz.
RQ1 Conclusion: Based on our experimental data, we conclude that DS2L is
significantly faster than Satire and specifically scales better than Fluctuat and
Satire to larger programs and is consequently able to report an error for more
and larger benchmarks. While DS2L is often less accurate than Fluctuat and
Satire, it still produces meaningful accuracy bounds.

6.3 RQ2: DS-Based Abstraction Accuracy/Performance Tradeoff

Our analysis differs from the analysis of the unrolled programs in two main
points: it leverages the DS abstraction, and optimizes the evaluation of folds
(Sect. 4.4). We evaluate the effect of these differences on both accuracy and
performance. We split this evaluation into two parts: first, we check the effect of
the DS abstraction alone, then we examine the benefits of the optimized folds.

DS Abstraction. First, we compare the DS abstraction-based analysis of DS2L
to a baseline analysis that works on unrolled code. To avoid confounding factors
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Fig. 4. Relative performance/accuracy of DS2L in various configurations

such as programming language choice, analysis type etc., we do this comparison
on a baseline analysis that we implement within DS2L itself and that shares
exactly its analysis for straight-line code. We denote this baseline analysis by
base. base internally unrolls all operations, and thus just like DS2L does not
explicitly construct an AST for the entire program, as this may be unnecessarily
costly and bias the results. Thus, when comparing DS2L and base, the only
difference consists in using the corresponding DS abstractions during the anal-
ysis. For the purpose of DS abstraction evaluation we use the version of DS2L
without over-approximation on folds.

Specifically, we compare normalized analysis time and normalized computed
worst-case absolute rounding errors per benchmark for each of its 12 variants.
Figure 4a summarizes the results, smaller values on both axes are better. The
x-axis shows relative analysis time of the DS abstraction analysis to the baseline,
values with x < 1 denote benchmarks, on which DS2L was faster than base.
The y-axis represents relative accuracy, values with y = 1 show that the worst-
case rounding errors reported by DS2L were exactly the same as for base. We
provide average, median, minimum and maximum relative analysis times for
each specification.

For most benchmarks applying the DS abstraction has improved the anal-
ysis performance. Predictably, the performance boost was stronger for coarser
specifications and close to none on the AllDiff specification that assigns each DS
element an individual input range. We manually checked the cases where DS2L
was slower than base. For these cases the absolute time difference is under 0.3 s
on small and medium configurations (up to 15% of analysis time), and under 72 s
on large configurations (at most 5% of the analysis time). We attribute this to
the normal variation in running times and do not see it as a systematic problem.
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The computed errors were the same for DS2L and base on all benchmarks.
This result confirms our expectation that the DS abstractions (without fold

optimizations) do not change the semantics and therefore do not affect computed
rounding errors.

Optimized Folds. We evaluate the effect of our fold optimization on top of DS
abstraction improvements in Fig. 4b. We compare the relative accuracy and
performance on benchmarks with fold with and without the optimization. As
expected, the optimized fold evaluation is faster and less accurate on most bench-
marks, these are the points above the x-axis and to the left of the y-axis. The
effect is more pronounced on the large benchmarks. Interestingly, in some cases
the optimized evaluation reported smaller error bounds despite introducing an
over-approximation of ranges. Upon closer inspection we note that some of the
randomly generated input range bounds cannot be exactly represented in float-
ing points, hence performing an unrolled error computation on such ranges will
include the bounds’ rounding error and magnify it (artificially) in subsequent
iterations. The accuracy can thus improve in cases where the over-approximated
ranges were exactly representable in floats, while corresponding element’s input
ranges were not.
RQ2 Conclusion: The DS abstraction alone improves the analysis’ performance
while having no effect on the accuracy. A user may further improve the perfor-
mance by providing a coarser specification or enabling the optimized evaluation
of folds, which trades off accuracy for performance.

7 Related Work

Besides Fluctuat [13] and Satire [9], several other tools exist for computing guar-
anteed upper bounds on rounding errors; Gappa [10], Daisy [7], FPTaylor [30],
Real2Float [24], Rosa [8] and PRECiSA [31]. These either implement a dataflow
analysis based approach very similar to Fluctuat’s or an optimization-based app-
roach similar to Satire. Most of the research has focused on analyzing straight-
line numerical expressions as accurately as possible, i.e. computing error bounds
as close to the actual errors as possible. Of these, Satire has been shown to be
most scalable [9].

A few of these tools can also handle limited programs beyond straight-line
expressions. As already discussed, Fluctuat [13] can handle loops via unrolling or
with widening, but as we observed widening has limited success with a complex
analysis such as the one used to analyze floating-point rounding errors. Rosa [8]
provides a more efficient way to bound rounding errors in bounded loops than
complete unrolling for a specific type of while loops, but requires invariants
about the variable’s ranges to be given. Rosa [8] and PRECiSA [31] also support
(simple) conditional branches where they also compute the error due to diverging
executions between then- and else-branches, in addition to rounding errors of
each individual branch. Such techniques are complementary to DS2L’s handling
of data structures.
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In contrast to sound analysis tools, dynamic analysis tools for floating-point
programs have less restrictions on the input programs and generally handle whole
programs, including loops, conditional branches and data structures. Typically,
they execute a program on particular floating-point inputs side-by-side with a
shadow execution in a higher precision [2,4,32], for instance implemented using
arbitrary-precision arithmetic, that serves as an approximation of the ideal real-
valued execution. By their nature, dynamic analyses cannot compute guaranteed
bounds on errors, only an estimate of the errors for inputs tried. Several tools use
a dynamic analysis to identify inputs that result in particularly large rounding
errors [4,32]. Symbolic execution has also been used to find inputs that cause
overflow or large precision loss in floating-point programs [1,14,21]. Recent work
also combines dynamic and static analysis for identifying, or showing conditional
absence of large rounding errors in larger floating-point programs [22].

Abstract interpretation based analyzers such as the industrial-strength
Astrée [26], or implementations of different numerical domains such as Apron [19]
and ELINA [28] can prove safety of floating-point programs, i.e. the absence of
overflows, division-by-zero or out-of-bounds errors by bounding the ranges of
variables. They do not, however, quantify rounding errors.

8 Conclusion

We have shown that computing rounding errors over a functional representation
of floating-point list programs can be beneficial for analysis performance, by
leveraging implicit semantic information present in the high-level representation.
Conceptually, our idea appears simple - “just” use a functional input language -
and yet, it has not been pursued before. We view this simplicity as a strength,
but also note that a effective realization of this idea required a careful design
of the DSL and the analysis, as well as substantial implementation effort. Our
analysis can generally handle more, and especially larger benchmarks, though
some of this performance benefit comes at a trade-off with analysis accuracy.
Future work should determine whether it is possible to recover some of this
accuracy with minimum performance loss.

A Appendix

Domain Specific Language Syntax. We provide a representative subset of our
domain-specific language in Fig. 5. The syntax of all binary arithmetic operations
is the same, we therefore omit repeating occurrences.

Experimental Data. We provide the experimental results used to evaluate DS2L
in Sect. 6. Table 4 shows results for the small input DSs, Table 5 for medium.
Whenever a tool has failed to report the error bound we use “–” to denote it,
we also indicate reported overflow explicitly, we write ∞ if the reported error
bounds were [−∞,∞]. ‘DivByZero’ denotes the case when the analysis detected
that the denominator range may include zero. We use “TO” to denote 30-min
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Fig. 5. DSL for numerical programs on data structures
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Table 4. Experimental results on small benchmarks. Reported error bounds are
rounded to two digits after decimal point, time is in seconds. “TO” denotes a time-
out, “na” stands for non-applicable.

Benchmark AllSame Diff10P Diff30P AllDiff

error time error time error time error time

DS2L
avg 4.62e−13 0.14 2.60e−13 0.17 1.59e−13 0.20 1.42e−13 0.26
variance 5.98e−07 1.06 2.62e−07 1.16 8.82e−08 1.17 6.17e−08 1.32
stdDev 145 0.92 2.81e−08 1.16 3.00e−09 1.09 3.96e−09 1.23
roux1 7.21e−14 0.22 2.26e−13 0.29 2.27e−13 0.34 2.07e−13 0.55
goubault 7.46e−14 0.22 8.38e−14 0.29 7.97e−14 0.33 8.34e−14 0.57
harmonic 1.15e−11 0.31 5.84e−12 0.39 5.81e−12 0.59 5.82e−12 1.09
nonlin1 overflow – overflow – 1.17e−07 4.07 1.06e−09 4.43
nonlin2 overflow – overflow – overflow – overflow –
nonlin3 7.82e−14 3.85 3.72e−14 4.13 3.18e−14 4.12 2.78e−14 4.55
pendulum 2.27e−13 2.68 2.27e−13 2.74 7.51e−14 3.26 1.73e−13 3.50
heat1d 7.33e−15 1.65 4.79e−15 2.24 4.64e−15 2.22 4.94e−15 2.48
conv.2d_size3 3.15e−10 0.28 1.51e−10 0.30 1.51e−10 0.33 4.07e−11 0.50
sobel3 DivByZero – DivByZero – DivByZero – DivByZero –
fftmatrix 4.29e−12 1.00 4.29e−12 0.95 4.29e−12 1.08 1.88e−12 1.06
fftvector 2.85e−12 0.96 2.40e−12 0.83 1.32e−12 0.89 1.86e−12 0.86
lorentz 4.33e−14 1.29 4.33e−14 1.19 2.55e−14 1.30 3.77e−14 1.28
alphaBlend 3.14e−13 0.07 3.14e−13 0.09 3.14e−13 0.17 3.13e−13 0.74
contr.Tora 1.42e−12 0.43 1.42e−12 1.01 1.20e−12 1.52 1.74e−13 1.38
lyapunov 9.90e−13 0.28 8.87e−13 0.49 6.64e−13 0.67 1.68e−13 0.59

Fluctuat

avg 2.62e−13 0.11 1.99e−13 0.07 1.62e−13 0.07 1.41e−13 0.07
variance 1.15e−09 6.33 6.17e−10 6.00 3.25e−10 6.00 2.16e−10 6.00
stdDev 516 6.67 1.35e−11 6.00 5.38e−12 6.00 7.13e−12 6.00
roux1 2.10e−13 0.16 1.83e−13 0.12 1.46e−13 0.12 6.80e−14 0.12
goubault 6.50e−14 0.13 6.50e−14 0.09 2.43e−14 0.09 4.67e−14 0.09
harmonic 2.92e−12 0.34 2.47e−12 0.21 2.25e−12 0.21 2.11e−12 0.21
nonlin1 3.07e−14 16.33 2.78e−14 13.00 2.48e−14 13.00 2.73e−14 13.67
nonlin2 ∞ 16.67 2.83e−12 16.33 1.86e−13 16.67 ∞ 14.33
nonlin3 7.84e−15 0.55 4.29e−15 0.36 3.53e−15 0.38 3.44e−15 0.48
pendulum 2.15e−13 0.36 2.15e−13 0.20 6.67e−14 0.23 1.63e−13 0.24
heat1d 6.66e−16 12.67 4.44e−16 12.33 4.44e−16 12.67 4.44e−16 12.67
conv.2d_size3 1.24e−10 0.08 6.23e−11 0.08 6.23e−11 0.08 1.56e−11 0.08
sobel3 91.9 0.24 61.6 0.24 61.6 0.24 31.0 0.24
fftmatrix 1.09e−12 0.01 1.09e−12 0.01 1.09e−12 0.01 6.92e−13 0.01
fftvector 6.93e−13 0.01 6.93e−13 0.01 3.46e−13 0.01 6.90e−13 0.00
lorentz 2.16e−14 0.23 2.16e−14 0.23 1.55e−14 0.22 1.90e−14 0.23
alphaBlend 1.56e−13 0.11 1.56e−13 0.12 1.56e−13 0.12 1.55e−13 0.12
contr.Tora 2.28e−12 0.57 1.80e−12 0.58 1.25e−12 0.56 1.17e−13 0.49
lyapunov 8.07e−13 0.09 7.08e−13 0.09 4.58e−13 0.10 9.34e−14 0.10

Satire

avg 3.65e−13 1.74 2.93e−13 2.22 2.47e−13 2.07 1.93e−13 1.83
variance 1.92e−09 12.22 1.19e−09 16.23 7.57e−10 16.04 4.97e−10 16.54
stdDev – TO – TO – TO – TO
roux1 2.55e−13 11.61 2.26e−13 13.39 1.88e−13 13.27 8.58e−14 13.18
goubault 1.14e−13 13.44 1.14e−13 15.37 4.97e−14 14.77 9.74e−14 14.55
harmonic 7.90e−12 19.48 5.01e−12 21.31 4.66e−12 20.48 4.90e−12 20.74
nonlin1 4.28e−14 655.23 3.99e−14 678.74 3.49e−14 687.85 3.87e−14 700.75
nonlin2 - TO 1.94e−15 100.92 1.94e−15 89.29 − TO
nonlin3 8.43e−15 32.45 5.62e−15 27.50 4.90e−15 26.09 3.86e−15 28.80
lorentz 9.68e−15 577.99 na na na na na na
heat1d 1.98e−14 92.76 na na na na na na
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Table 5. Experimental results on medium benchmarks. Reported error bounds are
rounded to two digits after decimal point, time is in seconds. “TO” denotes a timeout,
“na” stands for non-applicable.

AllSame Diff10P Diff30P AllDiff

Benchmark error time error time error time error time

DS2L
avg 3.65e−12 0.47 3.41e−12 0.60 2.01e−12 0.84 1.52e−12 2.25
variance 4.64e−06 4.95 2.42e−06 7.05 7.82e−07 8.66 6.16e−07 14.04
stdDev 1.13e+03 4.96 2.49e−07 6.96 3.11e−08 8.47 3.00e−08 14.27
roux1 7.21e−14 0.84 2.29e−13 1.21 2.41e−13 1.80 2.30e−13 4.04
goubault 7.46e−14 0.83 8.38e−14 1.09 8.39e−14 1.69 8.36e−14 3.77
harmonic 4.56e−10 1.29 1.94e−10 2.03 1.71e−10 3.21 1.59e−10 9.66
nonlin1 overflow – overflow – overflow – overflow –
nonlin2 overflow – overflow – overflow – overflow –
nonlin3 4.32e−05 32.17 2.91e−05 40.75 1.63e−05 49.87 1.16e−05 76.33
pendulum 1.16e−04 28.02 5.50e−05 37.76 5.50e−05 48.87 6.65e−05 85.65
heat1d 1.44e−14 4.20 9.23e−15 6.61 9.09e−15 6.81 9.10e−15 6.82
conv.2d_size3 3.15e−10 0.90 1.68e−10 1.11 2.62e−10 1.43 6.76e−11 2.27
sobel3 DivByZero – DivByZero – DivByZero – DivByZero –
fftmatrix 3.71e−09 55.34 3.66e−09 57.13 3.58e−09 57.89 2.56e−09 59.44
fftvector 1.84e−09 39.84 1.48e−09 39.56 1.12e−09 39.56 1.05e−09 41.12
lorentz 2.28e−13 1.73 2.17e−13 1.69 1.53e−13 1.79 1.84e−13 1.75
alphaBlend 3.14e−13 0.19 3.14e−13 1.00 3.14e−13 1.95 3.14e−13 773.52
contr.Tora 8.75e−08 6.65 6.14e−08 468.52 4.06e−08 485.40 7.33e−09 962.96
lyapunov 5.88e−10 2.90 4.16e−10 96.85 3.37e−10 97.68 1.04e−10 198.28

Fluctuat

avg 2.37e−12 3.75 2.06e−12 4.00 1.75e−12 3.00 1.49e−12 3.50
variance – TO – TO – TO – TO
stdDev – TO – TO – TO – TO
roux1 2.10e−13 8.67 8.16e−14 8.00 5.15e−14 8.00 9.86e−14 8.00
goubault 6.50e−14 5.00 6.50e−14 4.67 6.09e−14 5.00 5.91e−14 5.00
harmonic 1.68e−10 16.00 1.34e−10 14.67 1.16e−10 15.00 1.09e−10 16.00
nonlin1 – TO – TO – TO – TO
nonlin2 – TO – TO – TO – TO
nonlin3 2.21e−08 29.67 8.24e−09 30.00 6.02e−09 32.33 6.92e−09 35.50
pendulum 1.12e−04 13.00 5.22e−05 13.67 5.22e−05 16.33 6.33e−05 20.00
heat1d 6.66e−16 236.33 4.44e−16 249.33 4.44e−16 248.33 4.44e−16 247.33
conv.2d_size3 1.24e−10 1.00 1.07e−10 1.33 1.24e−10 1.00 4.09e−11 1.33
sobel3 91.9 6.67 90.3 6.33 86.3 6.67 54.4 6.33
fftmatrix ∞ 2.67 ∞ 2.67 ∞ 2.67 ∞ 2.67
fftvector ∞ 0.99 ∞ 2.67 ∞ 2.67 ∞ 2.33
lorentz 5.41e−14 0.73 5.28e−14 0.73 4.73e−14 0.73 4.84e−14 0.83
alphaBlend 1.56e−13 744.67 1.56e−13 843.67 1.56e−13 820.33 1.55e−13 743.67
contr.Tora – TO – TO – TO – TO
lyapunov 5.69e−10 264.00 4.01e−10 270.50 3.03e−10 269.00 7.89e−11 258.00

Satire

avg 3.49e−12 18.70 2.84e−12 15.66 2.34e−12 14.45 2.05e−12 15.99
variance 1.83e−08 476.62 1.09e−08 457.62 6.11e−09 455.67 4.61e−09 458.18
stdDev – TO – TO – TO – TO
roux1 2.55e−13 126.46 1.19e−13 118.79 7.00e−14 122.02 1.64e−13 120.40
goubault 1.14e−13 90.19 1.14e−13 83.96 1.10e−13 82.39 9.79e−14 82.82
harmonic 1.62e−11 93.69 1.29e−11 90.72 1.07e−11 89.45 1.03e−11 90.97
nonlin1 – TO – TO – TO – TO
nonlin2 – TO – TO – TO – TO
nonlin3 9.17e−15 491.27 6.04e−15 496.15 4.13e−15 468.28 4.94e−15 482.47
lorentz 3.50e−14 875.69 na na na na na na
heat1d na 92.76 na na na na na na
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timeouts and any other tool failures. The reported time is the analysis time in
seconds. “na” in Satire’s results denotes that we did not run Satire on these
variations of heat1d or lorentz, as we only took the original benchmarks that
had the same ranges for all input DS elements.
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