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Abstract. Shapley values have achieved great popularity in explain-
able artificial intelligence. However, with standard sampling methods,
resulting feature attributions are susceptible to adversarial attacks. This
originates from target function evaluations at extrapolated data points,
which are easily detectable and hence, enable models to behave accord-
ingly. In this paper, we introduce a novel strategy for increased robust-
ness against adversarial attacks of both local and global explanations:
Knockoff imputed Shapley values. Our approach builds on the model-
X knockoff methodology, which generates synthetic data that preserves
statistical properties of the original samples. This enables researchers to
flexibly choose an appropriate model to generate on-manifold data for
the calculation of Shapley values upfront, instead of having to estimate a
large number of conditional densities or make strong parametric assump-
tions. Through real and simulated data experiments, we demonstrate the
effectiveness of knockoff imputation against adversarial attacks.
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1 Introduction

Explainable artificial intelligence (XAI) oftentimes strives to deliver insights on
the underlying mechanisms of black-box machine learning models in order to
generate trust in these algorithms. To do so, XAI methods themselves must be
trustworthy.

Several popular XAI tools, such as SHAP [17] and LIME [19], are vulnerable
to adversarial attacks [23]. The issue stems from how these approaches generate
new data during the explanation process – typically by independently permut-
ing feature values. Permute-and-predict methods force models to extrapolate
beyond their training data, yielding off-manifold samples. This results in poten-
tially misleading assessments [13] and enables adversaries to pass fairness audits
c© The Author(s) 2023
L. Longo (Ed.): xAI 2023, CCIS 1901, pp. 131–146, 2023.
https://doi.org/10.1007/978-3-031-44064-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44064-9_8&domain=pdf
http://orcid.org/0000-0001-6241-3079
http://orcid.org/0000-0002-8542-6291
http://orcid.org/0000-0001-9632-2159
https://doi.org/10.1007/978-3-031-44064-9_8


132 K. Blesch et al.

even with discriminatory models. For example, an algorithm could fool the XAI
method by using a fair model for queries on synthetic, extrapolated data during
XAI evaluation in order to suggest the model would be fair even though it may
produce discriminatory outcomes for non-synthetic, i.e. real data [23].

Robustness against such adversarial attacks can be achieved by reducing
extrapolation during data generation. Ideally, conditional sampling procedures
should be used, which ensures that the generated data is indistinguishable from
the original data. Figure 1 visualizes data points generated through marginal in
contrast to a conditional sampling method.

Fig. 1. Sampling of out-of-coalition features for a digit from {28×28} mnist data. The
first 14 columns from the left are in-coalition, whereas the remaining 14 columns are
sampled either from marginals (as in Kernel SHAP [17]) or deep knockoffs [21].

For Shapley values [22] – one of the most prominent XAI methods – condi-
tional variants and their properties have been widely discussed in the literature
[6,8,10,25,29]. Conditional Shapley values sample out-of-coalition features from
a distribution conditioned on the in-coalition features. However, this requires
knowledge about conditional distributions for all possible feature coalitions and,
since estimating conditional distributions is generally challenging, there remains
considerable room for improvement. However, to prevent adversarial attacks, cal-
culating conditional Shapley values may be unnecessarily challenging. It suffices
to minimize extrapolation, which is a strictly simpler task.

In that vein, we propose the model-X knockoff framework [5] in its full gener-
ality to sample out-of-coalition features for protection against adversarial attacks
on Shapley value explanations. Knockoffs are characterized by two properties,
formally defined below: (1) pairwise exchangeability with the original features;
and (2) conditional independence of the response, given the true data. We argue
that this makes them well-suited to serve as reference data in Shapley value
pipelines. For example, property (1) allows us to estimate knockoffs upfront and
use them to impute out-of-coalition features, which effectively avoids extrapo-
lation and does not require the separate estimation of conditional distributions
for any feature coalition. Knockoff imputed Shapley values balance on-manifold
data sampling with maintaining utmost generality and flexibility in application.

The paper is structured as follows. First, we present the relevant back-
ground on Shapley values and model-X knockoffs in Sect. 2. We combine these
approaches and study the theoretical properties of the resulting algorithm in
Sect. 3. In Sect. 4, we present a series of experiments to demonstrate the effec-
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tiveness of our approach against adversarial attacks. We present a comprehensive
discussion and directions for future research in Sects. 5 and 6, respectively.

2 Background and Related Work

2.1 Shapley Values

Originating from cooperative game theory, Shapley values [22] aim to attribute
payouts fairly amongst a game’s players. The basic idea is to evaluate the average
change in output when a player is added to a coalition.

In XAI, we can think of the features X = {X1, . . . , Xd}, where each Xj

denotes a random variable, as a set of players D = {1, . . . , d} who may or may
not participate in a coalition of players S ⊆ D, i.e. S is a subset of D. The value
function v assigns a real-valued payout to each possible coalition, i.e. to every
element of the power set of D, which consists of 2|D| = 2d elements, to a real
value. This may be the expected output of a machine learning model f [17], or
other quantities related to the model’s prediction, such as the expected loss [8].
To compute the Shapley value φj for player j, we take a weighted average of j’s
marginal contributions to all subsets that exclude it:

φj =
∑

S⊆D\{j}

|S|!(|D| − |S| − 1)!
|D|!

(
v(S ∪ {j}) − v(S)

)
. (1)

It is not immediately obvious how to evaluate v on strict subsets of D, since
f requires d-dimensional input. One common solution is to use an expectation
with respect to some reference distribution R:

v(S) = ER
[
f(xS ,XS̄)

]
. (2)

In other words, for the random variables XS , which are the in-coalition features,
we take the realized values xS as fixed and sample values for out-of-coalition
features XS̄ according to R. Common choices for R include the marginal distri-
bution P (XS̄) and the conditional distribution P (XS̄ | XS = xS).

Adversarial Attack Vulnerability. Taking the marginal distribution R =
P (XS̄) typically serves as an approximation to the conditional distribution
P (XS̄ | XS = xS) in order to facilitate computation, e.g. as in KernelSHAP [17].
However, marginal and conditional distributions only coincide when features are
jointly independent, which is scarcely ever the case in empirical applications.
A consequence from a violation of feature independence is that sampling a set
of x′̄

S from marginals instead of conditional distributions will lead to generated
instances x′ = (xS ,x′̄

S) that are off the data manifold of original, i.e. real data
observations x = (xS ,xS̄). In such cases, it is possible to train a prediction model
ω that successfully distinguishes real from generated data. In adversarial expla-
nations, e.g. the strategy described by [23], such an out-of-distribution (OOD)
detector ω that exposes synthetic data is the primary workhorse. If the data
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is synthetic, the adversary deploys a different model as with real data, which
effectively fools the explanation.

We want to highlight that even though this fooling strategy was introduced
and is typically discussed for local Shapley values [23,28], it can also be applied
to global aggregates such as Shapley additive global importance (SAGE) [8].

Achieving Adversarial Attack Robustness. Avoiding the generation of extrapo-
lated data protects against adversarial attacks by preventing ω from distinguish-
ing real from generated data during Shapley value calculation.

Some approaches naturally circumvent the task of generating synthetic data
altogether, for example by using surrogate models [10], retraining the model
such that it adapts to missing features [8] or fitting a separate model for each
coalition [25,29]. However, these approaches come at a high computational costs,
since repeated model refitting is required.

Another approach is to calculate conditional Shapley values, for which we will
give a brief overview of methods in the following paragraph. Working with condi-
tional Shapley values, i.e. using R = P (XS̄ | XS = xS), is clearly the most rigor-
ous way of enforcing on-manifold sampling of synthetic data, even though prior
literature merely acknowledges the potential for preventing adversarial attacks.
Several conditional Shapley value estimation procedures have been proposed, yet
conditional feature sampling remains a challenging task and improvements are
highly desirable.

A straightforward, empirical approach is to simply use the observed data
that naturally satisfies the conditioning on the selected in-coalition features by
using data points in close proximity to the instance to be explained [1,11]. For
example, in Fig. 1, one could also sample the out-of-coalition features from other
observations of digit zero in the data set. This approach, however, has the down-
side that the number of observations fulfilling the conditioning event might be
very small, leading to only very few or even no appropriate observations avail-
able. Another approach to calculating conditional Shapley values is assuming
a specific data distribution, e.g. a Gaussian distribution [1,7], for which condi-
tional distributions are easy to derive, but this approach has the drawback of
strong assumptions on the data generating process. Further, conditional gener-
ative models might be used [10,20], however, these models might be challeng-
ing to train and it is unclear whether they truly approximate the data well. In
sum, conditional Shapley values are challenging to access and hence have limited
applicability.

For the goal of preventing adversarial attacks, conditional Shapley values
are sufficient but not necessary, since any method that avoids extrapolation will
prevent the attack and hence related, but less strict frameworks provide another
suite of promising methods. Such an idea is pursued by [28], where generative
models use ‘focused sampling’ of new instances that are close to the original
observations. However, this approach lacks theoretical guarantees and may fail
depending on the fit of the generative models. We acknowledge that [28] inves-
tigate Gaussian knockoffs in conjunction with the so-called Interactions-based
Method for Explanation (IME, [24]). However, the authors do not use model-X
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knockoffs for imputation in full generality, nor do they apply the strategy to
SHAP or SAGE values directly. The authors even mention that the knockoff
imputation idea merits further investigation as an approach, which is what the
present paper contributes to.

2.2 Model-X Knockoffs

The model-X knockoff framework [5] is a theoretically sound concept to charac-
terize synthetic variables with specific statistical properties. Intuitively speaking,
knockoffs are synthetic variables that aim to copy the statistical properties of a
given set of original variables, e.g. the covariance structure, such that they are
indistinguishable from the original variables when the target variable Y is not
looked at. Crucially, valid knockoffs ensure that original variables can be swapped
with their knockoff counterparts without affecting the joint distribution.

Formally, in order for X̃ to be a valid knockoff matrix for X, two conditions
have to be met:

1. Pairwise exchangeablility: For any proper subset S ⊂ {1, . . . , d}:

(X, X̃)swap(S)
d= (X, X̃), (3)

where d= represents equality in distribution and swap(S) indicates swapping
the variables in S with their knockoff counterparts.

2. Conditional independence:
X̃ ⊥⊥ Y | X. (4)

Generating valid knockoffs is an active field of research and various sam-
pling algorithms have been proposed, which ensures that practitioners can flex-
ibly choose appropriate algorithms. For example, there are algorithms based
on distributional assumptions [3,5,21], Bayesian statistics [12] or deep learning
[14,16,18,26].

3 Combining Model-X Knockoffs with Shapley Values

This paper proposes to impute out-of-coalition features with model-X knock-
offs for the calculation of Shapley value based quantities. Knockoffs come with
strong theoretical guarantees that ensure avoiding extrapolation. Moreover, they
provide a major computational boost, since knockoffs can be sampled upfront
for the full data matrix instead of requiring separate models for each possible
coalition. Since many methods are available for knockoff generation—including
some that are essentially tuning-free—practitioners have a large collection of
tools available for valid, flexible and convenient sampling of the out-of-coalition
space that ensures robustness against adversarial attacks.
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In detail, we propose Algorithm 1 to impute out-of-coalition features with
knockoffs for Shapley values and Algorithm 2 (see Appendix A) for knockoff
imputation with SAGE [8] values. In brief, the algorithms use Nko knockoffs as
the background distribution in the calculation of Shapley values. Note that for
Nko = 1, the Shapley values are with respect to a single knockoff baseline value,
while for larger values of Nko, Shapley values explain the difference between the
selected instance and the expected value of the knockoff distribution.

Algorithm 1. Knockoff Imputed Shapley Values
Input: data matrix (X, Y ), knockoff sampler ko(), model f , explanation instance

x0 = {x0
1, . . . , x

0
d}, number of knockoffs Nko, power set π of D \ {j}

1: train knockoff sampler ko(X)
2: for feature j in D do
3: initialize φj = 0
4: for i in Nko do
5: draw x̃i = {x̃i

1, . . . , x̃
i
d} from ko(X)

6: initialize Δi
j = 0

7: for S in π do
8: out-of-coalition set S̄ = D \ S
9: v(S) = f(x0

S , x̃i
S̄)

10: S ′ = S ∪ {j}
11: S̄ ′ = S̄ \ {j}
12: v(S ′) = f(x0

S′ , x̃i
S̄′)

13: Δi
j = Δi

j + |S|!(|D|−|S|−1)!
|D|! · (

v(S ′) − v(S)
)

14: end for
15: end for
16: φj = 1

Nko

∑Nko
i=1 Δi

j

17: end for
18: return Shapley values φ = {φ1, . . . , φd}

To understand the advantages of knockoff imputed Shapley values on a the-
oretical level, let us investigate the implications of the exchangeability prop-
erty (Eq. 3) in more depth. This property ensures that we can swap any set
S ⊆ D of original variables X with knockoffs X̃, while maintaining the same
joint distribution. The same joint distribution guarantees that any generated
data is indeed on the same data manifold, so for the prevention of adversar-
ial attacks, it is both necessary and sufficient that x′S̄ is generated such that
P (XS ,XS̄) = P (XS ,X′S̄). Conditional Shapley values ensure this by sampling
x′S̄ from P (XS̄ |XS). Doing so, the original joint distribution is maintained by
factorizing through P (XS)·P (XS̄ |XS) = P (XS ,XS̄), whereas knockoffs directly
guarantee P (XS ,XS̄) = P (XS , X̃S̄) by exchangebility.

That said, it becomes obvious that we can generate knockoff copies for X
upfront and then swap in knockoffs for the out-of-coalition features XS̄ where
needed. This is a clear advantage in contrast to conditional Shapley value meth-
ods that need access to P (XS̄ |Xs) for all possible coalitions 2|D|. Note that
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the pairwise exchangeability fulfilled by knockoffs is needed to guarantee on-
manifold data in the imputation step, which is why other conditional sampling
methods cannot be calculated upfront. This suggests a lower computational
complexity for the knockoff imputed Shapley values in comparison to condi-
tional Shapley values, however, the exact complexity will depend on the knockoff
generating algorithm used. Further, even though we may want to sample Nko

knockoffs in advance to reduce bias, a reasonable number for Nko is typically
Nko � 2|D|.

However, the benefit of being able to sample knockoffs upfront comes at
the cost of enforcing a restrictive set of conditioning events. At a first glance,
knockoff imputation and calculating conditional Shapley values, i.e. using R =
P (XS̄ | XS = xS), may appear interchangeable. However, knockoffs implicitly
condition on all the feature values of the observation, which is inevitable since
the exchangeability property must hold for any set of variables. This subtle
difference yields the following expression for the game that uses knockoffs X̃S̄ as
imputation for the out-of-coalition features in set S̄:

vko(S) = Ep(X̃S̄ |xS ,xS̄)

[
f(xS , X̃S̄)

]
. (5)

To elaborate on the consequences of the expectation taken w.r.t. P (X̃S̄ | XS =
xS ,XS̄ = xS̄), imagine a dataset with three variables, i.e. X1, X2, X3, where X1

is in-coalition and the task is to impute values for the out-of-coalition features
X2 and X3. When using knockoff X̃2 for imputation, this knockoff has been gen-
erated from a knockoff sampler that was fitted on the observed values of all three
variables in the dataset. For the Shapley value calculation however, the data for
imputation is required to condition on the observed value of X1 only. Hence,
the procedure leaks information from the out-of-coalition feature X3 during the
imputation of X2. As a consequence, the range of values sampled for imputing
out-of-coalition values will be too narrow, i.e. conditioned on more features than
necessary, which reduces the entropy of the predicted values in f(xS ,xS̄). To
be clear, the generated data throughout Shapley value calculation will still be
on the same data manifold as the original samples, so this procedure effectively
defends against adversarial attacks, which is what we focus on in this paper.
We can interpret the restrictive conditioning as a form of regularization imposed
through the data sampling mechanism. We therefore expect estimated Shapley
values of lower magnitude when using knockoff imputation. As a result, on the
one hand, conditioning on variables in the out-of-coalition set may introduce
bias due to information leakage from other covariates; on the other hand, this
will also lead to a reduction in variance of Shapley values that are estimated
by approximation instead of exact calculation, which may be advantageous. We
encourage future research to investigate potential trade-offs.
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4 Experiments

4.1 Unfooling SHAP

We start off the section on experiments by illustrating that knockoff imputed
Shapley values indeed are able to prevent adversarial attacks that make use
of extrapolation. We replicate and extend the German Credit [9] experiments
conducted by [23], where the task is to determine whether clients will be good
customers (GoodCustomer = 1) or not (GoodCustomer = −1). We demonstrate
that with knockoff imputation, the adversarial attack is no longer successful.

The fooling strategy of [23] can be illustrated in an intuitive manner: Imagine
an unethical bank that aims to exploit sensitive information, such as the Gender
of the credit applicant, to assess creditworthiness with a prediction model f .
However, in the country the bank operates in, credit assessment tools are legally
required to pass a so-called fairness audit prior to model deployment. During
the audit, black-box models will be evaluated via SHAP [17]. If high importance
scores are attributed to sensitive features, the model fails the audit and its
deployment is legally prohibited. In spite of this danger, the bank is determined
to use the discriminatory model f in its daily business, and comes up with
a strategy to fool the auditors and make them believe that the bank uses an
innocent prediction algorithm ψ, which utilises the non-discriminatory feature
LoanRateAsPercentOfIncome only.

To fool the explanation, a supervised classification algorithm ω, in this case
a random forest [4], is trained to distinguish in-distribution from OOD data.
For in-distribution data, the adversarial model α uses the discriminatory pre-
diction algorithm f , but for OOD data, α makes predictions according to ψ.
For simplicity, the prediction model f here makes use of only the discrimina-
tory variable Gender, whereas prediction model ψ determines the predictions
according to the non-discriminatory variable LoanRateAsPercentOfIncome, see
further Fig. 2, Panel A.

Extending the experiments of [23], we evaluate the adversarial model α not
only with SHAP using marginal imputation with kmeans(10) to summarize
the background distribution, but also with knockoff imputed SHAP. We use
sequential knockoffs [15] due to the presence of both categorical and continuous
features in the dataset and generate Nko = 10 knockoffs for each test data point.
In brief, sequential knockoffs [15] are generated through an iterative procedure
that samples values from a Gaussian (for continuous features) or multinomial
(for categorical features) distribution. The distribution parameters are estimated
from a penalized linear or multinomial logistic regression of the feature for which
a knockoff copy should be generated on the other features and already sampled
knockoffs from earlier iterations.

Figure 2 Panel B replicates results of [23], where we can see the aggregated
explanations across test data instances suggesting LoanRateAsPercentOfIncome
as most relevant for the model, hence the adversarial attack is successful. On
the contrary, we can see from Panel C that with knockoff imputation, the expla-
nation reveals the true importance of Gender for the model’s prediction in the
majority of test data points.
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Fig. 2. Occurrences of features ranked amongst the top 3 features in SHAP expla-
nations of test data, N = 99. Fidelity to detect real data as in-distribution with
ω is 1.

Clearly, ω plays a crucial role for the success of the adversarial attack. In this
experiment, we see that with knockoff imputation, ω is not able to detect OOD
data as such, which is why the adversarial attack cannot unfold. At the same
time, we have that ω always detects in-distribution data as such (fidelity =
1), so real world data will be reliably predicted with discriminatory model f .
With this knowledge, advanced adversarial attackers might try to improve the
model training of ω and optimize the decision threshold to reinstate a successful
adversarial attack. However, with knockoff imputation – and conditional out-
of-coalition-sampling in general – it is not possible to train an effective OOD
classifier ω because the resulting data will lie on the same data manifold as the
original data, hindering its detection as synthetic data. We discuss this issue
further in Appendix B.

4.2 Unfooling SAGE

We now illustrate that global aggregates of Shapley values, SAGE values [8],
suffer from the same vulnerability as local Shapley values and that knockoff
imputation again can increase robustness. In this experiment, we simulate data,
which further allows us to analyze key drivers in the data characteristics that
affect the robustness against adversarial attacks.

We simulate data from X1000×4 ∼ N(μ,Σ), with μ = [0, . . . , 0] and corre-
lation matrix Σ with correlation coefficient ρ ∈ [0, 0.9] in all off-diagonal ele-
ments. The target variable Y is defined by Y = Xβ+ε, where β = [1, . . . , 1] and
ε ∼ N(0, σ2), such that σ2 guarantees a signal to noise ratio SNR = V ar(Y )

σ2 = 2.
The adversarial model α is given in Fig. 3 Panel A.

SAGE with marginal imputation uses a background distribution summarized
by kmeans(10) and SAGE with knockoff imputation uses Nko = 10 Gaussian
knockoffs for the background distribution of each observation. Gaussian knock-
offs are generated through sampling from a multivariate Gaussian distribution
with parameters estimated from the observed features, see [5] for further details.

Figure 3 reveals that SAGE can be fooled just as SHAP and that knockoff
imputation again prevents the adversarial attack, i.e. unfools the explanation.
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Fig. 3. Occurrences of features ranked amongst the top 4 in SAGE explanations with
adversarial model α across 500 replicates. Correlation ρ = 0.5, fidelity of ω = 0.88.

Fig. 4. Mean rank of features in SAGE explanations with adversarial classifier α across
500 replicates. We consider the adversarial attack successful if X2 is ranked first, and
unsuccessful if the sensitive feature is ranked first.

We can see from Fig. 4 that correlation strength plays a crucial role in the
success of the attack. For marginal imputation (Fig. 4, Panel A), the adversarial
attack is successful and hides the true rank of the sensitive feature (true rank
is 1) for correlation levels greater than or equal to 0.5. Note that lower levels
of correlation do not allow the adversarial attack to unfold regardless, because
extrapolation is more pronounced and hence more likely to be detected by ω with
medium or strongly correlated data (recall that ρ = 0 corresponds to feature
independence). For SAGE with knockoffs (Fig. 4, Panel B), the model’s usage
of the sensitive feature is exposed for all levels of correlation. Hence, knockoff
imputation effectively prevents the adversarial attack on SAGE explanations.

5 Discussion

We demonstrate that knockoff imputed Shapley values are robust against adver-
sarial attacks that exploit extrapolated data. However, other adversarial attacks
might be proposed. For example, because Shapley values are spread out across
correlated features, the true importance of a sensitive feature could be toned
down by adding correlated features to the model.

Further, the special characteristics of knockoffs may open up new trajectories
in Shapley value research. One such example is SHAPLIT, which proposes con-
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ditional independence testing with FDR control for Shapley values [27]. Another
promising approach could be to leverage the overly restrictive conditioning of
knockoff imputed Shapley values for approximation tasks, where Shapley values
are calculated with just a small fraction of all possible coalitions as opposed
to exact Shapley value calculation. It is common in Shapley value software to
optionally include some form of L1 penalty on feature attributions to encourage
sparse explanations, even when the underlying model f is not itself sparse [17].
Like many regularization methods, this effectively introduces bias in exchange
for a decrease in variance. Knockoff imputed Shapley values may give a similar
regularizing effect through the data sampling method rather than directly on
the parameter estimation technique. This does not zero out feature attributions
as the L1 penalty does, but may serve to improve predictions for practitioners
with limited computational budgets.

We want to emphasize that the use case for knockoff imputed Shapley values
should be carefully chosen, since the method narrows down entropy of the target
function, which may be disadvantageous in comparison to other methods when
the computational capacity suffices to calculate exact conditional Shapley values.

Further, we want to highlight that a comparative benchmark study that ana-
lyzes variants for Shapley value calculation, including conditional Shapley value
calculation, may be of great value for future research. For example, the knockoff-
based approach proposed here could be compared with other conditional variants
[1,2,20] both in terms of theory, e.g. analyzing the variance, and in empirical
application, e.g. investigating the computational efficiency of the proposed algo-
rithms and accuracy of estimates for different datasets. Such endeavors may
further include novel methods that combine ideas from existing approaches. For
example, one could use an overly strict conditioning set, as it is the case with
knockoffs, for the conditional distribution based approaches to cut down the
computational complexity of those approaches.

6 Conclusion

The paper presents an innovative approach to make Shapley explanations, such
as SHAP [17] and SAGE [8], more robust against adversarial attacks by using
model-X knockoffs. The discussion on theoretical guarantees and implications
reveals that knockoffs can serve as a flexible and off-the-shelf methodology that
effectively prevents extrapolation during Shapley value calculation. Through
both real data and simulated data experiments, the paper demonstrates that vul-
nerability to adversarial attacks can be successfully reduced. It is worth empha-
sizing that the presented methodology can be used in conjunction with any
valid knockoff sampling procedure and not only the deep [18], sequential [15]
and Gaussian knockoffs [5] used in this paper, which further highlights the flex-
ibility of the proposed approach. This, and the possibility to sample knockoffs
upfront, which drastically reduces computational complexity, is a major advan-
tage over conditional Shapley value calculation approaches that may otherwise
be used for the prevention of adversarial attacks.
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A Knockoff Imputed SAGE Values

Algorithm 2. Sampling-based approximation for SAGE values [8] with knockoff
imputation
Input: data (X, Y ), model f , loss function l, outer samples n, number of knockoffs

Nko, knockoff sampler ko()
1: Initialize φ̂1 = 0, φ̂2 = 0, . . . , φ̂d = 0
2: ŷinit = 1

N

∑N
i=1 f(xi)

3: train knockoff sampler k(X)
4: for i = 1 to n do
5: Sample a data instance (xi, yi)
6: Sample instance π, a permutation of D
7: S = ∅
8: Lprev = l(ŷinit, y)
9: for j in D do

10: S = S ∪ {π[j]}
11: ŷ = 0
12: for k = 1 to Nko do
13: Sample x̃k = x̃k

1 , . . . , x̃k
d from ko(X)

14: ŷ = ŷ + f(xS , x̃k
S̄)

15: end for
16: ¯̂y = ŷ

Nko

17: L = l(¯̂y, y)
18: Δ = Lprev − L
19: φ̂π[j] = φ̂π[j] + Δ
20: Lprev = L
21: end for
22: end for
23: return SAGE values φ̂1

n
, . . . , φ̂d

n

B The Role of ω

The detection of OOD data is the backbone of adversarial attacks which is why
the performance of ω is crucial for the success of the attack. Let us take a
closer look onto how ω is derived: In a first step, we take the training data and
add the label y = 1 to it, because it is real world data. Then, we mimic the

https://github.com/bips-hb/unfooling_shapley
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imputation procedure that occurs during Shapley value calculation. This means
we treat some feature values as in-coalition, i.e. we take the actual value of these
features for the respective observation, and impute the remaining out-of-coalition
feature values with other quantities, for example, by sampling values from the
marginal distribution. The resulting ’new’ observations will then be labeled with
y = 0, because this is generated data. In a second step, we fit a random forest
classifier to distinguish in-distribution from OOD data, or technically speaking,
to distinguish y = 1 from y = 0 data.

In the experiments of Sect. 4.1, we train ω exactly like [23], where we impute
the out-of-coalition features with values from a background distribution that
is characterised by the center points of a kmeans(c = 10) clustering of the
data. Note that this is the exact same background distribution which is used for
the marginal imputation in the SHAP explanations later on. With this ω, the
adversarial attack is successful for marginal imputation, but with the very same
ω, SHAP explanations using knockoff imputation prevents the attack.

To some readers, it might have been clear from the beginning that an ω which
is trained to detect OOD samples that are generated with kmeans(c = 10) will
not perform well in detecting OOD samples that occur when calculated knockoff
imputed SHAP, where the background distribution consists of knockoffs and
not kmeans(c = 10) cluster centers. An advanced adversarial attacker strategy
could be to train ω for detecting OOD samples from many different background
distributions, including a knockoff background distribution. However, the crucial
point is that with conditional out-of-coalition-sampling, for example knockoffs,
it is not possible to train an effective OOD classifier ω because the y = 1 and
y = 0 data points will lie on the same data manifold. In other words, there
is no difference in in-distribution and OOD data, which hinders its detection
as synthetic data. When training ω on such data, the classifier cannot learn
reasonable information from the data.

The implications of this are illustrated in Fig. 5. There, we train ω on data
that is generated by knockoff imputation. We vary the hyperparameters for the
random forest classifier to force model ω to overfit, i.e. be less (Fig. 5, Panel A)
or more (Fig. 5, Panel B) conservative in predicting data as OOD. This can be
achieved by varying the number of trees in the random forest classifier, and the
number of y = 0 training samples we generate. We denote the hyperparameters
with ω(number of trees,number of samples generated).

For an adversarial attacker, the aim is high fidelity, i.e. a high percentage of
true in-distribution classifications by ω and a high rank of the innocent feature
LoanRateAsPercentOfIncome in the SHAP explanation. Different hyperparam-
eter settings reveal that there is a trade-off between fidelity and the degree to
which the innocent feature LoanRateAsPercentOfIncome is ranked up high. If
the adversarial attacker is keen to predict real-world data with the discrimina-
tory model, i.e. uses an ω that is conservative in classifying data as OOD, then
knockoff imputed SHAP reveals the sensitive feature Gender as highly important
(Fig. 5, Panel B). On the contrary, if the adversarial attacker prioritizes that the
explanation should pretend that LoanRateAsPercentOfIncome is important, i.e.
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uses an ω that is liberal in predicting data as OOD, then the fidelity of ω drops
drastically (Fig. 5, Panel A). This is clearly in contrast to the overarching goal
of adversarial attackers to use the discriminatory model for in-distribution (real
world) applications, but fool the SHAP explanation such that the model appears
innocent.

Consequently, when using knockoff imputed SHAP, the adversarial attacker
is forced to use the fair model if the SHAP evaluation should suggest that the
model is fair – in other words and recollecting the example stated in the main
text before: The only way to pass a fairness audit that uses knockoff imputed
SHAP explanations is using a fair model.

Fig. 5. Occurrences of features ranked amongst the top 3 features in SHAP explana-
tions of N = 99 test data points.
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