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Abstract. Scientists and practitioners increasingly rely on machine
learning to model data and draw conclusions. Compared to statistical
modeling approaches, machine learning makes fewer explicit assumptions
about data structures, such as linearity. Consequently, the parameters of
machine learning models usually cannot be easily related to the data
generating process. To learn about the modeled relationships, partial
dependence (PD) plots and permutation feature importance (PFI) are
often used as interpretation methods. However, PD and PFI lack a the-
ory that relates them to the data generating process. We formalize PD
and PFI as statistical estimators of ground truth estimands rooted in the
data generating process. We show that PD and PFI estimates deviate
from this ground truth not only due to statistical biases, but also due to
learner variance and Monte Carlo approximation errors. To account for
these uncertainties in PD and PFI estimation, we propose the learner-
PD and the learner-PFI based on model refits and propose corrected
variance and confidence interval estimators.
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1 Introduction

Statistical models such as linear or logistic regression models are frequently used
to learn about relationships in data. Assuming that a statistical model reflects
the data generating process (DGP) well, we may interpret the model coefficients
in place of the DGP and draw conclusions about the data. An important part of
interpreting the coefficients is the quantification of their uncertainty via standard
errors, which allows separation of random noise (non-significant coefficients) from
real effects.

Increasingly, machine learning (ML) approaches – such as gradient-boosted
trees, random forests or neural networks – are being used in science instead of
or in addition to statistical models as they are able to learn highly-non linear
relationships and interactions automatically. Applications range from modeling
volunteer labor supply [4], mapping fish biomass [17], analyzing urban reservoirs
[36], identifying disease-associated genetic variants [8], to inferring behavior from
smartphone use [43]. However, in contrast to statistical models, machine learning
approaches often lack a mapping between model parameters and properties of
the DGP. This is problematic, since in scientific applications the model is only
the means to an end: a better understanding of the DGP, in particular to learn
what features are predictive of the target variable.

Interpretation methods [41] are a (partial) remedy to the lack of interpretable
parameters of more complex models. Model-agnostic techniques, such as partial
dependence (PD) plots [20] and permutation feature importance (PFI) [9,18]
can be applied to any ML model and are popular methods for describing the
relationship between input features and model outcome on a global level. PD
plots visualize the average effect that features have on the prediction, and PFI
estimates how much each feature contributes to the model performance and
therefore how relevant a feature is.

Scientists who want to use PD and PFI to draw conclusions about the DGP
face a problem as these methods have been designed to describe the prediction
function, but lack a theory linking them to the DGP. In particular, the uncer-
tainty of PD and PFI with respect to the DGP is not quantified, making it hard
for scientists to assess the extent to which it is justified to draw conclusions
based on the PD and PFI.

Contributions. We are the first to treat PD and PFI as statistical estimators of
ground truth properties in the DGP. We introduce two notions, model-PD/PFI
and learner-PD/PFI, which allow to analyze the uncertainty due to Monte-Carlo
integration and uncertainty due to the training data/process, respectively. We
perform bias-variance decompositions and propose theorems of unbiasedness,
standard estimators, and confidence intervals for both PD and PFI. In addition,
we leverage a variance correction approach from model performance estimation
[35] to adjust for variance underestimation due to sample dependency.

Structure. We start with a motivating example (Sect. 1.1) and a discussion of
related work (Sect. 1.2). In the methods section (Sect. 2), we introduce PD and
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PFI formally, relate them to the DGP, and provide bias-variance decomposi-
tions, variance estimators and confidence intervals. In the simulation study in
Sect. 3, we test our proposed methods in various settings and compare them to
alternative approaches. In the application in Sect. 4, we revisit the motivating
example to demonstrate how our confidence intervals for PD/PFI may help sci-
entists to draw more justified conclusions about the DGP. Finally, we discuss
the limitations of our work in Sect. 5.

1.1 Motivating Example

Imagine a researcher who wants to use machine learning methods and the pub-
licly available UCI heart disease dataset [15] (n = 918) not only to predict heart
disease, but also to understand how the disease is associated with sociological
and medical indicators.

To select the model class, she compares the performance w.r.t. the predicted
probabilities of a logistic regression model, a decision tree (CART) [10], and a
random forest classifier [9] using 5-fold cross validation measured by the Brier
score on the dataset; the mean losses for the different models are 0.130 (logistic
regression), 0.258 (tree), and 0.125 (random forest). Since the random forest
outperforms the linear model and decision tree, she uses a random forest for
further analysis; she fits the model on 60% of the data and uses the remaining
40% as test set.1

To learn about the associations in the data, she applies the PD and PFI. To
get interpretations that are true to the data and that avoid extrapolation, she
employs conditional sampling based versions of PD and PFI (for a discussion of
marginal versus conditional sampling, we refer to the literature [13,19], Sect. 2.1,
and Sect. 2.3). The conditional PD corresponds to the expected prediction and
therefore indicates how the probability of having heart disease varies with the
feature of interest [19]. Conditional feature importance quantifies the surplus
contribution of each feature over the remaining features (and can be linked to
conditional dependence with the prediction target [28,45]).2

The results (Fig. 1) match the researcher’s intuition. Many conditional PFI
values are small, indicating that the features could be replaced with the remain-
ing features. The most important features are the slope of the ECG seg-
ment (STSlope), the type of chest pain (ChestPainType), and cholesterol level
(Cholesterol). Furthermore, the researcher is interested in the relationship
between heart disease and age. Thus, she inspects the corresponding condi-
tional PD plot. She observes that the probability of having chronic heart disease
increases with age and that there is a small bump around the age of 55.
1 All code is publicly available as part of the supplementary material.
2 Conditional interpretation methods require sampling from conditional distributions.

She samples categorical variables using a log-loss optimal classifier, and samples
continuous variables by predicting the conditional mean and resampling residuals
(thereby assuming homoscedasticity). She fits a random forest once on the dataset
for all sampling tasks. To model multivariate mixed distributions, she employs a
sequential design [5,7].
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Fig. 1. Left: Conditional Feature Importance. Right: Conditional Partial Dependence
Plot for the feature Age. The values are difficult to interpret since it is unclear how
uncertainties in model fitting and IML method estimation influence them.

Although the researcher finds the results plausible, she is unsure whether
her conclusions extend to the data generating process (DGP). Are features
with nonzero feature importance actually relevant, or are the values nonzero
by chance? Does the shape of the PDP really reflect the data? After all, various
uncertainties could influence her result: The feature importance and conditional
PD results vary when they are recomputed - even for the same model; and the
random forest fit itself is a random variable as well.

Throughout this paper, we propose confidence intervals for partial depen-
dence and feature importance values that take the uncertainties from the esti-
mation of the interpretability method and the model fitting into account. We will
return to this example in Sect. 4 and Fig. 6, where we show how our approach
can help the researcher to evaluate the uncertainty in her estimates.

1.2 Related Work

PD: For models with inherent variance estimators (such as Bayesian additive
regression trees) it is possible to construct model-based confidence intervals [11].
Moosbauer et al. [34] introduced a variance estimator for PD which is applicable
to all probabilistic models that provide information on posterior (co)variance,
such as Gaussian Processes (GPs). Furthermore, various applied articles con-
tain computations of PD confidence bands [4,16,17,22,36,37]. These approaches
either quantify only the error due to Monte Carlo approximation or do not
account for underestimation of the variance when covering learner variance. This
demonstrates the need for a theoretical underpinning of this inferential tool for
practical research.

PFI: Various proposals for confidence intervals and variance estimation exist.
Many of them are specific to the random forest PFI [3,26,27], for which Alt-
mann et al. [1] propose a test for null importance. There are also model-agnostic
accounts that are more similar to our work [45–47], however, unlike these other
proposals, we additionally correct for variance underestimation arising from
resampling [35] and relate the estimators to the proposed ground truth PFI.
An alternative approach for providing bounds on PFI is proposed by Fisher et
al. [18] via Rashomon sets, which are sets of models with similar near-optimal
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prediction accuracy. Our approach differs since our bounds are relative to a fixed
model or learning process, whereas Rashomon sets are defined exclusively by the
model performance. Furthermore, alternative approaches of “model-free” infer-
ence have been introduced [38,39,48], which aim to infer properties of the data
without an intermediary machine learning model.

2 Methods

In this section, we present our formal framework: We introduce notation and
background on PD and PFI (Sect. 2.1); formulate PD and PFI as estimators of
(proposed) ground truth estimands in the DGP (Sect. 2.3); apply bias and vari-
ance decompositions and separate different sources of uncertainty (Sect. 2.4);
and propose variance estimators and confidence intervals for the model-PD/PFI
(which only takes the variance from Monte-Carlo integration into account,
see Sect. 2.5) and the learner-PD/PFI (which also takes learner variance into
account, see Sect. 2.6).

2.1 Notation

We denote the joint distribution induced by the data generating process as PXY ,
where X is a p-dimensional random variable and Y a 1-dimensional random
variable. We consider the case where we aim to describe the true mapping from
X to the target Y with f(X) = E[Y | X = x].3 We denote a single random draw
from the DGP with x(i) and y(i), and a dataset consisting of n draws Dn.

A machine learning model f̂ is a function (f̂ : X → Y) that maps a vector x
from the feature space X ⊆ Rp to a prediction ŷ (e.g. in Y = R for regression).
The model f̂ is induced based on a dataset Dn, using a loss function L : Y×Rp →
R+

0 . The model f̂ is induced by the learner algorithm I : Δ → H that maps from
the space of datasets Δ to the function hypothesis space H. The learning process
contains an essential source of randomness, namely the training data. Since the
model f̂ is induced by the learner fed with data, it can be seen as a realization
of a random variable F with distribution PF . We assume that the model is
evaluated with a risk function R(f̂) = EXY [L(Y, f̂(X))] =

∫
L(y, f̂(x))dPXY .

The dataset Dn is split into Dn1 for model training and Dn2 for evaluation. The
empirical risk is estimated with R̂(f̂Dn2 ,λ) := 1

n2

∑n2
i=1 L

(
y(i), f̂Dn2 ,λ(x(i))

)
.

Many interpretation techniques require perturbing variables by resampling
from marginal or conditional distributions. We use φ to denote a sampler, which
can formally be seen as a density function. A dataset drawn with a marginal
sampler (denoted φmarg) follows P (Xj), and a dataset drawn with a conditional
sampler (denoted φcond) follows P (Xj |XC). The choice of the sampler affects
the interpretation of PD and PFI [2,18,32,33,45] and should depend on the

3 This choice for f is motivated by the fact that the conditional expectation is the
Bayes-optimal predictor for the L2 loss and for the log-loss optimal predictor in
binary classification [24].
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modeler’s objective. Under certain conditions, the marginal sampler allows to
estimate causal effects [49], but for correlated input features, the marginal sam-
pler may create unrealistic data and the conditional sampler may be a better
choice to draw inference [19] (see online Appendix A [31] for details).

2.2 Interpretation Techniques

Partial Dependence Plot. The PD of a feature set XS , S ⊆ {1, . . . , p} (usually
| S |= 1) for a given x ∈ XS , a model f̂ and a sampler φ : XS → {ψ | ψ density
on XC} is:

PDS,f̂,φ(x) := EX̃C∼φ(x)[f̂(x, X̃C)] =
∫

x̃c∈X̃C

φ(x)(x̃c)f̂(x, x̃c) dx̃c, (1)

where X̃C is a random variable distributed with density φ(x), and C denote the
indices of the remaining features so that S ∪ C = {1, . . . , p} and S ∩ C = ∅.
To estimate the PD for a specific function f̂ using Monte Carlo integration, we
draw r ∈ N samples for every x ∈ XS from φ(x) and denote the corresponding
dataset by Bφ(x) = (x̃(i,x)

C )i=1,...,r. The estimation is given by:

P̂DS,f̂,φ(x) =
1
r

r∑

i=1

f̂(x, x̃
(i,x)
C ). (2)

By partial dependence plot (PDP) we denote the graph that visualizes the
PDP. The PDP consists of a line connecting the points {(x(g), P̂DS,f̂ ,φ(x(g))}G

g=1,
with G grid points that are usually equidistant or quantiles of PXS

. See Fig. 1
for an example of a PDP.

For the marginal sampler, the PDP of a model f̂ visualizes the expected
effect of a feature after marginalizing out the effects of all other features [20].
For the conditional sampler, the PDP is also called M-plot and visualizes the
expected prediction given the features of interest, taking into account its asso-
ciative dependencies with all other features [2,20].

Permutation Feature Importance. The PFI of a feature set XS (usually just one
feature) for a model f̂ and a sampler φ : XC → {ψ | ψ density on XS} is defined
by:

PFIS,f̂,φ := EXC ,Y [EX̃S∼φ(XC)[L(Y, f̂(X̃S ,XC))]] − EXY [L(Y, f̂(X))], (3)

where X̃S is a random variable distributed with density φ(XC) ∼ P (XS |XC),
and XC are the remaining features {1, . . . , p} \ S. To estimate the PFI for a
specific function f̂ and a sampler φ using Monte Carlo integration, we draw
r ∈ N samples for every datapoint x

(i)
C ∈ XC (x(i)

C describes the feature values in
C of the i-th instance in the evaluation4 dataset Dn2) from φ(x(i)

C ) and denote

4 The estimation of P̂F I requires unseen data, so that the loss estimates deliver unbi-
ased results [14,29].
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the corresponding datasets by B
φ(x

(i)
C )

= (x̃(k,i)
S )k=1,...,r. The estimation is given

by:

P̂F IS,f̂ ,φ =
1
n2

n2∑

i=1

(
1
r

r∑

k=1

L(y(i), f̂(x̃(k,i)
S , x

(i)
C )) − L(y(i), f̂(x(i)))

)

. (4)

We restrict PFI to losses that can be computed per instance.5 See Fig. 1 for a
PFI example.

If we resample the perturbed variables from the marginal distribution, the
PFI of a model f̂ describes the change in loss if the feature values in XS are
randomly sampled from XS i.e. the possible dependence to XC and Y is broken
(extrapolation) [9,18]. If we sample XS conditional on the remaining variables
XC , PFI is also called the conditional PFI and may be interpreted as the addi-
tional importance of a feature given that we already know the other feature values
[12,25,32,45].

Indices. To avoid indices overhead and because PDP/PFI and their respective
estimations are always relative to a fixed feature set S and sampler φ, we will
abbreviate PDS,f̂ ,φ, P̂DS,f̂ ,φ, PFIS,f̂,φ, P̂F IS,f̂ ,φ with PDf̂ , P̂Df̂ , PFIf̂ , P̂F I f̂
respectively.

2.3 Relating the Model to the Data Generating Process

The goal of statistical inference is to gain knowledge about DGP properties
via investigating model properties. For example, under certain assumptions, the
coefficients of a generalized linear model (i.e. model properties) can be related to
parameters of the respective conditional distribution defined by the DGP, such as
conditional mean and covariance structure (i.e. DGP properties). Unfortunately,
machine learning models such as random forests or neural networks lack such a
mapping between learned model parameters and DGP properties. Interpretation
methods such as PD and PFI provide external descriptors of how features
affect the model predictions. However, PD and PFI are estimators that lack a
counterpart estimand in the DGP.

We define the ground truth version of PD and PFI, we call them DGP-PD
and the DGP-PFI, as the PD and PFI applied to the true function f instead of
the trained model f̂ :

Definition 1 (DGP-PD). The DGP-PD is the PD applied to function f :
X 	→ Y of the DGP with sampler φ : XS → {ψ | ψ density on XC}.

DGP-PD(x) := PDf (x)

5 This excludes losses such as the area under the receiver operating characteristic curve
(AUC).
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Definition 2 (DGP-PFI). The DGP-PFI is the PFI applied to function f :
X 	→ Y of the DGP with sampler φ : XC → {ψ | ψ density on XS}.

DGP-PFI := PFIf

Note that the DGP-PD and DGP-PFI may not be well-defined for all possible
samplers. The DGP f(x) = E[Y | X = x] for instance is undefined for x ∈ X
with zero density (ψX(x) = 0). For the marginal sampler, for instance, DGP-PD
and DGP-PFI might not be defined if the input features show strong correlations
[25]. Conditional samplers, on the other side, do not face this threat as they
preserve dependencies between features and therefore do not create unrealistic
inputs [2,18,32,45].6 However, under certain conditions, it can still be useful
to also use other samplers than the conditional samplers to gain insight into
the DGP. For example, under certain conditions, the marginal PDP allows to
estimate causal effects [49] or recover relevant properties of linear DGPs [23].

Clearly, the function f is unknown in most applications, which makes it
impossible to know the DGP-PD and DGP-PFI for these cases. However, Def-
initions 1 and 2 enable, at least in theory, to compare the PD/PFI of a model
with the PD/PFI of the DGP in simulation studies and to research statistical
biases. More importantly, the ground truth definitions of DGP-PD and DGP-
PFI allow us to treat PD and PFI as statistical estimators of properties of the
DGP.

In this work, we study PD and PFI as statistical estimators of the ground
truth DPG-PD and DGP-PFI – including bias and variance decompositions –
as well as confidence interval estimators. DGP-PD and DGP-PFI describe inter-
esting properties of the DGP concerning the associational dependencies between
the predictors and the target [19]; however, practitioners must decide whether
these properties are relevant to answer their question or if different tools of
model-analysis provide more interesting estimands.

2.4 Bias-Variance Decomposition

The definition of DGP-PD and DGP-PFI gives us a ground truth to which the
PD and PFI of a model can be compared – at least in theory and simulation. The
error of the estimation (mean squared error between estimator and estimand) can
be decomposed into the systematic deviation from the true estimand (statistical
bias) and the learner variance. PD and PFI are both expectations over the
(usually unknown) joint distribution of the data. The expectations are therefore
typically estimated from data using Monte Carlo integration, which adds another
source of variation to the PFI and PD estimates. Figure 2 visualizes the chain of
errors that stand between the estimand (DGP-PD, DGP-PFI) and the estimates
(P̂D, P̂F I).
6 To illustrate the idea of unrealistic data points, think of two strongly correlated

features such as the weight and height of a person. Not every combination of feature
values is possible – a person with a weight of 4kg and a height of 2m is from a
biological perspective inconceivable.
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Fig. 2. A model f̂ deviates from f due to learner bias and variance. Similarly, ̂PD and

P̂F I estimates deviate from their ground truth versions DGP-PD and DGP-PFI due
to bias, variance, and Monte Carlo integration (MC).

For the PD, we compare the mean squared error (MSE) between the true
DGP-PD (PDf as defined in Eq. 1) with the theoretical PD of a model instance
f̂ (PDf̂ ) at position x.

EF [(PDf (x) − PDf̂ (x))2] = (PDf (x) − EF [PDf̂ (x)])2
︸ ︷︷ ︸

Bias2

+ VF [PDf̂ (x)]
︸ ︷︷ ︸

V ariance

Here, F is the distribution of the trained models, which can be treated as
a random variable. The bias-variance decomposition of the MSE of estima-
tors is a well-known result [21]. For completeness, we provide a proof in
online Appendix B [31]. Figure 3 visualizes bias and variance of a PD curve,
and the variance due to Monte Carlo integration.

Similarly, the MSE of the theoretical PFI of a model (Eq. 3) can be
decomposed into squared bias and variance. The proof can be found in
online Appendix C [31].

EF [(PFIf̂ − PFIf )2] = Bias2F [PFIf̂ ] + VF [PFIf̂ ]

The learner variance of PD/PFI stems from variance in the model fit, which
depends on the training sample. When constructing confidence intervals, we
must take into account the variance of PFI and PDP across model fits, and
not just the error due to Monte Carlo integration. As we show in an application
(Sect. 4), whether PD and PFI are based on a single model or are averaged across
model refits can impact both the interpretation and especially the certainty of
the interpretation. We therefore distinguish between model-PD/PFI and learner-
PD/PFI, which are averaged over refitted models. Variance estimators for model-
PD/PFI only account for variance due to Monte Carlo integration.

2.5 Model-PD and Model-PFI

Here, we study the model-PD and the model-PFI, and provide variance and con-
fidence interval estimators. With the terms model-PD and model-PFI, we refer
to the original proposals for PD [20] and PFI [9,18] for fixed models. Condition-
ing on a given model f̂ ignores the learner variance due to the learning process.
Only the variance due to Monte Carlo integration can be considered in this case.
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Fig. 3. Illustration of bias, variance and Monte Carlo approximation for the PD with
marginal sampling. Left: Various PDPs using different data for the Monte Carlo inte-
gration, but keeping the model fixed. Right: The green dashed line shows the DGP-PDP
of a toy example. Each thin line is the PDP for the model fitted with a different sam-
ple, and the thick blue line is the average thereof. Deviations of the DGP-PDP from
the expected PDP are due to bias. Deviations of the individual model-PDPs from the
expected PDP are due to learner variance. (Color figure online)

The model-PD estimator (Eq. (2)) is unbiased regarding the theoretical
model-PD (Eq. (1)). Similarly, the estimated model-PFI (Eq. 4) is unbiased with
respect to the theoretical model-PFI (Eq. 3). These findings rely on general prop-
erties of Monte Carlo integration, which state that Monte Carlo integration con-
verges to the integral due to the law of large numbers. Proofs can be found
in online Appendix D and F [31]. Moreover, under certain conditions, model-
PD and model-PFI are unbiased estimators of the DGP-PD (Theorem 1) and
DGP-PFI (Theorem 2), respectively.

To quantify the variance due to Monte Carlo integration and to construct
confidence intervals, we calculate the variance across the sample. For the model-
PD, the variance can be estimated with:

V̂(P̂Df̂ (x)) =
1

r(r − 1)

r∑

i=1

(
f̂(x, x̃

(i,x)
C ) − P̂Df̂ (x)

)2

. (5)

Similarly for the model-PFI, the variance can be estimated with:

V̂(P̂F I f̂ ) =
1

n2(n2 − 1)

n2∑

i=1

(
L(i) − P̂F I f̂

)2

, (6)

where L(i) = 1
r

∑r
k=1 L(y(i), f̂(x̃(k,i)

S , x
(i)
C )) − L(y(i), f̂(x(i))).

The model-PD and model-PFI are mean estimates of independent samples
with estimated variance. As such, they can be modelled approximately with a t-
distribution with r−1 and n2−1 degrees of freedom, respectively. This allows us
to construct point-wise confidence bands for the model-PD and confidence inter-
vals for the model-PFI that capture the Monte Carlo integration uncertainty. We
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define point-wise 1 − α-confidence bands around the estimated model-PD:

CI
̂PDf̂ (x)

=
[

P̂Df̂ (x) ± t
1− α

2

√
V̂(P̂Df̂ (x))

]

. (7)

where t
1− α

2
is the 1 − α/2 quantile of the t-distribution with r − 1 degrees of

freedom. We proceed in the same manner for PFI but with n2 − 1 degrees of
freedom:

CI
̂PFI f̂

=
[

P̂F I f̂ ± t
1− α

2

√
V̂(P̂F I f̂ )

]

. (8)

Confidence intervals for model-PD and model-PFI ignore the learner vari-
ance. Therefore, the interpretation is limited to variance regarding the Monte
Carlo integration, and we cannot generalize results to the DGP. The model-
PD/PFI and their confidence bands/intervals are applicable when the focus is a
fixed model.

2.6 Learner-PD and Learner-PFI

To account for the learner variance, we propose the learner-PD and the learner-
PFI, which average the PD/PFI over m model fits f̂d with d ∈ {1, . . . , m}. The
models are produced by the same learning algorithm, but trained on different
data samples, denoted by training sample indices Bd and the remaining test data
B−d so that Bd ∩B−d = ∅ and Bd ∪B−d = Dn. The learner-variants are averages
of the model-variants, where for each model-PD/PFI, the model is repeatedly
“sampled” from the distribution of models F .

The learner-PD is therefore the expected PD over the distribution of models
generated by the learning process, i.e. EF [PDf̂ (x)]. We estimate the learner-PD
with:

P̂D(x) =
1
m

m∑

d=1

1
r

r∑

i=1

f̂d

(
x, xi,x,d

C

)
, (9)

where f̂d is trained on sample indices Bd and the PD estimated with data Bφ(x),d

using a sampler φ m-times.
Following the PD, the learner-PFI is the expected PFI over the distribution of

models produced by the learner: EF [PFIf̂ ,φ]. We propose the following estimator
for the learner-PFI:

P̂F I =
1
m

m∑

d=1

1
n2

n2∑

i=1

(
¯̃L(i)

d − L
(i)
d

)
, (10)

where losses L
(i)
d = L(y(i), f̂d(x(i))) and ¯̃L(i)

d = 1
r

∑r
k=1 L(y(i), f̂d(x̃

(k,i,d)
S , x

(i)
C ))

are estimated with data B−d and m-times sampled data Bφ(x),d for a model
trained on data Bd. A similar estimator has been proposed by Janitza et al. [27]
for random forests.
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Bias of the Learner-PD. The learner-PD is an unbiased estimator of the
expected PD over the distribution of models F , since

EF [P̂D(x)] = EF

[
1
m

m∑

d=1

P̂Df̂d
(x)

]

=
m

m
EF [PDf̂d

(x)] = EF [PDf̂d
(x)].

The bias of the learner-PD regarding the DGP-PD is linked to the bias of the
learner. If the learner is unbiased, the PDs are unbiased as well.

Theorem 1. Learner unbiasedness implies PD unbiasedness:
EF [f̂(x)] = f(x) =⇒ EF [PDf̂ (x)] = PDf (x)

Proof Sketch 1. Applying Fubini’s Theorem allows us to switch the order of
integrals. Further replacing EF [f̂(x)] with f proves the unbiasedness. A full proof
can be found in online Appendix E [31].

By learner bias, we refer to the expected deviation between the estimated f̂
and the true function f . Particularly interesting in this context is the inductive
bias (i.e. the preference of one generalization over another) that is needed for
learning ML models that generalize [30]. A wrong choice of inductive bias, such
as searching models f̂ in a linear hypotheses class when f is non-linear, leads
to deviations of the expected f̂ from f . But there are also other reasons why a
bias of f̂ from f may occur, for example if using an insufficiently large sample of
training data. We discuss the critical assumption of learner unbiasedness further
in Sect. 5.

Bias of the Learner-PFI. The learner-PFI is unbiased regarding the expected
learner-PFI over the distribution of models F , since the learner-PFI is a simple
mean estimate. However, unlike the learner-PD, learner unbiasedness does not
generally imply unbiasedness of the learner-PFI regarding the DGP-PFI. This is
generally only the case, if we use the conditional sampler.

Theorem 2. If the learner is unbiased with EF [f̂ ] = f and the L2-loss is used,
then the conditional model-PFI and conditional learner-PFI are unbiased esti-
mators of the conditional DGP-PFI.

Proof Sketch 2. Both L and L̃ can be decomposed into bias, variance, and irre-
ducible error. Due to the subtraction, the irreducible error vanishes, and the dif-
ferences of biases and variances remain. Model unbiasedness sets the bias terms
to zero and variance becomes zero due to conditional sampling. The extended
proof can be found in online Appendix G [31].

Intuitively, the model-PFI and learner-PFI should tend to have a negative
bias and therefore underestimate the DGP-PFI. A model cannot use more infor-
mation about the target than what is encoded in the DGP. However, as Theo-
rem 3 shows, under specific conditions, the PFI using conditional sampling can
be larger than the DGP-PFI.
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Theorem 3. The difference between the conditional model-PFI and the condi-
tional DGP-PFI is given by:

PFIf − PFIf̂ = 2EXC

[
VXS |XC

[f ] − CovXS |XC
[f, f̂ ]

]
.

Proof Sketch 3. For the L2 loss, the expected loss of a model f̂ can be decom-
posed into the expected loss between f̂ and f and the expected variance of Y
given X. Due to the subtraction, the latter term vanishes. The remainder can
be simplified using that Y |= X̃S | XC and P (X̃S ,XC) = P (XS ,XC) due to the
conditional sampling. The extended proof can be found in online Appendix H [31].

However, for an overestimation of the conditional PFI to occur, the expected
conditional variance of f̂ must be greater than the one of f . Moreover, f̂ and f
must have a large expected conditional covariance, meaning that f̂ has learned
something about f .

Variance Estimation. The learner-PD and learner-PFI vary not only due
to learner variance (refitted models), but also due to using different samples
each time for the Monte Carlo integration. Therefore, their variance estimates
capture the entire modeling process. Consequently, learner-PD/PFI along with
their variance estimators bring us closer to the DGP-PD/PFI, and only the
systematic bias remains unknown.

We can estimate this point-wise variance of the learner-PD with:

V̂(P̂D(x)) =
(

1
m

+ c

)

· 1
(m − 1)

m∑

d=1

(P̂Df̂d
(x) − P̂D(x))2

And equivalently for the learner-PFI:

V̂(P̂F I) =
(

1
m

+ c

)

· 1
(m − 1)

m∑

d=1

(P̂F I f̂d
− P̂F I)2

The correction term c depends on the data setting. In simulation settings that
allow us to draw new training and test sets for each model, we can use c = 0,
yielding the standard variance estimators. In real world settings, we usually
have a fixed dataset of size n, and models are refitted using resampling tech-
niques. Consequently, data are shared by model refits, and variance estimators
will underestimate the true variance [35]. To correct the variance estimate of the
generalization error for bootstrapped or subsampled models, Nadeau and Bengio
[35] suggested the correction term c = n2

n1
(where n2 and n1 are sizes of test and

training data). However, the correction remains a rough correction, relying on
the strongly simplifying assumption that the correlation between model refits
depends only on the number of shared observations in the respective training
datasets and not on the specific observations that they share. While this assump-
tion is usually wrong, we show in Sect. 3.1 that the correction term offers a vast
improvement for variance estimation – compared to using no correction.
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Confidence Bands and Intervals. Since the learner-PD and learner-PFI are
means with estimated variance, we can use the t-distribution with m−1 degrees
of freedom to construct confidence bands/intervals, where m is the number of
model fits. The point-wise confidence band for the learner-PD is:

CI
̂PD(x)

=
[

P̂D(x) ± t
1− α

2

√

V̂(P̂D(x))
]

,

where t
1− α

2
is the respective 1 − α/2 quantile of the t-distribution with m − 1

degrees of freedom. Equivalently, we propose a confidence interval for the learner-
PFI:

CI
̂PFI

=
[

P̂F I ± t
1− α

2

√

V̂(P̂F I)
]

.

Taking the learner variance into account can affect the interpretation, as we
show in the application in Sect. 4. An additional advantage of the learner-PD
and learner-PFI is that they make better use of the data, since a larger share of
the data is employed as test data compared to only using a small holdout set.

3 Simulation Studies

In this Section, we study the coverage of the confidence intervals for the learner-
PD/PFI on simulated examples (Sect. 3.1) and compare our proposed refitting-
based variance estimation with model-based variance estimators (Sect. 3.2).

3.1 Confidence Interval Coverage Simulation

In simulations, we compared confidence interval performance between bootstrap-
ping and subsampling, with and without variance correction. We simulated two
DGPs: a linear DGP was defined as y = f(x) = x1−x2+ε and a non-linear DGP
as y = f(x) = x1 − √

1 − x2 + x3 · x4 + (x4/10)2 + ε. All features were uniformly
sampled from the unit interval [0; 1], and for both DGPs, we set ε ∼ N(0, 1). We
studied the two settings “simulation” and “real world” as described in Sect. 2.1.
In both settings, we trained linear models (lm), regression trees (tree) and ran-
dom forests (rf) each 15 times, and computed confidence intervals for the learner-
PD and learner-PFI across the 15 refitted models. In the “simulation” setting,
we sampled n ∈ {100, 1000} fresh data points for each model refit, where 63.2%
of the data were used for training and the remaining 36.8% for PDP and PFI
estimation.7

In the “real world” setting, we sampled n ∈ {100, 1000} data points once per
experiment, and generated 15 training data sets using a bootstrap (sample size
n with replacement, which yields 0.632 · n unique data points in expectation) or
subsampling (sample size 0.632 · n without replacement). In both settings, the
learner-PD and learner-PFI as well as their respective confidence intervals were

7 We choose this training size (63.2%) to match the expected number of unique samples
when using bootstrapping, which allows to compare bootstrapping and subsampling.
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Table 1. Coverage Probability of the 95% Confidence Bands/Intervals for PDP and
PFI. boot = bootstrap, subs = subsampling, * = with adjustment.

dgp model n PD PFI

boot boot* subs subs* ideal boot boot* subs subs* ideal

linear lm 100 0.41 0.89 0.34 0.82 0.95 0.27 0.70 0.23 0.63 0.94

linear lm 1000 0.41 0.89 0.33 0.80 0.95 0.25 0.68 0.21 0.60 0.95

linear rf 100 0.39 0.86 0.36 0.83 0.95 0.44 0.92 0.39 0.88 0.95

linear rf 1000 0.38 0.87 0.35 0.83 0.95 0.42 0.90 0.38 0.86 0.95

linear tree 100 0.54 0.96 0.47 0.92 0.95 0.52 0.97 0.42 0.90 0.95

linear tree 1000 0.57 0.96 0.48 0.91 0.95 0.42 0.90 0.34 0.81 0.95

non-linear lm 100 0.43 0.90 0.36 0.84 0.95 0.31 0.81 0.25 0.72 0.94

non-linear lm 1000 0.41 0.89 0.33 0.81 0.95 0.25 0.67 0.21 0.59 0.95

non-linear rf 100 0.39 0.87 0.36 0.84 0.95 0.47 0.94 0.43 0.91 0.95

non-linear rf 1000 0.38 0.86 0.36 0.83 0.95 0.41 0.89 0.38 0.86 0.95

non-linear tree 100 0.58 0.98 0.51 0.95 0.95 0.68 0.99 0.56 0.96 0.94

non-linear tree 1000 0.59 0.97 0.51 0.94 0.95 0.58 0.97 0.46 0.92 0.95

computed over the 15 retrained models. We repeated the experiment 10,000 times
and counted how often the estimated confidence intervals covered the expected
PD or PFI (EF [PDf̂ ] and EF [PFIf̂ ]) over the distribution of models F .8 These
expected values were computed using 10,000 separate runs. The coverage esti-
mates were averaged across features per scenario and for PD also across grid
points ({0.1, 0.3, 0.5, 0.7, 0.9}) for all features.

Table 1 shows that in the “simulation” setting (“ideal”), we can recover confi-
dence intervals using the standard variance estimation with the desired coverage
probability. However, in the “real world” setting, the confidence intervals for
both the learner-PD and learner-PFI are too narrow across all scenarios and
both resampling strategies when the intervals are based on naive variance esti-
mates. Some coverage probabilities are especially low, such as for linear models
with 30%–40%.

The coverage probabilities drastically improve when the correction term is
used (see Fig. 4a). However, in the simulated scenarios, these probabilities are
still somewhat too narrow. For the linear model, the confidence intervals were the
narrowest, with coverage probabilities of around 80%–90% for PD and 60%–80%
for PFI across DGPs and sample sizes. The PD confidence bands were not heavily
affected by increasing sample size n, but the PFI estimates became slightly
narrower in most cases. In the case of decision trees, the adjusted confidence
intervals were sometimes too large, especially for the adjusted bootstrap.

Except for trees on the non-linear DGP, the bootstrap outperformed sub-
sampling in terms of coverage, i.e. the coverage was closer to the 95% level and
rather erred on the side of “caution” with wider confidence intervals (see Fig. 4b).

8 The coverage does not refer to the DGP-PD/PFI, but rather to the expected learner-
PD/PFI, as we studied the choices of resampling and correction for the learner
variance.
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Fig. 4. Confidence interval width vs. coverage for bootstrapping (boot) and subsam-
pling (subs), segments connect identical scenarios.

As recommended by Nadeau and Bengio [35], we used 15 refits. We additionally
analyzed how the coverage and interval width changed by increasing refits from
2 to 30 and noticed that the coverage worsened with more refits while the width
of the confidence intervals decreased. Increasing the number of refits incurs an
inherent trade-off between interval width and coverage: The more refits are con-
sidered, the more accurate the learner-PFI and learner-PD become, and also
the more certain the variance estimates become, scaling with 1/m. However,
there is a limit to the information in the data, such that additional refits falsely
reduce the variance estimate and the confidence intervals become too narrow.
To refit the model 10–20 times seemed to be an acceptable trade-off between
coverage and interval width, as demonstrated in Fig. 5. Below ∼10 refits, the
confidence intervals were large and the mean PD/PFI estimates have a high
variance. Above ∼20 refits, the widths no longer decreased substantially. The
figures for the other scenarios can be found in online Appendix I [31].9 With our

9 The CI coverage and width: for PD with n= 100 can be found in Figure I.1 and
Figure I.2; for PD with n = 1000 can be found in Figure I.3 and Figure I.4; for PFI
with n = 100 can be found in Figure I.5 and Figure I.6; for PFI with n = 1000 can
be found in Figure I.7 and Figure I.8.
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simulation results, we could show that employing confidence intervals using the
naive variance estimation (without correction) results in considerably too narrow
intervals. While the simple correction term by Nadeau and Bengio [35] does not
always provide the desired coverage probability, it is a vast improvement over
the naive approach. We therefore recommend using the correction when comput-
ing confidence intervals for learner-PD and learner-PFI, as this is currently the
best approach available. We also recommend refitting the model approximately
15 times. For more “cautious” confidence intervals, we recommend using confi-
dence intervals based on resampling with replacement (bootstrap) over sampling
without replacement (subsampling). However, besides wider confidence intervals,
the bootstrap also requires additional attention when model-tuning with inter-
nal resampling is used; otherwise, data points may inadvertently be used in both
training and validation datasets.

Fig. 5. Average PD confidence band width (left) and coverage (right) as a function of
the number of refitted models for the random forest on the non-linear DGP.

3.2 Comparison to Model-Based Approaches

While our methods based on model-refits provide confidence intervals for PD
and PFI in a model-agnostic manner, it is also possible to exploit (co)variance
estimates of probabilistic models to construct confidence intervals. Here, we will,
for the case of PD10, compare our approach with the model-based approach of
Moosbauer et al. [34] applied to a Gaussian Process (GP) and a linear model
(LM).11 We find that our approach more reliably delivers better coverages that
are closer to the 1 − α confidence level; this can be explained by the fact that
the model-based approach ignores the variance in Monte Carlo integration.

10 We do not know of any application of Moosbauer et al.’s [34] approach to PFI of
probabilistic models.

11 More details on the approach of Moosbauer et al. [34] are provided in
online Appendix J [31].
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We consider the following simulation setting:

DGP: Y = 4X1 − 2X2 + 2X3 − X4 + X5 + ε

with Xj
i.i.d.∼ U(0, 1) for all j ∈ {1, ..., 5}. Given a DGP of the form y = f(x) + ε

the distribution of ε is set to ε ∼ N(0, (0.2 σ(f(x)))2).
We calculate the DGP-PD analytically. The experiments are performed 1000

times for n = 200 and n = 1000, where a random sample of n1 = 0.632 · n is
used to fit the models and the remaining n2 = 0.368 · n observations are used to
calculate the PD. Since model-based variance estimates for linear models can be
derived analytically based on the variance of their coefficients, we additionally
compare these estimates to our resampling-based approach (i.e. the learner-PD)
for a correctly specified linear model. The model-based variance estimates can
be calculated by one model fit per repetition. In contrast, we use 15 refits on
subsampled data sets per repetition to compute the variance estimate for the
resampling-based approach.1213 We choose the grid points {0.1, 0.3, 0.5, 0.7, 0.9}
and a confidence level of 0.95 to evaluate the mean and variance estimates of
the PDs. Table 2 shows the results for both the model-based (mod) and the
adjusted subsampling-based (subs) approach. While the subsampling-based app-
roach shows almost perfect coverages for the different settings, the model-based
approach is far off the nominal level with values around 0.35 for the correctly
specified linear model. This gap can be explained by the MC integration variance
which is not incorporated in the model-based approaches. Hence, if the MC error
is relatively high compared to the model variance, coverages are bad. To illus-
trate this relationship, we calculated the average standard deviation of the MC
integration variance estimator (see Eq. (5)) for the model-based approaches (see
Table 2). Since the confidence bands of these approaches only cover the model
variance, the confidence width is directly proportional to the model variance. If
we compare the “MC se” column with the average widths of the model-based
approach, it is observable that coverages are rather low (e.g., 0.34 for LM with
n = 200) in the case where “MC se” divided by width is rather high (e.g.,
0.15/0.15 = 1) and vice versa.

Thus, if the main goal is to quantify both uncertainty sources inherent in
the PD estimation and thus to receive reasonable coverages, the model-based
approach cannot be recommended since only one of two sources of variability
are covered by the estimates. Even for the linear model, which is commonly used
for inferential purposes, the confidence bands for the PD estimates might be far
too conservative as shown in Table 2. The subsampling-based variance estimates
we proposed in this work however cover both the learner variance and the MC
error and provide satisfying coverage values.

12 We use a marginal sampler for perturbations (since we assume uncorrelated features
in all scenarios).

13 We did not consider the bootstrapping approach in our experiments as we encoun-
tered numerical issues in the invertability of the covariance matrix (due to duplicated
values introduced by bootstrap) [42].
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Table 2. Coverage probabilities for 95% confidence bands of PD estimates for model-
based (mod) and subsampling-based (subs) approaches. Results are averaged over all
features and grid points for the GP and LM. The experiments were conducted on two
different sample sizes n. Furthermore, mean (standard deviation) of confidence width
are reported for both approaches. The last column contains the standard deviation of
the MC error for the model-based approach.

dgp model n coverage width (sd)

mod subs mod subs mod

1 gp 200 0.66 0.95 0.36 (0.19) 0.48 (0.11) 0.15

1 gp 1000 0.71 0.97 0.28 (0.31) 0.24 (0.07) 0.07

1 lm 200 0.34 0.95 0.15 (0.03) 0.41 (0.10) 0.15

1 lm 1000 0.35 0.95 0.06 (0.01) 0.19 (0.05) 0.07

Fig. 6. Top: Conditional Learner-PFI and model-PFI with point-wise 95%-confidence
intervals for the random forest. Bottom: Conditional Learner-PDP and model-PDP
with point-wise 95%-confidence bands for the random forest and feature Age.

4 Application

We apply our proposed estimators to the motivational example from Sect. 1.1.
We supposed that a researcher predicted chronic heart disease [15] (n = 918)
from sociological and medical indicators such as age, blood pressure and max-
imum heart rate. She fitted one random forest and estimated conditional PFI
and conditional PDPs to interpret the result.

Instead of only computing the conditional PFI and conditional PDP for one
model, we estimate the proposed conditional model-PFI and conditional learner-
PFI along with the proposed confidence intervals. For the learner-based insights,
we therefore refitted the model 15 times on resampled training sets.

Figure 6 shows model and learner based conditional PFI and conditional PDP
with the corresponding confidence intervals (α = 0.05).
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Learner-PFI and model-PFI disagree on the ordering of the features: they
agree that slope of the ECG segment (STSlope) and the type of chest pain
(ChestPainType) are the most important features; but learner-PFI ranks sex
(Sex) and ST depression induced by exercise relative to rest (Oldpeak) next,
while model-PFI ranks cholesterol (Cholesterol) second and resting state ECG
(RestingECG) third. For both model-PFI and learner-PFI all except two confi-
dence intervals include zero, namely STSlope and ChestPainType. The confi-
dence intervals for model-PFI and learner-PFI indicate that both learner vari-
ance and the uncertainty stemming from the Monte Carlo integration are rel-
atively high. The model-PFI cannot tell us to what extent the estimate varies
due to learner variance; only the learner-PFI can quantify the learner variance.

Figure 6, bottom row, shows both the conditional model-PDP and the con-
ditional learner-PDP for age (Age). Model-PDP and learner-PDP agree that
individuals of higher age are more likely to have heart disease with a strong
increase in prevalence around the age of 55. However, the confidence bands of
the learner-PDP are wider than those of the model-PDP. Furthermore, the bump
that can be observed in the model-PDP around the age of 50 is smoother in the
learner PDP and should partly be attributed to uncertainties involved in model
fitting. Neglecting the learner variance would mean being overconfident about
the partial dependence curve. In particular, the Monte Carlo approximation error
decreases with 1/n as the sample size n for PD and PFI estimation increases.
Wrongly interpreted, this can lead to a false sense of confidence in the estimated
effects and importance since only one model is considered and learner variance
is ignored.

5 Discussion

We related the PD and the PFI to the DGP, proposed variance and confidence
intervals, and discussed conditions for inference. Our derivations were motivated
by taking an external view of the statistical inference process and postulating
that there is a ground truth counterpart to PD/PFI in the DGP. To the best
of our knowledge, statistical inference via model-agnostic interpretable machine
learning is already used in practice, but under-explored in theory.

A critical assumption for inference of effects and importance using inter-
pretable machine learning is the unbiasedness of the learner. The learner bias
is difficult to test, and can be introduced by e.g. choice of model class, regu-
larization, and feature selection. For example, regularization techniques such as
LASSO introduce a small bias on purpose [44] to decrease learner variance and
improve predictive performance. We must better understand how specific biases
affect the prediction function and consequently PD and PFI estimates.

Another crucial limitation for inference of PD and PFI is the underestimation
of variance due to data sharing between model refits. While we could show that a
simple correction of the variance [35] vastly improves the coverage, a proper esti-
mation of the variance remains an open issue. A promising approach relying on
repeated nested cross validation to correctly estimate the variance was recently



476 C. Molnar et al.

proposed by Bates et al. [6]. However, this approach is more computationally
intensive by a factor of up to 1,000.

Furthermore, samplers are not readily available. Especially conditional sam-
pling is a complex problem, and samplers must be trained using data. Training
samplers even introduces another source of uncertainty to our estimates that we
neglected in our work. It is difficult to separate this source of uncertainty from
the uncertainty of the model learner, since trained samplers are correlated not
only with each other, but possibly also with the trained models. We see integrat-
ing sampler uncertainty as an important step in providing reliable uncertainty
estimates in practice, but we leave this to future work.

Statements and Declarations

Funding. This project is supported by the Bavarian State Ministry of Science
and the Arts, the Bavarian Research Institute for Digital Transformation (bidt),
the German Federal Ministry of Education and Research (BMBF) under Grant
No. 01IS18036A, by the German Research Foundation (DFG) – Emmy Noether
Grant 437611051 to MNW, and the Carl Zeiss Foundation (project on “Certifi-
cation and Foundations of Safe Machine Learning Systems in Healthcare”). The
authors of this work take full responsibilities for its content.

Availability of Data, Code, and Online Appendix. The data used in the appli-
cation is openly available and referenced in this paper. The code for visualiza-
tions, simulations and the application is written in the R programming language
[40] and is publicly available via https://github.com/gcskoenig/paper inference
code. The online Appendix is available via [31].

References
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