Skip to main content

Dual Domain Motion Artifacts Correction for MR Imaging Under Guidance of K-space Uncertainty

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14229))

  • 3404 Accesses

Abstract

Magnetic resonance imaging (MRI) may degrade with motion artifacts in the reconstructed MR images due to the long acquisition time. In this paper, we propose a dual domain motion correction network (D\(^2\)MC-Net) to correct the motion artifacts in 2D multi-slice MRI. Instead of explicitly estimating the motion parameters, we model the motion corruption by k-space uncertainty to guide the MRI reconstruction in an unfolded deep reconstruction network. Specifically, we model the motion correction task as a dual domain regularized model with an uncertainty-guided data consistency term. Inspired by its alternating iterative optimization algorithm, the D\(^2\)MC-Net is composed of multiple stages, and each stage consists of a k-space uncertainty module (KU-Module) and a dual domain reconstruction module (DDR-Module). The KU-Module quantifies the uncertainty of k-space corruption by motion. The DDR-Module reconstructs motion-free k-space data and MR image in both k-space and image domain, under the guidance of the k-space uncertainty. Extensive experiments on fastMRI dataset demonstrate that the proposed D\(^2\)MC-Net outperforms state-of-the-art methods under different motion trajectories and motion severities.

J. Wang and Y. Yang—Both authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-masni, M.A., et al.: Stacked u-nets with self-assisted priors towards robust correction of rigid motion artifact in brain mri. Neuroimage 259, 119411 (2022)

    Article  Google Scholar 

  2. Alexander, L., Hannes, N., Pohmannand, R., Bernhard, S.: Blind retrospective motion correction of MR images. Magn. Reson. Med. 70(6), 1608–1618 (2013)

    Google Scholar 

  3. Armanious, K., et al.: MedGAN: medical image translation using GANs. Comput. Med. Imaging Graph. 79, 101684 (2020)

    Article  Google Scholar 

  4. Atkinson, D., Hill, D.L.G., Stoyle, P.N.R., Summers, P.E., Keevil, S.F.: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans. Med. Imaging 16(6), 903–910 (1997)

    Article  Google Scholar 

  5. Ben, A.D., et al.: Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions. Neuroimage 230, 117756 (2021)

    Article  Google Scholar 

  6. Daniel, P., et al.: Scout accelerated motion estimation and reduction (SAMER). Magn. Reson. Med. 87(1), 163–178 (2022)

    Article  Google Scholar 

  7. Florian, K., et al.: fastMRI: a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning. Radiol. Artif. Intell. 2(1) (2020)

    Google Scholar 

  8. Haskell, M.W., et al.: Network accelerated motion estimation and reduction (NAMER): convolutional neural network guided retrospective motion correction using a separable motion model. Magn. Reson. Med. 82(4), 1452–1461 (2019)

    Article  Google Scholar 

  9. Haskell, M.W., Cauley, S.F., Wald, L.L.: Targeted motion estimation and reduction (TAMER): data consistency based motion mitigation for MRI using a reduced model joint optimization. IEEE Trans. Med. Imaging 37(5), 1253–1265 (2018)

    Article  Google Scholar 

  10. Junchi, L., Mehmet, K., Mark, S., Jie, D.: Motion artifacts reduction in brain MRI by means of a deep residual network with densely connected multi-resolution blocks (DRN-DCMB). Magn. Reson. Imaging 71, 69–79 (2020)

    Article  Google Scholar 

  11. Kay, N., Peter, B.: Prospective correction of affine motion for arbitrary MR sequences on a clinical scanner. Magn. Reson. Med. 54(5), 1130–1138 (2005)

    Article  Google Scholar 

  12. Kuzmina, E., Razumov, A., Rogov, O.Y., Adalsteinsson, E., White, J., Dylov, D.V.: Autofocusing+: Noise-resilient motion correction in magnetic resonance imaging. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 365–375. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_35

    Chapter  Google Scholar 

  13. Lee, J., Kim, B., Park, H.: MC2-Net: motion correction network for multi-contrast brain MRI. Magn. Reson. Med. 86(2), 1077–1092 (2021)

    Article  Google Scholar 

  14. Levac, B., Jalal, A., Tamir, J.I.: Accelerated motion correction for MRI using score-based generative models. arXiv (2022). https://arxiv.org/abs/2211.00199

  15. Lucilio, C.G., Teixeira, R.P.A.G., Hughes, E.J., Hutter, J., Price, A.N., Hajnal, J.V.: Sensitivity encoding for aligned multishot magnetic resonance reconstruction. IEEE Trans. Comput. Imaging 2(3), 266–280 (2016)

    Article  MathSciNet  Google Scholar 

  16. Maxim, Z., Julian, M., Michael, H.: Motion artifacts in MRI: a complex problem with many partial solutions. J. Magn. Reson. Imaging 42(4), 887–901 (2015)

    Article  Google Scholar 

  17. Singh, N.M., Iglesias, J.E., Adalsteinsson, E., Dalca, A.V., Golland, P.: Joint frequency and image space learning for MRI reconstruction and analysis. J. Mach. Learn. Biomed. Imaging (2022)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Thomas, K., Karim, A., Jiahuan, Y., Bin, Y., Fritz, S., Sergios, G.: Retrospective correction of motion-affected MR images using deep learning frameworks. Magn. Reson. Med. 82(4), 1527–1540 (2019)

    Article  Google Scholar 

  20. Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  21. Upadhyay, U., Chen, Y., Hepp, T., Gatidis, S., Akata, Z.: Uncertainty-guided progressive GANs for medical image translation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 614–624. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_58

    Chapter  Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  23. Wood, M.L., Henkelman, R.M.: MR image artifacts from periodic motion. Med. Phys. 12(2), 143–151 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R &D Program of China (2022YFA1004201), National Natural Science Foundation of China (12090021, 12125104, 61721002, U20B2075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Yang, Y., Yang, Y., Sun, J. (2023). Dual Domain Motion Artifacts Correction for MR Imaging Under Guidance of K-space Uncertainty. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics