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Abstract. Children diagnosed with Autism Spectrum Disorder (ASD)
often exhibit agitated behaviors that can isolate them from their peers.
This study aims to examine if wearable data, collected during every-
day activities, could effectively detect such behaviors. First, we used the
Empatica E4 device to collect real data including Blood Volume Pulse
(BVP), Electrodermal Activity (EDA), and Acceleration (ACC), from a 9-
years-old male child with autism over 6months. Second, we analyzed and
extracted numerous features from each signal, and employed different clas-
sifiers including Support Vector Machine (SVM), Random Forest (FR),
eXtreme Gradient Boosting (XGBoost), and TabNet. Our preliminary
findings showed good performance in comparison with the state of the
art. Notably, XGBoost demonstrated the highest performance in terms
of accuracy, precision, recall, and F1-score. The accuracy achieved in this
paper using XGBoost is equal to 80% which exceeds previous research.

Keywords: ASD · Agitated behaviors · Wearable data · Features
extraction · Classification

1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disability charac-
terized by persistent difficulties in social communication and interaction [1].
Patients with ASD could display repetitive patterns of challenging behaviors
such as self-injury, meltdown and tantrum, and aggression [2] which arise from
a set of triggers.

The agitation has negative outcomes for both ASD patients and their care-
givers. It can lead to increased stress levels and impaired quality of life [3].
Consequently, the need for assistive technologies to improve the well-being of
children with ASD and their caregivers is growing. With the advance of technol-
ogy, we could develop solutions to prevent these maladaptive behaviors. Before,
behaviors were reported by caregivers. In such cases, the physical presence of
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the caregiver with the child during his daily activity is required. In this regard,
the development of automatic detection methods based on wearable signals is
needed to replace this constant physical assistance. Recently, the detection of
agitated behaviors based on wearable data has grabbed the attention of scien-
tists. Although, there is a lack of literature related to this topic.

Given the above-mentioned, this paper explores the feasibility of detecting
agitated behaviors of ASD children based on their physiological and kinetic sig-
nals. We will compare different classification algorithms (SVM, Random Forest,
XGBoost, and TabNet). The main contributions of our study are:

– Collection of real data from a 9-year-old male autistic child during his every-
day activities. Compared to previous works, our data collection is performed
in a natural and real-life process.

– Investigation of numerous features from electrodermal activity, blood volume
pulse, and acceleration signals.

– Development of various classifiers resulting in improved performance com-
pared to the state-of-the-art methods.

The remainder of this paper is as follows: Sect. 2, provides a literature review.
We will give more details about our proposed models 3. Section 4 discusses our
results and compares them to previous research. Finally, Sect. 5 concludes this
paper.

2 Literature Review

In this section, We will first define EDA and BVP signals, then we will review
related work in the subsequent section.

2.1 Physiological Signals

Biomedical signals are very rich with information about changes in the psy-
chophysiological systems. Hence, we will investigate the performance of some
physiological signals to detect agitated behaviors of ASD children, basically EDA
and BVP signals.

Electrodermal Activity: also known as Galvanic Skin Response GSR, reflects
the autonomic changes in the electrical and conductivity properties of the skin
consequent to an increased sweat glands activity [4,5]. EDA has been widely used
as a physiological index in psychophysiological research since it is linked to auto-
nomic emotional and cognitive processes. EDA serves as a valuable biomedical
indicator in many fields such as emotions and behaviors [6].

EDA is an aggregate of two components: the tonic activity (Skin Conduc-
tance Level SCL) and the phasic activity (Skin Conductance Response SCR) [4].
Several methods have been developed to extract SCR and SCL from EDA. In
this paper, we will use the cvxEDA [7] which relays on convex optimization and
maximum a posteriori approach.
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The phasic component corresponds to a series of SCR peaks typically char-
acterized by three components: onsets, peaks amplitude, and half-recovery. Some
methods have been suggested to identify these peaks and their characteristics.
In our case, we used the method described in [8] to detect these peaks from SCR.

Blood Volume Pulse: is measured using the PPG sensor, which relays on
the pulse oximeter technique to measure the blood volume in the micro-vascular
of the target tissue [9]. In fact, the sensor illuminates the surface of the skin
with IR light and measures changes in the back-scattered light and the portion
absorbed by the skin [10]. Even though this technique is inexpensive and suitable
for daily life applications, the BVP signal is susceptible to several artifacts.
Nevertheless, health-related features such as heart rate and heart rate variability
can be extracted from BVP.

Basically, the signal has three characteristic points: diastolic point, systolic
point, and dicrotic notch.

In our study, we will use the NeuroKit [26] and HRV analysis [25] Python
packages to process EDA and BVP signals. These packages offer comprehensive
tools for the analysis and interpretation of physiological data.

2.2 Related Works

The literature on the detection of agitated behaviors using biomedical data is
limited. While there have been studies investigating similar areas such as emotion
recognition [11,12], anxiety, and stress detection [13] of ASD patients.

Alban et al. [14] developed three machine learning models (Decision Trees,
SVM, Multi-Layer Perceptron) to detect challenging behaviors of a 10-year-old
male ASD child in interaction with social robots and toys based on physiological
and kinetic signals. From each signal, they extracted four time-domain features
(mean, min, max, and std) from a window of two seconds. To balance the dataset,
they applied resampling. Combining all the signals and using the MLP, they
achieved the best accuracy equal to 97%. Although the result reflects a good
performance, it suffers from subjectivity to the experimental protocol of the
study (interaction with social robots and toys).

Meltdowns and tantrums often lead to impulsivity and agitation. Khullar et
al. [15] designed a wristband with three sensors to collect Heart Rate (HR), Skin
Temperature (ST), and Galvanic Skin Response (GSR) in order to detect melt-
downs and tantrums in ASD patients. Different preprocessing techniques were
applied (null values removal, filtering, normalization). A CNN+LSTM model
was developed to detect these behaviors. The performance in terms of precision,
recall, and F-1 is equal to 0.98, 0.95, and 0.97 respectively. Unfortunately, the
authors did not provide any detail about the ASD patients or the data collection
protocol.

Other studies have developed models to predict atypical behaviors. For
instance, Goodwin et al. [16] developed a predictive model to anticipate agi-
tated behaviors 1-min before they occur using physiological and kinetic signals.
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Their study involved 20, ASD patients. The signals were filtered and processed to
extract 10 time-domain statistical features, and 2 binary aggression labels were
also extracted and used to train a ridge-regularized logistic regression model.
Two types of models were investigated: a global model using data from all par-
ticipants, and 20-person dependent models, developed for each patient. The Area
Under the Curve AUC of the global model is 0.71, while the average AUC for
person-independent models was 0.84.

In a second study, Goodwin et al. [17] improved their previous models by
using Principal Component Analysis PCA for features reduction and kernel-
based SVM to predict aggressive behaviors 3 min in advance. The global model
achieved an increased AUC of 0.98.

The major drawback of the aforementioned studies is that the datasets were
collected in controlled environments under a specific experimental setup. Con-
sequently, the results are subjective to the experimental protocols. In contrast,
our study focuses on developing detection models for agitated behaviors in a
real-world context during the everyday activities of an ASD child.

3 Proposed Models

3.1 Data Collection

It is important to note that there is currently no publicly available dataset for
this specific topic. Consequently, the first step consists in collecting real data
from an ASD child using the Empatica E4.

We were able to recruit a 9-year-old male autistic child to take part in our
experiments, although many families we contacted refused to participate. The
patient suffers from moderate to severe autism and does not take any medication.
Data collection took place over a period of 6 months during his daily activities
(playing outside, doing homework, etc.).

E4 records EDA (4 Hz), BVP (64 Hz), Heart Rate HR (1 Hz), Inter Beat
Intervals IBI, Skin Temperature ST (4 Hz), and acceleration ACC along the x,
y, and z−axis (32 Hz). The wristband has an internal 60 hours memory capacity.
Data transfer between E4 and the computer is made via an E4 manager Software
that should be installed on the computer. The recorded signals are exported to
csv files for further analysis.

The child wore the device and performed his activities in a naturalistic man-
ner. The parents accompanied their child to annotate the moments of agita-
tion. It should be noted that the participant refused to wear the device during
school, resulting in most of the activities being conducted at home. Therefore,
the moments of agitation were relatively rare compared to normal behaviors. In
fact, the child acts aggressively at school or when confronting other people.

3.2 Signal Processing

The quality of signals significantly impacts the performance of a model. Mainly,
in this step, we will apply filters to reduce the noise from raw signals, followed by
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the extraction of relevant features. The collected signals are corrupted by differ-
ent sources of artifacts. The following paragraphs detail the distinct processing
steps employed to extract relevant features from raw signals.

EDA Processing: EDA is hampered by its sensitivity to motion artifacts [19].
Raw EDA is firstly pre-processed using the wavelet-based-adaptive denoising
procedure as described in [19]. Secondly, the signal is filtered using 4th order But-
terworth low-pass forward-backward filter with Fcut = 0.5Hz as in [20]. Thirdly,
we employed min-max normalization to remove the difference between the differ-
ent recordings. Moving forward, the next steps include the decomposition of EDA
into SCR and SCL using the cvxEDA algorithm [7]. The three components are
segmented into overlapping windows for features extraction [20,21]. In contrast
to papers reviewed previously that have investigated a limited set of statistical
features from raw EDA, our work encompasses a wider range of features from
raw EDA, SCR, and SCL. More specifically, we extract time-domain features,
peak-related features, and frequency-domain features. In total, we calculate 80
distinct features, which are summarized in Table 1.

Table 1. Extracted features from EDA, SCR, and SCL.

Category Name

Time domain 1. mean, 2. std, 3. min, 4. max, 5. range of raw EDA, SCR, and SCL
6. slope of raw EDA, 7. energy, 8. sum, 9. skew, 10. kurtosis, 11. IQR,
12. integral, 13. iqr5-95, 14. 5th, 15. 95th percentile, 16. # of points
below/17. above the mean, 18. permutation/ 19. svd entropy of
SCR, and SCL, 20. Pearson correlation between time and SCL,
21. mean (∂SCR), 22. std(∂SCR), 23. mean(∂2

SCR), 24. std(∂2
SCR),

25. arc length, 26. norm average power, 27. norm RMS of SCR

Peaks features 28. # of SCR peaks, 29. mean, 30. std, 31. min, 32. max of peaks,
33. mean, 34. std, 35. min, 36. max of onsets, the sum of 37. SCR
duration response, 38. SCR amplitude, 39. the area under SCR response

frequency domain 40. 5 spectral power magnitude, 41. total power magnitude in
[0–0.5 HZ] band of raw EDA, SCR, and SCL

BVP Processing: The BVP signals of our recordings are very noisy. We first,
used the winsorization technique to remove values above 98th and below 2sd

percentile as in [20]. Next, we applied a 6th order Butterworth band-pass forward-
backward filter with a frequency range [0.6Hz − 3.3Hz] as in [22]. Later, we
normalized the cleaned BVP using min-max. To extract systolic points, we used
the pipeline described in [23], which are later cleaned using the HRV-analysis
[25] to discard outliers and ectopic peaks [24]. RR intervals are calculated from
BVP based on systolic points. The different types of features extracted from the
RR interval basically comprise time-domain, frequency-domain, geometrical, and
Poincare-plot features. The following Table 2 defines the 30 BVP features.
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Table 2. Extracted features from BVP signal.

Category Name

Time domain 1. mean, 2. std of HR, 3. mean, 4. std, 5. skew, 6. kurtosis
of HRV, 7. # and 8. % of HRV intervals differing more than
50 ms and 20 ms, 9. mean, 10. median, 11. std, 12. RMSSD,
13. kurtosis, and 14. the skew of relative RR intervals,
15. RMSSD, 16. SDSD, 17. SDSD/RMSSD of all intervals,
18. difference between adjacent RR intervals,

Geometrical 19. triangle index of HRV,

Poincare-plot 20. SD1, and 21. SD2 term Poincare-plot descriptor of HRV,

Frequency domain 22. VLF(0.003–0.04 Hz), 23. LF(0.04–0.15 Hz), 24. HF(0.15–0.4 Hz)
band in the HRV power spectrum and their normalized values,
25. LF/HF of HRV, 26. total power in [0.003 Hz–0.4 Hz]

ACC Processing: We filtered the ACC signals as suggested by [27]. We applied
a low-pass 4th order Butterworth filter with Fcut = 10 HZ. Features extracted
from each axis include time-domain and frequency-domain features as summa-
rized in Table 3. The total number of features extracted from ACC data is 69.

Table 3. Extracted features from ACC signals.

Category Name

Time domain 1. mean, 2. std, 3. range, 4. sum, 5. skew, 6. kurtosis, 7# of peaks,
8. RMS, 9. integral, 10 # above the mean, 11. # below mean,
12. # of change sign, 13. IQR, 14. iqr5-95, 15. 5th, 16. 95th pct
17. permutation entropy, 18. svd entropy

Frequency domain 19. 3 spectral power magnitudes in the [1–5.5] Hz bands
20. total power magnitude in the [1–5.5] Hz band

3.3 Methodology

Our main goal is to detect agitated behaviors of ASD patients using wearable
data. For this purpose, we will establish different binary classifiers. While, as
stated above, the dataset collected suffers from severe imbalance. For skewed
class distribution, we typically apply cost-sensitive learning models [28]. This
is because misclassifying agitated behaviors carries a higher cost compared to
misclassifying normal behaviors during the model training process.

The first step after collecting the data consists in processing the different sig-
nals and extracting salient features. Subsequently, we will explore several types
of classifiers: Support Vector Machine [30], Random Forest [29], XGBoost, and
TabNet [32]. SVM works by finding a hyperplane that separates the classes of the
training data. Random Forest is an ensemble learning algorithm based on mul-
tiple decision trees each of which is trained on a different subset of the training
data and a random subset of features. XGBoost follows the principle of boosting
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[31] which consists in combining a set of weak classifiers to create a stronger one.
TabNet on the other hand, is a deep-learning model designed for tabular data.
It uses a sequence of attention mechanisms to evaluate the importance of each
feature at every training step.

4 Experiments

4.1 Setup

Our dataset comprises multiple sessions, with the child exhibiting aggressive
behaviors in only 6 of the recordings, and these behaviors were observed for a
few minutes. To extract features, we segmented the recordings into windows of
30 seconds with a 50% overlap. For each window, we calculated the features illus-
trated in the previous Sect. 3.2. The next step consists in training the different
models over a dataset containing segments from all sessions. To ensure optimal
model performance, we conducted an extensive search for the best hyperparam-
eters for each model using the Grid Search method. The hyperparameters that
yielded the best results are presented below:

• SVM: kernel =rbf, gamma = scale, and C = 5.
• RF: n estimators = 1000, criterion = gini, max depth = 20, max features =
auto, min samples split = 5 and min samples leaf = 4.

• XGBoost: n estimators = 2500, eta = 0.01, max delta step = 8, max depth
= 12, min child weight = 12, gamma = 0.5, reg alpha = 0.1

• TabNet: n d, n a = 64, n steps = 6, gamma = 1.5, lambda sparse = 0.01,
learning rate = 0.025, momentum = 0.98, max epochs = 300.

4.2 Evaluation Metrics

We used stratified 10−fold cross-validations to test the performance of our mod-
els since it keeps the same dataset imbalance proportion. We calculated precision,
recall, F-1 score, and balanced accuracy. Furthermore, we calculated the AUC
and Precision-Recall AUC (PR AUC). AUC measures the model’s performance
by calculating the True Positive rate against the False Positive rate. On the
other hand, PR AUC measures the precision and recall of a model. This metric
is useful when the model suffers from imbalance.

4.3 Results

In this section, we will present the results achieved by each classifier and compare
them to previous research.

Table 4 corresponds to the average evaluation metrics values using the differ-
ent classifiers and combining the features from EDA, BVP, and ACC signals.

These results revealed that the XGBoost model outperformed RF, TabNet,
and SVM, achieving an 80% balanced accuracy. Specifically, precision, recall,
F1-score, AUC, and PR AUC of XGBoost are 0.77, 0.60, 0.67, 0.80, and 0.72,
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Table 4. Average evaluation metrics of the stratified 10-fold of the different classifiers
using the combined features (Mean% ± Standard Deviation%)

Metrics XGBoost RF TabNet SVM

Precision 0.77 + 0.08 0.34 + 0.05 0.59 + 0.11 0.77 + 0.11

Recall 0.60 + 0.07 0.57 + 0.04 0.54 + 0.08 0.38 + 0.10

F1-score 0.67 + 0.06 0.41 + 0.04 0.56 + 0.08 0.50 + 0.10

AUC 0.80 + 0.03 0.76 + 0.02 0.76 + 0.04 0.70 + 0.04

PR AUC 0.72 + 0.07 0.43 + 0.06 0.53 + 0.07 0.61 + 0.07

Balanced Accuracy 0.80 + 0.03 0.76 + 0.02 0.77 + 0.04 0.70 + 0.05

respectively. SVM achieved similar precision as XGBoost (0.7) while the recall
is notably lower (0.38) resulting in a lower F1-score of 0.50. In terms of PR AUC,
SVM achieved 0.61. RF model achieved the lowest average F1-score (0.41) and
PR AUC (0.43). In the literature, TabNet outperformed XGBoost in several
competitions including Kaggle, in our study, XGBoost yielded the best perfor-
mance. One possible reason could be the limited amount of data to train TabNet.
Nevertheless, it still achieved the second highest F1-score, AUC, and balanced
accuracy with values of 56%, 76%, and 77% respectively, indicating acceptable
preliminary results. Collecting more data and exploring the parameters of Tab-
Net could potentially improve its performance. In addition to its performance,
XGBoost exhibited faster training and validation times compared to TabNet.

We compare our results to a previous study [14] in Table 5. In [14], the
authors developed an MLP classifier to detect the challenging behaviors of an
ASD male child using four statistical features (min, max, mean, and std) from
EDA, BVP, HR, and ACC. Table 5 compares the results achieved using XGBoost
and the performance of the MLP in [14].

Table 5. Performance comparison of our model and the results of [14]

Metrics Our Method MLP [14]

Precision 0.77 0.73

Recall 0.60 0.53

F1-score 0.67 0.61

AUC 0.80 0.76

PR AUC 0.72 0.67

Balanced Accuracy 0.80 0.76

This comparative Table 5 shows that our method achieved higher perfor-
mance. In fact, the features extracted in our paper contain a large amount of
information, which could reflect the behavioral state of the child.
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Fig. 1. The importance of features determined by XGBoost classifier of each signal
EDA (a), BVP (b), and ACC (c)

With a focus to identify the contribution of each signal to our detection
model, we calculated the features importance of the XGBoost classifier. The
feature vector combines EDA, BVP, and ACC information respectively resulting
in a 179−dimensional vector. Figure 1 displays the contribution of each feature
of each signal: EDA 1a, BVP 1b, and ACC 1c.

Based on our results, the extracted features of the EDA, BVP, and ACC
signal contributed 80.15%, 5.6%, and 14.25% respectively to XGBoost. These
results confirm the literature assumption about the performance of EDA in
identifying the psychophysiological state of individuals. As mentioned in Sect. 2,
EDA has been extensively used in studies related to arousal investigation such
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as stress and anxiety, and emotion detection. Conversely, BVP contributes less
to the detection of agitated behaviors, potentially due to the fact that this signal
is very susceptible to environmental artifacts, leading to a less reliable heart rate
and heart rate variability readings.

Previous research focused on kinetic data to detect agitated behaviors. How-
ever, this kind of signal solely could not contribute to a good generalization. Our
results demonstrated the feasibility of using physiological biomarkers combined
with kinetic data to detect agitated behaviors of people on the spectrum.

5 Conclusion

Agitated behaviors represent significant challenges for individuals with autism
and their caregivers, impacting their well-being. Technological solutions could
improve their quality of life. This paper attempted to study the viability of using
signals collected from wearable devices during everyday activities to detect agita-
tion. The proposed framework involved pre-processing to remove additive noise,
followed by relevant features extraction for each type of signal. The features were
later combined to train different classifiers to detect agitated behaviors.

Our approach showed promising results across multiple evaluation metrics.
More specifically, XGBoost achieved the highest performance in terms of bal-
anced accuracy, precision, recall, F1-score, AUC, and PR-AUC.

These findings suffer from some limitations including a limited number of
recorded moments of agitation. Moreover, we were only able to recruit a sin-
gle ASD child. We firmly believe that the proposed models could be improved
through the collection of a larger dataset from a larger number of ASD patients,
hence refining the performance of classifiers.

The implication of our findings is significant in terms of enhancing the qual-
ity of life of patients with ASD. By providing caregivers with timely notification
of moments of agitation, they can prevent harmful consequences associated with
these destructive behaviors. Our proposed framework holds the potential to alle-
viate the negative impact of these behaviors and promote a safer and more sup-
portive environment for patients with autism. Additionally, our future work will
focus as well on developing predictive models capable of anticipating agitated
behaviors before their occurrence. This proactive approach in this case will help
caregivers to intervene early and prevent unwanted consequences.
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