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Abstract. Falls are a significant health risk for older adults, and fall-
related injuries are a leading cause of morbidity and mortality in this pop-
ulation. Elderlies are particularly vulnerable to falls due to age-related
declines in mobility, balance, and muscle strength, as well as chronic
medical conditions with use of certain medications. These injuries can
range from minor bruises and scrapes to more severe like fractures, head
trauma, or internal bleeding. To prevent falls in older adults, some solu-
tions propose to ensure a safe living environment, others to maintain
physical activity, and others to manage chronic medical conditions. This
article presents the implementation and test of a system preventing hip
fractures resulting from falls using a fall detection and prediction system
designed to protect and alert individuals during falls.

Keywords: Pre-impact fall detection · fall detection · machine
learning · tinyML · medical devices · IMU · e-health · airbag system

1 Introduction

Falls among the elderly are currently a real human and financial scourge. 25 to
30% of people over 65 and 50% of those over 80 fall at least once a year. These
are the first cause of emergency visits for people over 75 and the second cause of
death by unintentional trauma. A significant proportion of falls result in femoral
neck fractures, a real public health issue (Katsoulis, 2017 [1] Oberlin, 2016 [2]).
Furthermore, research has demonstrated that the apprehension of falling is linked
to unfavorable outcomes, including reduced engagement in everyday activities,
decreased level of physical activity, increased likelihood of falling, symptoms of
depression, and a lower overall quality of life [3]. According to INSERM (2017)
[4], between 50,000 and 80,000 individuals in France, and approximately 1.5
million around the world (Silver Eco 2017 portal) experience fractures of the
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Fig. 1. Belt Airbag illustration

neck of the femur. This type of fracture has severe implications as one-quarter
of people pass away within one year, and 50% of those who survive experience a
considerable loss of autonomy. This work is part of a project led by Indienov, a
company that created a smart airbag belt capable of analyzing the movements
of individuals and detecting anomalies (in this particular case falls and pre-
falls), and instantly activate a perfectly positioned airbag prevent fractures of
the femoral neck or greater trochanter (Fig. 1). The belt will also be able to
detect critical situations such as lying for a prolonged time.

2 Literature Review

A large variety of fall detection systems are available and rely on diverse sensors
(cameras, infrared motion sensors, LIDAR, and inertial motion units). These
fall detection systems are generally classified into two categories: fixed systems
(in the environment) and mobile/wearable systems (necklaces, watches, belts,
phones, etc.) [5]. We focused on mobile systems using Inertial Motion Units.

2.1 State of the Art

Initial research concerning fall detection systems employed threshold-based algo-
rithms, and demonstrated that by applying thresholds to vertical and horizontal
velocities, it is possible to differentiate between daily activities and falls [6,7]
with remarkable accuracy. In a study based on a sensor located on the chest
[20], a fall detection algorithm is optimized using the Upper Fall Threshold
(UFT) and Lower Fall Threshold (LFT) of the accelerometer combined with
the UFT of the gyroscope for fall detection. The experimental results showed
that the algorithm was able to detect falls compared to other daily movements
with a sensitivity and specificity of 96.3% and 96.2%, respectively. The addi-
tion of gyroscope data significantly improves specificity over published results
based solely on accelerometer data, as changes in angular velocity provide an
additional indication of a fall event compared to other activities that may also
experience high acceleration spikes. The use of LFTs and UFTs is equivalent to
determining the window of fall and detecting it by means of its start and end.

Alternatively, Li et al. [8] used static postures and dynamic transitions
between them to detect falls, defining a fall as a static “lying” posture with an
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unintentional transition to it. Numerous other studies have examined fall detec-
tion, including reviews, learning algorithms with automatic feature extraction,
etc. [9–18], some of which have been found to be highly reliable [19].

Detecting the onset of a fall, or pre-fall detection, presents a challenging
problem. Unlike fall detection, which relies on identifying the impact of a fall
visible on acceleration signals, pre-fall detection requires detecting the early signs
of an impending fall. As a result, accelerometer and gyroscope signals may not
yet exhibit features indicative of a fall. The primary hurdle in solving this issue
is to distinguish the crucial warning signs that trigger a fall while minimizing
the number of inaccurate detections (false positive cases).

In the context of pre-fall detection, one of the earliest fall protection systems
was proposed by G. Shi et al. [21] and later enhanced [22]. It relies on an iner-
tial motion unit and airbag deployment, along with a Support Vector Machine
(SVM) prediction model and an embedded Digital Signal Processing (DSP) unit.

In recent years, machine learning models have gained popularity due to their
good performances in fall and pre-fall detection. In a comparative study con-
ducted by Yu et al. [24], a hybrid ConvLSTM model was evaluated and com-
pared to other existing models. The results showed that the ConvLSTM model
outperformed other models for all three classes (no drop, drop before impact, and
drop), with average sensitivities of 93.15%, 93.78%, and 96.00% for no drop, drop
before impact, and drop, respectively. Furthermore, the model demonstrated
higher specificities for all three classes (96.59%, 94.49%, and 98.69%) compared
to the LSTM and CNN models. These results suggest that the proposed hybrid
model outperforms the LSTM and CNN models, providing high detection accu-
racy (particularly for the pre-impact drop). The combination of convolution and
recurrent models allows feature extraction and temporal linkage between the
data, leading to satisfactory results compared to using these models separately.

Recent fall prediction methods have shown very promising results (as shown
in Table 1). However, one important issue highlighted in the literature is the need
to compare the performance of fall detection algorithms using real-world data,

Table 1. Fall prediction algorithms comparison

Fall prediction algorithms overview

Réf Sensor Placement Sampling [Hz] Methods FALL/ADL Subjects The best results

[23] L. Tong et al.
(2013)

A trunk 100 HMM 2/5 8
Sn : 100%
Sp : 100%

Tl : 200–400 [ms]

[25] Yang et al.
(2013)

A, G back-trunk 20 NN N/A 5
Sn : 92.26 %
Sp : 70.02 %
Tl : 400 [ms]

[26] Saadeh et al.
(2019)

A 256
LSVM, DT,

KNN, NLSVM
MobiFall

Sn : 97.8%
Sp : 99.1%

Tl : 300–700[ms]

[24] Yu et al.
(2020)

A / 200
CNN, LSTM
ConvLstm

SisFall
Sn : 93.78%
Sp : 94.00%
Tl : / [ms]

[27] Yu et al.
(2021)

A, G, M back-waist 100
Threshold,

SVM, ConvLstm
21/15 32

Sn : 99.32%
Sp : 99.01%

Tl : 403 ± 163 [ms]
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Table 2. Comparison of the Kfall model performances on simulated data and real
data. Source : [27]

Algorithm Evaluation on real word data

Réf Algorithm Data FN (false negative) FP (false positive) Sensitivity (%) Specificity (%) Lead time ([ms])

[27] Yu et al.
(2021)

ConvLSTM KFall dataset 3/444 5/507 99.32 99.01 403 ± 163

Farseeing dataset 1/15 4/15 93.33 73.33 411 ± 317

as significant discrepancies have been observed between the results obtained
from simulated falls data of healthy individuals and real falls data from at-risk
populations [11]. The Bourke and Chen algorithms perform the best in terms of
sensitivity and specificity, but all algorithms exhibit lower performance on real
falls compared to simulated falls. The latter being also true for the work from
Yu et al. (as shown in Table 2) despite the very high performance obtained on
simulation data (99.32%, 99.03% of sensitivity, and specificity, respectively). This
difference in performance was mainly attributed to the fact that the movements
in real falls do not exhibit the same signatures as simulated falls, especially in
terms of the amplitude before impact [28].

3 Methods and Material

3.1 Data Collection

As mentioned above, the problem of motion and fall data for at-risk individuals
currently remains one of the biggest challenges. The first step consists of obtain-
ing real, reliable motion data that comes from our target audience. Then, in
addition to retrieving widely used movement data from the internet (especially
in research, e.g. SisFall [30], MobiFall [29], kFall [27] etc.), a specific protocol
based on [29,30] was developed to gather experimental data (Table 3 and 4).

A data collection campaign has been initiated in EHPAD (institutions for
dependent elderly people) (Dataset 03, Dataset 04), in which multiple volun-
teers were equipped with dataloggers (embedded sensors with IMU + SD card -
attached to a belt worn at the waist) to monitor their activities throughout the
day (and in some cases, the entire week from morning to evening). The purpose
of the database obtained from this data collection is to develop solutions and
algorithms adapted to the target population, the elderly, where detecting pre-fall
events is of utmost importance. As the participants’ profiles are highly suitable

Table 3. Public Data Overview

Public Dataset

Dataset Labelled Types ADLs/Falls Number of participants Age Weight [KG] gender (M/F)

MobiFall Yes 9/4 24 22–47 / 17/7

SisFall Yes 19/15
23
15

19–30
60–75

41–102
11/12
8/7

kFall Yes 21/15 32 24 ± 3.7 69.3 ± 9.5 32/
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Table 4. Acquired Data Overview

Recolted Data

Dataset Labelled Types ADLs/Falls Number of participants Age Weight [KG] gender (M/F)

Dataset 01 Yes 11/8 1 47 / H

Dataset 02 Yes 47/24 11 22–52 50–120 4/7

Dataset 03 Yes 13/0 ∼ 60 >63 47–120 ∼ 38/22

Dataset 04 No / > 100 >63 47–130 >40/>60

for this purpose, the collected data is expected to provide valuable insights and
aid in validating the developed solutions and algorithms.

3.2 Configuration and Setup

After examining the SisFall and MobiFall datasets, we discovered that they were
not optimal for predicting falls because they lacked temporal information on the
pre-fall phase. Even though there has been a lot of research on fall detection,
there hasn’t been much done on prefall detection. The key contrast between
prefall detection and fall detection is found here. Prefall detection focuses on
detecting the beginning of a fall, which happens over a brief period of time and
then passes. In other words, throughout the fall, we can only see the beginning of
the fall during a specified time period. On the other side, fall detection focuses on
identifying a fall when it really occurs, generally after the impact has taken place.
At any time after the fall, it is relatively simple to identify because the impact
of the fall clearly leaves an imprint in the signals. Therefore, we had to identify
and label the pre-fall phase, which may have introduced bias into the labeling
process. In contrast, the kfall dataset contained more detailed information on the
onset and impact of falls, making it more useful for fall prediction. Additionally,
the age and profiles of the participants in the various datasets were not very
representative, so we generated new data for activities of daily living and falls
that included a wide range of realistic scenarios.

For the labeled data, participants followed a predefined protocol that included
activities from the SisFall dataset as well as additional daily activities such
as walking, using stairs with a cane or walker, doing household chores, and
dancing. We also included wheelchair activities. Unlabeled data were collected
from participants engaged in their normal activities throughout the day, resulting
in data that better reflects real-world scenarios. For data recording, we used
dataloggers, which are developed by the same company, and we recorded the
videos of these simulations. The IMU (MPU6050) that we used was equipped
with a 3-axis accelerometer and gyroscope, with a resolution of ±8 [g] for the
accelerometer and ±1000◦/s for the gyroscope. The sampling frequency (200
[Hz]) is defined based on the data analysis and signal processing.
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3.3 Data Processing and Feature Extraction

Data Cleaning and Labelling: To reduce accelerometer sensitivity noise, we
used a 3rd order Butterworth lowpass filter with a cutoff frequency of 20 [Hz]
as first step. We then divided the fall data into four stages (Fig. 2): non-risk,
pre-fall, the impact, and the post-fall. This categorization was based on notes
taken during fall simulations (such as the type of fall, subject, and duration)
and recorded video data (including the start time of the fall, the end time of the
pre-fall phase, the time of ground contact, and the time of impact).

Data Analysis and Feature Selection: An initial visual inspection was
performed to analyze the collected data. This enabled the identification of
movement-specific signatures and variable behavior, and the tracking of their
fluctuations over time in relation to distinct activities and subject profiles (as
shown in Fig. 3). A statistical examination of the information obtained from
various activities was performed with the aim of identifying indicators that can

Fig. 2. Fall Data Segmentation.

Fig. 3. Activities signal examples - Acc: accelerometer (acc x, acc y, acc z), Gyro:
gyroscope (gyro x, gyro y, gyro z) - 3 Normal Activities (1, 2, 3) vs one Fall Activity
(4)
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Fig. 4. Analysis of the data distribution examples - compare the data distribution over
different activities (ADLs vs FALLs)

Table 5. Selected Variables for Feature calculation

Selected Variables for Features calculation

Variable description

Acc x The acceleration data over the x-axis

Acc y The acceleration data over the y-axis

Acc z The acceleration data over the z-axis

Gyro x The angular velocity data over the x-axis

Gyro y The angular velocity data over the y-axis

Gyro z The angular velocity data over the z-axis

Acc svm(signal vector magnitude)
The magnitude of the acceleration vector

Acc svm =
√

acc x2 + acc y2 + acc z2.
(1)

Gyro svm
The square root of the sum of the angular velocities squared

Gyro svm =
√

gyro x2 + gyro y2 + gyro z2.
(2)

SMA( signal magnitude area)
The measure of the magnitude of a varying acceleration

1
T

∫ T

0
(|acc x(t) − µacc x| + |acc y(t) − µacc y| + |acc z(t) − µacc z|) dt. (3)

Tilt
The vertical tilt of the body
tilt = arctan( acc y√

acc x2+acc z2
). (4)

distinguish between ADLs and falls (Fig. 4). Once this stage was completed, we
selected the variables that would be used in computing the features (listed in
Table 5). Subsequently, statistical computations were carried out on each vari-
able, resulting in a collection of potential features for pre-fall detection (Table 6).
The features were calculated in sliding windows of 0.5[s].

Algorithm and Features: For feature selection, we started an optimization
process over all the features (cited on Table 6), based on recursive elimination of
features by KNN (K Nearest Neighbors) and RF (Random Forest) algorithms, so
we tested several combinations depending on the type of falls we were proposing
and the performances we were getting. Ultimately, we chose an algorithm based
on the RF (random forest) and the most important features, which we selected
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Table 6. Selected Features for Calculation

Selected Features for calculation

Feature description

mean the mean value of the current window

max The max value of the current window

min The min value of the current window

std(Standard Deviation) The standard deviation value of the current window

mean start the mean of the m first values ([0; m]) of the current window

mean median
the mean of the m values around the median

([median index - (m
2
); median index + (m

2
)]) of the current window.

mean q1 the mean of the m values around the 1st quartile of the current window.

mean q3 the mean of the m values around the 3rd quartile of the current window.

diff m1 m2 the difference between each two calculated means, cited above

skewness
measures the asymmetry of the distribution of the current window

skewness =
∑m

1 (xi−μ)3

mσ3

(5)

kurtosis
measures the “tailedness” of the probability distribution of the current window

kurtosis =
∑m

1 (xi−μ)4

mσ4

(6)

Fig. 5. Fall Detection/Prediction System.

for their relevance to decision making. Our solution detects pre-falls and falls
(Fig. 5), then, sends an alert to relatives and caregivers (previously selected).

3.4 Model Deployment in Embedded Architecture

Due to their inherent resource constraints, embedded systems are unable to
support sophisticated inference models. As a result, implementing AI models
in these systems becomes difficult, especially in real-time scenarios when char-
acteristics like response speed, space complexity, and computing complexity are
critical. Focusing on low complexity choices is necessary since these limits impose
extra factors to take into account when choosing the right model. Deep learning
techniques, for instance, may not be practical due to their inference, time, and
space complexity, necessitating careful attention throughout implementation. As
a result, it may be necessary to develop customized methods to optimize model
training, conversion, and implementation for better optimization and utiliza-
tion of hardware resources such as DSP and FPU. Various methods (weight
pruning, quantization, encoding, etc.) and solutions (TensorFlow Lite Micro,
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EdgeML, STM32Cube.AI, etc.) are available to address this challenge [31], but
they require careful consideration and planning to achieve the desired results in
the context of TinyML.

4 Experiments and Evaluation

4.1 Experiments

Initially, we tested our solution on daily life and fall acquired data to ensure its
functionality (this was the Experiment 00). Our ultimate goal was to develop
a functional and customized solution for the airbag belt. Therefore, we imple-
mented and deployed the solution in the embedded system (belt) and conducted
three types of experiments.

– Experiment 00: In this experiment, we have tested our solution on the
acquired data (which contains ADLs and Falls).

– Experiment 01: The first test involved wearing the belt and performing
guided activities (ADLs and falls).

– Experiment 02: The second test involved wearing the belt throughout the
day and engaging in their daily activities.

– Experiment 03: Finally, we tested the belt on elderly people in EHPAD for
a whole day and evaluated the performance recorded in the log files.

The first and second tests were conducted by young and healthy individuals.

4.2 Evaluation

We established a set of evaluation criteria for our solutions, which serve to mea-
sure their quality and degree of reliability. These criteria include:

. Sensitivity: measures the solution’s ability to detect and predict falls accu-
rately. Sensitivity = TP

TP+FN , TP : true positive, FN : false negative. (7)
. Specificity: measures its ability to correctly identify activities of daily living

(ADLs). Specificity = TN
TN+FP , TN : true negative, FP : false positive. (8)

. Time Lead: which refers to the time between the prediction of a fall and
the actual impact of the fall. Our objective is to detect pre-fall movements at
least 220 [ms] before impact (safe deployment of airbags).

Finally, we use performance as an overall measure of how well our solution
performs based on the aforementioned criteria. This value is calculated using
a weighted sum of sensitivity, specificity, and time lead. Based on the desired
outcomes, it is possible to set the weights of the parameters, such as emphasizing
sensitivity, specificity, or lead time.

Performances = (Psn ∗ Sensivity) + (Psp ∗ Specifity) + (Ptm ∗ time lead). (9)
Performances ∈ [0, 1], P: weights, Pi ∈ [0, 1],

∑
Pi = 1, time lead normalized
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Table 7. Experimental results

Experimental results

/ PDS (pre-fall detection system) FDS (fall detection system)

/ Sensitivity(%) Specificity(%) Lead time[ms] Sensitivity(%) Specificity(%)

Experiment 00 99 98 ∼ 250 99 99

Experiment 01 88 92 ∼ 210 98 97

Experiment 02 / 87 / / 97

Experiment 03 / 93 / / 97

5 Experimental Result Analysis

The Dataset 02 was used for training, and subsequent optimization techniques
were implemented to select a subset of the data that would yield lightweight
and tailored models optimized for embedded systems. To assess the effectiveness
of our solution, we employed different methods depending on the experiment.
For Exp. 0 and Exp. 1, we evaluated the performance based on the number of
simulations (each activity labeled as ADL or Fall), enabling us to determine false
positive and false negative rates. For other experiments (exp. 2 and exp. 3), we
based our evaluations on the number of activity hours and participant-reported
information. If the participant doesn’t fall but a fall was predicted or detected,
it is considered a false positive. If the participant falls, but we didn’t detect
anything, it is considered a false negative. However, if the person falls and we
predict it, it was considered as a true positive.

Generally, falls in real life are infrequent, so our solution specificity is high-
lighted in exp. 2 and exp. 3. When we encounter false positives or false negatives,
we analyze the data and incorporate it into subsequent training sessions. The
benefit of these experiments is that we can evaluate and validate our solution
under real-world conditions with participants who are natural and free, unlike
other evaluation tests. Therefore, our solution is exposed to situations (activi-
ties) not seen during training, representing a challenge for us. The evaluation
results that we currently have are presented in (Table 7). It should be noted that
the evaluation of our solution is still ongoing, with particular focus on (Exp. 03).

6 Discussion

Based on the initial results from experiments (exp. 00 and exp. 01), it appears
that fall detection is facilitated by the fact that signals already contain the neces-
sary information to accurately detect falls. This is supported by the high level of
sensitivity and specificity observed. The fall prediction models showed a decrease
in performance when the environment and subjects were changed (between exp.
00 and exp. 01), which is likely attributed to the prior compression of the mod-
els before deployment on embedded devices. This compression was intended to
reduce the models space-time complexity and make them more lightweight. The
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two additional experiments exposed our solution to real-world conditions, which
allowed participants greater freedom of movement, resulting in signals that dif-
fered, sometimes markedly, from what we had observed in our learning database.
Moreover, as the belt-wearing was subtle, participants behaved more naturally,
revealing movements we had not encountered during training.

7 Conclusion

This study involved the development of a fall detection system and a fall pre-
diction system, which were adapted and deployed on an airbag belt to test their
effectiveness in real-life conditions. While the theoretical results were comparable
to other works, the goal was to create a functional system that performed well
in both theory and practice. This is in contrast to some studies that relied on
theoretical results or private motion data to which the researchers did not have
access. However, the lack of movement data from elderly people and real fall
data posed significant challenges. Therefore, the plan for the future is to launch
a collection campaign in EHPAD to gather natural data over a long period of
time, including real falls that can be added to the learning base.
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data segmentation in accelerometer-based fall detection algorithms. Sensors 21,
4335 (2021). https://doi.org/10.3390/s21134335

19. Liu, K.-C., Hsieh, C.-Y., Hsu, S.J.-P., Chan, C.-T.: Impact of sampling rate on
wearable-based fall detection systems based on machine learning models. IEEE
Sens. J. 18(23), 9882–9890 (2018). https://doi.org/10.1109/JSEN.2018.2872835

20. Huynh, Q.T., Nguyen, U.D., Irazabal, L.B., Ghassemian, N., Tran, B.Q.: Opti-
mization of an accelerometer and gyroscope-based fall detection algorithm. J. Sens.
2015 (2015). https://doi.org/10.1155/2015/452078

21. Shi, G., et al.: Development of a human airbag system for fall protection using
MEMS motion sensing technology. In: 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Beijing, China, pp. 4405–4410 (2006). https://
doi.org/10.1109/IROS.2006.282019

22. Shi, G., Chan, C.S., Li, W.J., et al.: Mobile human airbag system for fall protection
using MEMS sensors and embedded SVM classifier. IEEE Sens. J. 9(5), 495–503
(2009). https://doi.org/10.1109/JSEN.2008.2012212

23. Tong, L., Song, Q., Ge, Y., Liu, M.: HMM-based human fall detection and predic-
tion method using tri-axial accelerometer. IEEE Sens. J. 13(5), 1849–1856 (2013).
https://doi.org/10.1109/JSEN.2013.2245231

https://doi.org/10.1109/IEMBS.2007.4352627
https://doi.org/10.1109/IEMBS.2007.4352627
https://doi.org/10.1016/j.irbm.2008.08.002
https://doi.org/10.1371/journal.pone.0037062
https://doi.org/10.1371/journal.pone.0037062
https://doi.org/10.3390/sym12040649
https://doi.org/10.1016/j.micpro.2021.103828
https://doi.org/10.3390/s21030938
https://doi.org/10.1109/TNSRE.2021.3089685
https://doi.org/10.1109/TNSRE.2021.3089685
https://doi.org/10.3390/electronics9111831
https://doi.org/10.1109/TCDS.2021.3116228
https://doi.org/10.3390/s21134335
https://doi.org/10.1109/JSEN.2018.2872835
https://doi.org/10.1155/2015/452078
https://doi.org/10.1109/IROS.2006.282019
https://doi.org/10.1109/IROS.2006.282019
https://doi.org/10.1109/JSEN.2008.2012212
https://doi.org/10.1109/JSEN.2013.2245231


Detecting the Pre-impact of Falls in the Elderly 129

24. Yu, X., Qiu, H., Xiong, S.: A novel hybrid deep neural network to predict pre-
impact fall for older people based on wearable inertial sensors. Front. Bioeng.
Biotechnol. 8, 63 (2020). PMID: 32117941; PMCID: PMC7028683. https://doi.
org/10.3389/fbioe.2020.00063

25. Yang, S.-H., Zhang, W., Wang, Y., Tomizuka, M.: Fall-prediction algorithm using
a neural network for safety enhancement of elderly. In: 2013 CACS International
Automatic Control Conference (CACS), Nantou, Taiwan, pp. 245-249 (2013).
https://doi.org/10.1109/CACS.2013.6734140

26. Saadeh, W., Butt, S.A., Altaf, M.A.B.: A patient-specific single sensor IoT-based
wearable fall prediction and detection system. IEEE Trans. Neural Syst. Rehabil.
Eng. 27(5), 995–1003 (2019). https://doi.org/10.1109/TNSRE.2019.2911602

27. Yu, X., Jang, J., Xiong, S.: A large-scale open motion dataset (KFall) and bench-
mark algorithms for detecting pre-impact fall of the elderly using wearable iner-
tial sensors. Front Aging Neurosci. 13, 692865 (2021). PMID: 34335231; PMCID:
PMC8322729. https://doi.org/10.3389/fnagi.2021.692865

28. Klenk, J., Becker, C., Lieken, F., et al.: Comparison of acceleration signals of
simulated and real-world backward falls. Med Eng. Phys. 33(3), 368–373 (2011).
Epub 2010 Nov 30. PMID: 21123104. https://doi.org/10.1016/j.medengphy.2010.
11.003

29. Vavoulas, G., Pediaditis, M., Chatzaki, C., et al.: The MobiFall dataset: fall detec-
tion and classification with a smartphone. Int. J. Monit. Surveillance Technol. Res.
2, 44–56 (2014)
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