Skip to main content

Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

  • 5460 Accesses

Abstract

Statistical shape modeling is the computational process of discovering significant shape parameters from segmented anatomies captured by medical images (such as MRI and CT scans), which can fully describe subject-specific anatomy in the context of a population. The presence of substantial non-linear variability in human anatomy often makes the traditional shape modeling process challenging. Deep learning techniques can learn complex non-linear representations of shapes and generate statistical shape models that are more faithful to the underlying population-level variability. However, existing deep learning models still have limitations and require established/optimized shape models for training. We propose Mesh2SSM, a new approach that leverages unsupervised, permutation-invariant representation learning to estimate how to deform a template point cloud to subject-specific meshes, forming a correspondence-based shape model. Mesh2SSM can also learn a population-specific template, reducing any bias due to template selection. The proposed method operates directly on meshes and is computationally efficient, making it an attractive alternative to traditional and deep learning-based SSM approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Sourcecode: https://github.com/iyerkrithika21/mesh2SSM_2023.

References

  1. Adams, J., Elhabian, S.: From images to probabilistic anatomical shapes: a deep variational bottleneck approach. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part II, pp. 474–484. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_46

  2. Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) Shape in Medical Imaging: International Workshop, ShapeMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018, Proceedings, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23

  3. Bruse, J.L., et al.: A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta. BMC Med. Imaging 16, 1–19 (2016)

    Article  Google Scholar 

  4. Cates, J., Elhabian, S., Whitaker, R.: ShapeWorks: particle-based shape correspondence and visualization software. In: Statistical Shape and Deformation Analysis, pp. 257–298. Elsevier (2017)

    Google Scholar 

  5. Cerrolaza, J.J., et al.: Computational anatomy for multi-organ analysis in medical imaging: a review. Med. Image Anal. 56, 44–67 (2019)

    Article  Google Scholar 

  6. Chen, Z.: IM-NET: learning implicit fields for generative shape modeling (2019)

    Google Scholar 

  7. Davies, R.H.: Learning shape: optimal models for analysing natural variability. The University of Manchester (United Kingdom) (2002)

    Google Scholar 

  8. Durrleman, S., et al.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. Neuroimage 101, 35–49 (2014)

    Article  Google Scholar 

  9. Faghih Roohi, S., Aghaeizadeh Zoroofi, R.: 4D statistical shape modeling of the left ventricle in cardiac MR images. Int. J. Comput. Assist. Radiol. Surg. 8, 335–351 (2013)

    Article  Google Scholar 

  10. Heitz, G., Rohlfing, T., Maurer Jr., C.R.: Statistical shape model generation using nonrigid deformation of a template mesh. In: Medical Imaging 2005: Image Processing, vol. 5747, pp. 1411–1421. SPIE (2005)

    Google Scholar 

  11. Jiang, C., Huang, J., Tagliasacchi, A., Guibas, L.J.: ShapeFlow: learnable deformation flows among 3D shapes. Adv. Neural. Inf. Process. Syst. 33, 9745–9757 (2020)

    Google Scholar 

  12. Khan, R.A., Luo, Y., Wu, F.X.: Machine learning based liver disease diagnosis: a systematic review. Neurocomputing 468, 492–509 (2022)

    Article  Google Scholar 

  13. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  14. Lindberg, O., et al.: Hippocampal shape analysis in Alzheimer’s disease and frontotemporal lobar degeneration subtypes. J. Alzheimers Dis. 30(2), 355–365 (2012)

    Article  Google Scholar 

  15. Lüdke, D., Amiranashvili, T., Ambellan, F., Ezhov, I., Menze, B.H., Zachow, S.: Landmark-free statistical shape modeling via neural flow deformations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part II, pp. 453–463. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_44

  16. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis. In: Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 171–180. IEEE (1996)

    Google Scholar 

  17. Merle, C., et al.: High variability of acetabular offset in primary hip osteoarthritis influences acetabular reaming-a computed tomography-based anatomic study. J. Arthroplasty 34(8), 1808–1814 (2019)

    Article  Google Scholar 

  18. Paulsen, R., Larsen, R., Nielsen, C., Laugesen, S., Ersbøll, B.: Building and testing a statistical shape model of the human ear canal. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 373–380. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45787-9_47

    Chapter  MATH  Google Scholar 

  19. Peiffer, M., et al.: Statistical shape model-based tibiofibular assessment of syndesmotic ankle lesions using weight-bearing CT. J. Orthop. Res.® 40(12), 2873–2884 (2022)

    Google Scholar 

  20. Ralston, S.H., Penman, I.D., Strachan, M.W., Hobson, R.: Davidson’s Principles and Practice of Medicine E-Book. Elsevier Health Sciences (2018)

    Google Scholar 

  21. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: International Conference on Machine Learning, pp. 1278–1286. PMLR (2014)

    Google Scholar 

  22. Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. Int. J. Comput. Vision 40(3), 187–197 (2000)

    Article  MATH  Google Scholar 

  23. Schaufelberger, M., et al.: A radiation-free classification pipeline for craniosynostosis using statistical shape modeling. Diagnostics 12(7), 1516 (2022)

    Article  Google Scholar 

  24. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  25. Sophocleous, F., et al.: Feasibility of a longitudinal statistical atlas model to study aortic growth in congenital heart disease. Comput. Biol. Med. 144, 105326 (2022)

    Article  Google Scholar 

  26. Styner, M., et al.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. (1071), 242 (2006)

    Google Scholar 

  27. Vicory, J., et al.: Statistical shape analysis of the tricuspid valve in hypoplastic left heart syndrome. In: Puyol Antón, E., et al. (eds.) Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge: 12th International Workshop, STACOM 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, 27 September 2021, Revised Selected Papers, pp. 132–140. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_15

  28. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health under grant numbers NIBIB-U24EB029011, NIAMS-R01AR076120, and NHLBI-R01HL135568. We thank the University of Utah Division of Cardiovascular Medicine for providing left atrium MRI scans and segmentations from the Atrial Fibrillation projects and the ShapeWorks team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krithika Iyer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1114 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iyer, K., Elhabian, S.Y. (2023). Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics