Skip to main content

SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14224))

  • 3594 Accesses

Abstract

Modern medical image segmentation methods primarily use discrete representations in the form of rasterized masks to learn features and generate predictions. Although effective, this paradigm is spatially inflexible, scales poorly to higher-resolution images, and lacks direct understanding of object shapes. To address these limitations, some recent works utilized implicit neural representations (INRs) to learn continuous representations for segmentation. However, these methods often directly adopted components designed for 3D shape reconstruction. More importantly, these formulations were also constrained to either point-based or global contexts, lacking contextual understanding or local fine-grained details, respectively—both critical for accurate segmentation. To remedy this, we propose a novel approach, SwIPE (Segmentation with Implicit Patch Embeddings), that leverages the advantages of INRs and predicts shapes at the patch level—rather than at the point level or image level—to enable both accurate local boundary delineation and global shape coherence. Extensive evaluations on two tasks (2D polyp segmentation and 3D abdominal organ segmentation) show that SwIPE significantly improves over recent implicit approaches and outperforms state-of-the-art discrete methods with over 10x fewer parameters. Our method also demonstrates superior data efficiency and improved robustness to data shifts across image resolutions and datasets. Code is available on Github.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Multi-atlas labeling beyond the cranial vault (2015). https://www.synapse.org/#!Synapse:syn3193805/wiki/89480. Accessed Jan 2021

  2. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  3. Chabra, R., et al.: Deep local shapes: learning local SDF priors for detailed 3D reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 608–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_36

    Chapter  Google Scholar 

  4. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3D shape reconstruction and completion. CVPR, pp. 6968–6979 (2020)

    Google Scholar 

  5. Dupont, E., Goliński, A., Alizadeh, M., Teh, Y.W., Doucet, A.: COIN: COmpression with Implicit Neural representations. arXiv preprint arXiv:2103.03123 (2021)

  6. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  7. Gao, S.H., et al.: Res2Net: a new multi-scale backbone architecture. IEEE TPAMI 43(2), 652–662 (2019)

    Article  Google Scholar 

  8. Gu, P., Zheng, H., Zhang, Y., Wang, C., Chen, D.Z.: kCBAC-Net: Deeply Supervised Complete Bipartite Networks with Asymmetric Convolutions for Medical Image Segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 337–347. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_32

    Chapter  Google Scholar 

  9. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H.: Escaping the big data paradigm with compact Transformers. ArXiV:2104.05704 (2021)

  10. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 574–584 (2022)

    Google Scholar 

  11. Hu, H., et al.: Learning implicit feature alignment function for semantic segmentation. In: ECCV, pp. 487–505. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_28

  12. Isensee, F., Jaeger, P., Kohl, S., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Jha, D., et al.: A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time augmentation. IEEE J. Biomed. Health Inform. 25(6), 2029–2040 (2021)

    Article  Google Scholar 

  14. Ji, Y., et al.: AMOS: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. ArXiv:2206.08023 (2022)

  15. Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T., et al.: Local implicit grid representations for 3D scenes. In: CVPR, pp. 6001–6010 (2020)

    Google Scholar 

  16. Khan, M., Fang, Y.: Implicit neural representations for medical imaging segmentation. In: MICCAI (2022)

    Google Scholar 

  17. Liu, S., Huang, D., et al.: Receptive field block net for accurate and fast object detection. In: ECCV, pp. 385–400 (2018)

    Google Scholar 

  18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2017)

    Google Scholar 

  19. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR, pp. 4455–4465 (2018)

    Google Scholar 

  20. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  21. Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture fields: learning texture representations in function space. In: ICCV, pp. 4531–4540 (2019)

    Google Scholar 

  22. Park, J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR, pp. 165–174 (2019)

    Google Scholar 

  23. Pasupathy, A.: The neural basis of image segmentation in the primate brain. Neuroscience 296, 101–109 (2015)

    Article  Google Scholar 

  24. Raju, A., Miao, S., Jin, D., Lu, L., Huang, J., Harrison, A.P.: Deep implicit statistical shape models for 3D medical image delineation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2135–2143 (2022)

    Google Scholar 

  25. Reich, C., Prangemeier, T., Cetin, O., Koeppl, H.: OSS-Net: memory efficient high resolution semantic segmentation of 3D medical data. In: British Machine Vision Conference (2021)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Shen, L., Pauly, J., Xing, L.: NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction. IEEE Trans. Neural Networks Learn. Syst. (2022)

    Google Scholar 

  28. Sørensen, K., Camara, O., Backer, O., Kofoed, K., Paulsen, R.: NUDF: neural unsigned distance fields for high resolution 3D medical image segmentation. ISBI, pp. 1–5 (2022)

    Google Scholar 

  29. Wiesner, D., Suk, J., Dummer, S., Svoboda, D., Wolterink, J.M.: Implicit neural representations for generative modeling of living cell shapes. In: MICCAI, pp. 58–67. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_6

  30. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: ECCV, pp. 3–19 (2018)

    Google Scholar 

  31. Yang, J., Wickramasinghe, U., Ni, B., Fua, P.: ImplicitAtlas: learning deformable shape templates in medical imaging. In: CVPR, pp. 15861–15871 (2022)

    Google Scholar 

  32. Zhang, Y., Sapkota, N., Gu, P., Peng, Y., Zheng, H., Chen, D.Z.: Keep your friends close & enemies farther: Debiasing contrastive learning with spatial priors in 3D radiology images. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1824–1829. IEEE (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yejia Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 998 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Gu, P., Sapkota, N., Chen, D.Z. (2023). SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14224. Springer, Cham. https://doi.org/10.1007/978-3-031-43904-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43904-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43903-2

  • Online ISBN: 978-3-031-43904-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics