Skip to main content

Current and New Insights on Delivery Systems for Plant Sterols in Food

  • Chapter
  • First Online:
Implication of Oxysterols and Phytosterols in Aging and Human Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1440))

  • 371 Accesses

Abstract

Plant sterols are minor bioactive components of food lipids, which are often used for the formulation of functional foods due to their cholesterol-lowering properties. However, they have low solubility and tend to crystallize, which may affect their biological effects, the sensory profile of the sterol-enriched food, and its consumer acceptability. Moreover, due to the unsaturated structure of sterols, they are susceptible to oxidation, so different encapsulation systems have been developed to improve their dispersibility/solubility, stability, delivery, and bioaccessibility. This chapter provides an overview of the main encapsulation systems currently used for plant sterols and their application in model and food systems, with a particular focus on their efficiency and impact on sterol bioaccessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah LL, Javed HU, Xiao J (2022) Engineering emulsion gels as functional colloids emphasizing food applications: a review. Front Nutr 9:890188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acevedo-Estupiñan MV, Gutierrez-Lopez GF, Cano-Sarmiento C et al (2019) Stability and characterization of O/W free phytosterols nanoemulsions formulated with an enzymatically modified emulsifier. LWT 107:151–157

    Article  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Henao MV, León DE, Londoño-Londoño J et al (2023) Spray drying of phytosterols: an alternative to improve the solubility of bioactive ingredients, with application in food matrices. J Food Process Eng e14307

    Google Scholar 

  • Bagherpour S, Alizadeh A, Ghanbarzadeh S et al (2017) Preparation and characterization of Betasitosterol-loaded nanostructured lipid carriers for butter enrichment. Food Biosci 20:51–55

    Article  CAS  Google Scholar 

  • Barriuso B, Ansorena D, Astiasarán I (2017) Oxysterols formation: a review of a multifactorial process. J Steroid Biochem Mol Biol 169:39–45

    Article  CAS  PubMed  Google Scholar 

  • Bhushani JA, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol 38:21–33

    Article  Google Scholar 

  • Bugaets IA, Butina EA, Gerasimenko EO et al (2020) Production of water-dispersible forms of phytosterols. Int J Eng Trends Technol 68(10):1–9

    Article  Google Scholar 

  • Cao WJ, Ou SY, Lin WF et al (2016) Food protein-based phytosterol nanoparticles: fabrication and characterization. Food Funct 7(9):3973–3980

    Article  CAS  PubMed  Google Scholar 

  • Chaijan M, Panpipat W (2020) Instability of β-sitosteryl oleate and β-sitosterol loaded in oil-in-water emulsion. NFS J 21:22–27

    Article  Google Scholar 

  • Chen Q, McGillivray D, Wen J et al (2013a) Co-encapsulation of fish oil with phytosterol esters and limonene by milk proteins. J Food Eng 117:505–512

    Article  CAS  Google Scholar 

  • Chen Q, Zhong F, Wen J et al (2013b) Properties and stability of spray-dried and freeze-dried microcapsules co-encapsulated with fish oil, phytosterol esters, and limonene. Dry Technol 31:707–716

    Article  CAS  Google Scholar 

  • Chen XW, Yin WJ, Yang DX et al (2021) One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin. Food Res Int 150:110757

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Cui L (2022) Stigmasterol stability in medium chain triacylglycerides (MCT)-in-water emulsions: impact of sodium dodecyl sulphate (SDS) surfactant micelles. Eur J Lipid Sci Technol 124(3):2100158

    Article  CAS  Google Scholar 

  • Cid-Samamed A, Rakmai J, Mejuto JC et al (2022) Cyclodextrins inclusion complex: preparation methods, analytical techniques, and food industry applications. Food Chem 384:132467

    Article  CAS  PubMed  Google Scholar 

  • Commission Regulation (EC) No 983/2009 of 21 October 2009 On the authorisation and refusal of authorisation of certain health claims made on food and referring to the reduction of disease risk and to children’s development and health. Official J European Union L277:3–12

    Google Scholar 

  • Commission Regulation (EU) No 384/2010 of 5 May 2010 On the authorisation and refusal of authorisation of certain health claims made on foods and referring to the reduction of disease risk and to children’s development and health. Official J European Union L 113:6–10

    Google Scholar 

  • Commission Regulation (EU) No 432/2012 of 16 May 2012 Establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Official J European Union L136:1–40

    Google Scholar 

  • Comunian TA, Favaro-Trindade CS (2016) Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: a review. Food Hydrocoll 61:442–457

    Article  CAS  Google Scholar 

  • Comunian TA, Chaves IE, Thomazini M et al (2017) Development of functional yogurt containing free and encapsulated echium oil, phytosterol and sinapic acid. Food Chem 237:948–956

    Article  CAS  PubMed  Google Scholar 

  • Comunian TA, Nogueira M, Scolaro B et al (2018) Enhancing stability of echium seed oil and beta-sitosterol by their coencapsulation by complex coacervation using different combinations of wall materials and crosslinkers. Food Chem 252:277–284

    Article  CAS  PubMed  Google Scholar 

  • Corrêa RC, Peralta RM, Bracht A et al (2017) The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols. Trends Food Sci Technol 67:19–35

    Article  Google Scholar 

  • da Silva Santos V, Braz BB, Silva AÁ et al (2019) Nanostructured lipid carriers loaded with free phytosterols for food applications. Food Chem 298:125053

    Article  Google Scholar 

  • da Silva MG, de Godoi KRR, Gigante ML et al (2022) Nanostructured lipid carriers for delivery of free phytosterols: effect of lipid composition and chemical interesterification on physical stability. Colloids Surf A Physicochem Eng Asp 640:128425

    Article  Google Scholar 

  • Di Battista CA, Constenla D, Ramírez-Rigo MV et al (2015) The use of Arabic gum, maltodextrin and surfactants in the microencapsulation of phytosterols by spray drying. Powder Technol 286:193–201

    Article  Google Scholar 

  • Di Battista CA, Constenla D, Rigo MVR et al (2017) Process analysis and global optimization for the microencapsulation of phytosterols by spray drying. Powder Technol 321:55–65

    Article  Google Scholar 

  • Dikshit S, Bubna S, Gupta A et al (2020) Advances in various techniques for isolation and purification of sterols. J Food Sci Technol 57:2393–2403

    Article  CAS  PubMed  Google Scholar 

  • Engel R, Schubert H (2005) Formulation of phytosterols in emulsions for increased dose response in functional foods. Innov Food Sci Emerg Technol 6(2):233–237

    Article  CAS  Google Scholar 

  • Espinosa RR, Inchingolo R, Alencar SM et al (2015) Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters. Food Chem 182:95–104

    Article  CAS  PubMed  Google Scholar 

  • Faubel N, Cilla A, Alegría A et al (2022) Overview of in vitro digestion methods to evaluate bioaccessibility of lipophilic compounds in foods. Food Rev Int. https://doi.org/10.1080/87559129.2022.2143520

  • Feng S, Zheng X, Luan D et al (2019) Preparation and characterization of zein-based phytosterol nanodispersions fabricated by ultrasonic assistant anti-solvent precipitation. LWT 107:138–144

    Article  CAS  Google Scholar 

  • Feng S, Belwal T, Li L et al (2020a) Phytosterols and their derivatives: potential health-promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr Rev Food Sci Food Saf 19:1243–1267

    Article  PubMed  Google Scholar 

  • Feng S, Wang D, Gan L et al (2020b) Preparation and characterization of zein/pectin-based phytosterol nanodispersions and kinetic study of phytosterol release during simulated digestion in vitro. LWT 128:109446

    Article  CAS  Google Scholar 

  • Feng S, Yan J, Wang D et al (2021) Preparation and characterization of soybean protein isolate/pectin-based phytosterol nanodispersions and their stability in simulated digestion. Food Res Int 143:110237

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Wang L, Shao P et al (2022) A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety. Crit Rev Food Sci Nutr 62:5638–5657

    Article  CAS  PubMed  Google Scholar 

  • Gan C, Liu Q, Zhang Y et al (2022) A novel phytosterols delivery system based on sodium caseinate-pectin soluble complexes: improving stability and bioaccessibility. Food Hydrocoll 124:107295

    Article  CAS  Google Scholar 

  • García-Llatas G, Rodríguez-Estrada MT (2011) Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem Phys Lipids 164:607–624

    Article  PubMed  Google Scholar 

  • Guo SJ, Ma CG, Hu YY et al (2022) Solid lipid nanoparticles for phytosterols delivery: the acyl chain number of the glyceride matrix affects the arrangement, stability, and release. Food Chem 394:133412

    Article  CAS  PubMed  Google Scholar 

  • Jafari SM, Esfanjani AF, Katouzian I et al (2017) Release, characterization, and safety of nanoencapsulated food ingredients. In: Jafari SM (ed) Nanoencapsulation of food bioactive ingredients. Academic Press, Cambridge, pp 401–453

    Chapter  Google Scholar 

  • Jie F, Yang X, Wu L et al (2022) Linking phytosterols and oxyphytosterols from food to brain health: origins, effects, and underlying mechanisms. Crit Rev Food Sci Nutr 62:3613–3630

    Article  CAS  PubMed  Google Scholar 

  • Khalid N, Kobayashi I, Neves MA et al (2017) Encapsulation of β-sitosterol plus γ-oryzanol in O/W emulsions: formulation characteristics and stability evaluation with microchannel emulsification. Food Bioprod Process 102:222–232

    Article  CAS  Google Scholar 

  • Khan AU, Khan A, Shal B et al (2023) The critical role of the phytosterols in modulating tumor microenvironment via multiple signaling: a comprehensive molecular approach. Phytother Res:1–18

    Google Scholar 

  • Leong WF, Lai OM, Long K et al (2011a) Preparation and characterisation of water-soluble phytosterol nanodispersions. Food Chem 129(1):77–83

    Article  CAS  Google Scholar 

  • Leong WF, Cheong KW, Lai OM et al (2011b) Response surface modeling of processing parameters for the preparation of phytosterol nanodispersions using an emulsification–evaporation technique. J Am Oil Chem Soc 88(5):717–725

    Article  CAS  Google Scholar 

  • Leong WF, Man YBC, Lai OM et al (2011c) Effect of sucrose fatty acid esters on the particle characteristics and flow properties of phytosterol nanodispersions. J Food Eng 104(1):63–69

    Article  CAS  Google Scholar 

  • Li F, Wang X, Wang H et al (2021a) Preparation and characterization of phytosterol-loaded nanoparticles with sodium caseinate/dextran conjugates. Food Sci Biotechnol 30(4):531–539

    Google Scholar 

  • Li F, Wang H, Mei X (2021b) Preparation and characterization of phytosterol-loaded microcapsules based on the complex coacervation. J Food Eng 311:110728

    Google Scholar 

  • Li A, Zhu A, Kong D et al (2022) Water-dispersible phytosterol nanoparticles: preparation, characterization, and in vitro digestion. Front Nutr 8:1258

    Article  CAS  Google Scholar 

  • Lin Y, Knol D, Trautwein EA (2016) Phytosterol oxidation products (POP) in foods with added phytosterols and estimation of their daily intake: a literature review. Eur J Lipid Sci Technol 118:1423–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maniet G, Jacquet N, Richel A (2019) Recovery of sterols from vegetable oil distillate by enzymatic and non-enzymatic processes. C R Chim 22:347–353

    Article  CAS  Google Scholar 

  • McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729

    Article  CAS  Google Scholar 

  • McClements DJ (2015) Nanoscale nutrient delivery systems for food. J Food Sci 80:N1602–N1611

    Article  CAS  PubMed  Google Scholar 

  • McClements DJ (2017) Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: physicochemical aspects. Adv Colloid Interf Sci 240:31–59

    Article  CAS  Google Scholar 

  • McClements DJ (2018) Recent developments in encapsulation and release of functional food ingredients: delivery by design. Curr Opin Food Sci 23:80–84

    Article  Google Scholar 

  • McClements DJ, Öztürk B (2021) Utilization of nanotechnology to improve the handling, storage and biocompatibility of bioactive lipids in food applications. Foods 10:365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClements DJ, Xiao H (2012) Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct 3:202–220

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Pan Q, Liu Y (2012) Preparation and properties of phytosterols with hydroxypropyl β-cyclodextrin inclusion complexes. Eur Food Res Technol 235:1039–1047

    Article  CAS  Google Scholar 

  • Mohammadi M, Jafari SM, Hamishehkar H et al (2020) Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci Technol 101:73–88

    Article  CAS  Google Scholar 

  • Momeny E, Mirhosseini H, Sarker MZI (2017) Effect of medium-high energy emulsification condition on physicochemical properties of β-sitosterol multiple emulsion. Food Bioproc Tech 10:1642–1654

    Article  CAS  Google Scholar 

  • Moreno-Calvo E, Temelli F, Cordoba A et al (2014) A new microcrystalline phytosterol polymorph generated using CO2-expanded solvents. Cryst Growth Des 14:58–68

    Article  CAS  Google Scholar 

  • Mousavi MM, Torbati M, Farshi P et al (2021) Evaluation of design and fabrication of food-grade nanofibers from chitosan-gelatin for nanoencapsulation of stigmasterol using the electrospinning method. Adv Pharm Bull 11(3):514–521

    Article  CAS  PubMed  Google Scholar 

  • Muhoza B, Qi B, Harindintwali JD et al (2022) Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll 124:107239

    Article  CAS  Google Scholar 

  • Nattagh-Eshtivani E, Barghchi H, Pahlavani N et al (2022) Biological and pharmacological effects and nutritional impact of phytosterols: a comprehensive review. Phytother Res 36:299–322

    Article  CAS  PubMed  Google Scholar 

  • Paaver U, Laidmäe I, Santos HA et al (2016) Development of a novel electrospun nanofibrous delivery system for poorly water-soluble β-sitosterol. Asian J Pharm Sci 11:500–506

    Article  Google Scholar 

  • Paiva-Santos AC, Ferreira L, Peixoto D et al (2022) Cyclodextrins as an encapsulation molecular strategy for volatile organic compounds–pharmaceutical applications. Colloids Surf B Biointerfaces 218:112758

    Article  CAS  PubMed  Google Scholar 

  • Pavani M, Singha P, Dash DR et al (2022) Novel encapsulation approaches for phytosterols and their importance in food products: a review. J Food Process Eng 45(8):e14041

    Article  CAS  Google Scholar 

  • Recharla N, Riaz M, Ko S et al (2017) Novel technologies to enhance solubility of food-derived bioactive compounds: a review. J Funct Foods 39:63–73

    Article  CAS  Google Scholar 

  • Salvia-Trujillo L, Soliva-Fortuny R, Rojas-Graü MA et al (2017) Edible nanoemulsions as carriers of active ingredients: a review. Annu Rev Food Sci Technol 8:439–466

    Article  CAS  PubMed  Google Scholar 

  • Sani MA, Tavassoli M, Azizi-Lalabadi M et al (2022) Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: design, formulation, and application. Adv Colloid Interface Sci 305:102709

    Article  CAS  PubMed  Google Scholar 

  • Soleimanian Y, Goli SAH, Varshosaz J et al (2018) Propolis wax nanostructured lipid carrier for delivery of β sitosterol: effect of formulation variables on physicochemical properties. Food Chem 260:97–105

    Article  CAS  PubMed  Google Scholar 

  • Soleimanian Y, Goli SAH, Varshosaz J et al (2019) β-Sitosterol lipid nano carrier based on propolis wax and pomegranate seed oil: effect of thermal processing, pH, and ionic strength on stability and structure. Eur J Lipid Sci Technol 121:1800347

    Article  Google Scholar 

  • Tavares L, Santos L, Noreña CPZ (2021) Bioactive compounds of garlic: a comprehensive review of encapsulation technologies, characterization of the encapsulated garlic compounds and their industrial applicability. Trends Food Sci Technol 114:232–244

    Article  CAS  Google Scholar 

  • Tolve R, Condelli N, Can A et al (2018a) Development and characterization of phytosterol-enriched oil microcapsules for foodstuff application. Food Bioprocess Technol 11:152–163

    Article  CAS  Google Scholar 

  • Tolve R, Condelli N, Caruso MC et al (2018b) Fortification of dark chocolate with microencapsulated phytosterols: chemical and sensory evaluation. Food Funct 9:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Tolve R, Condelli N, Caruso MC et al (2019) Preparation and characterization of microencapsulated phytosterols for the formulation of functional foods: scale up from laboratory to semi-technical production. Food Res Int 116:1274–1281

    Article  CAS  PubMed  Google Scholar 

  • Tolve R, Cela N, Condelli N et al (2020) Microencapsulation as a tool for the formulation of functional foods: the phytosterols’ case study. Foods 9:470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubeyitogullari A, Ciftci ON (2016) Phytosterol nanoparticles with reduced crystallinity generated using nanoporous starch aerogels. RSC Adv 6:108319–108327

    Article  CAS  Google Scholar 

  • Ubeyitogullari A, Ciftci ON (2017) Generating phytosterol nanoparticles in nanoporous bioaerogels via supercritical carbon dioxide impregnation: effect of impregnation conditions. J Food Eng 207:99–107

    Article  CAS  Google Scholar 

  • Ubeyitogullari A, Ciftci ON (2019) In vitro bioaccessibility of novel low-crystallinity phytosterol nanoparticles in non-fat and regular-fat foods. Food Res Int 123:27–35

    Article  CAS  PubMed  Google Scholar 

  • Ubeyitogullari A, Moreau R, Rose DJ et al (2019) Enhancing the bioaccessibility of phytosterols using nanoporous corn and wheat starch bioaerogels. Eur J Lipid Sci Technol 121:1700229

    Article  Google Scholar 

  • Ubeyitogullari A, Ahmadzadeh S, Kandhola G et al (2022) Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: challenges, advances, and opportunities. Compr Rev Food Sci Food Saf 21:4610–4639

    Article  CAS  PubMed  Google Scholar 

  • Yu SC, Chen TC, Hou YT et al (2018) β-Sitosterol-2-hydroxypropyl-β-cyclodextrin inclusion complex: characterization and inhibitory effect on adipogenesis in 3T3-L1 pre-adipocytes. Steroids 140:196–201

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang R, Chen L et al (2015) Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. Eur Polym J 72:698–716

    Article  CAS  Google Scholar 

  • Zhang R, Han Y, McClements DJ et al (2022) Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: a review. J Agric Food Chem 70:2483–2494

    Article  CAS  PubMed  Google Scholar 

  • Zychowski LM, Logan A, Augustin MA et al (2018) Phytosterol crystallisation within bulk and dispersed triacylglycerol matrices as influenced by oil droplet size and low molecular weight surfactant addition. Food Chem 264:24–33

    Article  CAS  PubMed  Google Scholar 

  • Zychowski LM, Mettu S, Dagastine RR et al (2019) Physical and interfacial characterization of phytosterols in oil-in-water triacylglycerol-based emulsions. Food Struct 19:100101

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the financial support from project PID2019-104167RB-I00/AEI/10.13039/501100011033, as well as from the Basic Research Funding RFO of the Alma Mater Studiorum-University of Bologna. V. Blanco-Morales holds a grant for the requalification of the Spanish university system from the Ministry of Universities of the Government of Spain, financed by the European Union, NextGeneration EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Rodriguez-Estrada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blanco-Morales, V., Mercatante, D., Rodriguez-Estrada, M.T., Garcia-Llatas, G. (2024). Current and New Insights on Delivery Systems for Plant Sterols in Food. In: Lizard, G. (eds) Implication of Oxysterols and Phytosterols in Aging and Human Diseases. Advances in Experimental Medicine and Biology, vol 1440. Springer, Cham. https://doi.org/10.1007/978-3-031-43883-7_20

Download citation

Publish with us

Policies and ethics