
Short Boolean Formulas as Explanations
in Practice

Reijo Jaakkola1 , Tomi Janhunen1 , Antti Kuusisto1,2(B) ,
Masood Feyzbakhsh Rankooh1 , and Miikka Vilander1

1 Tampere University, Tampere, Finland
antti.kuusisto@tuni.fi

2 University of Helsinki, Helsinki, Finland

Abstract. We investigate explainability via short Boolean formulas in
the data model based on unary relations. As an explanation of length
k, we take a Boolean formula of length k that minimizes the error with
respect to the target attribute to be explained. We first provide novel
quantitative bounds for the expected error in this scenario. We then
also demonstrate how the setting works in practice by studying three
concrete data sets. In each case, we calculate explanation formulas of
different lengths using an encoding in Answer Set Programming. The
most accurate formulas we obtain achieve errors similar to other meth-
ods on the same data sets. However, due to overfitting, these formulas
are not necessarily ideal explanations, so we use cross validation to iden-
tify a suitable length for explanations. By limiting to shorter formulas,
we obtain explanations that avoid overfitting but are still reasonably
accurate and also, importantly, human interpretable.

Keywords: Boolean formula size · Explainability · Interpretable AI ·
Overfitting error · Answer Set Programming · Boolean optimization

1 Introduction

In this article we investigate explainability and classification via short Boolean
formulas. As the data model, we use multisets of propositional assignments. This
is one of the simplest data representations available—consisting simply of data
points and properties—and corresponds precisely to relational models with unary
relations. The data is given as a model M with unary relations p1, . . . , pk over its
domain W , and furthermore, there is an additional target predicate q ⊆ W . As
classifiers for recognizing q, we produce Boolean formulas ϕ over p1, . . . , pk, and
the corresponding error is then the percentage of points in W that disagree on
ϕ and q over W . For each formula length �, a formula producing the minimum
error is chosen as a candidate classifier. Longer formulas produce smaller errors,
and ultimately the process is halted based on cross validation which shows that
the classifier formulas ϕ begin performing significantly better on training data
in comparison to test data, suggesting overfitting.
c© The Author(s) 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 90–105, 2023.
https://doi.org/10.1007/978-3-031-43619-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_7&domain=pdf
http://orcid.org/0000-0003-4714-4637
http://orcid.org/0000-0002-2029-7708
http://orcid.org/0000-0003-1356-8749
http://orcid.org/0000-0001-5660-3052
http://orcid.org/0000-0002-7301-939X
https://doi.org/10.1007/978-3-031-43619-2_7

Short Boolean Formulas as Explanations in Practice 91

Importantly, the final classifier formulas ϕ tend to be short and therefore
explicate the global behavior of the classifier ϕ itself in a transparent way. This
leads to inherent interpretability of our approach. Furthermore, the formulas ϕ
can also be viewed as explanations of the target predicate q. By limiting to short
formulas, we obtain explanations (or classifiers) that avoid overfitting but are
still reasonably accurate and also—importantly—human interpretable.

Our contributions include theory, implementation and empirical results. We
begin with some theory on the errors of Boolean formulas as explanations. We
first investigate general reasons behind overfitting when using Boolean formu-
las. We also observe, for example, that if all distributions are equally likely, the
expected ideal theoretical error of a distribution is 25%. The ideal theoretical
error is the error of an ideal Boolean classifier for the entire distribution. We pro-
ceed by proving novel, quantitative upper and lower bounds on the expected ideal
empirical error on a data set sampled from a distribution. The ideal empirical
error is the smallest error achievable on the data set. Our bounds give concrete
information on sample sizes required to avoid overfitting.

We also compute explanation formulas in practice. We use three data sets
from the UCI machine learning repository: Statlog (German Credit Data), Breast
Cancer Wisconsin (Original) and Ionosphere. We obtain results comparable to
other experiments in the literature. In one set of our experiments, the empirical
errors for the obtained classifiers for the credit, breast cancer and ionosphere
data are 0.27, 0.047 and 0.14. The corresponding formulas are surprisingly short,
with lengths 6, 8 and 7, respectively. This makes them highly interpretable. The
length 6 formula for the credit data (predicting if a loan will be granted) is

¬(a[1, 1] ∧ a[2]) ∨ a[17, 4],

where a[1, 1] means negative account balance; a[2] means above median loan
duration; and a[17, 4] means employment on managerial level. Our errors are
comparable to those obtained for the same data sets in the literature. For exam-
ple, [25] obtains an error 0.25 for the credit data where our error is 0.27. Also,
all our formulas are immediately interpretable. See Sect. 5 for further discussion.

On the computational side, we deploy answer set programming (ASP; see,
e.g., [6,14]) where the solutions of a search problem are described declaratively in
terms of rules such that the answer sets of the resulting logic program correspond
to the solutions of the problem. Consequently, dedicated search engines, known
as answer-set solvers, provide means to solve the problem via the computation of
answer sets. The Clasp [8] and Wasp [1] solvers represent the state-of-the art of
native answer set solvers, providing a comparable performance in practice. These
solvers offer various reasoning modes—including prioritized optimization—which
are deployed in the sequel, e.g., for the minimization of error and formula length.
Besides these features, we count on the flexibility of rules offered by ASP when
describing explanation tasks. More information on the technical side of ASP can
be found from the de-facto reference manual [9] of the Clingo system.

The efficiency of explanation is governed by the number of hypotheses consid-
ered basically in two ways. Firstly, the search for a plausible explanation requires
the exploration of the hypothesis space and, secondly, the exclusion of better expla-
nations becomes a further computational burden, e.g., when the error with respect

92 R. Jaakkola et al.

to data is being minimized. In computational learning approaches (cf. [17]), such
as current-best-hypothesis search and version space learning, a hypothesis in a nor-
mal form is maintained while minimizing the numbers of false positive/negative
examples. However, in this work, we tackle the hypothesis space somewhat differ-
ently: we rather specify the form of hypotheses and delegate their exploration to an
(optimizing) logic solver. In favor of interpretability, we consider formulas based
on negations, conjunctions, and disjunctions, not necessarily in a particular nor-
mal form. By changing the form of hypotheses, also other kinds of explanations
such as decision trees [19] or lists could alternatively be sought.

Concerning further related work, our bounds on the difference between theo-
retical and expected empirical error are technically related to results in statistical
learning theory [24] and PAC learning [15,23]. In PAC learning, the goal is to use
a sample of labeled points drawn from an unknown distribution to find a hypoth-
esis that gives a small true error with high probability. The use of hypotheses
with small descriptions has also been considered in the PAC learning in relation
to the Occam’s razor principle [3–5]. One major difference between our setting
and PAC learning is that in the latter, the target concept is a (usually Boolean)
function of the attribute values, while in our setting we only assume that there
is a probability distribution on the propositional types over the attributes.

Explanations relating to minimality notions in relation to different Boolean
classifiers have been studied widely, see for example [20] for minimum-cardinality
and prime implicant explanations, also in line with Occam’s razor [3]. Our study
relates especially to global (or general [11]) explainability, where the full behav-
ior of a classifier is explained instead of a decision concerning a particular input
instance. Boolean complexity—the length of the shortest equivalent formula—is
promoted in the prominent article [7] as an empirically tested measure of the
subjective difficulty of a concept. On a conceptually related note, intelligibility of
various Boolean classifiers are studied in [2]. While that study places, e.g., DNF-
formulas to the less intelligible category based on the complexity of explainability
queries performed on classifiers, we note that with genuinely small bounds for
classifier length, asymptotic complexity can sometimes be a somewhat problem-
atic measure for intelligibility. In our study, the bounds arise already from the
overfitting thresholds in real-life data. In the scenarios we studied, overfitting
indeed sets natural, small bounds for classifier length. In inherently Boolean
data, such bounds can be fundamental and cannot be always ignored via using
different classes of classifiers. The good news is that while a length bound may
be necessary to avoid overfitting, shorter length increases interpretability. This
is important from the point of theory as well as applications.

We proceed as follows. After the preliminaries in Sect. 2, we present theoret-
ical results on errors in Sect. 3. Then, Sect. 4 explains our ASP implementation.
Next, we present and interpret empirical results in Sect. 5 and conclude in Sect. 6.

2 Preliminaries

The syntax of propositional logic PL[σ] over the vocabulary σ = {p1, . . . , pm} is
given by ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ where p ∈ σ. We also define the exclusive

Short Boolean Formulas as Explanations in Practice 93

or ϕ ⊕ ψ := (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ) as an abbreviation. A σ-model is a structure
M = (W,V) where W is a finite, non-empty set referred to as the domain of
M and V : σ → P(W) is a valuation function that assigns each p ∈ σ the set
V (p) (also denoted by pM) of points w ∈ W where p is considered to be true.

A σ-valuation V can be extended in the standard way to a valuation V :
PL[σ] → P(W) for all PL[σ]-formulas. We write w |= ϕ if w ∈ V (ϕ) and say
that w satisfies ϕ. We denote by |ϕ|M the number of points w ∈ W where
ϕ ∈ PL[σ] is true. For σ-formulas ϕ and ψ, we write ϕ |= ψ iff for all σ-models
M = (W,V) we have V (ψ) ⊆ V (ϕ). Let lit(σ) denote the set of σ-literals,
i.e., formulas p and ¬p for p ∈ σ. A σ-type base is a set S ⊆ lit(σ) such
that for each p ∈ σ, precisely one of the literals p and ¬p is in S. A σ-type is a
conjunction

∧
S. We assume some fixed bracketing and ordering of literals in

∧
S

so there is a one-to-one correspondence between type bases and types. The set
of σ-types is denoted by Tσ. Note that in a σ-model M = (W,V), each element
w satisfies precisely one σ-type, so the domain W is partitioned by some subset
of Tσ. The size size(ϕ) of a formula ϕ ∈ PL[σ] is defined such that size(p) = 1,
size(¬ψ) = size(ψ) + 1, and size(ψ ∧ ϑ) = size(ψ ∨ ϑ) = size(ψ) + size(ϑ) + 1.

We will use short propositional formulas as explanations of target attributes
in data. Throughout the paper, we shall use the vocabulary τ = {p1, . . . , pk} for
the language of explanations, while q �∈ τ will be the target attribute (or target
proposition) to be explained. While the set of τ -types will be denoted by Tτ , we
let Tτ,q denote the set of (τ ∪ {q})-types in the extended language PL[τ ∪ {q}].

By a probability distribution over a vocabulary σ, or simply a σ-distribution,
we mean a function μσ : Tσ → [0, 1] that gives a probability to each type in Tσ.
We are mainly interested in such distributions over τ and τ ∪{q}. For notational
convenience, we may write μτ,q or simply μ instead of μτ∪{q}. In the theoretical
part of the paper, we assume that the studied data (i.e., (τ ∪ {q})-models) are
sampled using such a distribution μ.

We then define some notions of error for explanations. Let τ = {p1, . . . , pk}.
Fix a probability distribution μ : Tτ,q → [0, 1]. Let ϕ and ψ be (τ ∪{q})-formulas.
The probability of ϕ over μ is defined as

Prμ(ϕ) :=
∑

t∈Tτ,q , t|=ϕ

μ(t).

The probability of ψ given ϕ over μ is defined as Prμ(ψ |ϕ) := Prμ(ψ∧ϕ)
Prμ(ϕ)

(and 0 if Prμ(ϕ) = 0). For simplicity, we may write μ(ϕ) for Prμ(ϕ) and μ(ψ |ϕ)
for Prμ(ψ |ϕ). Let M = (W,V) be a (τ ∪ {q})-model. The probability of ϕ
over M is PrM (ϕ) := 1

|W | |ϕ|M , and the probability of ψ given ϕ over M

is defined as PrM (ψ |ϕ) := |ψ∧ϕ|M
|ϕ|M (and 0 if PrM (ϕ) = 0). The disjunction

ϕM
id :=

∨{ t ∈ Tτ | PrM (q | t) ≤ 1
2} is the ideal classifier w.r.t. M , and the

disjunction ϕμ
id :=

∨{ t ∈ Tτ |μ(q | t) ≤ 1
2} is the ideal classifier w.r.t. μ.

94 R. Jaakkola et al.

Now, let ψ ∈ PL[τ]. The theoretical error (or true error) of ψ with respect
to μ is errμ(ψ) := Prμ(ψ ⊕ q). The ideal theoretical error of μ is

err(μ) := min
ψ∈PL[τ]

errμ(ψ) = Prμ(ϕ
μ
id) =

∑

t∈Tτ

min{μ(t ∧ q), μ(t ∧ ¬q)}.

Let M be a (τ ∪ {q})-model. The empirical error of ψ with respect to M is
errM (ψ) := PrM (ψ ⊕ q). The ideal empirical error of M is

err(M) := min
ψ∈PL[τ]

errM (ψ) = PrM (ϕM
id) =

1
|W |

∑

t ∈ Tτ

min{|t ∧ q|M , |t ∧ ¬q|M}.

For a τ -type t, the ideal error over t w.r.t. μ is min{μ(q | t), μ(¬q | t)}. The
ideal error over t w.r.t. M is min{PrM (q | t),PrM (¬q | t)}.

The main problem studied in this paper is the following: over a (τ ∪ {q})-
model M , given a bound � on formula length, find ψ with size(ψ) ≤ � and
with minimal empirical error w.r.t. M . This can be formulated as a general
explanation problem (GEP) in the sense of [11]; see in particular the extended
problems in [12]. The goal in GEP is to explain the global behavior of a classifier
rather than a reason why a particular instance was accepted or rejected.

Finally, we define cut : [0, 1] → [0, 1
2] to be the function such that cut(x) = x

if x ≤ 1
2 and otherwise cut(x) = 1 − x.

3 Expected Errors

In this section we consider the errors given by Boolean classifiers, including the
phenomena that give rise to the errors. With no information on the distribution
μ : Tτ,q → [0, 1], it is difficult to predict the error of a classifier ϕ in PL[τ].
However, some observations can be made. Consider the scenario where all dis-
tributions μ are equally likely, meaning that we consider the flat Dirichlet dis-
tribution Dir(α1, . . . , α|Tτ,q|) with each αi equal to 1, i.e., the distribution that
is uniform over its support which, in turn, is the (|Tτ,q| − 1)-simplex. For more
on Dirichlet distributions, see [16]. We begin with the following observation.

Proposition 1. Assuming all distributions over τ ∪ {q} are equally likely, the
expected value of the ideal theoretical error is 0.25. Also, for any type t ∈ Tτ and
any μτ with μτ (t) > 0, if all extensions μ of μτ to a (τ ∪ {q})-distribution are
equally likely, the expectation of the ideal error over t w.r.t. μ is likewise 0.25.

Proof. We prove the second claim first. Fix a μ and t. If x = μ(q | t), then
the ideal error over t w.r.t. μ is given by cut(x). Therefore the corresponding
expected value is given by 1

1−0

∫ 1

0
cut(x) dx =

∫ 1
2
0

x dx +
∫ 1

1
2
(1 − x) dx = 1

4 .

This proves the second claim. Based on this, it is not difficult to show that the
also the first claim holds; the full details are given in the full version [13]. ��

Short Boolean Formulas as Explanations in Practice 95

One of the main problems with Boolean classifiers is that the number of types
is exponential in the vocabulary size, i.e., the curse of dimensionality. This leads
to overfitting via overparameterization; even if the model M is faithful to an
underlying distribution μ, classifiers ϕM

id tend to give empirical errors that are
significantly smaller than the theoretical ones for μ. To see why, notice that in
the extreme case where |t|M = 1 for each t ∈ Tτ,q, the ideal empirical error of M
is zero. In general, when the sets |t|M are small, ideal classifiers ϕM

id benefit from
that. Let us consider this issue quantitatively. Fix μ and t ∈ Tτ . For a model M ,
let err(M, t) refer to the ideal error over t w.r.t. M . Consider models M sampled
according to μ, and let m ∈ N and μ(q | t) = p. Now, the expected value E(m, p)
of err(M, t) over those models M where |t|M = m is given by

(∑

0< k ≤ m/2

(
m

k

)

pk(1−p)m−k · k

m

)
+

(∑

m/2< k < m

(
m

k

)

pk(1−p)m−k · (m − k)
m

)
.

Now for example E(4, 0.7) = 0.2541 and E(2, 0.7) = 0.21, both significantly
lower than cut(p) = cut(0.7) = 0.3 which is the expected value of err(M, t) when
the size restriction |t|M = m is lifted and models of increasing size are sampled
according to μ. Similarly, we have E(4, 0.5) = 0.3125 and E(2, 0.5) = 0.25,
significantly lower than cut(p) = cut(0.5) = 0.5. A natural way to avoid this
phenomenon is to limit formula size, the strategy adopted in this paper. This
also naturally leads to shorter and thus more interpretable formulas.

We next estimate empirical errors for general Boolean classifiers (as opposed
to single types). The expected ideal empirical error of μ is simply the expec-
tation E(err(M)) of err(M), where M is a model of size n sampled according to μ.
One can show that E(err(M)) ≤ err(μ) and that E(err(M)) → err(μ) as n → ∞.
Thus it is natural to ask how the size of the difference err(μ)−E(err(M)), which
we call the bias of empirical error, depends on n.

In the remaining part of this section we establish bounds on the expected
ideal empirical error, which in turn can be used to give bounds on the bias of
empirical error. Since expectation is linear, it suffices to give bounds on

1
n

∑

t∈Tτ

Emin{|t ∧ q|M , |t ∧ ¬q|M}, (1)

where M is a model of size n which is sampled according to μ. Here, for each
type t ∈ Tτ , |t ∧ q|M and |t ∧ ¬q|M are random variables that are distributed
according to Binom(n, μ(t ∧ q)) and Binom(n, μ(t ∧ ¬q)) respectively. Since |t ∧
q|M + |t ∧ ¬q|M = |t|M , we can replace |t ∧ ¬q|M with |t|M − |t ∧ q|M .

To simplify (1), we will first use the law of total expectation to write it as

1
n

∑

t∈Tτ

n∑

m=0

E(min{|t ∧ q|M ,m − |t ∧ q|M} | |t|M = m) · Pr(|t|M = m). (2)

For each 0 ≤ m ≤ n and t ∈ Tτ we fix a random variable Xm,t,q distributed
according to Binom(m,μ(q|t)), where μ(q|t) := μ(t ∧ q)/μ(t). In the full version

96 R. Jaakkola et al.

[13] we show that (2) equals

1
n

∑

t∈Tτ

n∑

m=0

Emin{Xm,t,q, m − Xm,t,q} · Pr(|t|M = m). (3)

To avoid dealing directly with the expectation of a minimum of two Binomial
random variables, we simplify it via the identity min{a, b} = 1

2 (a + b − |a − b|).
In the full version [13] we show that using this identity on (3) gives the form

1
2

− 1
n

∑

t∈Tτ

n∑

m=0

E

∣
∣
∣
∣Xm,t,q − m

2

∣
∣
∣
∣ · Pr(|t|M = m). (4)

In the above formula the quantity E|Xm,t,q− m
2 | is convenient since we can bound

it from above using the standard deviation of Xm,t,q. Some further estimates and
algebraic manipulations suffice to prove the following result.

Theorem 1. Expected ideal empirical error is bounded from below by

err(μ) − 1√
n

∑

t∈Tτ

√
μ(q|t)(1 − μ(q|t))μ(t).

We note that Theorem 1 implies immediately that the bias of the empirical

error is bounded from above by 1√
n

∑
t∈Tτ

√
μ(q|t)(1 − μ(q|t))μ(t) ≤ 1

2

√
|Tτ |
n .

This estimate yields quite concrete sample bounds. For instance, if we are using
three attributes to explain the target attribute (so |Tτ | = 8) and we want the
bias of the empirical error to be at most 0.045, then a sample of size at least
1000 suffices. For the credit data set with 1000 data points, this means that if
three attributes are selected, then the (easily computable) ideal empirical error
gives a good idea of the ideal theoretical error for those three attributes.

Obtaining an upper bound on the expected ideal empirical error is much
more challenging, since in general it is not easy to give good lower bounds on
E|X − λ|, where X is a binomial random variable and λ > 0 is a real number.
Nevertheless we were able to obtain the following result.

Theorem 2. Expected ideal empirical error is bounded from above by

1
2

− 1√
8n

∑

nμ(t)≥1

√
μ(t) +

1
2
√
8n

∑

nμ(t)≥1

1 − μ(t)
√

nμ(t)
− 1√

8

∑

nμ(t)<1

μ(t)(1 − μ(t))n.

The proof of Theorem 2 — which can be found in the full version [13] —
can be divided into three main steps. First, we observe that the expected ideal
empirical error is maximized when μ(q|t) = 1/2, for every t ∈ Tτ , in which
case E(Xm,t,q) = m

2 . Then, we use a very recent result of [18] to obtain a good
lower bound on the value E|Xm,t,q − E(Xm,t,q)|. Finally, after some algebraic
manipulations, we are left with the task of bounding E(

√|t|M) from below,

Short Boolean Formulas as Explanations in Practice 97

which we achieve by using an estimate that can be obtained from the Taylor
expansion of

√
x around 1.

To get a concrete feel for the lower bound of Theorem 2, consider the case
where μ(q|t) = 1/2, for every t ∈ Tτ . In this case a rough use of Theorem 2
implies that the bias of the empirical error is bounded from below by

1√
8

∑

nμ(t)<1

μ(t)(1 − μ(t))n ≥ 1√
8e

· (n − 1)
n

·
∑

nμ(t)<1

μ(t),

where we used the fact that (1−1/n)n−1 ≥ 1/e, which holds provided that n > 1.
This lower bound very much depends on the properties of the distribution μ,
but one can nevertheless make general remarks about it. For instance, if |Tτ | is
much larger than n and μ is not concentrated on a small number of types (i.e.,
its Shannon entropy is not small), then we except

∑
nμ(t)<1 μ(t) to be close to

one. Thus the above bound would imply that in this scenario the generalization
gap is roughly 1/(

√
8 · e) ≈ 0.13, which is a significant deviation from zero.

4 An Overview of the Implementation in ASP

In this section, we describe our proof-of-concept implementation of the search
for short formulas explaining data sets. Our implementation presumes Boolean
attributes only and complete data sets having no missing values. In the following,
we highlight the main ideas behind our ASP encoding in terms of code snippets
in the Gringo syntax [9]. The complete encoding will be published under the
ASPTOOLS collection1 along with some preformatted data sets for testing pur-
poses. Each data set is represented in terms of a predicate val(D,A,V) with
three arguments: D for a data point identifier, A for the name of an attribute,
and V for the value of the attribute A at D, i.e., either 0 or 1 for Boolean data.

Given a data set based on attributes a0 , . . . , an where an is the target of
explanation, the hypothesis space is essentially the propositional language PL[τ]
with the vocabulary τ = {a0 , . . . , an−1}. Thus, the goal is to find a definition
an ↔ ϕ where ϕ ∈ PL[τ] with the least error. To avoid obviously redundant
hypotheses, we use only propositional connectives from the set C = {¬,∧,∨} and
represent formulas in the so-called reversed Polish notation. This notation omits
parentheses altogether and each formula ϕ is encoded as a sequence s1 , . . . , sk of
symbols where si ∈ τ ∪C for each si. Such a sequence can be transformed into a
formula by processing the symbols in the given order and by pushing formulas on
a stack that is empty initially. If si ∈ τ , it is pushed on the stack, and if si ∈ C,
the arguments of si are popped from the stack and the resulting formula is pushed
on the stack using si as the connective. Eventually, the result appears as the only
formula on top of stack. For illustration, consider the sequence a2, a1,∧,¬, a0,∨
referring to attributes a0, a1, and a2. The stack evolves as follows: a2 �→ a2, a1

�→ (a1∧a2) �→ ¬(a1∧a2) �→ ¬(a1∧a2), a0 �→ a0∨¬(a1∧a2). Thus, the formula is

1 https://github.com/asptools/benchmarks.

https://github.com/asptools/benchmarks

98 R. Jaakkola et al.

Listing 1. Encoding the syntactic structure of hypotheses

1 % Domains
2 #const l=10.
3 node (1..l). root(l). op(neg;and;or).
4 data(D) :- val(D,A,B).
5 attr(A) :- val(D,A,B).
6
7 % Choose the actual length
8 {used(N)} :- node(N).
9 used(N+1) :- used(N), node(N+1).

10 used(N) :- root(N).
11
12 % Choose leaf nodes and inner nodes , and label them
13 {leaf(N)} :- used(N).
14 inner(N) :- used(N), not leaf(N).
15 { op(N,O): op(O) } = 1 :- inner(N).
16 { lat(N,A): attr(A) } = 1 :- leaf(N).

Listing 2. Checking the syntax using a stack
1 % Check the size of the stack
2 count(N,0) :- used(N), not used(N-1).
3 count(N+1,K+1) :- leaf(N), count(N,K), node(N), K>=0, K<=2.
4 count(N+1,K) :- count(N,K), node(N), op(N,neg).
5 count(N+1,K-1) :- count(N,K), node(N), op(N,O), O!=neg.
6 :- not count(l+1 ,1).
7
8 % The step -by -step evolution of the stack
9 stack(N+1,K+1,N) :- leaf(N), count(N,K), K>=0, K<=2.

10 stack(N+1,K, N) :- op(N,neg), count(N,K), K>0, K<=3.
11 stack(N+1,K-1,N) :- op(N,O), O!=neg , count(N,K), K>=2, K<=3.
12
13 stack(N+1,I, M) :- leaf(N), count(N,K), I>=0, I<=K, stack(N,I,M).
14 stack(N+1,I, M) :- op(N,neg), count(N,K), I>0, I<K, stack(N,I,M).
15 stack(N+1,1, M) :- op(N,O), O!=neg , count(N,3), stack(N,1,M).

a0∨¬(a1∧a2). For a formula ϕ, the respective sequence of symbols can be found
by traversing the syntax tree of ϕ in the post order. There are also malformed
sequences not corresponding to any formula.

Based on the reverse Polish representation, the first part of our encoding con-
centrates on the generation of hypotheses whose syntactic elements are defined
in Listing 1. In Line 2, the maximum length of the formula is set, as a global
parameter l of the encoding, to a default value 10. Other values can be issued by
the command-line option -cl=<number>. Based on the value chosen, the respec-
tive number of nodes for a syntax tree is defined in Line 3, out of which the last
one is dedicated for the root. The three Boolean operators are introduced using
the predicate op/1. The data points and attributes are extracted from data in
Lines 4 and 5, respectively. To allow explanations shorter than l, the choice rule
in Line 8 may take any node into use (or not). The rule in Line 9 ensures that
all nodes with higher index values up to l are in use. The root node is always in

Short Boolean Formulas as Explanations in Practice 99

Listing 3. Evaluating the hypothesis at data points

1 true(D,N) :- data(D), leaf(N), lat(N,A), val(D,A,1).
2 {true(D,N)} :- data(D), used(N), inner(N).
3
4 % Constraints for disjunctions
5 :- data(D), op(N,or), count(N,I), stack(N,I-1,N3),
6 true(D,N), not true(D,N-1), not true(D,N3).
7 :- data(D), op(N,or), not true(D,N), true(D,N-1).
8 :- data(D), op(N,or), count(N,I), stack(N,I-1,N2),
9 not true(D,N), true(D,N2).

Listing 4. Encoding the objective function

1 % Compute error
2 error(D) :- data(D), val(D,A,0), expl(A), true(D,N), root(N).
3 error(D) :- data(D), val(D,A,1), expl(A), not true(D,N), root(N).
4
5 #minimize { 1@1 ,D: error(D); 1@0 ,N: used(N), node(N) }.

use by Line 10. The net effect is that the nodes i..l taken into use determine
the actual length of the hypothesis. Thus the length may vary between 1 and
l. In a valid syntax tree, the nodes are either leaf or inner nodes, see Lines 13
and 14, respectively. Each inner node is assigned an operator in Line 15 whereas
each leaf node is assigned an attribute in Line 16, to be justified later on.

The second part of our encoding checks the syntax of the hypothesis using
a stack, see Listing 2. Line 2 resets the size of the stack in the first used node.
The following rules in Lines 3–5 take the respective effects of attributes, unary
operators, and binary operators into account. The constraint in Line 6 ensures
that the count reaches 1 after the root node. Similar constraints limit the size of
the stack: at most two for leaf nodes and at least one/two for inner nodes with a
unary/binary connective. The predicate stack/3 propagates information about
arguments to operators, i.e., the locations N where they can be found. Depending
on node type, the rules in Lines 9–11 create a new reference that appears on top
of the stack at the next step N+1 (cf. the second argument K+1, K, or K-1). The
rules in Lines 13–15 copy the items under the top item to the next step N+1.

The third part of our encoding evaluates the chosen hypothesis at data points
D present in the data set given as input. For a leaf node N, the value is simply
set based on the value of the chosen attribute A at D, see Line 1. For inner nodes
N, we indicate a choice of the truth value in Line 2, but the choice is made
deterministic in practice by the constraints in Lines 5–9, illustrating the case of
the or operator. The constraints for the operators neg and and are analogous.

Finally, Listing 4 encodes the objective function. Lines 2 and 3 spot data
points D that are incorrect with respect to the attribute A being explained and
the selected hypothesis rooted at N. For a false positive D, the hypothesis is true
at D while the value of A is 0. In the opposite case, the hypothesis is false while the
value of A at D is 1. The criteria for minimization are given in Line 5. The number
of errors is the first priority (at level 1) whereas the length of the hypothesis
is the secondary objective (at level 0). Also, recall that the maximum length

100 R. Jaakkola et al.

has been set as a parameter earlier. The optimization proceeds lexicographically
as follows: a formula that minimizes the number of errors is sought first and,
once such an explanation has been found, the length of the formula is minimized
additionally. So, it is not that crucial to set the (maximum) length parameter l to
a particular value: the smaller values are feasible, too, based on the nodes in use.
The performance of our basic encoding can be improved by adding constraints
to prune redundant hypotheses, sub-optimal answer sets, and candidates.

5 Results from Data and Interpretation

To empirically analyze short Boolean formulas as explanations and classifiers, we
utilize three data sets from the UCI machine learning repository: Statlog (Ger-
man Credit Data), Breast Cancer Wisconsin (Original) and Ionosphere. The
target attributes are given as acceptance of a loan application, benignity of a
tumor and “good” radar readings, respectively. The breast cancer data contains
a small number of instances with missing attribute values (16 out of 699), which
are excluded from the analysis. The original data sets contain categorical and
numerical attributes, as well as Boolean ones. To convert a categorical attribute
into Boolean format, we treat the inclusion of instances in each corresponding
category as a separate Boolean attribute. For numerical attributes, we use the
median across all instances as the threshold. Thus the Booleanized credit, breast
cancer and ionosphere data sets consist of 1000, 683 and 351 instances, respec-
tively, with 68, 9 and 34 Boolean attributes each, plus the target attribute. To
evaluate the obtained formulas as classifiers, we randomly divide each data set
into two equal parts: one serving as the training data and the other as the test
data. For the training data M , target predicate q and increasing formula length
bounds �, we produce formulas ψ not involving q with size(ψ) ≤ � that minimize
the empirical error errM (ψ). We also record the error on the test data (i.e., the
complement of the training data). We repeated this process 10 times. For each
data set, Figs. 1, 2 and 3 record both the first experiment as an example and the
average over 10 experiments on separately randomized training and test data
sets. We employed Clingo (v. 5.4.0) as the answer-set solver in all experiments.

For the ionosphere data, the Booleanization via median is rough for the real-
valued radar readings. Thus we expect larger errors compared to methods using
real numbers. This indeed happens, but the errors are still surprisingly low.

Overfitting and Choice of Explanations. The six plots show how the error
rates develop with formula length. In all plots, the error of the test data eventu-
ally stays roughly the same while the error of the training data keeps decreasing.
This illustrates how the overfitting phenomenon ultimately arises. We can use
these results to find a cut-off point for the length of the formulas to be used as
explanations. Note that this should be done on a case-by-case basis and we show
the average plots only to demonstrate trends. For the single tests given on the
left in Figs. 1, 2 and 3, we might choose the lengths 6, 8 and 7 for the credit,
breast cancer and ionosphere data sets, respectively. The errors of the chosen

Short Boolean Formulas as Explanations in Practice 101

2 4 6 8

0.2

0.25

0.3

0.35

length

error

Test
Train

2 4 6 8

0.2

0.25

0.3

0.35

length

error

Test
Train

Fig. 1. Credit data set – first test (left) and average (right)

1 3 5 7 9 11 13 15 17

0.02

0.04

0.06

0.08

0.10

0.12

length

error

Test
Train

1 3 5 7 9 11 13 15 17 19

0.02

0.04

0.06

0.08

0.10

0.12

length

error

Test
Train

Fig. 2. Breast cancer data set – first test (left) and average (right)

1 3 5 7 9 11

0.1

0.15

0.2

0.25

0.3

length

error

Test
Train

1 3 5 7 9 11 13 15

0.1

0.15

0.2

0.25

0.3

length

error

Test
Train

Fig. 3. Ionosphere data set – first test (left) and average (right)

102 R. Jaakkola et al.

formulas are 0.27, 0.047 and 0.14, respectively. We conclude that by sticking to
short Boolean formulas, we can avoid overfitting in a simple way.

Interpretability. A nice feature of short Boolean formulas is their interpretabil-
ity. Suppose we stop at the formula lengths 6, 8 and 7 suggested above. The
related formulas are simple and indeed readable. Consider the formula

¬(a[1, 1] ∧ a[2]) ∨ a[17, 4]

of length 6 and a test error of 0.27 obtained from the credit data. The meanings
of the attributes are as follows: a[1, 1] means the applicant has a checking account
with negative balance, a[2] means that the duration of the applied loan is above
median, and a[17, 4] means the applicant is employed at a management or similar
level. (The second number in some attributes refers to original categories in the
data.) Therefore the formula states that if an applicant is looking for a short
term loan, has money on their account or has a management level job, then they
should get the loan. For the breast cancer data set, we choose the formula

¬(((a[1] ∧ a[6]) ∨ a[5]) ∧ a[3])

of length 8 with test error 0.047. The meanings of the attributes in the order
of appearance in the formula are given as clump thickness, bare nuclei, single
epithelial cell size and uniformity of cell shape. The full power of Boolean logic is
utilized here, in the form of both negation and alternation between conjunction
and disjunction. Finally, for the ionosphere data set, the formula

((a[8] ∧ a[12]) ∨ a[15]) ∧ a[1]

of length 7 and test error 0.14 is likewise human readable as a formula. However,
it must be mentioned again that the data was used here for technical reasons,
and the Booleanized attributes related to radar readings are difficult to explicate.

Using the power of Boolean logic (i.e., including all the connectives ¬, ∧, ∨)
tends to compress the explanations suitably in addition to giving flexibility in
explanations. We observe that our experiments gave short, readable formulas.

Comparing Error Rates on Test Data. In [25], all three data sets we consider
are treated with naive Bayesian classifiers and error rates 0.25, 0.026 and 0.10
are achieved on the test data for the credit, breast cancer and ionosphere data
sets, respectively. In [10], the credit data is investigated using neural networks
and even there, the best reported error rate is 0.24. In [22], many different
methods are compared on the breast cancer data, and the best error achieved
is 0.032. For the ionosphere data, the original paper [21] uses neural networks
to obtain an error of 0.04. We can see from the plots that very short Boolean
formulas can achieve error rates of a similar magnitude on the credit and breast
cancer data sets. For the ionosphere data, neural networks achieve a better error
rate, but as explained earlier, this is unsurprising as we use a roughly Booleanized
version of the underlying data. We conclude that very short Boolean formulas
give surprisingly good error rates compared to other methods. Furthermore, this
approach seems inherently interpretable for many different purposes.

Short Boolean Formulas as Explanations in Practice 103

2 4 6 8 10 12 14 16 18 20

10−2

100

102

104

length

se
co
n
d
s

Credit
Ionosphere

Breast cancer

Fig. 4. Average runtimes for data sets

Runtime Behavior. When com-
puting explanations, no strict
timeout was set and the runs
were finished only when the opti-
mum was found. Figure 4 depicts
the average runtime (over the 10
runs) as a function of formula
length. The number of attributes
(i.e., 68, 34 and 9 in the order of
the curves) appears to be a key
factor affecting the performance.
Maximum runtimes (approx. 10
hours) indicate the feasibility of
our approach, as demonstrated
here for realistic data sets previ-
ously explored in the literature. Besides minimal explanations, intermediate ones
may also be useful.

6 Conclusion

We have studied short Boolean formulas as a platform for producing explanations
and interpretable classifiers. We have investigated the theoretical reasons behind
overfitting and provided related quantitative bounds. Also, we have tested the
approach with three different data sets, where the resulting formulas are indeed
interpretable—all being genuinely short—and relatively accurate. In general,
short formulas may sometimes be necessary to avoid overfitting, and moreover,
shorter length leads to increased interpretability.

Our approach need not limit to Boolean formulas only, as we can naturally
extend our work to general relational data. We can use, e.g., description log-
ics and compute concepts C1, . . . , Ck and then perform our procedure using
C1, . . . , Ck, finding short Boolean combinations of concepts. This of course dif-
fers from the approach of computing minimal length formulas in the original
description logic, but can nevertheless be fruitful and interesting. We leave this
for future work. Further future directions include, e.g., knowledge discovery via
computing all formulas up to some short length � with errors smaller than a
given threshold.

Acknowledgments. T. Janhunen, A. Kuusisto, M. F. Rankooh and M. Vilander were
supported by the Academy of Finland consortium project Explaining AI via Logic
(XAILOG), grant numbers 345633 (Janhunen) and 345612 (Kuusisto). A. Kuusisto
was also supported by the Academy of Finland project Theory of computational logics,
grant numbers 352419, 352420, 353027, 324435, 328987. The author names have been
ordered on the basis of alphabetical order.

104 R. Jaakkola et al.

References

1. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: LPNMR
2015, pp. 40–54 (2015)

2. Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J., Marquis, P.: On the
computational intelligibility of Boolean classifiers. In: Bienvenu, M., Lakemeyer, G.,
Erdem, E. (eds.) Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2021, Online event, 3–12 November
2021, pp. 74–86 (2021)

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf.
Process. Lett. 24(6), 377–380 (1987)

4. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the
Vapnik-Chervonenkis dimension. J. ACM 36(4), 929–965 (1989)

5. Board, R.A., Pitt, L.: On the necessity of Occam algorithms. Theor. Comput. Sci.
100(1), 157–184 (1992)

6. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

7. Feldman, J.: Minimization of Boolean complexity in human learning. Nature
407(6804), 630–633 (2022)

8. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp
series 3. In: LPNMR 2015, pp. 368–383 (2015)

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, Williston (2012)

10. Griffith, J., O’Dea, P., O’Riordan, C.: A neural net approach to data mining: clas-
sification of users to aid information management. In: Szczepaniak, P.S., Segovia,
J., Kacprzyk, J., Zadeh, L.A. (eds.) Intelligent Exploration of the Web. Studies in
Fuzziness and Soft Computing, vol. 111, pp. 389–401. Physica, Heidelberg (2003).
https://doi.org/10.1007/978-3-7908-1772-0_23

11. Jaakkola, R., Janhunen, T., Kuusisto, A., Rankooh, M.F., Vilander, M.: Explain-
ability via short formulas: the case of propositional logic with implementation. In:
RCRA 2022. CEUR Workshop Proceedings, vol. 3281, pp. 64–77. CEUR-WS.org
(2022)

12. Jaakkola, R., Janhunen, T., Kuusisto, A., Rankooh, M.F., Vilander, M.: Explain-
ability via short formulas: the case of propositional logic with implementation.
CoRR abs/2209.01403 (2022)

13. Jaakkola, R., Janhunen, T., Kuusisto, A., Rankooh, M.F., Vilander, M.: Short
boolean formulas as explanations in practice. CoRR abs/2307.06971 (2023)

14. Janhunen, T., Niemelä, I.: The answer set programming paradigm. AI Mag. 37(3),
13–24 (2016)

15. Kearns, M.J., Vazirani, U.: An Introduction to Computational Learning Theory.
The MIT Press, Cambridge (1994)

16. Kotz, S., Balakrishnan, N., Johnson, N.: Continuous Multivariate Distributions,
Volume 1: Models and Applications. Continuous Multivariate Distributions, Wiley,
Hoboken (2004)

17. Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2), 203–226 (1982)
18. Pelekis, C., Ramon, J.: A lower bound on the probability that a binomial random

variable is exceeding its mean. Stat. Probab. Lett. 119, 305–309 (2016)
19. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

https://doi.org/10.1007/978-3-7908-1772-0_23

Short Boolean Formulas as Explanations in Practice 105

20. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining Bayesian
network classifiers. In: Lang, J. (ed.) IJCAI, pp. 5103–5111 (2018)

21. Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar
returns from the ionosphere using neural networks. J. Hopkins APL Tech. Dig.
10, 262–266 (1989)

22. Šter, B., Dobnikar, A.: Neural networks in medical diagnosis: comparison with
other methods. In: Proceedings of the International Conference on Engineering
Applications of Neural Networks (1996)

23. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
24. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013).

https://doi.org/10.1007/978-1-4757-3264-1
25. Yang, Y., Webb, G.I.: Proportional k-interval discretization for Naive-Bayes clas-

sifiers. In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp.
564–575. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44795-4_48

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1007/3-540-44795-4_48
http://creativecommons.org/licenses/by/4.0/

	Short Boolean Formulas as Explanations in Practice
	1 Introduction
	2 Preliminaries
	3 Expected Errors
	4 An Overview of the Implementation in ASP
	5 Results from Data and Interpretation
	6 Conclusion
	References

