
Reasoning in Assumption-Based
Argumentation Using Tree-Decompositions

Andrei Popescu and Johannes P. Wallner(B)

Institute of Software Technology, Graz University of Technology, Graz, Austria
{andrei.popescu,wallner}@ist.tugraz.at

Abstract. We address complex reasoning tasks in assumption-based
argumentation (ABA) by developing dynamic programming algorithms
based on tree-decompositions. As one of the prominent approaches in
computational argumentation, our focus is on NP-hard reasoning in
ABA. We utilize tree-width, a structural measure describing closeness to
trees, for an approach to handle computationally complex tasks in ABA.
We contribute to the state of the art by first showing that many reason-
ing tasks in ABA are fixed-parameter tractable w.r.t. tree-width using
Courcelle’s theorem, informally signaling wide applicability of dynamic
programming algorithms for ABA. Secondly, we develop such algorithms
operating on tree-decompositions of given ABA frameworks. We instan-
tiate the algorithms in the recent D-FLAT framework allowing for declar-
ative and extensible specification of dynamic programming algorithms.
In an experimental evaluation on a resulting prototype, we show promise
of the approach in particular for complex counting tasks.

1 Introduction

Computational approaches to arguing in favour or against statements under
scrutiny are a main research theme in the field of computational argumenta-
tion [4,38], within Artificial Intelligence (AI). Placed in the area of knowledge
representation and reasoning and non-monotonic reasoning, computational argu-
mentation features a diverse set of application avenues, such as legal reasoning,
medical reasoning, and e-government [3].

Approaches to formalize argumentative reasoning are studied in the field
of structured argumentation [5]. Formalisms in structured argumentation usu-
ally follow the so-called argumentation workflow [14] to prescribe ways of find-
ing arguments and their relationships. A starting point are knowledge bases,
oftentimes assumed to be in a rule-based form. Arguments are then instan-
tiated as derivations applicable within the knowledge base. Reasoning based
on the arguments and their relations is carried out by using argumentation
semantics, through which one can specify acceptable sets of arguments. Several
approaches to structured argumentation have been studied, e.g., assumption-
based argumentation (ABA) [12,20], ASPIC+ [50,51], defeasible logic program-
ming (DeLP) [40,41], and deductive argumentation [6,7].

c© The Author(s) 2023
S. Gaggl et al. (Eds.): JELIA 2023, LNAI 14281, pp. 192–208, 2023.
https://doi.org/10.1007/978-3-031-43619-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43619-2_14&domain=pdf
http://orcid.org/0000-0002-6601-5454
http://orcid.org/0000-0002-3051-1966
https://doi.org/10.1007/978-3-031-43619-2_14

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 193

Computationally speaking, argumentative reasoning in these approaches to
structured argumentation is hard: in almost all cases reasoning defined in
these formalisms is NP-hard, see, e.g., the survey by Dunne and Dvořák [32].
To address the complexity barrier, several algorithmic approaches were devel-
oped [15,16], and in a biannual International Competition on Computational
Models of Argumentation (ICCMA) [8,39,46,53], which this year is being held
for the fifth time, systems compete in terms of runtime performance.

An approach to tackle high complexity is the utilization of structural prop-
erties of instances, such as viewing instances in a graph-like manner and con-
sidering, e.g., acyclicity or other graph properties. A prominent such property is
tree-width [10], informally measuring closeness of instances to trees. The milder
complexity of many problems on trees oftentimes transfers to problems on graphs
of low tree-width. Algorithms following dynamic programming can then operate
on a tree-decomposition of the initial instance, with which one confines the com-
binatorial explosion of complex problems into subproblems, whose size can be
bounded by the tree-width of the original instance. Tree-based forms, or forms
close to trees, appear appealing to computational argumentation, since, e.g., dia-
logues might be represented in a tree-like structure. Indeed, tree-width has been
studied in several works in argumentation [27–31,34,47]. These studies focus
on the field of abstract argumentation, i.e., on formalisms where arguments are
given in an abstracted form such as the well-known argumentation framework
(AF) [26], and a form of deductive argumentation. To the best of our knowl-
edge, there is no current account of the utilization of tree-width for rule-based
structured argumentation formalisms such as ABA, ASPIC+, or DeLP.

Recent works show that lifting computational approaches in abstract argu-
mentation to structured argumentation is not immediate, and seems to involve
dedicated research on the structured formalisms [48,49]. We follow this line and
take up this opportunity to study algorithmic approaches utilizing tree-width
for ABA, as one of the prominent structured argumentation approaches with
applications in medical decision making [19,22] and in multi-agent contexts [33].

Our main contributions are as follows.

– We first show wide applicability of algorithms using tree-width by showing
fixed-parameter tractability of reasoning tasks in ABA, under the parameter
tree-width. We show these results by making use of Courcelle’s theorem [17]
and expressing reasoning in ABA in monadic second order logic (MSO).

– We develop tree-decomposition-based algorithms for ABA. Towards wider
extensibility, we first give a detailed account of a dynamic programming
algorithm for the stable semantics and instantiate algorithms for admissible,
complete, and stable semantics in the framework of D-FLAT [1,2,9], which
enables declarative specification of such algorithms in answer set program-
ming (ASP) [13,43,52]. Together with expressing ABA reasoning in MSO,
the declarative approach of D-FLAT leads to a system that has potential for
adaptation to other forms of structured argumentation, further semantics, or
other modes of reasoning.

194 A. Popescu and J. P. Wallner

– Finally, we present an experimental evaluation of a prototype using D-FLAT,
showing promise of our approach for complex counting tasks involving in
particular a high number of solutions.

Further material, including ASP encodings used within D-FLAT, can be
found at https://gitlab.tugraz.at/krr/astra.

2 Background

We recall assumption-based argumentation (ABA) [12,20], monadic second order
logic, and tree-width and tree-decompositions [10], next.

Assumption-Based Argumentation. We assume a deductive system (L,R), where
L is a set of atoms and R a set of inference rules over L. A rule r ∈ R has the form
a0 ← a1, . . . , an with each ai ∈ L. We denote the head of rule r by head(r) = a0

and the (possibly empty) body of r with body(r) = {a1, . . . , an}.

Definition 1. An ABA framework is a tuple F = (L,R,A,), where (L,R) is
a deductive system, A ⊆ L a non-empty set of assumptions, and a function
mapping assumptions A to atoms L.

In words, an ABA framework includes a deductive system, a distinction
between assumptions and non-assumptions, and a contrary function that assigns
contraries to assumptions. In this work, we focus on the commonly used logic
programming fragment of ABA [12]. We assume that all sets and rules in an ABA
framework are finite, and no assumption occurs in the head of a rule. The last
condition means that the ABA frameworks are flat. As a slight generalization,
we allow the contrary function to be partial.

Derivability in ABA can be defined in multiple ways, we recall the so-called
forward-derivations, here called simply derivations. An atom a ∈ L is derivable
from a set X ⊆ A using rules R, denoted by X �R a, if a ∈ X or there is a
sequence of rules (r1, . . . , rn) such that head(rn) = a and for each rule ri we
have ri ∈ R and each atom in the body of ri is derived from rules earlier in the
sequence or is in X, i.e., body(ri) ⊆ X ∪ ⋃

j<i{head(rj)}. The deductive closure
for an assumption set X w.r.t. rules R is defined as ThR(X) = {a ∈ L | X �R a}.

Example 1. Our running example ABA framework F = (L,R,A,) is given
with A = {a, b}, L = A ∪ {x, y, z}, the rules r1 = (x ← a), r2 = (y ← x),
r3 = (z ← b), and contraries a = z and b = y.

The contrary function is used to define attacks between assumption sets.

Definition 2. Let F = (L,R,A,) be an ABA framework, and A,B ⊆ A be
two sets of assumptions. Assumption set A attacks assumption set B in F if
A′ �R b for some A′ ⊆ A and b ∈ B.

Conflict-free assumption sets and defense are defined, as follows.

https://gitlab.tugraz.at/krr/astra

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 195

Definition 3. Let F = (L,R,A,) be an ABA framework. An assumption set
A ⊆ A is conflict-free in F iff A does not attack itself. Set A defends assumption
set B ⊆ A in F iff for all C ⊆ A that attack B it holds that A attacks C.

The ABA semantics we focus on in this work are then defined next.

Definition 4. Let F = (L,R,A,) be an ABA framework. Further, let A ⊆ A
be a conflict-free set of assumptions in F . In F , set A is

– admissible iff A defends itself,
– complete iff A is admissible and contains all assumption sets defended by A,
– preferred iff A is admissible and there is no admissible set of assumptions B

with A ⊂ B, and
– stable iff each {x} ⊆ A \ A is attacked by A.

Reasoning tasks on ABA include verifying whether a given set of assump-
tions is a σ-assumption set, and enumerating or counting σ-assumption sets.
In addition, often a relevant question is to find out whether a given atom is
acceptable under a semantics. To answer this question, two prominent reasoning
modes are credulous and skeptical acceptance of atoms in an ABA framework.
A given atom s ∈ L is credulously accepted in F under semantics σ iff there is a
σ-assumption set A such that s ∈ ThR(A), and skeptically accepted in F under
semantics σ iff s ∈ ThR(A) for all σ-assumption sets A. Credulous reasoning
under admissible, complete, stable, and preferred semantics is NP-complete and
skeptical acceptance under stable is coNP-complete, and ΠP

2 -complete under
preferred semantics [21,24].

Example 2. Continuing Example 1, there are two stable assumption sets {a}
and {b}, with deductive closures ThR({a}) = {a, x, y} and ThR({b}) = {b, z},
respectively. In this example, atoms x, y, and z are credulously accepted under
stable semantics, and no atom is skeptically accepted under stable semantics.

Monadic Second Order Logic and Tree-Decompositions. We recap monadic sec-
ond order logic and tree-decompositions, following Gottlob et al. [44].

Monadic second order logic (MSO) extends first order logic by allowing set
variables, which range over sets of domain variables, and quantification over these
set variables. We write individual variables as lowercase letters x and set variables
as uppercase letters X. For a set τ = {R1, . . . , Rk} of predicate symbols, a finite
structure I over τ , also called a τ -structure, has a finite domain D = dom(I)
and relations RI

i ⊆ Dri of arity ri for each predicate symbol Ri ∈ τ . Evaluation
of an MSO formula φ over a τ -structure I is defined, as usual. For our purposes,
it is sufficient to only consider unary and binary predicates.

A tree-decomposition of a τ -structure I is a pair (T, (Dt)t∈T), with T being
a rooted tree and each Dt ⊆ D = dom(I), satisfying the following properties.

1. Every domain element x ∈ D is part of some Dt, i.e., x ∈ Dt for some t ∈ T .
2. For every Ri ∈ τ and tuple (a1, . . . , ari

) ∈ RI
i it holds that there is some node

t ∈ T with {a1, . . . , ari
} ⊆ Dt.

3. The set {t | a ∈ Dt} induces a subtree of T , for each a ∈ D.

196 A. Popescu and J. P. Wallner

In brief terms, a tree-decomposition is a tree formed of so-called bags Dt consist-
ing of sets of domain elements. The second condition ensures that each relation
is fully part of at least one bag. The third condition, often referred to as the con-
nectedness condition, states that whenever two bags Dt and Dt′ both contain
an a, then on the path between those two bags, we encounter a in the bags.

The width of a tree-decomposition (T, (Dt)t∈T) is the maximum number of
domain elements in bags minus one, i.e., max{|Dt| | t ∈ T} − 1. The tree-width
of a τ -structure I is the minimum width of all tree-decompositions of I.

Complexity-wise, MSO and tree-width are connected, as stated by Courcelle’s
theorem.

Theorem 1 ([17]). Let φ be an MSO formula over a structure τ , and I be a
τ -structure of tree-width w. It holds that evaluating φ over I can be achieved in
O(f(|φ|, w) · |I|), for some function f .

In brief, a problem expressible in MSO is then said to be fixed-parameter
tractable (FPT) for the parameter tree-with of the underlying τ -structure. For an
overview on parametrized complexity (including FPT), see the book by Downey
and Fellows [25].

3 Complexity of ABA Under the Lens of Tree-Width

In this section, we show that a large range of problems in ABA can be addressed
algorithmically via utilizing tree-width, formally by stating that these problems
are FPT with the parameter tree-width.

Towards these results, we represent reasoning in ABA in MSO. We make
use of the following set of predicate symbols: τABA = {atom/1, asm/1, rule/1,
head/2, body/2, contrary/2, query/1}, together with the arities of the predicates.
The intention of the predicates is formalized next.

Definition 5. Let F = (L,R,A,) be an ABA framework. The associated τABA

structure, denoted by IF , is defined by atom(x) for each x ∈ L, asm(a) for
each a ∈ A, rule(r), head(r, h), and body(r, b1), . . . , body(r, bk) for each rule
r = h ← b1, . . . , bk, and contrary(a, x) for each a ∈ A and x ∈ L s.t. a = x.

The remaining query predicate is used to indicate what to query for credulous
or skeptical reasoning.

Example 3. Consider again the ABA framework from Example 1, which can be
written as a τABA structure containing atom(a), atom(b), atom(x), atom(y),
atom(z), asm(a), asm(b), rule(r1), rule(r2), and rule(r3) for the unary pred-
icates, and contrary(a, z), contrary(b, y), head(r1, x), head(r2, y), head(r3, z),
body(r1, a), body(r2, x), and body(r3, b) for the binary predicates. Part of a tree-
decomposition of this ABA framework is depicted in Fig. 1. This decomposition
is a so-called “nice” tree-decomposition, which has to satisfy further constraints
useful for algorithms operating on such a nice tree-decomposition. We recall the
formal definition of nice tree-decompositions in the next section. In this tree-
decomposition there are 22 nodes. For instance, r1 and a are together in the bag

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 197

∅

b

a, b

a, b, r1

b, r1

r2

∅

r1, b,

b

r3

∅

1

2

3

4

5

12

13

14

15

16

21

22

({b}, ∅, ∅, ∅)
(∅, ∅, ∅, {(∅, ∅)})
(∅, ∅, {b}, {(∅, ∅),
(∅, ∅)})
(∅, ∅, {b}, ∅)

1

2

3

4

τ2

({a}, ∅, ∅, ∅)
({b}, {r1}, {a}, ∅)
(∅, {r1}, ∅, ∅)
(∅, {r1}, {a}, {∅, {r1}})

1

2

3

4

τ15

(∅, ∅, ∅, ∅)1

τ21

({a, b}, ∅, ∅, ∅)
({a}, ∅, ∅, ∅)
({a}, ∅, {b}, {({a}, ∅)})
({a}, {r1}, {b}, {({a}, ∅),
({a}, ∅)})
({b}, {r1}, ∅, ∅)
(∅, {r1}, {b}, {(∅, {r1}),
(∅, {r1})})
(∅, {r1}, {b}, {(∅, {r1})})
(∅, {r1}, ∅, ∅)

1

2

3

4

5

6

7

8

τ5

(∅, {r2}, ∅, ∅)
({x}, ∅, ∅, {(∅, {r2})})

1

2

τ12

(∅, ∅, ∅, ∅)
({x}, ∅, ∅, {(∅, ∅)})

1

2

τ13

(∅, ∅, ∅, ∅)1

τ14

Fig. 1. Part of an example tree-decomposition of the ABA framework of Example 1.
(Color figure online)

of node 15, satisfying the condition that these two have to be together in one
bag because body(r1, a) holds.

We move on to expressing ABA semantics in terms of MSO. We make use
of several common shortcuts, as defined next, in addition to “x ∈ X” to denote
that a domain element is in the set.

x /∈ X := ¬(x ∈ X) X ⊆ Y := ∀x(x ∈ X → x ∈ Y)

X � Y := (X ⊆ Y) ∧ ¬(Y ⊆ X) X ⊆A Y := ∀x
(
(x ∈ X ∧ asm(x)) → x ∈ Y

)

X �A Y := (X ⊆A Y) ∧ ¬(Y ⊆A X) X =A Y := (X ⊆A Y) ∧ (Y ⊆A X)

First, we encode derivability. For a given ABA framework F and A ⊆ A, there
is a direct connection between ThR(A) and the unique ⊆-minimal classical model
of the propositional Horn formula

∧
a∈A a ∧ ∧

r∈R
(∧

b∈body(r) → head(r)
)
, that

is, the Horn theory consisting of each assumption in A as facts and rules in R
as implications. It holds that M ⊆ L is the ⊆-minimal model of this formula iff
M = ThR(A).

198 A. Popescu and J. P. Wallner

We can directly make use of this fact and represent derivability in ABA by
the following MSO formula, where we use quantification to express the same
reasoning as in the above Horn formula. First, we define satisfaction of rules by

∀r
(
rule(r) → ∃s

(
(head(r, s) ∧ s ∈ E

) ∨ (body(r, s) ∧ s /∈ E)
))

.

In this formula the set variable E is open. The formula states that whenever r is
a rule, then the rule has to be satisfied by E in the logical sense: either the head
is in E or some body element is missing from E. We call this formula φSat(E).

Derivability is then expressible by

φTh(E) = φSat(E) ∧ ∀E′((E′ � E ∧ E′ =A E) → ¬φSat(E′)
)
,

which states that E should satisfy the rules and no proper subset E′ � E that
shares the same assumptions satisfies the rules. Then E corresponds to the least
model of the above Horn formula (with assumptions stated as facts).

Attacks are expressible via φatt(E,S) = ∃x, a
(
x ∈ E∧a ∈ S∧contrary(a, x)

)
,

that is, set E attacks set S if there is a contrary in E of S. The contrary only
contains assumptions in the first position and atoms in the second.

The property of being conflict-free can be expressed as φcf (E) = φTh(E) ∧
¬φatt(E,E). The notion of defense can then be represented, as follows.

φdef (E,A) = ∀S
(
(S ⊆ L ∧ φTh(S) ∧ φatt(S,A)) → φatt(E,S))

In words, if E defends A if for each S attacking A we find E attacks S (for S
we also need to check derivability via φTh(S)).

Admissibility, the complete, and preferred semantics can then be represented,
as stated next.

φadm(E) = φcf (E) ∧ φdef (E,E)

φcom(E) = φadm(E) ∧ ∀S
(
(φdef (E,S) ∧ φTh(S)) → S ⊆ E

)

φprf (E) = φadm(E) ∧ ∀E′¬(
E′ ⊆ L ∧ E � E′ ∧ φadm(E′)

)

Finally, the stable semantics can be expressed by formula φstb(E), given as
φcf (E) ∧ ∀a(asm(a) → a ∈ E ∨ ∃x

(
x ∈ E ∧ contrary(a, x)

)
), capturing directly

the definition of stable semantics.
Credulous and skeptical reasoning can then be specified by stating

φCred
σ = ∃E

(
E ⊆ L ∧ φquery(E) ∧ φσ(E)

)
and

φSkept
σ = ∀E

((
E ⊆ L ∧ φσ(E)

) → (
φquery(E)

))
.

with φquery(E) = (∀x(query(x) → x ∈ E)). The formula φquery(E) directly
states that the atoms defined by query are in E. We tacitly assume that queries
defined by query refer only to atoms and not to rules.

By utilizing Courcelle’s results (Theorem 1), we can directly infer the fol-
lowing FPT result. The proof of this theorem directly follows from the previous
formulas, declaratively representing the definitions of ABA, and Theorem 1.

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 199

Theorem 2. Deciding credulous or skeptical acceptance of atoms in a given
ABA framework under admissible, complete, stable, or preferred semantics is
FPT w.r.t. tree-width.

4 Dynamic Programming Algorithms for ABA

In this section, we present our approach to compute reasoning tasks in ABA using
dynamic programming (DP) algorithms. Due to page limitations, we present a
DP algorithm using tree-decompositions for computing stable assumption sets,
and discuss changes needed for admissible and complete assumption sets. We
explain how to instantiate our algorithms in the D-FLAT [1,2,9] framework,
allowing for a declarative specification of the DP algorithms, and give full declar-
ative encodings in the online supplementary material.

On a high level, DP algorithms operating on tree-decompositions of a given
instance usually work bottom-up, by computing tables for each bag in post-order.
The tables computed for each bag represent current partial solution candidates
that can be inferred from the information encountered “so far”. In a final step,
partial solutions are then combined into full solutions. We delegate this step to
D-FLAT, which follows so called extension pointers in a top-down fashion, and
combines compatible partial solutions.

For the sake of clarity, we present our DP algorithm for stable semantics
by requiring that the tree-decomposition is nice and has empty bags as leaves
and as the root. Our implementation in D-FLAT does not require nice tree-
decompositions, however. In nice tree-decompositions each node has a type and
is either a leaf, the root, an introduction node, a removal node, or a join node.
Except for leaves and join nodes, the nodes have exactly one child, and join
nodes have exactly two children. Bags of introduction nodes have all objects of
the child bag and one additional object, while bags of removal nodes have exactly
one object less. Join nodes and their children have exactly the same bags. These
conditions allow for a more compact algorithm representation. One can efficiently
compute a nice tree-decomposition from a given tree decomposition [11].

Our algorithm is inspired by concepts for DP algorithms [35] for answer set
programming [43]. For a given ABA framework F = (L,R,A,), we define a
partial stable assumption set as a quadruple (I,R,D,CW), where I ⊆ L is
called a witness, R ⊆ R, D ⊆ A, and CW is a set of so-called counterwitnesses,
which are pairs (C,RC) with C ⊆ I and RC ⊆ R. We utilize the concepts of
witnesses counterwitnesses, as presented by Fichte et al. [35], in our DP algo-
rithms. Intuitively, each partial stable assumption set consists of a witness set I
of atoms that is a candidate for a stable assumption set and all atoms that can
be derived from the stable assumption set, while D contains the assumptions
attacked (“defeated”) by I. That is, I can be seen as atoms and assumptions
we “assume” to be part of a stable assumption set. Since we might encounter
components of rules in various places in the tree-decomposition, we view the
rules as Boolean Horn clauses and store in R all rules that are satisfied by I
(similar as in Sect. 3). Finally, a counterwitness represents pairs (C,RC) where

200 A. Popescu and J. P. Wallner

C shares the same assumptions as in I, i.e., I ∩A = C ∩A, but has strictly fewer
atoms (i.e., represents proper a subset) and RC the associated satisfied rules. A
counterwitness testifies that one can satisfy the rules RC with fewer atoms, and,
thus, is a counter to derivability of the atoms in I from the assumptions in I if
both I and C satisfy all rules in the root node. During bottom-up computation,
partial stable assumption sets and their counterwitnesses are modified, added,
or removed, depending on the objects encountered in the bags. A partial sta-
ble assumption set contains only components of the current bag (and may use
information from child bags).

Let us go over Algorithm 1 and Algorithm 2 for stable assumption sets. We
show here the case for enumerating stable assumption sets, but credulous and
skeptical reasoning can be achieved via small modifications: enumerating only
stable assumption sets containing or not containing a query.

In Algorithm 1 we call Algorithm 2 for each node in the tree-decomposition
of the given ABA instance and store the result in a table (Tab). Algorithm 2
computes these tables, given the tables of the children nodes. We store partial
stable assumption sets computed in Res (initially empty). In Line 3 we merge
the tables of the two children tables, by combining compatible partial stable
assumption sets. Two such sets are compatible if they coincide on their first
components I, i.e., for two sets τi and τj of partial stable assumptions sets,
the function merge returns {(I,Ri ∪ Rj ,Di ∪ Dj , Ci � Cj) | (I,Ri,Di, Ci) ∈
τi, (I,Rj ,Dj , Cj) ∈ τj}. For merging the counterwitnesses, we use Ci � Cj =
{(C,R ∪ R′) | (C,R) ∈ Ci, (C,R′) ∈ Cj}. If we are not in a join node, there is
only one child and we go over all previous partial stable assumption sets (loop
beginning with Line 5, after extracting the single table in the line before).

For the root node, there is a simple check: if there are no counterwitnesses
(C = ∅, Line 6), we have found an entry leading to stable assumption set.

Line 7 considers bags in which an atom a is introduced. In this case, the set
of partial stable assumption sets for this bag is obtained by utilizing each partial
stable assumption set in the child partial solution I , and creating two partial
stable assumption sets Iout and Iin , the former by not adding the introduced
atom a (Line 8), and the latter by adding it (Line 13). Note that the partial stable
assumption set with introduced atom a is only constructed if not conflicting
(Line 12). This can be seen in Fig. 1 at node 13 which introduces x, resulting in
two witnesses on lines 1 and 2 of τ13. In the figure, witnesses are shown in blue
and counterwitnesses are in red.

Algorithm 1. Compute partial stable assumption sets on T
Require: ABA framework F = (L, R, A,) and a nice tree-decomposition T of F .
Out: Function Tab(t) assigning each node T a set of partial solutions.
1: for t in post-order(T) do
2: childTables := {Tab(t′) | t′ child of t in T}
3: Tab(t) := ComputeTablestb(T, t, childTables)

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 201

The Sat function is used to compute satisfied rules, for a given node t, and set
I of atoms by defining Sat(t, I, R) = {r ∈ R | head(r) ∈ I or body(r) ∩ bag(t) �

I}, following a similar line of reasoning as in Sect. 3.
To construct new sets of counterwitnesses for each newly constructed partial

stable assumption set, an analogous process occurs (Line 10 and Line 15). In
the most trivial case, that of a new witness Iout constructed by not adding the

Algorithm 2. ComputeTablestb(t, childTables)
Require: node t, and set of sets of partial stable assumption sets childTables
Out: Return partial stable assumption sets
1: Res := ∅
2: if type(t) = leaf then return ∅
3: if type(t) = join then return mergeST (childTables)
4: Let τ ∈ childTables � childTables is a singleton
5: for (I, R, D, C) ∈ τ do
6: if type(t) = root ∧ C = ∅ then Res := Res ∪ {(I, R, D, C)}
7: if type(t) = intro ∧ a is the introduced atom
8: Iout := I, Rout := R ∪ Sat(t, Iout, Rules(t))
9: if a ∈ Iout then Dout := D ∪ {a} else Dout := D

10: Co = {(ICo, RCo ∪ Sat(t, ICo, Rules(t))) | (ICo, RCo) ∈ C}
11: Res := Res ∪ {(Iout, Rout, Dout, Co)}
12: if a /∈ I ∪ {a} � Conflict-free check
13: Iin := I ∪ {a}
14: Rin := Sat(t, Iin, Rules(t)) � New rules can become satisfied.
15: Cin := {(Ic ∪ {a}, Sat(t, Ic ∪ {a}, Rules(t))) | (Ic, Rc) ∈ C}
16: if a /∈ A then Cin := Cin ∪ C
17: Res := Res ∪ {(Iin, Rin, D, Cin)} ∪ {(I, Sat(t, I, Rules(t)))}
18: if type(t) = rem ∧ a is the removed atom
19: if a ∈ A
20: if a ∈ I ∨ a ∈ D � Stable check: only preserve if either In or Def.
21: R′ := Sat(t, I \ {a}, Rules(t))
22: C′ := {(Ic \ {a}, Sat(t, Ic \ {a}, Rules(t))) | (Ic, Rc) ∈ C}
23: Res := Res ∪ {(I \ {a}, R′, D \ {a}, C′)}
24: else
25: R′ := Sat(t, I \ {a}, Rules(t))
26: C′ := {(Ic \ {a}, Sat(t, Ic \ {a}, Rules(t))) | (Ic, Rc) ∈ C}
27: Res := Res ∪ {(I \ {a}, R′, D, C′)}
28: if type(t) = intro ∧ r is the introduced rule
29: R′ := R ∪ Sat(t, I, {r})
30: C′ := {(Ic, Rc ∪ Sat(t, Ic, {r})) | (Ic, Rc) ∈ C}
31: Res := Res ∪ {(I, R′, D, C′)}
32: if type(bag) = rem ∧ r is the removed rule
33: if r ∈ R � only keep an answer if r sat
34: R′ := R \ {r}
35: C′ := {(Ic, Rc \ {r}) | (Ic, Rc) ∈ C}
36: Res := Res ∪ {(I, R′, D, C′)}
37: return Res

202 A. Popescu and J. P. Wallner

introduced atom a, the set Co is given by preserving the counterwitnesses from
the child partial solution, with an updated set of satisfied bag rules (Line 10).

In the case of a witness constructed by the addition of a to a child witness,
if a is an introduced assumption, we require a to be part of the constructed
counterwitnesses, and thus we do not preserve all the child counterwitnesses C .
On the contrary, if the introduced atom is not an assumption (Line 16), we add
to our set of newly created counterwitnesses Cin the child counterwitnesses C .
In intuitive terms, for a witness constructed by the addition of an introduced
atom a /∈ A, there can be counterwitnesses, subsets of the witness, such that the
introduced atom has not been derived.

To enforce the return of stable assumption sets only, Algorithm 2 ensures
that when an atom is removed at node t , only those child assumption sets that
were stable are preserved as partial stable assumption sets in t . This is achieved
through the check for stable assumption sets in Line 20. In case an atom a /∈ A
is removed, this check is not required, and partial stable assumption sets are
preserved with updated sets I and R. With respect to Fig 1, node 2 removes
a, and row 2 in τ2 is the result of preserving a witness from τ3 (not shown) s.t.
a ∈ D, and b /∈ I, b /∈ D.

Finally, consider the two possibilities of a bag either introducing or removing
a rule r (Line 28 and Line 32 respectively). When a rule is introduced, witnesses
and counterwitnesses are preserved, both with an updated set of satisfied rules
accounting for the status of the introduced rule. On the contrary, when a rule is
removed, by the connectedness property we have visited all atoms in the rule,
hence the rule could not become satisfied elsewhere. Algorithm 2 enforces the
satisfiability of the removed rule by not preserving partial stable assumption sets
for which the removed rule has not been satisfied. Figure 1 depicts the case for
an introduced rule in table τ12, which introduces rule r2. In this case, counter-
witnesses that have been preserved, e.g., on line 2 of τ12, must have an updated
set of satisfied rules.

Admissibility and Complete Semantics. To verify whether an assumption set
defends itself against all attacks, one can ensure that all its attackers are attacked
by the set, or inversely, that there are no undefeated attackers. One can adapt
Algorithm 2 as follows: (i) we track derivability for undefeated atoms, (ii) we
check its correctness by ensuring that undefeated atoms are not attacked by the
set of supported assumptions, i.e. by the candidate admissible set I, (iii) we track
the set of atoms that are defeated, (iv) we require an assumption to be either
undefeated or defeated, and (v) we add the admissibility check by not preserving
those assumption sets that are attacked by some undefeated atom.

For complete semantics, one can ensure that the supported set of assump-
tions I includes all those assumptions that are undefeated and not attacked by
some undefeated set of assumptions, i.e., those assumptions that are defended.
In an algorithm for the complete semantics we can track an additional set AU
of assumptions that are attacked by undefeated. The algorithm then avoids pre-
serving assumption sets that do not include undefeated assumptions that are
not attacked by an undefeated assumption set.

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 203

Instantiating Our DP Algorithms. D-FLAT is a problem solving framework
based on the DP paradigm that was specifically developed to provide means for
declarative specification of algorithms operating on tree-decompositions of given
problem instances. The framework allows prototyping an algorithm to solve a
given problem by means of the ASP language.

We utilize D-FLAT to instantiate our algorithms for admissible, complete,
and stable assumption sets, and associated reasoning tasks, in the ASP language.
In the D-FLAT workflow, one can delegate the burden of computing a tree
decomposition of the problem instance, and of combining partial solutions to
D-FLAT itself. In this workflow, one specifies how partial solutions look like
(for stable semantics, our Algorithm 2), and how they can be validly combined,
also referred to as extended in D-FLAT terms. D-FLAT then takes care of the
storage and actual combination of partial solutions. More concretely, at each
node of the tree decomposition, D-FLAT performs a call to an ASP solver,
and computes a partial solution. Finally, D-FLAT combines partial solutions by
following external pointers, which intuitively specify which partial solutions can
be appropriately combined into a complete solution of the problem instance.

5 Experiments

In this section, we present an empirical evaluation of our prototype implemen-
tation using D-FLAT. The encodings, instances, and an instance generator used
in our evaluation are available with the online material.

Our prototype supports enumeration and counting of σ-assumption sets, for
σ ∈ {adm, com, stb}, and checking skeptical and credulous acceptance for these
semantics. Due to a potential high number of assumption sets, we considered
counting admissible, complete, and stable assumption sets in two modes, simi-
lar to previous works [18,48]. First, counting all σ-assumption sets and second
counting all σ-assumption sets with a given atom being derivable.

We observed that previous random generation methods for ABA instances
often result in instances with high tree-width. To explore the potential of our
tree decomposition-based approach, we generated ABA frameworks exhibiting
a (controlled) low tree-width. For general undirected graphs, k × n grids (with
vertices connected only to vertical and horizontal neighbours) have a controlled
tree-width of min(k, n). We adapted this behavior, by constructing k×n grids of
k ·n atoms. A third of these are randomly and uniformly chosen as assumptions.
For each non-assumption atom in the grid, this atom is used as a head in a
predefined number rph (rules per head) of rules. The rph number is randomly
picked in a restricted range (0–3). The number of body elements for each rule
is picked randomly between 0 and the number of cross neighbours of an atom.
The selected amount of body elements are then randomly picked from the cross
neighbourhood. This process is repeated an rph number of times, and during
the first iteration only assumptions are allowed as body elements. Contraries are
generated based on the flip of a coin from the two steps cross neighbourhood of
an assumption in the grid. While the contraries might lead to a higher tree-width,

204 A. Popescu and J. P. Wallner

we observed that the resulting tree-width is sufficiently bounded. A randomly
chosen query atom is generated for each instance (uniform probability).

Our experiments were conducted on a Linux machine with 64-bit architec-
ture, powered by an Intel i5 CPU with 8 cores and 8 GB of memory. We imposed
a timeout limit of 600 s per run, and a memory limit of 8192 MB.

We compared our approach against the current state-of-the-art ASP-based
approach [48,49] using Clingo [42] (version 5.4.1) as the ASP solver. Table 1
shows an overview of the results, computed over a total of 81 instances generated
by four instances for each k ∈ {2, 3, 5} and n ∈ {10, 20, 100, 200, 400, 500, 700},
excluding 3 instances that resulted in errors for D-FLAT.

The results indicate that for solving the counting tasks, the semantics plays
a major role: our prototype had fewer timeouts than when using clingo when
counting admissible assumption sets (the case with query denoted by appending
“-q”). For stable semantics, both approaches are somewhat on-par with Clingo
having an edge over the D-FLAT based approach. For complete semantics, Clingo
outperforms the D-FLAT approach.

We hypothesize that the number of solutions (assumption sets) plays a major
role, together with the fact that the D-FLAT encoding of stable semantics is
simpler, in explaining the runtime. There are more admissible and complete
assumption sets than for stable semantics, and in particular, the number of
admissible assumption sets might be high.

6 Discussions

In this work we looked at complex computational tasks arising in assumption-
based argumentation, and showed that many such reasoning tasks are fixed-
parameter tractable w.r.t. the parameter tree-width, of a given graph represen-
tation of ABA frameworks. We showed these results by using monadic second
order logic (MSO) and Courcelle’s theorem. We developed DP algorithms for
reasoning in ABA and implemented these in the D-FLAT framework, allowing
for declarative specification of such algorithms.

Table 1. Median running time and timeouts per task (in seconds)

Task Clingo D-FLAT
Median Timeouts Median Timeouts

count-adm 600.0 55 287.179 29
count-co 0.039 16 254.624 30
count-st 0.034 0 5.97 0
count-adm-q 600.0 46 98.24 27
count-co-q 0.039 11 98.39 28
count-st-q 0.034 0 5.30 2

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 205

Taken together, our MSO and D-FLAT encodings can be useful for the exten-
sion of our work to other structured argumentation formalisms: the MSO encod-
ings suggest wide applicability of FPT results, and our D-FLAT encodings have
the potential for direct adaptations to related computational problems arising
in structured argumentation, e.g., for the ASPIC+ formalism [51].

An interesting direction for future work is to utilize recent findings [36,47] of
developing theoretical upper and lower runtime bounds by encoding problems in
quantified Boolean logic, instead of using MSO, under certain constraints. These
allow for showing more tight bounds in terms of running time (e..g, include
also lower bounds). Moreover, decomposition-guided reductions were recently
shown to be viable for problems in abstract and logic-based argumentation [34].
These reductions are guided by tree-decompositions and result in (quantified)
Boolean formulas which linearly preserve tree-width. In contrast to these works,
our approach uses D-FLAT, enabling ASP encodings of the DP algorithms. Our
theoretical result (Theorem 2) complements existing results for abstract argu-
mentation [27–31,34,47] and logic-based argumentation [34].

Performance of our prototype relies on the performance of D-FLAT. Recent
works [23,37] show that one can specify DP algorithms using database man-
agement systems (DBMS), which give another interesting route for extending
our work with a different declarative framework for specifications of DP algo-
rithms. Developing systems for ABA based on DP algorithms using DBMS and
decomposition-guided reductions to quantified Boolean logic appear as a natural
next step for further evaluating strengths of these approaches, also comparing
them to D-FLAT.

Our empirical results indicate strength of our approach for complex counting
tasks. We believe this could also be interesting for computationally intensive
tasks in probabilistic argumentation [45], where counting or weighted summation
problems arise naturally. Investigating possibilities for applying our approach to
probabilistic argumentation appears to be a natural avenue for future work.

Acknowledgements. This work was supported by the Austrian Science Fund (FWF)
P35632.

References

1. Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: The
D-FLAT system for dynamic programming on tree decompositions. In: Fermé, E.,
Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 558–572. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11558-0_39

2. Abseher, M., Bliem, B., Hecher, M., Moldovan, M., Woltran, S.: Dynamic program-
ming on tree decompositions with D-FLAT. Künstliche Intell. 32(2–3), 191–192
(2018)

3. Atkinson, K., et al.: Towards artificial argumentation. AI Mag. 38(3), 25–36 (2017)
4. Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.): Handbook of Formal

Argumentation. College Publications (2018)
5. Besnard, P., et al.: Introduction to structured argumentation. Argument Comput.

5(1), 1–4 (2014)

https://doi.org/10.1007/978-3-319-11558-0_39

206 A. Popescu and J. P. Wallner

6. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)
7. Besnard, P., Hunter, A.: A review of argumentation based on deductive arguments.

In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of
Formal Argumentation, chap. 9, pp. 437–484. College Publications (2018)

8. Bistarelli, S., Kotthoff, L., Santini, F., Taticchi, C.: Summary report for the third
international competition on computational models of argumentation. AI Mag.
42(3), 70–73 (2021)

9. Bliem, B., Charwat, G., Hecher, M., Woltran, S.: D-FLAT2: Subset minimization
in dynamic programming on tree decompositions made easy. Fundam. Informaticae
147(1), 27–61 (2016)

10. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21
(1993)

11. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51(3), 255–269 (2007)

12. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101
(1997)

13. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

14. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif.
Intell. 171(5–6), 286–310 (2007)

15. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementa-
tions for formal argumentation. In: Baroni, P., Gabbay, D., Giacomin, M., van
der Torre, L. (eds.) Handbook of Formal Argumentation, chap. 15, pp. 688–767.
College Publications (2018)

16. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for
solving reasoning problems in abstract argumentation - a survey. Artif. Intell. 220,
28–63 (2015)

17. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics, pp. 193–242. Elsevier and MIT Press (1990)

18. Craven, R., Toni, F.: Argument graphs and assumption-based argumentation.
Artif. Intell. 233, 1–59 (2016)

19. Craven, R., Toni, F., Cadar, C., Hadad, A., Williams, M.: Efficient argumenta-
tion for medical decision-making. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.)
Proceedings of the KR, pp. 598–602. AAAI Press (2012)

20. Čyras, K., Fan, X., Schulz, C., Toni, F.: Assumption-based argumentation: dis-
putes, explanations, preferences. In: Baroni, P., Gabbay, D., Giacomin, M., van
der Torre, L. (eds.) Handbook of Formal Argumentation, chap. 7, pp. 365–408.
College Publications (2018)

21. Cyras, K., Heinrich, Q., Toni, F.: Computational complexity of flat and generic
assumption-based argumentation, with and without probabilities. Artif. Intell.
293, 103449 (2021)

22. Cyras, K., Oliveira, T., Karamlou, A., Toni, F.: Assumption-based argumentation
with preferences and goals for patient-centric reasoning with interacting clinical
guidelines. Argument Comput. 12(2), 149–189 (2021)

23. Dewoprabowo, R., Fichte, J.K., Gorczyca, P.J., Hecher, M.: A practical account
into counting Dung’s extensions by dynamic programming. In: Gottlob, G.,
Inclezan, D., Maratea, M. (eds.) LPNMR 2022. LNCS, vol. 13416, pp. 387–400.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15707-3_30

https://doi.org/10.1007/978-3-031-15707-3_30

Reasoning in Assumption-Based Argumentation Using Tree-Decompositions 207

24. Dimopoulos, Y., Nebel, B., Toni, F.: On the computational complexity of
assumption-based argumentation for default reasoning. Artif. Intell. 141(1/2), 57–
78 (2002)

25. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

26. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

27. Dunne, P.E.: Computational properties of argument systems satisfying graph-
theoretic constraints. Artif. Intell. 171(10–15), 701–729 (2007)

28. Dvořák, W., Hecher, M., König, M., Schidler, A., Szeider, S., Woltran, S.: Tractable
abstract argumentation via backdoor-treewidth. In: Proceedings of the AAAI, pp.
5608–5615. AAAI Press (2022)

29. Dvořák, W., Morak, M., Nopp, C., Woltran, S.: dynPARTIX - a dynamic program-
ming reasoner for abstract argumentation. In: Tompits, H., et al. (eds.) INAP/WLP
-2011. LNCS (LNAI), vol. 7773, pp. 259–268. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41524-1_14

30. Dvořák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms
for abstract argumentation. Artif. Intell. 186, 1–37 (2012)

31. Dvořák, W., Szeider, S., Woltran, S.: Abstract argumentation via monadic second
order logic. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012.
LNCS (LNAI), vol. 7520, pp. 85–98. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33362-0_7

32. Dvořák, W., Dunne, P.E.: Computational problems in formal argumentation and
their complexity. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.)
Handbook of Formal Argumentation, chap. 14. College Publications (2018)

33. Fan, X., Toni, F., Mocanu, A., Williams, M.: Dialogical two-agent decision making
with assumption-based argumentation. In: Bazzan, A.L.C., Huhns, M.N., Lomus-
cio, A., Scerri, P. (eds.) Proceedings of the AAMAS, pp. 533–540. IFAAMAS/ACM
(2014)

34. Fichte, J.K., Hecher, M., Mahmood, Y., Meier, A.: Decomposition-guided reduc-
tions for argumentation and treewidth. In: Zhou, Z. (ed.) Proceedings of the IJCAI,
pp. 1880–1886. ijcai.org (2021)

35. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Answer set solving with bounded
treewidth revisited. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 132–145. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61660-5_13

36. Fichte, J.K., Hecher, M., Pfandler, A.: Lower bounds for QBFs of bounded
treewidth. In: Hermanns, H., Zhang, L., Kobayashi, N., Miller, D. (eds.) Proceed-
ings of the LICS, pp. 410–424. ACM (2020)

37. Fichte, J.K., Hecher, M., Thier, P., Woltran, S.: Exploiting database management
systems and treewidth for counting. Theory Pract. Log. Program. 22(1), 128–157
(2022)

38. Gabbay, D., Giacomin, M., Simari, G.R., Thimm, M. (eds.): Handbook of Formal
Argumentation, vol. 2. College Publications (2021)

39. Gaggl, S.A., Linsbichler, T., Maratea, M., Woltran, S.: Summary report of the
second international competition on computational models of argumentation. AI
Mag. 39(4), 77–79 (2018)

40. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative app-
roach. Theory Pract. Log. Program. 4(1–2), 95–138 (2004)

https://doi.org/10.1007/978-3-642-41524-1_14
https://doi.org/10.1007/978-3-642-41524-1_14
https://doi.org/10.1007/978-3-642-33362-0_7
https://doi.org/10.1007/978-3-642-33362-0_7
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1007/978-3-319-61660-5_13

208 A. Popescu and J. P. Wallner

41. García, A.J., Simari, G.R.: Argumentation based on logic programming. In: Baroni,
P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of Formal Argu-
mentation, chap. 8, pp. 409–435. College Publications (2018)

42. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

43. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) Proceedings of the ICLP, pp. 1070–1080. MIT
Press (1988)

44. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)

45. Hunter, A., Polberg, S., Potyka, N., Rienstra, T., Thimm, M.: Probabilistic argu-
mentation: a survey. In: Gabbay, D., Giacomin, M., Simari, G.R., Thimm, M. (eds.)
Handbook of Formal Argumentation, vol. 2, chap. 7. College Publications (2021)

46. Lagniez, J., Lonca, E., Mailly, J., Rossit, J.: Introducing the fourth international
competition on computational models of argumentation. In: Gaggl, S.A., Thimm,
M., Vallati, M. (eds.) Proceedings of the SAFA. CEUR Workshop Proceedings,
vol. 2672, pp. 80–85. CEUR-WS.org (2020)

47. Lampis, M., Mengel, S., Mitsou, V.: QBF as an alternative to Courcelle’s theorem.
In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp.
235–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_15

48. Lehtonen, T., Wallner, J.P., Järvisalo, M.: Declarative algorithms and complex-
ity results for assumption-based argumentation. J. Artif. Intell. Res. 71, 265–318
(2021)

49. Lehtonen, T., Wallner, J.P., Järvisalo, M.: An answer set programming approach
to argumentative reasoning in the ASPIC+ framework. In: Calvanese, D., Erdem,
E., Thielscher, M. (eds.) Proceedings of the KR, pp. 636–646 (2020)

50. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artif. Intell. 195, 361–397 (2013)

51. Modgil, S., Prakken, H.: Abstract rule-based argumentation. In: Baroni, P., Gab-
bay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of Formal Argumenta-
tion, chap. 6, pp. 287–364. College Publications (2018)

52. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

53. Thimm, M., Villata, S.: The first international competition on computational mod-
els of argumentation: results and analysis. Artif. Intell. 252, 267–294 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-94144-8_15
http://creativecommons.org/licenses/by/4.0/

	Reasoning in Assumption-Based Argumentation Using Tree-Decompositions
	1 Introduction
	2 Background
	3 Complexity of ABA Under the Lens of Tree-Width
	4 Dynamic Programming Algorithms for ABA
	5 Experiments
	6 Discussions
	References

