
The MaxSAT Problem in the Real-Valued
MV-Algebra

Zuzana Haniková1(B) , Felip Manyà2 , and Amanda Vidal2

1 Institute of Computer Science of the Czech Academy of Sciences,
Prague, Czech Republic

zuzana@cs.cas.cz
2 Artificial Intelligence Research Institute (IIIA, CSIC), Bellaterra, Spain

{felip,amanda}@iiia.csic.es

Abstract. This work addresses the maximum satisfiability (MaxSAT)
problem for a multiset of arbitrary formulas of the language of proposi-
tional Łukasiewicz logic over the MV-algebra whose universe is the real
interval [0,1]. First, we reduce the MaxSAT problem to the SAT problem
over the same algebra. This solution method sets a benchmark for other
approaches, allowing a classification of the MaxSAT problem in terms of
metric reductions introduced by Krentel. We later define an alternative
analytic method with preprocessing in terms of a Tseitin transformation
of the input, followed by a reduction to a system of linear constraints,
in analogy to the earlier approaches of Hähnle and Olivetti. We discuss
various aspects of these approaches to solving the problem.

Keywords: Maximum satisfiability · Satisfiability · Łukasiewicz
logic · MV-algebra

1 Introduction

Satisfiability is a semantic problem: it relates not just to a logic (here, the infinite-
valued Łukasiewicz logic), but to a semantics interpreting that logic (here, the
MV-algebra on the real unit interval with natural order, called “standard MV-
algebra” and denoted [0, 1]Ł).

A propositional formula ϕ(x1, . . . , xn) of the language of Łukasiewicz logic is
satisfiable in an MV-algebra A provided there is an assignment of elements of
the universe of A to x1, . . . , xn that yields the value 1A (i.e., the top element in
the lattice order of A). This definition determines, for a given MV-algebra A, a
unique set of its satisfiable formulas SAT(A). The satisfiability notion extends
immediately to a finite list of formulas 〈ϕ1, . . . , ϕm〉, which is satisfiable in A if
and only if so is the conjunction of the formulas on the list.1

1 It is important to specify which MV-algebra is considered, since for many infinite
MV-algebras A, and even many subalgebras of [0, 1]Ł, the set SAT(A) is distinct
from SAT([0, 1]Ł) [16, Theorem 6.6]. Some extant works on satisfiability refer to
“infinite-valued Łukasiewicz logic” while in fact working with the algebra [0, 1]Ł.

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 386–404, 2023.
https://doi.org/10.1007/978-3-031-43513-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_21&domain=pdf
http://orcid.org/0000-0003-3252-4370
http://orcid.org/0000-0002-8366-1458
http://orcid.org/0000-0001-6730-6491
https://doi.org/10.1007/978-3-031-43513-3_21

The MaxSAT Problem in the Real-Valued MV-Algebra 387

This paper works with the standard MV-algebra [0, 1]Ł without mentioning
it explicitly from now on; thus we write SAT for SAT([0, 1]Ł) and likewise for
the MaxSAT problems considered in this paper. If another algebra, distinct from
[0, 1]Ł, is considered, it will be indicated explicitly.

The focus of this paper is not on satisfiability, but on maximum satisfiability,
an optimization problem (with a natural decision version): given a multiset (i.e., a
list) of arbitrary formulas of the language of Łukasiewicz logic, find the maximum
number among them that can be satisfied under a single assignment, over all
assignments. The formulas are not required to be in a normal form. It has been
recognized early on by Mundici [22] that formulas of Łukasiewicz logic are a
suitable device for counting ; his paper gives a reduction of the (decision version
of) the Boolean MaxSAT problem to the problem SAT; see also [25].

The MaxSAT problem for a list of arbitrary formulas over the three-element
MV-chain has been addressed in [19], using semantic tableaux; the approach
generalizes to other finite MV-chains, but not to MV-chains with infinitely many
elements. Earlier results in satisfiability go back to Mundici’s proof of the NP-
completeness of the SAT problem, obtained by bounding the denominators of a
satisfying assignment. This line of research was continued in [1,2], see also [27].

Our main contribution consists in showing that the MaxSAT problem can be
reduced to the SAT problem, in Sect. 3, and can then be used as a benchmark to
assess the analytic method in Sect. 4; a similar analysis could then be performed
with any other calculi for the maximum satisfiability problem.

This paper is structured as follows. Section 2 defines the problem and intro-
duces technical tools. Section 3 gives a method for solving the MaxSAT problem
in [0, 1]Ł based on a Cook reduction of MaxSAT to the SAT problem. Section 4
outlines an analytic method with preprocessing via a Tseitin transformation,
using a variant of the approach of [12,24], where each branch of a tableau tree
ends with solving a system of linear constraints. The method is proved sound
and complete. Eliminating the branching of the tree can also be achieved, using
established tools.

2 Problem Formulation and Preliminaries

The language of propositional Łukasiewicz logic Ł, denoted L(Ł), has two basic
connectives: ¬ (negation, unary) and ⊕ (strong disjunction, binary). Other con-
nectives are definable: 1 is x⊕¬x; 0 is ¬1; x�y is ¬(¬x⊕¬y) (strong conjunction);
x → y is ¬x ⊕ y; x ↔ y is (x → y) � (y → x); x ∨ y is (x → y) → y (weak
disjunction); and x ∧ y is ¬(¬x ∨ ¬y) (weak conjunction).

Well-formed formulas of L(Ł) are built up from an infinite set of propositional
variables Var = {xi}i∈N using the connectives of L(Ł). The basic language is
a point of reference for complexity considerations; other connectives are used
as shortcuts. If ϕ is a formula of L(Ł) in the basic language, |ϕ| denotes the
number of occurrences of propositional variables in ϕ. Given that ¬¬α ↔ α is
a theorem of Ł for any formula α ∈ L(Ł), we will assume double negation does
not occur in formulas. With this convention in place, the number of occurrences
of connectives in ϕ is bounded by 2|ϕ|. Thus |ϕ| is a good notion of length of ϕ.
Moreover ||ϕ|| denotes the number of distinct subformulas of ϕ.

388 Z. Haniková et al.

MV-algebras can be introduced using Mundici’s Γ -functor [10,20]: any MV-
algebra is isomorphic to Γ (G, u) for a lattice-ordered Abelian group G with a
strong unit u (in particular, define x ⊕ y = u ∧ (x + y) and ¬x = u − x for
x, y ∈ G; then Γ (G, u) = 〈[0, u],⊕,¬〉 is an MV-algebra). The standard MV-
algebra [0, 1]Ł is Γ (R, 1), interpreting the basic connectives in [0, 1] as follows:
for any assignment v, v(¬ϕ) = 1−v(ϕ) and v(ϕ⊕ψ) = min(1, v(ϕ)+v(ψ)). Any
assignment to variables of ϕ in language L(Ł) extends to all its subformulas in the
interpretation provided by [0, 1]Ł; this also determines the notion of satisfiability
in [0, 1]Ł and the set of satisfiable formulas of [0, 1]Ł, denoted SAT.

The interpretations of ⊕, �, ∧ and ∨ are commutative and associative, so
one can write x1 ⊕ · · · ⊕ xn without worrying about order and parentheses. We
write xn for x � · · · � x

︸ ︷︷ ︸

n occurrences

and nx for x ⊕ · · · ⊕ x
︸ ︷︷ ︸

n occurrences

. Also, ∨ and ∧ distribute over

each other and � distributes over ∨.
Unlike the Boolean MaxSAT problem over the two-element Boolean algebra,

here we work with arbitrary formulas of L(Ł). We formulate both the optimiza-
tion and the decision version of the MaxSAT problem.

MaxSAT-OPT
Instance: multiset 〈ϕ1, . . . , ϕm〉 of formulas of L(Ł) in variables {x1, . . . , xn}.
Output: the maximum integer k ≤ m such that there is an assignment v to
{x1, . . . , xn} that satisfies at least k formulas in the multiset 〈ϕ1, . . . , ϕm〉.
MaxSAT-DEC
Instance: multiset 〈ϕ1, . . . , ϕm〉 of formulas of L(Ł) in variables {x1, . . . , xn}
and a positive integer k ≤ m.
Output: (Boolean) Is MaxSAT-OPT(〈ϕ1, . . . , ϕm〉(x1, . . . , xn)) at least k?

Let A be an integer m×n matrix. Let x be an n-vector of variables and b be
an integer m-vector. The solvability of the system of inequalities Ax ≤ b
in R can be tested in polynomial time [28].

More generally, for the system Ax ≤ b, one can ask about the maximal size
(number of lines) of a subsystem that is solvable in R. This problem is known
as the maximum feasible subsystem [4] of a system of linear constraints: the
solution is a natural number k bounded by m (the total number of lines in the
system). This problem is NP-hard. We shall refer to this problem as Max-FS
problem. Notice that the system is not defined as a set, so the same constraint
may appear multiple times.

There are many variants of the Max-FS problem, indeed many were already
suggested in the paper [4]. We will use a variant that partitions the linear con-
straints into two groups: those that need to be satisfied by any feasible solution
(often called hard constraints; the paper [4] refers to them as “mandatory”) and
those the satisfied number of which is to be maximized (often called soft con-
straints; [4] refers to them as “optional”) over all feasible solutions. This variant
of Max-FS problem will be called Max-FS with hard and soft constraints
within this paper.

The MaxSAT Problem in the Real-Valued MV-Algebra 389

3 Canonical Method

First we give a polynomial-time, many-one (a.k.a. Karp) reduction of MaxSAT-
DEC to SAT. Our reduction is similar to those used in [25] (which, in turn,
refers to [22]) and in [15]. The differences arise from the fact that, in our case, an
unsatisfied formula can take any value below 1 (but not necessarily 0), and this
needs to be addressed in the definition of the set of formulas in the reduction.

Let 〈ϕ1, . . . , ϕm〉(x1, . . . , xn) and k ≤ m be an instance of MaxSAT-DEC.
It is well known that one can implicitly define any rational value in [0, 1]Ł with
a formula of L(Ł): an early example of suitable formulas can be found in [30].
Let k ≥ 2 and y be a new variable, not among (x1, . . . , xn), and let

ρ1/k := y ↔ ¬((k − 1)y)

Then we have that ρ1/k implicitly defines the rational value 1/k in [0, 1]Ł
(see, e.g., [25, Lemma 2]): that is, an assignment v in [0, 1]Ł sends ρ1/k to 1 if
and only if it sends y to 1/k. Moreover, the length of this formula is linear in
k ≤ m, therefore linear in the size of the instance on input.

For 1 ≤ i ≤ m, consider a new variable yi,k, let Φϕi,k be the set of formulas

{ (ϕi ↔ k yi,k) ∨ ¬yi,k , (yi,k ↔ y) ∨ ¬yi,k }
and let Φk be the list of formulas

⋃

1≤i≤m{Φϕi,k}.

Theorem 1. The pair 〈ϕ1, . . . , ϕm〉(x1, . . . , xn) and k with 2 ≤ k ≤ m belongs
to MaxSAT-DEC if and only if the set {ρ1/k} ∪ Φk ∪ {⊕m

i=1 yi,k} belongs to
SAT.

Proof. For the left-to-right direction, assume v to be an assignment satisfying—
without loss of generality—the first k formulas of the list. Consider then the
assignment v′ that coincides with v on the variables x1, . . . , xn and puts v′(y) =
1/k and

v′(yi,k) =

{

1/k if i ≤ k

0 otherwise.

The assignment v′ clearly satisfies ρ1/k. Next, since v′(y1,k) = . . . = v′(yk,k) =
1/k, also v′(

⊕m
i=1 yi,k) = 1. Lastly, the formulas in Φk are satisfied under v′:

the formulas (yi,k ↔ y) ∨ ¬yi,k are trivially satisfied, since each yi,k is indeed
sent to either 1/k (and hence, v′(y)) or to 0. For the other formulas in Φk, first
v′(ϕj) = 1 and kv′(yj,k) = k1/k = 1 for each 1 ≤ j ≤ k, and v′(¬yj,k) = 1 for
k < j ≤ m, hence they are all satisfied.

For the right-to-left direction, let v be an assignment satisfying {ρ1/k}∪Φk ∪
{⊕m

i=1 yi,k}. From Φk and ρ1/k we know v(yi,k) is either 1/k or 0. Therefore, for
v(

⊕m
i=1 yi,k) = 1, necessarily at least k many y-variables are evaluated to 1/k.

Assume, again without loss of generality, that v(y1,k) = . . . = v(yk,k) = 1/k.
From Φk, we get that v((ϕi ↔ k yi,k) ∨ ¬yi,k) = 1 for each 1 ≤ i ≤ m. In
particular, since v(¬yj,k) �= 1 for every 1 ≤ j ≤ k, necessarily v((ϕj ↔ k yj,k))
for each such j. Together with the previously observed fact that yj,k = 1/k for
each such j, this implies that v(ϕ1) = . . . = v(ϕk) = 1, concluding the proof.

390 Z. Haniková et al.

For k = 1, it is immediate that 〈ϕ1, . . . , ϕm〉 and k is in MaxSAT-DEC if and
only if (. . . (ϕ1 ∨ ϕ2) ∨ . . .) ∨ ϕm is in SAT. Given that for m = k = 1 both
problems coincide, we get:

Corollary 1. The problem MaxSAT-DEC is NP-complete.

This reduction from MaxSAT-DEC to SAT provides a practical approach
to the MaxSAT problem in [0, 1]Ł, provided that we use a competitive algorithm
for solving SAT (i.e., the satisfiability problem in [0, 1]Ł). We could rely on either
of the following two SAT solvers, which have been shown rather efficient. The
first one is the tableau with constraints method proposed by Hähnle [12] that
reduces SAT to Mixed Integer Programming (MIP) and can therefore use any
available MIP solver. The second one is the Satisfiability Modulo Theory (SMT)
methods proposed by Ansótegui et al. that reduces SAT to an SMT satisfiability
problem and can use any available SMT solver [6,7,32]. These methods can take
advantage of the latest developments and innovations in MIP and SMT solvers,
avoiding the need to implement a SAT solver from scratch.

A polynomial-time Turing (a.k.a. Cook) reduction of MaxSAT-OPT to
MaxSAT-DEC can be given, as we proceed to explain. It is this approach that
prompts our referring to this method of solving MaxSAT-OPT as canonical,
given its wide scope of applicability to optimization problems (see, e.g., [29]).
The reduction uses an unspecified algorithm for MaxSAT-DEC as an oracle;
as usual with oracle computations, any call to the oracle counts as one step in
the computation and under this proviso, the oracle computation runs in time
polynomial in the input size (Σm

i=1|ϕi|). Indeed, given an instance 〈ϕ1, . . . , ϕm〉, it
is easy to arrive at the optimal value for MaxSAT-OPT using binary search on
the discrete, polynomial-size search space {1, . . . ,m} of possible solutions, using
at most �logm� oracle calls. Considering that MaxSAT-DEC is NP-complete
by Corollary 1, we have the following:

Corollary 2. MaxSAT-OPT is in FPNP.

For this conclusion, it is not important that the oracle solves MaxSAT-
DEC; any oracle solving an NP-complete problem (an NP-oracle) would suit,
and indeed one can use any algorithm for SAT, relying on Theorem 1. In view of
the obvious reduction from MaxSAT-DEC to MaxSAT-OPT, the two prob-
lems are equivalent in the sense that if either has a polynomial-time algorithm,
so does the other. This is standard, and it is why the decision version of an
optimization problem is often considered in lieu of the problem as such.

Can one do better than O(logm) oracle calls? Below, we provide a classifi-
cation of the problem in terms of Krentel’s work [17] that suggests a negative
answer subject to P �= NP. Krentel ranks optimization problems in FPNP

in terms of the number of calls to an NP-oracle. For z : N −→ N a smooth
function (i.e., z is non-decreasing and polynomial-time computable in unary
representation), FPNP[z(n)] is the class of functions computable in polynomial
time with an NP oracle with at most z(|x|) oracle calls for instance x, where |x|
denotes the length of x. By definition, FPNP coincides with FPNP[nO(1)] since
a polynomial-time algorithm can make no more than a polynomial amount of
oracle calls.

The MaxSAT Problem in the Real-Valued MV-Algebra 391

For Σ a finite alphabet let f, g : Σ∗ −→ N. A metric reduction [17] from f to g
is a pair (h1, h2) of polynomial-time computable functions where h1 : Σ∗ −→ Σ∗

and h2 : Σ∗ × N −→ N such that f(x) = h2(x, g(h1(x))) for all x ∈ Σ∗. The
notion of a metric reduction is a natural generalization of polynomial-time many-
one reduction to optimization problems. It follows from the definition that for
each smooth function z as above, FPNP[z(n)] is closed under metric reductions.

Theorem 2. ([17], see also [29]) Assume P �= NP.
Then FPNP[O(log log n)] � FPNP[O(log n)] � FPNP[nO(1)].

Recall that Boolean algebras form a subvariety of MV-algebras. In particular,
in any Boolean algebra, the interpretations of the strong and the weak disjunc-
tion coincide, as do the interpretations of the strong conjunction and the weak
conjunction. When mapping the Boolean connectives to the L(Ł) connectives,
we take ¬ for the Boolean negation, ∨ for the Boolean disjunction, and � as the
Boolean conjunction.

Moreover, in every nontrivial MV-algebra A, the set consisting of its bottom
element 0A and its top element 1A is closed under all operations of A and the
subalgebra of A on the universe consisting of these two elements is isomorphic
to the two-element Boolean algebra.

Now let us recall the MaxSAT problem in the two-element Boolean algebra
for CNF formulas, given as multisets of clauses.

Classical-MaxSAT-OPT
Instance: multiset 〈C1, . . . , Cm〉 of Boolean clauses in variables {x1, . . . , xn}.
Output: the maximum integer k ≤ m such that there is an assignment v in the
two-element Boolean algebra on {0, 1} to {x1, . . . , xn} that satisfies at least k
clauses.

Krentel [17] proves the following result: Classical-MaxSAT-OPT is complete
for FPNP[O(logm)] under metric reductions.

We now prepare a few technical tools for eventually giving a metric reduc-
tion of Classical-MaxSAT-OPT to MaxSAT-OPT. Following [16, Def. 7.1],
consider the language L(Ł) including the definable connectives and define:

(i) a literal is a variable (such as x) or a negation thereof (such as ¬x).
(ii) A (�,∨)-formula is built up from literals using arbitrary combination of �

and ∨.
(iii) In particular, a clause is built up from literals using only ∨.

Lemma 1. ([16, Thm. 7.4])

– The interpretation of any (�,∨)-formula with n variables in [0, 1]Ł is a convex
function in [0, 1]n;

– any (�,∨)-formula (in particular, any clause) is satisfiable in [0, 1]Ł if and
only if it is satisfiable in the two-element Boolean algebra {0, 1}.

392 Z. Haniková et al.

Lemma 2. Let C1, . . . , Cl be clauses in L(Ł) in variables {x1, . . . , xn}. Assume
ā ∈ [0, 1]n is such that Ci(ā) = 1 for each 1 ≤ i ≤ l. Then there is an element
b̄ ∈ {0, 1}n such that Ci(b̄) = 1 for 1 ≤ i ≤ l.

Proof. We construct b̄ from ā in n independent steps. Let b̄1 := ā. The j-th
step takes a b̄j , assuming the property that Ci(b̄j) = 1 for each 1 ≤ i ≤ l,
and produces b̄j+1 with the same property, replacing the real value in the j-th
coordinate of b̄j with a Boolean value (i.e., either a 0 or a 1). Lastly, we set
b̄ := b̄n+1: all coordinates of b̄ are Boolean.

We describe the j-th step. We simplify notation by writing b̄′ for b̄j . We
thus have b̄′ = 〈b′

1, . . . , b
′
n〉. Consider the j-th component of this vector: if b′

j is
0 or 1, we set b̄j+1 := b̄j , whereby the step is finished. If 0 < b′

j < 1, define
b̄′
0 := 〈b′

1, . . . , b
′
j−1, 0, b

′
j+1, . . . , b

′
n〉 and b̄′

1 := 〈b′
1, . . . , b

′
j−1, 1, b

′
j+1, . . . , b

′
n〉. By

assumption, we have C1(b̄′) = 1. From Lemma 1, the interpretation of C1 is a
convex function. Now assume that either C1(b̄′

0) �= 1 or C1(b̄′
1) �= 1. Then there

is a convex combination of C1(b̄′
0) and C1(b̄′

1) that is strictly below C1(b̄′), a
contradiction with the convexity fact. We conclude that C1(b̄′

0) = C1(b̄′
1) = 1. An

analogous argument holds for the remaining clauses C2, . . . , Cl. This means that
we can set either b̄j+1 := b̄′

0 or b̄j+1 := b̄′
1 and we will indeed have Ci(b̄j+1) = 1

for each 1 ≤ i ≤ l.

Theorem 3. MaxSAT-OPT is complete for FPNP[O(logm)] under metric
reductions.

Proof. Containment was obtained in Corollary 2 and the discussion preceding it.
We prove hardness. We claim that the metric reduction of Classical-MaxSAT-
OPT to MaxSAT-OPT is provided by a pair of identity functions. Take an
arbitrary instance of Classical-MaxSAT-OPT problem, namely a multiset
〈C1, . . . , Cm〉 of Boolean clauses in variables {x1, . . . , xn}, and interpret it as
a multiset of clauses in L(Ł) (no change in notation is needed, see above). By
Lemma 1, the interpretation of each Ci for i = 1, . . . ,m in [0, 1]Ł is a convex
function. The convexity of the interpretation is not violated by rewriting each
Ci in the basic connectives of L(Ł); this yields formulas 〈C∗

1 , . . . , C∗
m〉. Feed

this m-tuple to the algorithm solving MaxSAT-OPT. The output is a natural
number k ≤ m which indicates the maximal number among 〈C∗

1 , . . . , C∗
m〉 that

are simultaneously satisfiable by an assignment in [0, 1]Ł. We assume without loss
of generality that the first k formulas in the list are satisfied by some assignment;
hence so are the first k among 〈C1, . . . , Cm〉. By Lemma 2, the same clauses
(hence, the same number of clauses) are also simultaneously satisfiable by a
Boolean assignment. This gives a lower bound on the number of simultaneously
satisfiable clauses among 〈C1, . . . , Cm〉 in {0, 1}. At the same time, the two-
element Boolean algebra is a subalgebra of [0, 1]Ł, so any assignment in {0, 1}n

is also an assignment in [0, 1]n: therefore, considering that k was the answer of the
algorithm solving MaxSAT-OPT, no more than k clauses among 〈C1, . . . , Cm〉
can be simultaneously satisfiable in {0, 1}, because otherwise k would not be
optimal for MaxSAT-OPT. Therefore k is the optimal value.

The MaxSAT Problem in the Real-Valued MV-Algebra 393

The binary search algorithm always makes a logarithmic number of oracle
calls, no matter what the instance is. Also, the complexity analysis as given does
not take into account the efficiency of the computations executed by the oracle;
all that is known about the oracle is that it correctly decides a particular NP-
complete problem. Considering the experience obtained in Boolean MaxSAT
solvers based on Boolean SAT solvers, there might be alternatives to binary
search that might turn out to be more efficient in practice, where one departs
from the paradigm that emphasizes worst-case complexity. A typical Boolean
MaxSAT solver does a linear search, either from unsatisfiable to satisfiable (core-
guided approach), or from satisfiable to unsatisfiable (model-guided approach)
[8,18]. The solvers heavily exploit the fact that the formulas in the multiset
are Boolean clauses (i.e., a normal form is assumed) and that a SAT solver also
returns a satisfying assignment or an unsatisfiable core; moreover, the calls to the
SAT solver need not be its independent runs. These parallels invite an openness
of mind when implementing MaxSAT solvers for Łukasiewicz logic.

4 Tableau-Like Method

4.1 Satisfiability

We give first a decision method for the SAT problem, combining several
approaches that might be termed analytic. SAT and its complexity have been
investigated in depth [1,2,6,7,9,12,14,16,21,23,26]. In particular, tableau cal-
culi have been proposed in [12,24]. Presenting our decision method for SAT has
several goals. It outlines our approach to a simpler problem than MaxSAT-
OPT, to be modified in Subsect. 4.2. Our method for SAT can then be used as
a lower bound on the complexity of the method for MaxSAT-OPT in Subsect.
4.2. Furthermore, the method, in its variant generating a tree with an exponen-
tial number of branches, provides a simple proof for SAT in NP and an upper
bound on the runtime of a deterministic algorithm for SAT.

The method operates in two subsequent stages. The first one is a variant of
Tseitin transformation of an arbitrary formula to a formula in normal form [31];
in classical logic, the target normal form is a CNF, while in our case, the target
normal form is a system of equations in the language L(Ł). The transformation
preserves satisfiability, involves only a polynomial increase in size, and adds new
variables. A variant of the transformation was used for testing SAT in [9].

Let ||ϕ|| denote the number of pairwise distinct subformulas in ϕ.2 Recall at
this point the formula ρ1/k from Sect. 3 and its subformula (k−1)y. If brackets in
this subformula nest to the right (or to the left), then ||(k − 1)y|| is proportional
to |(k−1)y|. But if (k−1)y is bracketed as a balanced binary tree, then ||(k−1)y||
is proportional to log2(|(k − 1)y|).

2 ϕ is viewed as a string, any subformula is a substring, and subformulas are the same
if and only if the strings are. Thus x ⊕ (x ⊕ x) is distinct from (x ⊕ x) ⊕ x. Per
convention ¬¬ψ does not occur as subformula for any ψ, since ¬¬ψ ↔ ψ in Ł.

394 Z. Haniková et al.

The second stage is a tableau-like procedure that utilizes the system of equa-
tions obtained in the first stage as labels for nodes in a rooted linear tree, and
expands the nodes using simple rules that translate these equations of L(Ł) into
linear equations in the reals. Subsequently, each branch is evaluated for solvabil-
ity in the reals, analogously to [12,24].

The algorithm for SAT is given below. The presentation is informal.

Decision method TŁSAT. Let ϕ(x1, . . . , xn) be an input formula.

1. List subformulas. Let L be the list of all pairwise distinct subformulas
occurring in ϕ, including ϕ and all its variables. Let l be the number of items
in L. If ϕ does not contain any double negations, we have l = ||ϕ||. We assume
that if α is a subformula of β, then α occurs before β in L.

2. Name subformulas. Introduce new pairwise distinct variables zi for the i-th
formula in L with 1 ≤ i ≤ l. These will be called “z-variables”. It is assumed
that the z variables are also distinct from each xj for 1 ≤ j ≤ n.3

3. Equations on names. Let S be the list of equations in the language {¬,⊕}
obtained by initializing S as empty and taking the following step for each
item in the list L:

– if x is a propositional variable in ϕ and 1 ≤ i ≤ l and zi is the variable
for x, include in S the equation

x = zi;
– if ¬α is a subformula of ϕ and 1 ≤ i, j ≤ l and zi is the variable for α

and zj is the variable for ¬α, include in S the equation
zj = ¬zi;

– if α ⊕ β is a subformula of ϕ and 1 ≤ i, j, k ≤ l and zi, zj , zk are the
variables for α, β, α ⊕ β respectively, include in S the equation

zi ⊕ zj = zk.
Having each item of L processed, S contains equations in the language L(Ł).
The number of equations in S is l.

4. Initialize tree. Initialize a rooted tree T, linear at this stage, with l nodes.
From the root down, label each node of T with one equations from S. Start
with equations containing the x-variables and mark them final. Then process
those containing ¬ and subsequently those containing ⊕ and mark each as
active.4

5. Boundary constraints. Append before the root 2l new nodes labelled 0 ≤
zi ≤ 1 for each i = 1, . . . , l. Mark each as final.

6. Target constraint. Append as new root of the tree a node labelled zl = 1
for zl the variable introduced for ϕ. (By convention taken in step 1, zl is
assigned to ϕ.) Mark final.

3 This is a convention in favour of clarity of presentation. Avoiding introduction of
new variables for atoms x1, . . . , xn would save n new variables.

4 The structure of T will be linear up to a certain point and binary from there on.
This is the case because a) the equations with the x-variables are not expanded, and
b) all the equations with ¬ are expanded before any of the equations with ⊕, and
the expansion rule for ¬ does not lead to branching. Cf. Example 1.

The MaxSAT Problem in the Real-Valued MV-Algebra 395

7. Expand tree. From the root of T towards the leaves, process each node N :
– If the label of N is marked final (i.e, does not contain ¬ or ⊕), leave it

intact and proceed to the next node.
– If the label of N is marked active (contains ¬ or ⊕), mark it passive, and

below each leaf of T, append a new subtree with labelled nodes using the
following expansion rules (one new node per each constraint), marking
each new label final :

zi ⊕ zj = zk

zi + zj ≤ 1 zi + zj ≥ 1
zi + zj = zk zk = 1

zi = ¬zj

zi = 1 − zj

An application of the rule on the left involves branching below each leaf
of T. The labels in the conclusions of these rules are linear constraints in
real numbers. The mark final indicates the algorithm leaves them intact.
Having processed all nodes of T, each branch of T defines a system of linear
constraints marked final in an unambiguous way.

8. Solve systems. From the leftmost branch to the right, test the system of
constraints on the branch for solvability in R5 until a branch is found whose
system of constraints is solvable. In such a case, return ‘yes’ and exit.

9. Default. Return ‘no’ and exit.

Typically in an analytic tableau method (cf. eg. Hähnle [12]), one starts with a
given formula ϕ and decomposes it, taking one occurrence of a connective in each
step and expanding the tableau using the given tableau rules. If a subformula of
ϕ occurs multiple times in ϕ, it is processed multiple times and each time, new
variables are introduced with it: cf. e.g. [12, section 5.1] where new variables i1
and i2 are introduced for each occurrence of an implication. This is a feature of
the analytic method. With creating the set of subformulas first, we avoid this
and have potentially less new variables. (Cf. also the introduction in [24], where
our method might therefore not qualify as purely analytic.)

Example 1. A simple example will illustrate the generation of the tree and the
resulting systems of constraints. Consider the formula ((x ⊕ ¬y) ⊕ ¬(x ⊕ y)) ⊕
¬(x ⊕ y). A list of its subformulas is the following:

〈x, y,¬y, x⊕y, x⊕¬y,¬(x⊕y), (x⊕¬y)⊕(¬(x⊕y)), ((x⊕¬y)⊕¬(x⊕y))⊕¬(x⊕y)〉

In order to present the example in a compact way, we write three initial nodes
only: the first, with the boundary, target and ground equations; the second, with
the equations from S with symbol ¬, and the third, with the equations from S
with symbol ⊕. Below this, we expand the tree as described by the algorithm.
We omit marks (active, passive, final). We use vertical dots to indicate the tree
that would be included in their place is a copy of the one depicted at its side.

5 The testing procedure is in P. For the purpose of testing, one can render each equality
ax = b as two inequalities ax ≤ b and −ax ≤ −b.

396 Z. Haniková et al.

z8 = 1, {0 ≤ zi ≤ 1}1≤i≤8, z1 = x, z2 = y

z6 = ¬z4, z3 = ¬z2,

z8 = z7 ⊕ z6, z7 = z5 ⊕ z6, z5 = z1 ⊕ z3, z4 = z1 ⊕ z2

z6 = 1 − z4, z3 = 1 − z2

z8 = 1

z7 + z6 ≥ 1

z7=1

z5+z6≥1

...

z7 = z5 + z6

z5 + z6 ≤ 1

z5 = 1

z1 + z3 ≥ 1

z4 = 1

z1 + z2 ≥ 1

z4 = z1 + z2

z1 + z2 ≤ 1

z5 = z1 + z3

z1 + z3 ≤ 1

z4 = 1

z1 + z2 ≥ 1

z4 = z1 + z2

z1 + z2 ≤ 1

z8=z7+z6

z7+z6≤1

...

Lemma 3. The expansion rules in step 7 of TŁSAT preserve the following
invariant: for any assignment v of values in [0, 1] to all z-variables, v satis-
fies the equation in the premise in the algebra [0, 1]Ł if and only if v satisfies all
constraints in at least one branch in the conclusions of the rule in the algebra R.

Proof. Notice that the expansion rules work as a switch between the signature
of L(Ł) and language of real closed fields. (Where by slight abuse of language,
we only differentiate between the two sets of the operation symbols, but not the
relation symbols.) In both cases the statement is a straightforward consequence
of the semantics of the connectives ¬ and ⊕ in [0, 1]Ł. We prove the case for ⊕.
Top-to-bottom: let v be an assignment of values in [0, 1] to z-variables introduced
in step 2, and consider zi, zj , zk s.t. v(zi)⊕ v(zj) = v(zk) is true in [0, 1]Ł. Then
it must be the case that either v(zi)+v(zj) ≤ 1 and v(zi)+v(zj) = v(zk) holds in
R, or v(zi)+v(zj) ≥ 1 in which case we also have v(zk) = 1 in R. Bottom to top:
again let v be an assignment of values in [0, 1] to z-variables. If v(zi)+ v(zj) ≤ 1
and v(zi) + v(zj) = v(zk) both hold in R, we have v(zi) ⊕ v(zj) = v(zk) is true
in [0, 1]Ł. If v(zi) + v(zj) ≥ 1 and v(zk) = 1 in R, we have v(zi) ⊕ v(zj) = v(zk)
is true in [0, 1]Ł. This exhausts possible cases.

Theorem 4. The method TŁSAT is sound and complete for SAT.

Proof. The soundness claim states that whenever the method answers ‘yes’
on input ϕ, then there is an assignment v to x1, . . . , xn such that v(ϕ) = 1.
So assume that there is a branch B of T such that the system of constraints

The MaxSAT Problem in the Real-Valued MV-Algebra 397

given by B is solvable, under some assignment v to variables on B, and fix v. In
particular, for i = 1, . . . , n, the variable xi gets value v(xi) (notice each xi occurs
on every branch). The assignment v extends to ϕ in a unique way and one shows
by induction on the structure of ϕ, using Lemma 3, that for any subformula ψ of
ϕ, we have v(ψ) = v(zj) for zj with j ∈ {1, . . . , l} being the z-variable assigned
to ψ in step 2. In particular, v(ϕ) = 1.

The completeness claim states that if v(ϕ) = 1 for some assignment v,
then the method yields ‘yes’ on input ϕ. So fix v s.t. v(ϕ) = 1. We claim there
is a branch of T with a solvable system of equations. First produce the full tree
T. Then assign values to all z-variables, starting from those that are names for
x1, . . . , xn, and then inductively on the structure of ϕ using again that v(ψ) =
v(zj) for a zj assigned to ψ in step 2. This is consistent with equations obtained
in step 3. By abuse of language, call this assignment v. The assignment v makes it
possible to travel downward from the root of T via labelled nodes, using Lemma
3 to show that v satisfies each label: in particular if T branches due to a node
with label zi ⊕ zj = zk, then (assuming the label in the premise is satisfied by
v), Lemma 3 guarantees that there is at least one branch on which the new (and
hence, all) labels are satisfied by v. Finally a leaf L of T is reached: since Lemma
3 was applied at each expansion, and since the boundary and the final constraint
clearly hold under v, all final constraints on the branch determined by L hold
under v.

Lemma 4. The problem SAT on instance ϕ can be solved deterministically by
constructing the tree T and testing the solvability of systems of linear constraints
in R on no more than 2||ϕ|| branches. Each branch has at most 4||ϕ|| + 1 con-
straints and ||ϕ|| + n variables.

Proof. Branching of the tree takes place at each occurrence of ⊕ in S; the num-
ber of such occurrences is bounded by ||ϕ||. Each branch has at most 2||ϕ||
constraints for subformulas, plus 2||ϕ|| boundary constraints, plus a target con-
straint. (Here we do not consider the possibility of replacing each equation with
two inequalities.) Each branch of the tree uses all the variables: n input variables
x1, . . . , xn and ||ϕ|| z-variables.

Corollary 3. The problem SAT is in NP, in particular, a formula is satisfiable
if and only if there is a polynomial-size witness consisting of a tableau branch of
the method TŁSAT and matching system of constraints solvable in R.

Proof. Since the method TŁSAT is sound and complete for SAT by Theorem 4,
any satisfiable formula has the following polynomial-size certificate of its own
satisfiability in [0, 1]Ł: the system of equations in z-variables constructed in step
3, and a branch of the tree T, defined by a list of instructions specifying which
branch to take upon each application of ⊕-rule, combined with a system C of
constraints that matches the indicated branchings (in the sense that the equa-
tions with ⊕ have been expanded according to the specified branch) and such
that C is solvable in R. On the other hand, the soundness and completeness
theorem also says that an unsatisfiable formula cannot have such a certificate.

398 Z. Haniková et al.

Furthermore, any decision tree obtained from the above procedure can be
linearized, using the methods of [12]. In particular, any instance of the applica-
tion of the branching rule introduced in step 7 can be replaced by an instance
of an application of the following lemma (observing the condition that distinct
Boolean variables will be used for distinct instances):

Lemma 5. (Cf. [12, Sect. 5.1], [13, Lemma 6.2.19]) Assume a1, a2, a3 ∈ [0, 1].
Then a1 ⊕ a2 = a3 holds in [0, 1]Ł if and only if there is an y ∈ {0, 1} such that
all of the following constraints hold in R:

(i) a1 + a2 ≤ 1 + y
(ii) y ≤ a1 + a2

(iii) a3 ≤ a1 + a2

(iv) a1 + a2 ≤ a3 + y
(v) y ≤ a3.

Proof. Assume a1 ⊕ a2 = a3 holds in [0, 1]Ł. Case 1: a1 + a2 ≤ 1, then from
the assumption we have a1 + a2 = a3. We set y := 0. The fact that a1, a2, a3 ∈
[0, 1] implies (ii) and (v); the remaining constraints in the Lemma follow from
a1+ a2 = a3. Case 2: a1+ a2 > 1. The assumption implies a3 = 1; we set y := 1,
we get (v). The fact that a1, a2, a3 ∈ [0, 1] implies (i) and (iv). From a1 + a2 > 1
we get (ii) and (iii).
Now assume there is an y ∈ {0, 1} such that all constraints listed hold in R.
Case 1: y = 0. We have (i) a1 + a2 ≤ 1 and (iii,iv) a3 ≤ a1 + a2 ≤ a3. Hence
a1 ⊕ a2 = a3. Case 2: y = 1. We have (v) 1 ≤ a3 and (ii) 1 ≤ a1 + a2. Hence
a1 ⊕ a2 = a3.

This modification eventually yields, in step 8, a single MIP problem — one of
the extant competitive ways to address the SAT problem. A major advantage of
using a MIP solver is the advanced possibility of applying heuristics, whereas in
the simple version above, the only optimization considered is aborting the com-
putation upon finding a branch with a solvable system.6 That is: by design, the
algorithm TŁSAT needs to generate and perhaps eventually test exponentially
many systems of equations. However, from the viewpoint of the worst-case deter-
ministic complexity, the MIP method does not differ substantially from testing
the (possibly exponentially many) branches.

4.2 Maximum Satisfiability

In this Subsection we adapt the previous method to the MaxSAT-OPT prob-
lem from Sect. 2. It is easily observed that usual methods for SAT, the method
from the previous Subsection among them (even if it easily adapts to test joint
satisfiability of a list of formulas), are not applicable for MaxSAT-OPT; cf. [19]
for a discussion. One problem is that they yield a Boolean value. Taking any sat-
isfiable formula α and considering the m-element list 〈α, . . . , α〉, for any m > 1,
6 One might optimize by testing immediately on every generated branch and exiting

the computation upon finding one with a solvable system. In our exposition though,
we prefer to consider the size of the full decision tree.

The MaxSAT Problem in the Real-Valued MV-Algebra 399

clearly a complete method needs to produce the answer m on this input. The
tableau approaches of [12,24] uses MIP solvers on branches, also returning a
Boolean value. Another feature of the method from the previous Subsection is
that it considers distinct subformulas as a set; thus any repetition of the same
formula in the list on input would be obliterated.

These considerations invite the approach of preserving the Tseitin-like proce-
dure of listing equations obtained from the subformulas, but combining it with:

– updating the target constraint for a multiset of formulas on input, and
– updating the query about the system of constraints obtained on each branch.

The following algorithm updates the decision method TŁSAT from the Sub-
sect. 4.1. To highlight the differences, each step only gives the information that
has changed compared to the previous case.

Optimization method TŁMaxSAT for computing MaxSAT-OPT.
Let 〈ϕ1, . . . , ϕm〉 be a list of formulas in variables x1, . . . , xn.

1. List subformulas. Let L be the list of all pairwise distinct subformulas
occurring in ϕ1, . . . , ϕm, including each formula ϕ1, . . . , ϕm with 1 ≤ i ≤ m
and all variables x1, . . . , xn. Let l be the number of items in L. Conventions
as in step 1 of TŁSAT.

2. Name subformulas. As before.
3. Equations on names. As before.
4. Initialize tree. As before.
5. Boundary constraints. As before.
6. Mark hard constraints. For each node in T up to this point, mark all

constraints as hard constraints.
7. Target constraints. Append before the root of T a new chain with labels

zji ≥ 1 for zji the variable introduced for ϕi, with i = 1, . . . ,m, preserv-
ing the multiplicity of ϕi in the input list. Mark these constraints as soft
constraints.

8. Expand tree. As before, preserving in the expansion that a hard constraint
produces hard constraints.

9. Solve systems. From the leftmost branch to the right, taking one branch at
a time. Each branch defines, via the final label, a system of linear constraints
in R, with the target constraints from step 7 marked soft and all other con-
straints marked hard. Thus each branch defines an instance of the Max-FS
problem with hard and soft constraints. Obtain the solution (i.e., a natural
number, possibly 0) to the instance on each branch.7

10. Maximize. Return the maximum of satisfied soft constraints among the
constraint systems over all the branches, and exit.

7 Since all equalities are marked hard, any feasible solution to the Max-FS task will
need to satisfy all of them. More generally, see [5, Concluding remarks] for handling
soft constraints that are equalities.

400 Z. Haniková et al.

Example 2. Let us consider the list of formulas 〈(x ⊕ ¬y) ⊕ ¬x,¬x, x ⊕ ¬y, x〉.
A list of its subformulas (according to the definition in step 1) is the following:

〈x, y,¬x,¬y, x ⊕ ¬y, (x ⊕ ¬y) ⊕ ¬x〉

In order to depict the example in a compact way we use the same conventions
as in Example 1. Furthermore, we will print in bold the soft constraints.

z6 = 1, z3 = 1, z5 = 1, z1 = 1, {0 ≤ zi ≤ 1}1≤6

z3 = ¬z1, z4 = ¬z2

z5 = z1 ⊕ z4, z6 = z5 ⊕ z3

z3 = 1 − z1

z4 = 1 − z2

z5 = 1

z1 + z4 ≥ 1

z6 = 1

z5 + z3 ≥ 1

z6 = z5 + z3

z5 + z3 ≤ 1

z5 = z1 + z4

z1 + z4 ≤ 1

z6 = 1

z5 + z3 ≥ 1

z6 = z5 + z3

z5 + z3 ≤ 1 x

Theorem 5. The method TŁMaxSAT is sound and complete for MaxSAT-
OPT.

Proof. The soundness claim states that whenever the method returns k ∈ N

on input 〈ϕ1, . . . , ϕm〉, then there is an assignment v to variables x1, . . . , xn that
satisfies k formulas among 〈ϕ1, . . . , ϕm〉. If TŁMaxSAT returns k, that means the
tree T was constructed with a branch B and a system of constraints given by B
that yielded k upon solving the Max-FS problem with hard and soft constraints,
and that this was the maximum solution among all branches. Fix such a v and
notice that v defines values for x1, . . . , xn. Using Lemma 3, all hard constraints
from the system, in particular, all constraints from steps 3, 5 and 8 are satisfied
by v, and so are k of the target constraints. If ψ is a subformula of some ϕi with
i ∈ {1, . . . , m}, we have v(ψ) = v(zj) whenever zj is the z-variable assigned to
ψ, by induction. In particular, from step 7 we have that there are k formulas ϕi

among 〈ϕ1, . . . , ϕm〉 such that v(ϕi) = 1.
The completeness claim states that if, for some assignment v, there are k

items ϕi on the list 〈ϕ1, . . . , ϕm〉 such that v(ϕi) = 1, then the method TŁMaxSAT

yields at least k on that instance. So assume that v(ϕi) = 1 for at least k such
items and fix v. We claim there is a branch B of T with a system of constraints
that yields at least k upon solving its instance of Max-FS problem. First con-
struct the tree T. From v, we get values for x1, . . . , xn, the z-variables that are
their names, and using equations from step 3 for the remaining z-variables. The
assignment v indicates a leaf of T that defines a branch B via a series of (possibly

The MaxSAT Problem in the Real-Valued MV-Algebra 401

non-unique) choices on the hard constraints. If ψ is a subformula of some ϕi with
i ∈ {1, . . . , m}, also v(ψ) = v(zj) whenever zj is the z-variable assigned to ψ, all
the hard constraints and at least k soft constraints are satisfied on B under v.
Since k formulas on input are satisfied by v, also k soft constraints are satisfied.
Thus the method TŁMaxSAT, which returns a maximum over all branches, will
yield a value no less than k.

To put side by side the efficiency of the method TŁSAT from Subsect. 4.1
with the method TŁMaxSAT above, we assume a modification of TŁSAT that
takes as input a finite list of arbitrary formulas 〈ϕ1, . . . , ϕm〉 and tests their
joint satisfiability. Then we obtain comparable trees from both methods, the
main difference being in the target constraints. Each branch of the tree obtained
from TŁSAT defines a set of constraints the solvability of which is in P. It is
typically not necessary to test solvability on all the branches. On the other
hand, if 〈ϕ1, . . . , ϕm〉 is an input to TŁMaxSAT, then on each branch of the
generated tree, it is indeed necessary to solve the Max-FS problem with hard
and soft constraints that the branch defines, because the method eventually
takes a maximum over all the branches. Moreover, the problem on each branch
is NP-hard [4]. In this sense, the complexity of the method TŁSAT is a lower
bound on the complexity of the method TŁMaxSAT as presented above.

One can conceive optimizing the method TŁMaxSAT by observing that, firstly,
the multiset of soft constraints remains the same over all the branches, and
secondly, if any subset S′ of a set S of hard constraints is unsolvable, then so is
S. We refrain from pursuing these considerations here, since they are addressed
by the methods used in MIP solvers. The following lemma comes in useful.

Lemma 6. The tree obtained from the TŁMaxSAT method can be linearized at
the cost of adding at most ||ϕ|| Boolean variables. The linearization method does
not affect the soft constraints.

Proof. Any branching in step 8 of the algorithm can be replaced by expanding
the tree with new nodes (without branching) using Lemma 5. The constraints
obtained from the Lemma are all marked hard. This step therefore does not
impact the set of possible solutions to the hard constraints in the system. The
soft constraints are the same on all the branches, therefore the soft constraints
in the linearization are well defined.

An extension of the Max-FS problem with Boolean variables among the set
of hard constraints can also be rendered as a MIP problem with hard and soft
constraints, with the Boolean variables not occurring in the soft constraints.
Section 3 gives as benchmark for MaxSAT-OPT logm calls to a MIP solver
for SAT with inputs of size O(Σm

i=1|ϕi| + m2).

5 Concluding Remarks and Future Work

Envisaged work on this material will consider finite-valued reductions of the
SAT problem via upper bounds on denominators [1–3] to obtain a comparison

402 Z. Haniková et al.

with variants of TŁSAT for deterministic worst-case complexity for arbitrary
formulas. Also, it remains to be seen whether upper bounds on denominators (a
“small-model theorem”, cf., e.g., [11]) can be used to classify the decision version
of the above Max-FS problem with Boolean variables among its hard constraints
within FPNP for a conclusive comparison with the canonical approach. Another
line of possible work stems from a generalized notion of satisfiability, considering,
instead of the MaxSAT family of problems, their MaxSATr version, for a rational
r ∈ (0, 1], asking for the maximum number of formulas that are assigned a value
greater than or equal to r by a single assignment.

Acknowledgements. We thank three anonymous reviewers for their useful and
inspiring comments. Haniková was supported by the long-term strategic devel-
opment financing of the ICS (RVO:67985807) and by mobility grant no. CSIC-
20–12 of the Czech Academy of Sciences. Manyà was supported by grants
PID2019-111544GB-C21, PID2022-139835NB-C21 and TED2021-129319B-I00 funded
by MCIN/AEI/10.13039/501100011033. Vidal was supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No. 101027914.

References

1. Aguzzoli, S.: An asymptotically tight bound on countermodels for Łukasiewicz
logic. Int. J. Approximate Reasoning 43(1), 76–89 (2006)

2. Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued Łukasiewicz logic. J. Logic
Lang. Inf. 9(1), 5–29 (2000)

3. Aguzzoli, S., Gerla, B.: Finite-valued reductions of infinite-valued logics. Archive
Math. Logic 41(4), 361–399 (2002)

4. Amaldi, E., Kann, V.: The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theor. Comput. Sci. 147, 181–210 (1995)

5. Amaldi, E., Pfetsch, M.E., Leslie, E., Trotter, J.: On the maximum feasible sub-
system problem, IISs and IIS-hypergraphs. Math. Program. Ser. A 95, 533–554
(2003)

6. Ansótegui, C., Bofill, M., Manyà, F., Villaret, M.: Building automated theorem
provers for infinitely-valued logics with satisfiability modulo theory solvers. In:
Proceedings, 42nd International Symposium on Multiple-Valued Logics (ISMVL),
Victoria, BC, Canada, pp. 25–30. IEEE CS Press (2012)

7. Ansótegui, C., Bofill, M., Manyà, F., Villaret, M.: Automated theorem provers for
multiple-valued logics with satisfiability modulo theory solvers. Fuzzy Sets Syst.
292, 32–48 (2016)

8. Bacchus, F., Järvisalo, M., Ruben, M.: Maximum satisfiability. In: Handbook of
Satisfiability, second edition, pp. 929–991. IOS Press (2021)

9. Bofill, M., Manyà, F., Vidal, A., Villaret, M.: New complexity results for
Łukasiewicz logic. Soft. Comput. 23, 2187–2197 (2019)

10. Chang, C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans.
Am. Math. Soc. 93(1), 74–80 (1959)

11. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities.
Inf. Comput. 87(1–2), 78–128 (1990)

12. Hähnle, R.: Many-valued logic and mixed integer programming. Ann. Math. Artif.
Intell. 12(3–4), 231–264 (1994)

The MaxSAT Problem in the Real-Valued MV-Algebra 403

13. Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4. Kluwer, Dor-
drecht (1998)

14. Haniková, Z.: Computational complexity of propositional fuzzy logics. In: Cintula,
P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic, vol. 2,
pp. 793–851. College Publications (2011)

15. Haniková, Z.: On the complexity of validity degrees in Łukasiewicz logic. In:
Anselmo, M., Della Vedova, G., Manea, F., Pauly, A. (eds.) CiE 2020. LNCS,
pp. 175–188. Springer International Publishing, Cham (2020). https://doi.org/10.
1007/978-3-030-51466-2_15

16. Haniková, Z., Savický, P.: Term satisfiability in FLew-algebras. Theor. Comput.
Sci. 631, 1–15 (2016)

17. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci.
36, 490–509 (1988)

18. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satis-
fiability, second edition, pp. 903–927. IOS Press (2021)

19. Li, C.M., Manyà, F., Vidal, A.: Tableaux for maximum satisfiability in Łukasiewicz
logic. In: IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL),
pp. 243–248. IEEE Computer Society, Miyazaki (2020)

20. Mundici, D.: Mapping abelian �-groups with strong unit one-one into MV-algebras.
J. Algebra 98(1), 76–81 (1986)

21. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theor.
Comput. Sci. 52(1–2), 145–153 (1987)

22. Mundici, D.: Ulam game, the logic of MaxSAT, and many-valued partitions. In:
Dubois, D., Klement, E.P., Prade, H. (eds.) Fuzzy Sets, Logics and Reasoning
about Knowledge, pp. 121–137. Kluwer (1999)

23. Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued
calculus of Łukasiewicz. Theor. Comput. Sci. 200, 335–366 (1998)

24. Olivetti, N.: Tableaux for Łukasiewicz Infinite-valued Logic. Stud. Logica. 73, 81–
111 (2003)

25. Preto, S., Manyà, F., Finger, M.: Linking Łukasiewicz Logic and Boolean Maximum
Satisfiability, ISMVL, pp. 164–169. IEEE Computer Society, Miyazaki (2023)

26. Schockaert, S., Janssen, J., Vermeir, D.: Satisfiability checking in Łukasiewicz logic
as finite constraint satisfaction. J. Autom. Reasoning 49, 493–550 (2012)

27. Schockaert, S., Janssen, J., Vermeir, D., De Cock, M.: Finite satisfiability in
infinite-valued Łukasiewicz logic. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS
(LNAI), vol. 5785, pp. 240–254. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04388-8_19

28. Schrijver, A.: Theory of Linear and Integral Programming. Wiley-Interscience
Series in Discrete Mathematics and Optimization, John Wiley & Sons, Chichester
(1998)

29. Stockmeyer, L.J.: Computational Complexity. In: Coffman, E.G., et al. (eds.)
Handbooks in OR & MS, Vol. 3, pp. 455–517. Elsevier Science Publishers (1992)

30. Torrens, A.: Cyclic elements in MV-algebras and post algebras. Math. Logic Q.
40(4), 431–444 (1994)

31. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in mathematics and mathematical logic, Part II, pp.
115–125. Steklov Mathematical Institute (1968)

32. Vidal, A.: MNiBLoS: a SMT-based solver for continuous t-norm based logics and
some of their modal expansions. Inf. Sci. 372, 709–730 (2016)

https://doi.org/10.1007/978-3-030-51466-2_15
https://doi.org/10.1007/978-3-030-51466-2_15
https://doi.org/10.1007/978-3-642-04388-8_19
https://doi.org/10.1007/978-3-642-04388-8_19

404 Z. Haniková et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	The MaxSAT Problem in the Real-Valued MV-Algebra
	1 Introduction
	2 Problem Formulation and Preliminaries
	3 Canonical Method
	4 Tableau-Like Method
	4.1 Satisfiability
	4.2 Maximum Satisfiability

	5 Concluding Remarks and Future Work
	References

