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Abstract. This paper establishes cut-elimination for µLL∞, µLK∞ and
µLJ∞, that are non-wellfounded sequent calculi with least and greatest
fixed-points, by expanding on prior works by Santocanale and Fortier [20]
as well as Baelde et al. [3,4]. The paper studies a fixed-point encoding
of LL exponentials in order to deduce those cut-elimination results from
that of µMALL∞. Cut-elimination for µLK∞ and µLJ∞ is obtained by
developing appropriate linear decorations for those logics.
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1 Introduction

On the Non-Wellfounded Proof-Theory of Fixed-Point Logics. In the context of
logics with induction and coinduction (such as logics with inductive definitions à
la Martin Löf [6,9,10,25], or variants of the μ-calculus [11,22,23]), the need for a
(co)inductive invariant (in the form of the Park’s rule for induction) is replaced
by the ability to pursue the proof infinitely, admitting non-wellfounded branches,
when considering non-wellfounded and circular proofs (also called cyclic, or reg-
ular proofs, since the proof tree is a regular tree, with finitely many distinct
subtrees). In such frameworks, sequent proofs may be finitely branching but
non-wellfounded derivation trees and infinite branches shall satisfy some valid-
ity condition. (Otherwise one could derive any judgement, see Fig. 1(a).) Various
validity conditions have been considered in the literature [3].

The non-wellfounded and circular proof-theory of fixed-points attracted a
growing attention first motivated by proof-search [1,7,8,16–18,28] and more
recently by a Curry-Howard perspective, studying the dynamics of the cut-
elimination in those logics [4,20,29] where formulas correspond to (co)inductive
types. Notice also that when interested in the computational content of proofs,
we will not focus solely on the regular fragment as we expect, for instance, that
we can write a regular program that computes a non-ultimately periodic stream.
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Fig. 1. (a) Example of an invalid circular pre-proof (b) Schema of the multicut rule

Cut-Elimination and LL. When studying the structure of proofs and their cut-
elimination properties, LL, Girard’s Linear Logic [21], is a logic of choice: the
careful treatment of structural rules gives access to a lot of information and a
fine-grained control over cut-reduction. The constrained use of structural rules
indeed renders the cut-elimination theorem more informative than in LJ and of
course LK. Interestingly it provided a positive feedback on the understanding of
LJ and LK: by decorating intuitionistic and classical proofs with enough expo-
nential modalities (!, ?), they can become LL proofs and one can therefore refine
the original cut-elimination relations [12,21]. This approach impacted the under-
standing of evaluation strategies of programming languages such as call-by-name
and call-by-value notably. Another way to view this is by noting that, in LK, the
additive and multiplicative presentations of conjunction (resp. disjunction) can
be shown to be interderivable thanks to structural rules. This fails in LL and it
is the reason why LL has well-established additive – ⊕,�,�, 0 – (resp. multi-
plicative �,⊗,⊥, 1) fragments. It is the role of the exponential fragment to relate
the additive and multiplicative worlds, by mean of the fundamental equivalence:
!A ⊗ !B �� !(A�B) (and its dual, ?A� ?B �� ?(A ⊕ B)). The exponential
modalities are precisely introduced where structural rules are needed to restore
the equivalence between the additive and multiplicative conjunctions; in cate-
gorical models of LL [26], this principle is referred to as Seely isomorphisms.

Cut-Elimination for Non-Wellfounded Proofs. Proving cut-elimination results
for non-wellfounded proofs in the presence of least and greatest fixed-points
requires to use reasoning techniques coping with the non-inductive structure
of the considered formulas (fixed-points formulas regenerate) and proof objects
(which are non-wellfounded). For instance, Santocanale and Fortier [20] proved
cut-elimination for the regular fragment of non-wellfounded proofs of purely
additive linear logic with fixed points, μALL∞, while Baelde et al. [4] proved
cut-elimination for non-wellfounded proofs with additive and multiplicative con-
nectives, μMALL∞. In both cases, the proof relies on a generalization of the
cut-rule, the multicut rule (which abstracts a portion of a proof tree consti-
tuted only of cut inferences see Fig. 1(b)) and on a reasoning by contradiction
to prove that one can eliminate cuts at the limit of an infinite cut reduction
sequence, while preserving the validity condition. Baelde et al. [3,4] use a so-
called “locative” approach by modelling sequents as sets of formulas paired with
addresses which determines uniquely the formula occurrence in a sequent and
makes explicit the ancestor relation used to trace the progress along branches.
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Moreover, the cut-elimination proof proceeds by a rather complex semantical,
roundabout, argument relying on a soundness theorem.

In a slightly different direction, Das and Pous [15] proved a cut-elimination
result for Kleene algebras and their variants. This can be viewed as a non-
commutative version of intuitionistic MALL with a particular form of inductive
construction, Kleene’s star. Kuperberg et al [24] and more specifically Pinault’s
PhD thesis [27] as well as Das [13] examine non-wellfounded versions of System
T based on [15], exploring the computational content of non-wellfounded proofs.

Neither Santocanale and Fortier’s [20,29], nor Baelde et al. [3,4] works cap-
tured full linear logic: the exponentials are missing and the proofs cannot deal
with them in a simple way. Indeed, the proof for μALL strongly relies on the
assumption the sequents are pairs of formulas (A � B) while in μMALL, the
locative approach taken by Baelde et al. is not well-suited to work with struc-
tural rules: the extension of the proof would be possible though highly technical.
In contrast, our motto in the present work is to work with traditional sequents
as lists of formulas and to exploit the (co)inductive nature of LL exponentials.

On the (Co)Inductive Nature of Exponential Modalities in Linear Logic. The
original works by Baelde and Miller on fixed-points in linear logic [2,5] focus on
μMALL only and present an encoding of the exponential modalities of LL using
least and greatest fixed points. Indeed, the ? and ! modalities have an infinitary
character which is well-known from the early days of linear logic (see Section
V.5 of Girard’s seminal paper [21]) and which is in fact respectively inductive
for ? and coinductive for !; let us discuss it briefly here.

One can decide to contract a ?-statement any finite number of times before
it is ultimately weakened or derelicted. It is therefore natural to represent ?A
with formula ?•A = μX.A ⊕ (⊥ ⊕ (X�X)): A allows for dereliction, ⊥ for
weakening and X�X will regenerate, by unfolding, two copies of ?•A, making the
contraction derivable. The ⊕ and μ connectives respectively provide the ability
to choose either of those three inferences and to repeat finitely this process.

On the other hand, a !-formula is a formula which, during cut-elimination,
shall maintain a proper interaction with any number of contractions, weakenings
or derelictions: a proof concluded with a promotion shall be able to react to any
number of duplications or erasure before the promotion actually interact with
a dereliction to open the exponential box : from that follows the coinductive
character of !A modelled as !•A = νX.A�(1�(X ⊗X)).

As discussed above and formally established by Baelde and Miller [5], the
exponential rules can be derived in the finitary sequent calculus μMALL: to any
LL provable sequent can be associated a provable μMALL sequent via the above
translations of the exponentials. However, until now one can hardly say more
about this embedding for two deep reasons: (i) the fundamental Seely isomor-
phisms which relate the additive and multiplicative versions of conjunction (resp.
disjunction) are still derivable through this encoding but they are no more iso-
morphisms and (ii) on the provability level as well, the encoding is not faithful:
the μMALL provability of the translation of an LL sequent s does not entail the
LL provability of s itself (counter-example due to Das [14]). A contribution of
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the present paper is to put to work Baelde and Miller’s encoding, showing that,
in the case of non-wellfounded proofs, its structure is faithful enough to extract
information of the cut-reduction behaviour of the logic.

Contributions and Organization of the Paper. The main result of this paper
is a cut-elimination theorem for μLL∞, the non-wellfounded sequent calcu-
lus for linear logic extended with least and greatest fixed points. Our proof
proceeds by encoding LL exponentials in μMALL∞ and studying μLL∞ cut-
reduction sequences through their simulation in μMALL∞ which may be a trans-
finite sequence. In Sect. 2, we introduce our logics, μMALL∞, μLL∞, μLK∞ and
μLJ∞, altogether with their non-wellfounded proofs and validity conditions. We
adapt μMALL∞ cut-elimination theorem [4] to our setting where sequents are
lists and prove a compression lemma for μMALL∞ transfinite cut-reduction
sequences. Section 3 constitutes the core of our paper: we define μLL∞ cut-
reduction rules, study the encoding of exponentials in μMALL∞ and show that
μLL∞ cut-reduction steps can be simulated in μMALL∞, before proving μLL∞

cut-elimination theorem. We prove in Sect. 4, as corollaries, cut-elimination for
μLK∞ and μLJ∞, the non-wellfounded sequent-calculi for classical and intu-
itionistic logic. While our result for μLL∞ shows that any fair cut-reduction
sequence produces a cut-free valid proof, our two other cut-elimination results
are truly (infinitary) weak-normalization results. We finally conclude in Sect. 5
with perspectives. A major advantage of our approach is that μMALL∞ cut-
elimination proof and, to some extent, the validity conditions, are regarded as
black boxes, simplifying the presentation of the proof and making it reusable
wrt. other validity conditions or μMALL∞ proof techniques. An additional by-
product of our approach, to the theory of linear logic, is to illustrate the fact
that Seely isomorphisms are not needed to reach a cut-free proof.

A companion technical report containing additional details on the definitions
as well as full proofs is available online [30].

2 Non-Wellfounded Proofs: µMALL∞, µLL∞, µLK∞,
µLJ∞

2.1 µ-Signatures and Formulas

Definition 1 (μ-signature). A μ-signature is a set C of pairs (c, p) of a con-
nective symbol c and a tuple p of elements of {+,−}. The arity of c, ar(c), is
the length of p, while the elements of p indicate the mono/antitonicity of the
connective in the given component. The empty tuple will be denoted as ()1.

Example 2 (μ-signature associated with μMALL, μLL, μLK, μLJ). The μ-
signatures associated with μMALL, μLL, μLK, μLJ are:

1 µ-signature can be enriched to consider quantifiers but we restrict to the proposi-
tional case here.
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– μMALL signature: CμMALL = {�,⊗,⊕,�} × {(+,+)} ∪ {0, 1,�,⊥} × {()} ;
– one-sided μLL signature: CμLL1

= CμMALL ∪ {!, ?} × {(+)} ;
– two-sided μLL signature: CμLL2

= CμLL1
∪ {(�, (−,+)), (·⊥, (−))} ;

– μLK signature: CμLK = {∧,∨} × {(+,+)} ∪ {(⇒, (−,+))} ∪ {�,F} × {()};
– μLJ signature: CμLJ = CμLK.

Definition 3 (Pre-formulas). Given a μ-signature C, a countable set V of
fixed-point variables and a set of atomic formulas A, the set of pre-formulas
over S is defined as the least set FS such that: (α) A ∪ V ⊆ FS ; (β) for every c
of arity n in C and F1, . . . , Fn ∈ FS , c(F1, . . . , Fn) ∈ FS ; (γ) for every X ∈ V
and pre-formula F ∈ FS , μX.F ∈ FS and νX.F ∈ FS .

Definition 4 (Positive and negative occurrences of a variable). Given
a μ-signature C and a fixed-point variable X ∈ V, one defines by induction
on pre-formulas the fact, for X, to occur positively (resp. negatively) in a pre-
formula : (α) X occurs positively in X; (β) X occurs positively (resp. negatively)
in c(F1, . . . , Fn), for (c, p) ∈ C, if there is some 1 ≤ i ≤ n such that X occurs
positively (resp. negatively) in Fi and pi = + or there is some 1 ≤ i ≤ n such that
X occurs negatively (resp. positively) in Fi and pi = −; (γ) X occurs positively
(resp. negatively) in σY.F , for σ ∈ {μ, ν}, if Y �= X and X occurs positively
(resp. negatively) in F .

Definition 5 (μ-formula). A μ-formula F over a signature S is a pre-formula
containing no free fixed-point variable and such that for any sub-pre-formula of
F of the form σX.G, all occurrences of X in G are positive.

Definition 6. One-sided μLL formulas are those formulas defined over the sig-
nature CμLL1

together with a set of atomic formulas {a, a⊥ | a ∈ A} for a count-
able set A. Negation (_)⊥ is the involution on pre-formulas defined by:

(a⊥)⊥ = a; ⊥⊥ = 1; �⊥ = 0; (F�G)⊥ = F⊥ ⊗G⊥; (F ⊕ G)⊥ = F⊥
�G⊥;

(?F )⊥ = !F⊥; X⊥ = X; (νX.F )⊥ = μX.F⊥.

Definition 7 (μ-Fischer-Ladner subformulas). Given a μ-signature C and
a μ-formula F , FL(F ) is the least set of formulas such that:

– F ∈ FL(F );
– c(F1, . . . , Fn) ∈ FL(F ) ⇒ F1, . . . , Fn ∈ FL(F ) for c ∈ C;
– σX.B ∈ FL(F ) ⇒ B[σX.B/X] ∈ FL(F ) for σ ∈ {μ, ν}.
Example 8. Let us consider F = νX.((a�a⊥)⊗ (!X ⊗μY.X)). FL(F ) is the set
{F, (a�a⊥) ⊗ (!F ⊗μY.F ), a�a⊥, a, a⊥, !F ⊗μY.F, !F, μY.F}.

The finiteness of FL(F ) makes it an adequate notion of subformula:

Proposition 9. For any μ-signature S and μ-formula F , FL(F ) is finite.
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Fig. 2. (a) µMALL∞ Inferences (b)µLL∞ Exponential Inferences

2.2 µMALL∞, µLL∞, µLK∞ & µLJ∞ Inference Rules

Now, we define the inference rules associated with the above μ-signatures.

Definition 10 (Sequents and inferences). A sequent s = Γ � Δ over a μ-
signature S is a pair of finite lists Γ,Δ of S-formulas: Γ is the antecedent and
Δ the succedent. An inference rule r, usually presented by a schema, is the
data of a conclusion sequent, premise sequents, together with an ancestor
relation relating formulas of the conclusion with formulas of the premises. A
rule has a subset of distinguished principal formulas of the conclusion.

Convention 1. In the following, the ancestor relation will be depicted as colored
lines joining related formulas. The principal formulas of an inference are the
formulas which are explicitly spelled out in the conclusion sequent of an inference,
not described via a context meta-variable. A formula occurrence of an inference
is said to be active if it is principal or related to a principal formula by the
ancestor relation. We will freely use the derived rules obtained by pre- and
post-composition with the exchange rule, adapting the ancestry relation
accordingly. Finally, for one-sided sequent calculi with an involutive negation ·⊥,
we may write Γ � Δ for sequents � Γ⊥,Δ to clarify the computational behaviour
of our examples (keeping the rule names unchanged).

Definition 11 (μMALL∞, μLL∞, μLK∞, μLJ∞). μMALL∞ inferences are given
in Fig. 2. Those for one-sided μLL∞ in Fig. 2(a) and 2(b). Those for μLK∞

in Fig. 3. Those for μLJ∞ by considering only inference from Fig. 3 where the
succedent of both premises and conclusion sequents are singletons.

In the above sequent calculi, every inference but the cut satisfies the subfor-
mula property wrt. FL-subformulae. The 2-sided μLL∞ sequent calculus, over
CμLL2

, is defined as usual and not recalled here for space constraints.
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Fig. 3. µLK∞ Two-sided Inferences

2.3 Pre-proofs and Validity Conditions

Definition 12 (Pre-proofs). The set PS,I of I-pre-proofs associated to
some of the above μ-signatures S and sets of inferences I is the set of finite or
infinite trees whose nodes are correctly labelled with inferences and sequents.

Pre-proofs are equipped with a metric structure as follows: we define a dis-
tance d : PS,I × PS,I → R as: d(π, π′) = 0 if π = π′ and d(π, π′) = 2−k where
k is the length of the shortest position where π and π′ differ otherwise.

Example 13. Consider μLJ formulas N = μX.� ∨ X and S = νX.N ∧ X. They
represent nats and streams of nats. The μLJ∞ derivations of Fig. 4 respectively
represent natural numbers, successor function, n::n + 1::n + 2:: . . . , the double
functions and the function that builds a stream enumerating the natural num-
bers from its input: the cut-elimination process considered below will ensure
that cutting πk with πenum will infinitarily reduce to πk

from. Figure 5 shows other
examples of μLL∞ pre-proofs, discussed with the validity condition.

The back-edge arrow to a lower sequent is notation to describe a fixed-point
definition of the proof object: the subproof rooted in the source is equal to the
proof rooted in the target. Trivially there is a unique solution.

In the following, we assume given a μ-signature S and a sequent calculus S for
this signature and we shall define the valid S-proofs as a subset of S-pre-proofs,
by introduction a thread-based validity condition .

Definition 14 (Thread and validity). Given a pre-proof π and an infinite
branch β = (si)i∈ω in π, a thread for β is an infinite sequence θ of formula
occurrences such that ∀i ∈ ω, θi is a formula occurrence of si and θi and θi+1

are ancestor of each other. θ is said to support β.
A formula F is recurring in a thread θ of β if there are infinitely many i

such that θi is an occurrence of F .
A thread θ is valid if it contains infinitely often the principal formula (occur-

rence) of a ν or μ rule and if the set of recurring formulas of θ has a least element
(for the usual subformula ordering) which is (i) a ν formula when the least ele-
ment occurs in the succedents or (ii) a μ formula if it occurs in the antecedents.
A pre-proof is valid if all its infinite branches have a suffix supported by a valid
thread.
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Fig. 4. Examples of µLJ∞ pre-proofs

Example 15 ((Non-)valid pre-proofs). Consider the pre-proof in Fig. 5(a), with
F = νX.((a�a⊥) ⊗ (!X ⊗ μY.X)) and G = μY.F . The rightmost branch is
supported by the green thread for which the least recurring formula is F , a ν-
formula. All other branches are valid: this pre-proof is valid. Consider now the
same pre-proof but with F = νX.((a�a⊥)⊗(!X⊗G)) and G = μY.νX.((a�a⊥)⊗
(!X ⊗ Y )). G is now a subformula of F and G, a μ-formula, and becomes the
least recurring formula of all threads along the right-most infinite branch. This
branch is invalid: the pre-proof is not a proof. Examples of μLL∞ invalid pre-
proofs are given in Fig. 1(a),5(b–c). In Fig. 4, πdouble has a left thread on N while
πn
from, πenum have right threads on S: they are valid.

2.4 Non-Locative µMALL∞ Cut-Elimination Theorem

The validity condition defines a subset of pre-proofs, ensuring good proper-
ties for those non-wellfounded derivations that satisfy the validity condition. In
this paper, we will mainly be interested in cut-elimination theorem, which was
proved for μMALL∞ [4] and that we review in this subsection. In [4], a somehow
stronger result than cut-elimination is proved: infinitary strong normalization
with respect to the class of fair reduction sequences.

The only new result developed in this subsection is the lifting of the
occurrence-based cut-elimination result of [4] to our setting system, for which
we first introduce the multicut inference and review the main multicut-reduction
steps for μMALL∞ before defining fair reductions. The cut-elimination results
of [4,20] do not rewrite cuts, per se, but subtrees of cuts in the form of an abstrac-
tion called multicut which is a variable arity inference defined as follows:

Definition 16. The multicut inference is given by the data of (i) a conclu-
sion sequent s, (ii) a non-empty list of premises (s1, . . . , sn), n ≥ 1, (iii) an
ancestor relation ι which is an injective map from the conclusion formulas to
the premise formulas and relates identical formulas and additionally (iv) a cut-
connectedness relation |= which is a total, symmetric, binary relation among
the formula occurrences of the premises which are not ancestor of a conclusion
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Fig. 5. Examples of valid and invalid pre-proofs

formula, which relates dual formulas2 and which satisfies a connectedness and
acyclicity condition (see [3,4]). The multicut inference has no principal formula.

We write this multicut rule as: s1 . . . sn
mcut(ι, ⊥⊥)s

.

In the following, we only consider μMALL∞ pre-proofs with specific multicuts:

Definition 17 (μMALL∞
m ). μMALL∞

m (pre)proofs are those (pre)proofs built
from μMALL∞ inferences and the multicut, such that (i) any branch contains
at most one multicut and (ii) any occurrence of a cut is above a multicut infer-
ence.

In the following, we shall always assume, even without mentioning it, that
we consider proofs in μMALL∞

m (as well as μLL∞
m , μLJ∞

m , μLK∞
m ). We need the

following definition (from [4]), identifying the premises of an mcut which are
cut-connected to a given formula occurrence:

Definition 18 (Restriction of a mcut-context). Consider an occurrence of
a mcut

s1 . . . sn
mcut(ι, ⊥⊥)

s
and assume si to be � F1, . . . , Fk. We define

CFj
, 1 ≤ j ≤ k, to be the least set of sequent occurrences contained in {s1, . . . , sn}

such that:
(i) If ∃k, l such that (k, l) |= (i, j), then sk ∈ CFj

;
(ii) for any k, k′ �= i, if sk ∈ CFj

and ∃l, l′ such that (k, l) |= (k′, l′), then sk′ ∈ CFj
.

We define C∅ = ∅ and CF,Γ = CF ∪ CΓ .

When relating μLL∞ and μMALL∞ mcut-sequences below, we shall consider
not only finite sequence nor ω-indexed sequences but also transfinite sequences.
Those are sequences of triples of a proof, a redex and the position of the redex
in the proof tree. A position p has a depth dpth(p) which is its length.

Definition 19 (mcut-reduction rules, transfinite sequences). μMALL∞

mcut-reduction sequences are directly adapted from [3,4]. Given an ordinal λ, a
transfinite reduction sequence of length λ, or λTRS, is a λ-indexed sequence
(πi, ri, pi)i∈λ such that πi −→pi

ri
πi+1, for any i such that i + 1 ∈ λ, where the

reduction occurs at position pi reducing mcut-redex ri.
2 When working with two-sided sequents, |= will relate identical formulas, one in a
succedent, the other in an antecedent.
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Definition 20 (Weak and strong convergence). A (transfinite) mcut reduc-
tion sequence (πi, ri, pi)i∈α is weakly converging if for any limit ordinal β ∈ α,
lim(πi)i∈β = πβ. (πi, ri, pi)i∈α is strongly converging if it is weakly converg-
ing and moreover for any limit ordinal β ∈ α, lim(dpth(pi))i∈β = +∞.

Remark 21. The cut-reduction rules preserve the property that every branch of
a proof has at most one multicut inference: μMALL∞

m is closed by cut-reduction.

A μMALL∞
m pre-proof π may contain multiple cut-redexes: π −→p1

r1
π1 and

π −→p2
r2

π2. As usual, a notion of residual associates to (r1, p1), a set of redexes
of π2, (r1, p1)/(r2, p2) which is generalized to reduction sequences: (r1, p1)/σ.

Definition 22 (Fair reduction sequences). A reduction sequence (πi,
ri, pi)i∈ω is fair if for all i ∈ ω and r, p such that πi −→p

r π′ there is some
j ≥ i such that πj does not contain a residual of (r, p) anymore.

Theorem 23. Every fair mcut-reduction sequence of μMALL∞ valid proofs of
� Γ (strongly) converges to a cut-free valid proof of � Γ .

2.5 Compressing Transfinite µMALL∞ Cut-Reduction Sequences

In the previous paragraph, we introduced not only ω-indexed sequences, but
transfinite μMALL∞ cut-reduction sequences as we shall need reduction beyond
ω when simulating μLL∞ cut-elimination in μMALL∞. We shall now prove that
a class of transfinite μMALL∞ mcut-reduction sequences can be compressed to
ωTRS. This result can be viewed as adapting to our setting the compression
lemma from infinitary rewriting [31], even though we require more on the struc-
ture of the compressed sequences as it will be useful to establish μLL∞ cut-
elimination.

Definition 24 (Depth-increasing). A μMALL∞ cut reduction sequence σ =
(πi, ri, pi)i∈ω is depth-increasing if (dpth(pi))i∈ω is (weakly) increasing.

Definition 25 (Reordering). An mcut reduction sequence σ = (πi, ri, pi)i∈α

is a reordering of σ′ = (π′
i, r

′
i, p

′
i)i∈β if there is a bijection o between α and β

such that for any i ∈ α, (r′
o(i), p

′
o(i)) = (ri, pi).

Proposition 26 (Compression lemma). Let σ = (πi, ri, pi)i∈α be a strongly
converging μMALL∞ transfinite cut-reduction sequence. There exists a μMALL∞

cut-reduction sequence Comp(σ) = (π′
i, r

′
i, p

′
i)i∈β which is a reordering of σ,

depth-increasing, strongly converging with the same limit as σ and such that
β = α if α is finite and β = ω otherwise.

3 Cut-Elimination Theorem for µLL∞

The aim of this section is to prove the following theorem:



A Linear Perspective on Cut-Elimination 213

Theorem 27. For any valid μLL∞ proof π, fair μLL∞ mcut-sequences from π
converge to cut-free μLL∞ proofs.

The idea of the proof and outline of the present section are as follows:

1. We shall first define the cut-reduction rules for μLL∞ by extending μMALL∞

multicut-reduction with rules for reducing exponential cuts.
2. We then encode exponentials with fixed-points and translate μLL∞ sequents

(resp. pre-proofs) into μMALL∞, preserving validity both ways.
3. We will then simulate μLL∞ reductions in μMALL∞: a single μLL∞ step may

require an infinite, or even transfinite, μMALL∞ mcut-reduction sequence.
4. Finally, we will study the simulation of fair μLL∞ cut-reduction sequences.

Even though the simulation of μLL∞ sequences builds transfinite sequences,
we shall see that one can associate a(n almost) fair μMALL∞ mcut-reduction
sequence to any fair μLL∞ mcut-reduction sequence, and conclude.
The next four subsections will closely follow the above pathway.

3.1 Cut-Elimination Rules for µLL∞

μLL∞ mcut-reduction is defined by extending μMALL∞ multicut-reduction with
the steps given in Fig. 6. The reduction rules for the exponentials assume a
condition on the premisses of the multi-cut rule: all the proofs (hereditarily) cut-
connected to some distinguished formula must have promotions as last inferences.

Definition 28 ((!p)-ready contexts). A subset of the subproofs of a multicut
is said to be (!p)-ready if all its elements are concluded with an (!p) rule. C! will
denote a (!p)-ready context and C!

Γ a context restriction which is (!p)-ready.

Remark 29. The condition for triggering the exponential key reductions
(?w)/(!p) and (?c)/(!p) as well as the (!p)-commutation rule is expressed in
terms of (!p)-readiness: for every ?-formula ?G in the context of a promotion
which shall either commute or cut-reduce with a ?-rule, we require that C?G is
(!p)-ready.

3.2 Embedding µLL∞ in µMALL∞

To extend the cut-elimination result from μMALL∞ to μLL∞, we encode the
exponential connectives using fixed points as follows, following Baelde [2]:

Definition 30. ?•(F ) = μX.F ⊕ (⊥ ⊕ (X�X)); !•(F ) = νX.F�(1�(X ⊗ X))

This straightforwardly induces an embedding of μLL∞ into μMALL∞:

Definition 31 (Embedding of μLL∞sequents into μMALL∞).
(a)• = a if a is an atom (σX.F )• = σX.(F )• , σ ∈ {μ, ν}
(u)• = u if u ∈ {1,⊥,�, 0} (?F )• = ?•(F •)
(A � B)• = (A)• � (B)• if � ∈ {�,⊕,�,⊗} (!F )• = !•(F •)
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Fig. 6. µLL∞ mcut-reduction rules

Definition 32 (μMALL∞derivability of the exponentials). μLL∞ exponen-
tial rules can be encoded in μMALL∞ as shown in Fig. 7. We denote the derivable
rules by ?d•, ?c•, ?w• and !p• respectively. (!p• uses a circular proof.)

Proposition 33 (Preservation of validity). π is a valid μLL∞ proof of � Γ
iff π• is a valid μMALL∞ proof of � Γ •.

Proof (Proof sketch). We simply relate the infinite branches in both pre-proofs.
Assuming that π is valid, consider the special case of an infinite branch β of π•

that, when entering the encoding of a promotion, follows the left-most premise of
the (�) rule. To such an infinite branch it is easy to associate an infinite branch
b of π. b is valid and supported by a thread t with least formula νX.F . (νX.F )•

is the least recurring formula in the thread θ associated with t in β: β is valid.
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Fig. 7. µMALL∞ encoding of the exponential inferences

3.3 Simulation of µLL∞ Cut-Elimination Steps

Now we have to show that μLL∞ cut-elimination steps can be simulated by the
previous encoding. E.g., the commutation rule for dereliction is simulated by a
(μ)/(Cut) commutation followed by a (⊕)/(Cut) commutation as follows:

� F,G, Γ
(?d•)�?•F,G, Γ � G⊥,Δ

(Cut)�?•F, Γ,Δ

−→2

� F,G, Γ � G⊥,Δ
(Cut)� F, Γ,Δ

(?d•)�?•F, Γ,Δ
The challenge is to show that the simulation of reductions also holds (i) for

the reductions involving (!p) as well as (ii) for reductions occurring above a
promotion rule (aka. in a box) since the encoding of [!p] uses an infinite, circular
derivation. In the promotion commutation case for instance, we have:

� F, ?•G, ?•Γ
(!p•)�!•F, ?•G, ?•Γ

� G⊥, ?•Δ
(!p•)

�!•G⊥, ?•Δ
(Cut)�!•F, ?•Γ, ?•Δ

−→ω � F, ?•G, ?•Γ

� G⊥, ?•Δ
(!p•)

�!•G⊥, ?•Δ
(Cut)� F, ?•Γ, ?•Δ

(!p•)�!•F, ?•Γ, ?•Δ

Proposition 34. Each μLL∞ mcut-reduction r can be simulated in μMALL∞

by a (possibly infinite) sequence of mcut-reductions, denoted r•.

Remark 35. Conversely, one can wonder whether a possible reduction in π• nec-
essarily comes from the simulation of a reduction step in π. It is almost the
case except when the reduction in π• comes from exponential cuts requiring
a (!p)-ready context (ie. (!p) commutation as well as (?w)/(!p) and (?c)/(!p)
key cases, see above): in those cases indeed, if the context is “partially ready”
– meaning that some, but not all, the required premises are promoted – a prefix
of the sequence simulating the reduction step can indeed be performed, before
being stuck. As consequence – and we shall exploit it in the next section when
proving μLL∞ cut-elimination – the simulation of a fair reduction sequence is
not necessarily fair, but only as long as the above cases are involved:
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Proposition 36. There exists a fair reduction ρ from some μLL∞ (pre-)proof
π such that ρ• is an ω-indexed unfair μMALL∞ cut-reduction sequence.

3.4 Proof of µLL∞ Cut-Elimination Theorem

μLL∞ cut-elimination theorem follows from the following two lemmas:

Lemma 37. Let π be a μLL∞-proof of � Γ and σ = (πi, ri, pi)i∈ω a fair μLL∞

cut-reduction sequence from π. σ converges to a cut-free μLL∞-pre-proof of � Γ .

Lemma 38. Let π be a μLL∞ pre-proof of � Γ and let us consider a cut-
reduction sequence σ = (πi, ri, pi)i∈ω in μLL∞ from π that converges to a cut-free
μLL∞ pre-proof π′. σ• is a strongly converging (possibly transfinite) sequence.

Proof (Sketch for Thm. 27). Let π be a μLL∞-proof of � Γ and σ = (πi, ri, pi)i∈ω

be a fair μLL∞ mcut-reduction sequence from π. Consider the associated (trans-
finite) μMALL∞ mcut-reduction sequence σ• from π• obtained by simulation.
By Lemma 37, σ converges (strongly) to a cut-free μLL∞ pre-proof π′.

Let us prove that π′ is valid. By Lemma 38, σ• is a transfinite mcut-reduction
sequence from π• strongly converging to π′•. By Prop. 26, σ• can be compressed
into ρ = (π′

i, r
′
i, p

′
i)i∈ω an ω-indexed depth-increasing μMALL∞ mcut-reduction

sequence which converges to π′• and contains the same reductions as σ•. By
Proposition 36, ρ may not be fair: this prevents us from concluding directly
by Proposition 33 but we can still conclude. Let us consider ρf a fair reduction
sequence obtained from ρ by reducing those redexes which cause the lack of
fairness of ρ and let us consider the limit of ρf , πf . To any infinite branch β of
π′•, one can associate a branch βf of πf : it coincides with β except when the
next inference of βf is on a (!F )• (in a sequent, say, � (!F )•, ?•Δ• which is not
principal along β). In that case, we expand βf by following the unique premise
of the (ν) rule, the second premise of the first (�) rule and the first premise
of the second (�) rule, reaching � 1, ?•Δ•, in which case we know that the 1
is not principal (and never will be) and we follow back β. βf has exactly the
same threads as β: finite threads may only be extended finitely on occurrences
of (!F )•. Since ρf is fair, βf is valid and so is β.

We can then conclude that π′• is cut-free and valid and, using preservation
of validity (Proposition 33), that π′ is a valid cut-free μLL∞-proof. ��

Infinitary cut-elimination for μLL∞ two-sided sequent calculus is an easy
corollary of Theorem 27. Indeed, fair cut-reduction sequences in two-sided μLL∞

are mapped to fair reduction sequences in one-sided μLL∞ from which follows:

Corollary 39. Fair 2-sided μLL∞ valid mcut-reduction sequences eliminate
cuts.
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4 Cut-Elimination Theorem for µLK∞ and µLJ∞

Cut-elimination theorems for both μLK∞ and μLJ∞ can be established as corol-
laries of Theorem 27. For lack of space, we directly go to our results and postpone
to future work a detailed study of the generalizations to non-wellfounded sequent
calculi of the linear embeddings of LK and LJ into LL developed since Girard
seminal paper. We shall comment on those translations in the conclusion.

4.1 µLK∞ Cut-Elimination: Skeletons and Decorations

To any μLL∞ formulas and μLL∞ proofs, one can associate their skeletons, that is
corresponding μLK∞ formulas and proofs, after erasing of the linear information:

Definition 40 (Skeleton). Sk(A) is defined by induction on A ∈ μLL∞:
Sk(A⊗B) = Sk(A) ∧ Sk(B) Sk(A�B) = Sk(A) ∨ Sk(B) Sk(!A) = Sk(A)
Sk(A�B) = Sk(A) ∧ Sk(B) Sk(A ⊕ B) = Sk(A) ∨ Sk(B) Sk(?A) = Sk(A)

Sk(1) = Sk(�) = � Sk(⊥) = Sk(0) = F Sk(a) = a
Sk(A � B) = Sk(A) ⇒ Sk(B) Sk(σX.A) = σX.Sk(A) Sk(X) = X

with σ ∈ {μ, ν}.
Given a 2-sided μLL∞ pre-proof π of Γ � Δ with last rule r and premises

(πi)1≤i≤n, Sk(π) is the μLK∞ pre-proof of Sk(Γ ) � Sk(Δ) defined corecursively,
by case on r: (i) if r ∈ {(!p), (?d)}, Sk(π) = Sk(π1); (ii) otherwise, apply the
μLK∞ rule corresponding to r with premises (Sk(πi))1≤i≤n.

Proposition 41. Sk(·) transports valid μLL∞-proofs to valid μLK∞ proofs.

μLK∞ cut-elimination follows from the existence of μLK∞ linear decorations.

Proposition 42. For any μLK∞ sequent s and any μLK∞ proof π of s, there
is a linear decoration of π, that is a μLL∞ proof πd such that Sk(πd) = π.

Definition 43 (μLK∞cut-reduction). μLK∞ mcut-reduction relation is
defined as follows: −→μLK∞= {(Sk(π),Sk(π′)) | π −→mcut π′ & π �= π′}.
Theorem 44. μLK∞ enjoys cut-elimination.

4.2 µLJ∞ Cut-Elimination

The linear decoration for μLJ∞ is simply Girard’s call-by-value translation [21]
extended to fixed-points on formulas and proofs as follows:

[X]j = !X; [μX.F ]j = !μX.[F ]j ; [νX.F ]j = ! νX.[F ]j .

⎡
⎣

π

Γ � F [σX.F/X]
(σr)

Γ � σX.F

⎤
⎦

j

=

[π]j

[Γ ]j � [F ]j [σX.[F ]j/X]
(σr)

[Γ ]j � σX.[F ]j
(!pr)

[Γ ]j � [σX.F ]j

and

⎡
⎣

π

Γ, F [σX.F/X] � G
(σl)

Γ, σX.F � G

⎤
⎦

j

=

[π]j

[Γ ]j , [F ]j [σX.[F ]j/X],� [G]j
(σl)

[Γ ]j , σX.[F ]j � [G]j
(!dl)

[Γ ]j , [σX.F ]j � [G]j

.

The translation is consistent with μLJ∞- and μLL∞-positivity conditions.



218 A. Saurin

Definition 45 (μILL∞). μILL formulas are defined inductively as:
I, J :: = a | !X | I � J | I�J | I ⊕ J | � | 0 | μX.I | νX.I | ! I.

A μILL sequent is a sequent of μILL formulas with exactly one formula in the
succedent. A μILL∞ proof is a μLL∞ proof containing only μILL sequents.

The translation preserves validity, following from [X]j = !X, by induction.

Lemma 46. The following hold:

– For any μLJ formulas A,B, σ ∈ {μ, ν}, [A[σX.B/X]]j = [A]j [σX.[B]j/X].
– For any μLJ formula A, [A]j is a μILL formula.
– If π is a μLJ∞ proof of Γ � F , then [π]j is a μILL∞ proof of [Γ ]j � [F ]j.

On μILL∞ proofs, the skeletons of the previous section can be reused: Sk(·)
transports valid μILL∞ proof to valid μLJ∞ proofs. Moreover μILL∞ proofs are
closed by μLL∞ cut-reductions from which we deduce, as for μLK∞, that:

Theorem 47. μLJ∞ enjoys cut-elimination.

5 Conclusion

In the present paper, we established several cut-elimination results for non-
wellfounded proof systems for logics with least and greatest fixed-points expand-
ing on previous works [4,20]: (i) for μMALL∞ with sequents as lists in con-
trast sequents as sets of locative occurrences [4], (ii) for the 1-sided and 2-sided
sequent calculi of μLL∞, (iii) for μLK∞ and (iv) for μLJ∞. We also established
additional results from a compression lemma for μMALL∞ strongly converging
cut-reduction sequences to linear embeddings of μLK∞ and μLJ∞ into μLL∞.

On the Meaning and Expressiveness of Tree-Exponential Modalities. The proof
of our main result proceeds by encoding LL exponentials in μMALL∞ following an
encoding first considered by Baelde and Miller, and studying μLL∞ cut-reduction
sequences through their simulation in μMALL∞, which was first conjectured in
Doumane’s thesis [18]. We think that the present paper does not only demon-
strate the usefulness of the encoding but that it also suggests new questions.
Indeed, this encoding has interesting features:

– this “rigid” tree-like exponential does not exhibit the Seely isomorphism but,
even though those isomorphisms are common in axiomatizations of categorical
models of linear logic, it is not necessary to have them as isomorphisms to
build a denotational model of linear logic (that is, which quotients proofs up to
cut-equivalence): the present work is actually an example of this fact. (They
are crucial, though, to encode the λ-calculus in linear logic, as additional
equations are needed, which are realized by Seely isos.)
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– These exponentials allow for a realization of a somehow non-uniform promo-
tion: indeed, while a proof of � !•F, ?•Γ has to provide a proof of � F, ?•Γ ,
the circular definition of the promotion is not the only possible definition:
one can consider as well promotions that would provide a distinct value each
time a box is opened (e.g. a proof of � !•μX.1 ⊕ X may provide distinct
integers depending on how structural rules managed the resource). See [30]
for a detailed discussion.

This tree-like exponential is being investigated with Ehrhard and Jafarrahmani.

Benefiting from Advances in Infinitary Rewriting. Our cut-elimination proof by
encoding μLL∞ into μMALL∞ relies on a simulation of reductions sequences
which makes use of transfinite reductions sequences and compression results.
Those techniques are inspired and adapted from the literature on infinitary
rewriting. We plan to make clearer the connection between non-wellfounded
proof theory and infinitary rewriting in the future, even though in the present
state it was not possible to readily apply results from infinitary rewriting such
as the compression lemma which we has to reprove in our setting [31]. Moreover,
we did not make use of coinductive formulations of infinitary rewriting [19]. That
is another direction for future work: currently, we do not know how to use those
formulations of infinitary rewriting because the sequences we consider by simu-
lation are not given as (strongly) converging sequences. We plan to reconsider
this and benefit from the coinductive approach to infinite reduction sequences.

On Linear Translations for Fixed-Point Logics and Non-Wellfounded Proofs.
We obtained a cut-elimination theorem for μLK∞ and μLJ∞ thanks to linear
translations which deserve some comments. While the linear translation used for
μLJ∞ is standard (it is a call-by-value translation dating back to Girard’s seminal
paper), the treatment of classical logic was more complex. Indeed, usual linear
translation for classical logic introduce, at places, cuts. Due to the sensitivity
of the straight-thread validity condition with respect to the presence of cuts
in cycles, we could not use those translations. However, we plan to investigate
whether a more standard translation can be used in the specific case of bouncing
validity [3].

A Treatment of Cut-Elimination Which Is Agnostic to Validity Conditions.
Last but not least, a major advantage of our approach is that μMALL∞ cut-
elimination proof and, to some extent, the validity conditions, are regarded as
black boxes, simplifying the presentation of the proof and making it reusable
wrt. other validity condition or μMALL∞ proof techniques. The proof seems to
be reusable easily with bouncing validity for instance (even though setting up an
adequate definition of bouncing validity for μLL∞ is quite tricky). A fragment
which seems promising and that we wish to investigate in the near future, is
μMELL∞ equipped with bouncing validity [3].
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