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Abstract. The rewrite relation of a conditional term rewriting system
(CTRS) can be divided into a hierarchy of rewrite relations of term
rewriting systems (TRSs) by the depth of the recursive use of rewrite
relation in conditions; a CTRS is said to be level-confluent if each of
these TRSs are confluent, and level-confluence implies confluence. We
introduce level-commutation of CTRSs that extends the notion of level-
confluence, in a way similar to extending confluence to commutation, and
give a critical pair criterion for level-commutation of oriented CTRSs
with extra variables (3-CTRSs). Our result generalizes a criterion for
commutation of TRSs of (Toyama, 1987), and properly extends a crite-
rion for level-confluence of orthogonal oriented 3-CTRSs (Suzuki et al.,
1995). We also present criteria for level-confluence and commutation of
join and semi-equational 3-CTRSs that may have overlaps.

Keywords: Level-commutation · Level-confluence · Commutation ·
Confluence · Critical pair · Conditional term rewriting systems

1 Introduction

Confluence, which guarantees unique results of computations, is an important
property of term rewriting systems (TRSs). Commutativity between two TRSs
is a natural generalization of confluence in the sense that self-commutativity
coincides with confluence. It also allows to infer confluence of TRSs in a modular
way—the union of two confluent TRSs is confluent if they commute.

Conditional term rewriting systems (CTRSs) are extensions of TRSs in which
each rewrite rule can be equipped with conditions, where these conditions are
supposed to be evaluated recursively using the underlying CTRS itself. Some
type of CTRSs is known as a model of functional (and logic) programs. The
underlying logic of TRSs is the equational logic, whereas the one of CTRSs is
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called the quasi-equational logic, constituting also an important class of systems
for reasoning on a wider class of algebras.

From the computational point of view, the rewrite relation of a CTRS can be
divided into a hierarchy of rewrite relations of TRSs by the depth of the recursive
use of rewrite relation in conditions; a CTRS is said to be level-confluent if each
of these TRSs are confluent. Suzuki et al. showed a criterion for orthogonal (i.e.
left-linear non-overlapping) oriented CTRSs to be level-confluent [14]. Level-
confluence implies confluence, and their result can be thought as a generalization
of confluence of orthogonal TRSs. More crucially, since much fewer criterion
have been obtained for CTRSs comparing to TRSs, level-confluence can be seen
as an important approach to obtain confluence proofs of CTRSs. In contrast
to TRSs, where many extensions of the orthogonality criterion for left-linear
(possibly overlapping) TRSs to have confluence have been explored (e.g., [4,8,
11,16]), similar extensions for CTRSs are not known. Similarly, several criteria
for ensuring commutation for left-linear TRSs are known (e.g., [16,19]). Again,
similar criteria for left-linear CTRSs are not known. In this paper, we give a
criterion for a class of (possibly overlapping) left-linear oriented CTRSs, under
which we prove level-commutation of such CTRSs. Our result is a generalization
of the one given for TRSs in [16] and properly extends the result of [14] mentioned
above. We also present criteria for level-confluence and commutation of left-linear
join and semi-equational CTRSs that may have overlaps.

The rest of the paper is organized as follows. In the next section, we fix
some notions and notations used in this paper, and explain two results that give
starting points of our work. In Sect. 3, we present our main theorem on level-
commutation of oriented CTRSs and its proof in detail, and explain relations
to the previous results. We then give some results on join CTRSs and semi-
equational CTRSs in Sect. 4. Section 5 concludes.

2 Preliminaries

We basically follow standard notions and notations (e.g., [3,10]). Below, we
explain some key notions and fix notations that will be used in this paper, while
omitting most of definitions of standard notions and notations.

We consider a set F of function symbols. The set of variables is denoted by
V and the set of terms over F and V is by T(F ,V). We sometimes specify a set
C ⊆ F of constructors to give the set of constructor terms T(C,V), i.e. terms over
C and V. The set of variables in a term t is denoted by V(t). A term t is linear
if each variable occurs in t at most once; t is ground if no variable occurs in t.
The size of a term t is denoted by |t|. The set of positions in a term t is denoted
by Pos(t); the root position is written as ε. The symbol at a position p ∈ Pos(t)
in a term t is written as t(p). We put PosF (t) = {p ∈ Pos(t) | t(p) ∈ F}.

If t = C[u]p for a context C, we say u is a subterm of t (at a position
p ∈ Pos(t)). The subterm of t at a position p ∈ Pos(t) is written as t|p. For
terms t = C[u]p and s, the term C[s]p is denoted by t[s]p. We speak of subterm
occurrences when we consider subterms with their respective positions; see e.g.
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[15] for a precise formalization of subterm occurrences. We will use capital letters
A,B, . . . for subterm occurrences. For simplicity, a subterm occurrence A in a
term is also treated as a term A (for example, we might write V(A)). Suppose
A,B are subterm occurrences in a term t. If t = C[A]p and t = C ′[B]q with p ≤ q
(p < q) we say that B is a (proper) subterm occurrence in a subterm occurrence
A and write B ⊆ A (B ⊂ A, respectively). Overlaps on subterm occurrences will
be used to give a notion of weight on which our induction proof works.

A term rewriting system (TRS, for short) R is a set of rewrite rules, where
each rewrite rule l → r satisfies the conditions l /∈ V and V(r) ⊆ V(l). Rewrite
rules are identified modulo renaming. A TRS R is left-linear if l is linear for each
l → r ∈ R. We write s →p

R t if s|p is the redex of this rewrite step; we also write
s

A→R t to indicate the redex occurrence A of this rewrite step. The relation
→R over terms is called the rewrite relation of R, and its reflexive transitive
closure is denoted by ∗→R. A reduction is a successive sequence of rewrite steps
t0 →R t1 →R · · · →R tn, where n is the length of this reduction. When no
confusion arises, a reduction s →R · · · →R t is written as s

∗→R t for brevity,
whose length is denoted by |s ∗→R t|. We have a parallel rewrite step s −→� R t if
s = C[A1, . . . , An], t = C[B1, . . . , Bn] (n ≥ 0) for some context C and subterm
occurrences Ai, Bi such that Ai →ε

R Bi for all i = 1, . . . , n; this rewrite step is
written as s

A1,...,An−→� R t to indicate the redex occurrences A1, . . . , An.
A relation → is confluent if ∗← ◦ ∗→ ⊆ ∗→ ◦ ∗←; A TRS R is confluent if so is

its rewrite relation →R. Relations → and � commute (or, are commutative) if
∗←◦ ∗� ⊆ ∗�◦ ∗←; TRSs R and S commute if so do their rewrite relations →R and
→S . Clearly, self-commutativity equals confluence, and from a sufficient criterion
for commutativity the one for confluence naturally arises.

Let l1 → r1 and l2 → r2 be rewrite rules so that their sets of variables
are renamed to be disjoint. If a non-variable subterm l2|p of l2 satisfies l2|pσ =
l1σ for some substitution σ, we say that l1 → r1 overlaps on l2 → r2 (at p),
provided that p 
= ε for the case l1 → r1 and l2 → r2 are identical. Suppose
l1 → r1 overlaps on l2 → r2 at p and σ is an mgu of l2|p and l1. Then the pair
〈l2[r1]pσ, r2σ〉 is called a critical pair (obtained from that overlap); the pair is
called outer if p = ε and is called inner if p > ε. The set of critical pairs from
overlaps of rules of R is denoted by CP(R); the set of outer (inner) critical
pairs are denoted by CPout(R) (resp. CP in(R)). Let R,S be TRSs. The set of
critical pairs obtained from overlaps of l1 → r1 ∈ R on l2 → r2 ∈ S is denoted
by CP(R,S). The sets CPout(R,S) and CP in(R,S) are defined similarly. We
are now ready to state a sufficient criterion for commutativity of TRSs.

Proposition 1 ([16]). Let R and S be left-linear TRSs. If both of the following
conditions are satisfied, then R and S commute:

1. for any 〈p, q〉 ∈ CP(R,S), p −→� S ◦ ∗←R q, and
2. for any 〈q, p〉 ∈ CP in(S,R), q −→� R p holds.

The above criterion for commutativity arises a criterion for confluence: a
left-linear TRS R is confluent if (1) for any 〈p, q〉 ∈ CPout(R), p −→� R ◦ ∗←R q,
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and (2) for any 〈q, p〉 ∈ CP in(R), q −→� R p holds. Note here in the condition
(1), considering 〈p, q〉 ∈ CPout(R) is sufficient, instead of considering 〈p, q〉 ∈
CP(R), because of the presence of condition (2).

A (directed) equation is an ordered pair 〈u, v〉 of terms, written as e.g. u ≈ v.
A conditional rewrite rule has the form l → r ⇐ u1 ≈ v1, . . . , uk ≈ vk where
l /∈ V; here, u1 ≈ v1, . . . , uk ≈ vk is a sequence of (directed) equations, called
the conditional part of the rule. Often, we will use a meta-variable, say c, to
denote the conditional part of the rule. Let c = u1 ≈ v1, . . . , uk ≈ vk. Then,
for any given substitution σ, we put cσ = u1σ ≈ v1σ, . . . , ukσ ≈ vkσ. Also, we
write e.g. V(l, c) to denote the set of variables occurring in l and c. We often
also treat c as a set {u1 ≈ v1, . . . , uk ≈ vk} so as to write u ≈ v ∈ c, cσ ⊆ �,
etc., whose meaning should be apparent. The empty sequence is also written as
∅, and l → r ⇐ ∅ is abbreviated as l → r.

Conditional term rewriting system (CTRS, for short) is a set of conditional
rewrite rules. In the literature, CTRSs are categorized into several types of
CTRSs according the way of interpreting the conditions of the rules used in the
definition of their rewrite steps. A rewrite step of oriented CTRS R is defined via
the following TRSs Rn (n ∈ N), which are inductively given as follows: R0 = ∅,
Rn+1 = {lσ → rσ | l → r ⇐ c ∈ R, cσ ⊆ ∗→Rn

}. A rewrite step s →R t of
CTRS R is given as s →R t iff s →Rn

t for some n. Note that m ≤ n implies
→Rm

⊆ →Rn
. The smallest n such that s →Rn

t is called the level of the rewrite
step s →R t. We also use the notation →R<n

=
⋃

i<n →Ri
. We will also write

Rn � cσ to denote cσ ⊆ ∗→Rn
. Except Sect. 4, we will only consider oriented

CTRSs in this paper, and thus let us postpone to mention about join or semi-
equational CTRSs until Sect. 4. A CTRS R is level-confluent if TRSs Rn are
confluent for all n ≥ 0. One can naturally extend the notion of level-confluence,
in the similar way extending confluence to commutation.

Definition 1 (Level-commutation). CTRSs R and S are level-commutative
if for any m,n ≥ 0, ∗←Rm

◦ ∗→Sn
⊆ ∗→Sn

◦ ∗←Rm
.

Clearly, level-commutativity (level-confluence) implies commutativity (resp.
confluence), and self-level-commutativity implies level-confluence.

A conditional rewrite rule l → r ⇐ c has type 1 if V(r, c) ⊆ V(l), type 2 if
V(r) ⊆ V(l), type 3 if V(r) ⊆ V(l, c), and type 4 if “true”. A CTRS R has type
n if all rules have type n; CTRSs of type n are also referred to as n-CTRSs. We
will mainly deal with 3-CTRSs below. Variables occurring in r, c which is not
contained in V(l) are often called extra variables.

We now explain some notions necessary to give a sufficient criterion for level-
confluence [14]. A CTRS R is properly oriented if V(r) 
⊆ V(l) implies V(ui) ⊆
V(l) ∪ ⋃i−1

j=1 V(vj) for all 1 ≤ i ≤ k, for any l → r ⇐ u1 ≈ v1, . . . , uk ≈ vk ∈ R.
A CTRS R is right-stable if, for all l → r ⇐ u1 ≈ v1, . . . , uk ≈ vk ∈ R, (1)
(V(l) ∪ (

⋃i−1
j=1 V(uj , vj)) ∪ V(ui)) ∩ V(vi) = ∅ for all 1 ≤ i ≤ k and (2) for any

1 ≤ i ≤ k, vi is either a linear constructor term or a ground Ru-normal form,
where the constructors are given by C = F \ {l(ε) | l → r ⇐ c ∈ R} and the
(extended) TRS Ru is given by Ru = {l → r | l → r ⇐ c ∈ R}. A CTRS R is
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left-linear if l is linear for all l → r ⇐ c ∈ R. Let l1 → r1 ⇐ c1 and l2 → r2 ⇐ c2
be conditional rewrite rules so that their sets of variables are renamed to be
disjoint. We say l1 → r1 ⇐ c1 overlaps on l2 → r2 ⇐ c2 (at p) if a non-variable
subterm l2|p of l2 satisfies l2|pσ = l1σ for some substitution σ, provided that
p 
= ε for the case l1 → r1 ⇐ c1 and l2 → r2 ⇐ c2 are identical. A CTRS
R is non-overlapping if there is no overlap between rules of R; A CTRS R is
orthogonal if it is left-linear and non-overlapping.

Proposition 2 ([14]). Let R be an orthogonal, properly oriented, right-stable
3-CTRS. Then, ∗←Rm

◦ ∗→Rn
⊆ ∗→Rn

◦ ∗←Rm
for any m,n ≥ 0. In particular, R

is level-confluent.

3 Level-Commutation of Oriented CTRSs

Proposition 1 only deals with TRSs but its scope is not limited to orthogonal
ones. On the other hand, Proposition 2 can deal with CTRSs (not only TRSs)
but limited to only orthogonal case. Also Proposition 2 only claims on (level-
)confluence, whereas Proposition 1 claims on commutativity. A natural question
is whether we can unify these two propositions and how—we will focus on this
question in the this section.

Our basic idea is to unify proofs of [16, Theorem 3.1] and [14, Theorem 4.6].
The basic scenario of the former proof is showing that ←−� R◦−→� S ⊆ −→� S◦ ∗←−� R.
In the latter, an extended parallel rewriting ↪−→� Rn

of −→� R was introduced and
they showed ←−↩� Rm

◦ ↪−→� Rn
⊆ ↪−→� Rn

◦ ←−↩� Rm
. Naturally, our first attempt

was to prove ←−↩� Rm
◦ ↪−→� Sn

⊆ ↪−→� Sn
◦ ∗←−↩� Rm

. Examining the details, however,
it turned out that this scenario does not work (induction does not work). Thus,
our first key ingredient is to modify our proof scenario as showing:

←−↩� Rm
◦ ↪−→� Sn

⊆ ↪−→� Sn
◦ ∗

↪−→� S<n
◦ ∗←−↩� Rm

(∗)

We now reason why this scenario is sound using an abstract setting.
Let (→n)n∈N be an N-indexed family of relations on a set X. We put →<n =

⋃
i<n →i. We say (→n)n∈N is up-simulated if ∗→<n ⊆ →n for any n ∈ N.

Lemma 1. Let (→n)n∈N, (�n)n∈N be up-simulated families of relations on a set
X. Suppose that1, for any m,n ∈ N, ←m ◦�n ⊆ �n ◦ ∗�<n ◦ ∗←m. Then, for any
m,n ∈ N, we have (1) ∗←m ◦ �n ⊆ �n ◦ ∗�<n ◦ ∗←m, (2) ∗←m ◦ �n ⊆ ∗�n ◦ ∗←m

and (3) ∗←m ◦ ∗
�n ⊆ ∗�n ◦ ∗←m.

Proof. Use induction. Use (1) to show (2), and then (2) to (3). ��

1 The criterion has some similarity with the decreasing diagrams; however, because
multiple →m-steps are allowed, it is not at all apparent (currently, to the authors)
whether the criterion can be obtained via the decreasing diagrams.
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Now let us adopt our abstract framework to CTRSs. Let R be a CTRS. The
notion of extended parallel rewriting [14] is given as follows: we write s ↪−→� Rn

t
if s = C[A1, . . . , Ap], t = C[B1, . . . , Bp] (p ≥ 0) for some context C and subterm
occurrences Ai, Bi such that either Ai →ε

Rn
Bi or Ai

∗→R<n
Bi for all i =

1, . . . , p. We put ↪−→� R =
⋃

n≥0 ↪−→� Rn
, which is called the extended parallel

rewrite step of R. We will also write s
A1,...,Ap

↪−→� R t to indicate subterm occurrences
A1, . . . , Ap.

Then, from the Lemma 1, it easily follows:

Lemma 2. Let R,S be CTRSs. Suppose ←−↩� Rm
◦ ↪−→� Sn

⊆ ↪−→� Sn
◦ ∗

↪−→� S<n
◦

∗←Rm
for any m,n ≥ 0. Then, for any m,n, we have

∗←−↩� Rm
◦ ∗

↪−→� Sn
⊆ ∗

↪−→� Sn
◦

∗←−↩� Rm
. Hence, for any m,n, we have ∗←Rm

◦ ∗→Sn
⊆ ∗→Sn

◦ ∗←Rm
.

Proof. Suppose t1
∗←Rm

t
∗→Sn

t2. As →Rk
⊆ ↪−→� Rk

for each k we have
t1

∗←−↩� Rm
t

∗
↪−→� Rn

t2 (and similarly for S). From the fact →Rm
⊆ →Rn

for
m < n, it immediately follows that (↪−→� n)n∈N is up-simulated (again, simi-
larly for S). Thus, it follows t1

∗
↪−→� Sn

t′
∗←−↩� Rm

t2 by using Lemma 1 and our
hypothesis. Because

∗
↪−→� Rk

⊆ ∗→Rk
for each k (and similarly for S), we obtain

t1
∗→Sn

t′ ∗←Rm
t2. ��

It is now concluded from this lemma that our proof scenario (∗) works to
obtain the level-confluence.

For our proof below, we need to use the induction hypothesis to claim a
more general statement as in the above. The following lemma is presented for
this purpose.

Lemma 3. Let R,S be CTRSs and k ∈ N. Suppose ←−↩� Rm
◦ ↪−→� Sn

⊆ ↪−→� Sn
◦

∗
↪−→� S<n

◦ ∗←Rm
for any m,n such that m + n < k. Then, for any m,n such

that m + n < k, we have (1)
∗←−↩� Rm

◦ ↪−→� Sn
⊆ ↪−→� Sn

◦ ∗
↪−→� S<n

◦ ∗←−↩� Rm
, (2)

∗←−↩� Rm
◦ ↪−→� Sn

⊆ ∗
↪−→� Sn

◦ ∗←−↩� Rm
and (3)

∗←−↩� Rm
◦ ∗

↪−→� Sn
⊆ ∗

↪−→� Sn
◦ ∗←−↩� Rm

.

Proof. Use an abstract version of the lemma, which can be proved in the way
similar to Lemma 1. ��

Our second key ingredient is the following alternative definition of conditional
critical pairs.

Definition 2 (Condition-separated CCP). Suppose l1 → r1 ⇐ c1 overlaps
on l2 → r2 ⇐ c2 at p and σ is an mgu of l2|p and l1. Then the quadruple
〈l2[r1]pσ, r2σ〉 ⇐ 〈c1σ, c2σ〉 is called a (condition-separated) conditional critical
pair (CCP, for short) (obtained from that overlap); when p = ε, the pair is
called outer and p > ε, the pair is called inner. The set of (outer, inner) critical
pairs obtained from overlaps of l1 → r1 ⇐ c1 ∈ R on l2 → r2 ⇐ c2 ∈ S is
denoted by CCP(R,S) (resp. CCPout(R,S), CCP in(R,S)). The set of (outer,
inner) critical pairs from overlaps of rules of R is denoted by CCP(R) (resp.
CCPout(R), CCP in(R)).
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In most literature, we see that instead of distinguishing two sequences c1σ
and c2σ, the combined sequence of c1σ and c2σ is employed in the definition of
CCPs. But, in our case where CTRSs R and S may be different, this distinction
is important to state a precise condition of our theorem.

We now present one more preparation: the following lemma is used several
times as a part of the proof of our main theorem—when the lemma is used in the
proof of our main theorem, the assumption (†) of the lemma can be inferred from
the induction hypothesis (of the proof of the main theorem), using Lemma 3.

Lemma 4. Let R and S be 3-CTRSs and suppose that R is left-linear and right-
stable. Suppose that M = lσ, N = rσ, Rm−1 � cσ with l → r ⇐ c ∈ R. Assume

moreover that M
P1,...,Pp

↪−→� Sn
P and P1, . . . , Pp occurs in the substitution σ. Assume

that (†) ∗←−↩� Ri
◦ ∗

↪−→� Sj
⊆ ∗

↪−→� Sj
◦ ∗←−↩� Ri

for any i, j such that i + j < m + n.
Then, there exists Q such that N ↪−→� Sn

Q and P →Rm
Q.

Now we present our critical pair criterion for commutativity.

Theorem 1. Let R and S be left-linear, properly oriented, right-stable 3-
CTRSs. If the following conditions are satisfied, then R and S are level-
commutative:

1. for any 〈u, v〉 ⇐ 〈c, c′〉 ∈ CCP(R,S), m,n ≥ 1 and substitution ρ, if cρ ⊆
∗→Rm−1 and c′ρ ⊆ ∗→Sn−1 then uρ −→� Sn

◦ ∗→S<n
◦ ∗←Rm

vρ, and
2. for any 〈v, u〉 ⇐ 〈c′, c〉 ∈ CCP in(S,R), m,n ≥ 1 and substitution ρ, if cρ ⊆

∗→Rm−1 and c′ρ ⊆ ∗→Sn−1 then vρ −→� Rm
◦ ∗→R<m

uρ.

Proof. Let M
A1,...,Am̄

↪−→� Rm
N and M

B1,...,Bn̄
↪−→� Sn

P . We show N ↪−→� Sn
◦ ∗
↪−→� S<n

Q and
P

∗
↪−→� Rm

Q for some Q. For the rewrite steps used in the critical pairs conditions
above, note that −→� � ◦ ∗→<� = ↪−→� � ◦ ∗

↪−→� <� as well as ∗→� =
∗

↪−→� � for any �.
Let Γ and Δ be sets of subterm occurrences in the term M given as follows:

Γ = {Ai | ∃Bj . Ai ⊂ Bj} ∪ {Bi | ∃Aj . Bi ⊆ Aj}
Δ = {Ai | ∀Bj . Ai 
⊂ Bj} ∪ {Bi | ∀Aj . Bi 
⊆ Aj}

Thus, Γ consists of subterm occurrences Ai’s that is a proper subterm occurrence
of some Bj and subterm occurrences Bj ’s that is a subterm occurrence of some
Ai; Δ consists of subterm occurrences Ai’s and Bj ’s not contained in Γ . Clearly,
for any 1 ≤ i ≤ m̄, either one of Ai ∈ Γ or Ai ∈ Δ holds, and for any 1 ≤ j ≤ n̄,
either one of Bj ∈ Γ or Bj ∈ Δ holds. In the case Ai′ and Bj′ are the same
subterm occurrence, we put Ai′ to Δ and Bj′ to Γ .

Δ denotes the set of maximal redexes occurrences in the following sense.
Let Δ = {M1, . . . ,Mp̄}. Then we have M = C[M1, . . . ,Mp̄] for some context
C. Furthermore, we have N = C[N1, . . . , Np̄] and P = C[P1, . . . , Pp̄] for some
N1, . . . , Np̄, P1, . . . , Pp̄ such that Mi ↪−→� Rm

Ni, Mi ↪−→� Sn
Pi (i = 1, . . . , p̄). Thus,

it suffices to show for each Mi, there exists Qi such that Ni ↪−→� Sn
◦ ∗

↪−→� S<n
Qi

and Pi
∗

↪−→� Rm
Qi. On the other hand, Γ is used to count the size of overlaps and
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is used to give the induction weight. Let |Γ | = ∑
D∈Γ |D|. Our proof proceeds

on induction on lexicographic combination of 〈m + n, |Γ |〉.
The cases for m = 0 or n = 0 are easy, thus we consider the cases for

m > 0, n > 0. We distinguish two cases:

1. Case Mi /∈ {B1, . . . , Bn̄}. Note that Mi ∈ {A1, . . . , Am̄} and Mi ⊆ Bj for
no Bj . Let {B′

1, . . . , B
′
q̄} = {Bj | 1 ≤ j ≤ n̄, Bj ⊂ Mi}. Then we have

Mi = Ci[B′
1, . . . , B

′
q̄] and Pi = Ci[B̃′

1, . . . , B̃
′
q̄] so that Mi

Mi
↪−→� Rm

Ni and

Mi

B′
1,...,B′

q̄

↪−→� Sn
Pi. We distinguish the cases.

(a) Case Mi
∗→Rm−1 Ni. Since ∗→Rm−1 ⊆ ∗

↪−→� Rm−1 , we have Mi
∗

↪−→� Rm−1 Ni.
Thus, the desired Qi is obtained by induction hypothesis and Lemma 3.

(b) Case Mi
Mi→Rm

Ni. Then Mi = lθ, Ni = rθ and Rm−1 � cθ for some
l → r ⇐ c ∈ R and θ. If all redex occurrences B′

j in Mi are contained
in the substitution θ, then the desired Qi exists by Lemmas 3, 4 and
induction hypothesis. Suppose otherwise, i.e. there exists B′

j which is not
contained in θ. Let X = {B′

j | 1 ≤ j ≤ q̄, B′
j is not contained in θ } and

Y = {B′
j | 1 ≤ j ≤ q̄, B′

j is contained in θ }. For each B′
j ∈ X, either

B′
j

B′
j→Sn

B̃′
j or B′

j
∗→S<n

B̃′
j . We distinguish two cases.

i Case that there exists B′
j ∈ X such that B′

j

B′
j→Sn

B̃′
j . W.l.o.g. sup-

pose j = 1, i.e. B′
1 ∈ X and B′

1

B′
1→Sn

B̃′
1. Let Mi

B′
1→Sn

M̃i. Note also

here M̃i

B′
2,...,B′

q̄

↪−→� Sn
Pi. The proof of this case is illustrated in Fig. 1. Let

l′ → r′ ⇐ c′ ∈ S, B′
1 = l′θ′ and Sn−1 � c′θ′. Then, since B′

1 is not
contained in θ, l → r ⇐ c ∈ R and l′ → r′ ⇐ c′ ∈ S overlap. Fur-
thermore, as B′

1 ⊂ Mi, we have 〈v, u〉 ⇐ 〈c′, c〉 ∈ CCP in(S,R) and
there exists a substitution θ′′ such that M̃i = vθ′′ and Ni = uθ′′. By
our critical pair condition (2), we obtain M̃i ↪−→� Rm

Q̃i
∗

↪−→� R<m
Ni;

let M̃i
C1,...,Cr̄

↪−→� Rm
Q̃i. Let Γ ′ = {Ci | ∃B′

j(j 
= 1). Ci ⊂ B′
j} ∪ {B′

i | i 
=
1,∃Cj . B′

i ⊆ Cj}. Occurrences in Γ ′ are distinct, and for any B̃ ∈ Γ ′,
there exists B′

j (2 ≤ j ≤ q̄) such that B̃ ⊆ B′
j . Thus, |Γ ′| ≤ ∑q̄

j=2 |B′
j |

holds. Hence, we obtain |Γ ′| ≤ ∑q̄
j=2 |B′

j | <
∑q̄

j=1 |B′
j | ≤ |Γ |. Thus,

one can apply induction hypothesis to Q̃i
C1,...,Cr̄←−↩� Rm

M̃i

B′
2,...,B′

q̄

↪−→� Sn
Pi so

as to obtain Q̃′
i, P̃i such that Q̃i ↪−→� Sn

Q̃′
i

∗
↪−→� S<n

P̃i and Pi
∗

↪−→� Rm
P̃i.

Since we have Ni
∗←−↩� R<m

Q̃i ↪−→� Sn
Q̃′

i, by applying induction hypoth-
esis and Lemma 3, it follows that there exists Ñi such that Ni ↪−→� Sn

◦ ∗
↪−→� S<n

Ñi and Q̃′
i

∗
↪−→� R<m

Ñi. Then, by induction hypothesis and
Lemma 3, it follows that there exists Qi such that Ñi

∗
↪−→� <Sn

Qi and
P̃i

∗
↪−→� R<m

Qi.

ii Case that B′
j

∗→Sn−1 B̃′
j holds for any B′

j ∈ X. As Mi

B′
1,...,B′

q̄

↪−→� Sn
Pi

and B′
1, . . . , B

′
q̄ are parallel, we can first rewrite all B′

j ∈ Y (1 ≤
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Mi M̃i Pi

Ni ◦

Q̃i P̃i

Ñi

Q̃i

Qi

Sn Sn

Rm Rm

R<mR<m

Sn S<n

Rm

R<m

CCP(2)

I.H.

I.H. & Lemma 3 I.H. & Lemma 3

B1

Mi

∗

∗

B2, . . . , Bq

∗ ∗

C1, . . . , Cr

∗

∗
Sn S<n

S<n

∗

Fig. 1. Case 1.(b).i

Mi M̃i Pi

Ni Q̃ Qi

Sn Sn−1

Rm Rm

Sn Sn−1

Rm

Lemma 4 I.H. & Lemma 3

B1 , . . . , Br

Mi ∗

∗

∗

Fig. 2. Case 1.(b).ii

j ≤ q̄). Namely, let Y = {B′′
1 , . . . , B′′

r̄ }, and we have Mi

B′′
1 ,...,B′′

r̄
↪−→� Sn

M̃i
∗→Sn−1 Pi. The proof of this case is illustrated in Fig. 2. Here, since

each B′′
j in contained in the substitution θ, one can use Lemma 4 to

obtain Q̃ such that Ni ↪−→� Sn
Q̃ and M̃i →Rm

Q̃. Now, since →Rm
⊆

↪−→� Rm
and ∗→Sn−1 ⊆ ∗

↪−→� Sn−1 , we have Q̃ ←−↩� Rm
M̃i

∗
↪−→� Sn−1 Pi.

Then, using induction hypothesis and Lemma 3, we can obtain Qi

such that Q̃
∗

↪−→� Sn−1 Qi, Pi
∗

↪−→� Rm
Qi. As a side remark, we mention

that our first key ingredient becomes necessary to solve this case.
2. Case Mi ∈ {B1, . . . , Bn̄}. Let {A′

1, . . . , A
′
q̄} = {Aj | 1 ≤ j ≤ n̄, A′

j ⊆ Mi}.

Then one can put Mi = Ci[A′
1, . . . , A

′
q̄], Ni = Ci[Ã′

1, . . . , Ã
′
q̄], Mi

A′
1,...,A′

q̄

↪−→� Rm
Ni

and Mi
Mi
↪−→� Sn

Pi. By definition, Mi
Mi
↪−→� Sn

Pi is either of the form Mi
∗→Sn−1 Pi

or Mi
Mi→Sn

Pi.
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Suppose Mi
∗→Sn−1 Pi. Then, we have Mi

∗
↪−→� Sn−1 Pi and thus the desired

Qi exists by induction hypothesis and Lemma 3.
Thus, it remains to consider the case Mi

Mi→Sn
Pi. Then there exists l′ → r′ ⇐

c′ ∈ S and θ′ such that Mi = l′θ′, Pi = r′θ′ and c′θ′ ⊆ ∗→Sn−1 . We distinguish
whether all redex occurrences A′

j in Mi are contained in θ′ or not. If all redex

occurrences A′
j in Mi are contained in θ′, then using →Sn

⊆ ↪−→� Sn
◦ ∗

↪−→� S<n

and ↪−→� Rm
⊆ ∗→Rm

, one obtains desired Qi by Lemma 4.
So, let us consider there exists A′

j which is not contained in θ′. Let X ′ =
{A′

j | 1 ≤ j ≤ q̄, A′
j is not contained in θ′} and Y ′ = {A′

j | 1 ≤ j ≤
q̄, A′

j is contained in θ′}. Then for each A′
j ∈ X ′, we have either A′

j

A′
j→Rm

Ã′
j ,

or A′
j

∗→R<m
Ã′

j . We distinguish two cases.

(a) Case that A′
j

A′
j→Rm

Ã′
j for some A′

j ∈ X ′. W.l.o.g. assume j = 1, i.e.

A′
1 ∈ X ′ and A′

1

A′
1→Rm

Ã′
1. Then there exists l → r ⇐ c ∈ R such that

A′
1 = lθ and cθ ⊆ ∗→Rm−1 . We further distinguish two cases: (α) the case

A′
1 = Mi and l → r ⇐ c ∈ R are l′ → r′ ⇐ c′ ∈ S are identical, and (β)

the case A′
1 
= Mi or l → r ⇐ c ∈ R and l′ → r′ ⇐ c′ ∈ S are distinct.

We remark that a construction similar to the one in [14] will be used in
case of (α) and that our assumption that R and S are properly oriented
and right-stable will be used here.

i Case (α). Then we have Mi = A′
1

A′
1→Rm

Ã′
1 = Ni and Mi

Mi→Sn
Pi. By

lθ = Mi = lθ′, xθ = xθ′ for any x ∈ V(l). We also have Rm−1 � cθ
and Sn−1 � cθ′. Thus, if V(r) ⊆ V(l), then rθ = rθ′, and it suffices
to take rθ as Qi. Suppose otherwise, i.e. V(r) � V(l). Below, let
c = s1 ≈ t1, . . . , sj ≈ tj and ck = s1 ≈ t1, . . . , sk ≈ tk (1 ≤ k ≤ j).
We now show there are substitution ρk (k ∈ {0, . . . , j}) satisfying the
following properties (a)–(c) by induction.
(a) ρk = θ = θ′ [V(l)].
(b) dom(ρk) ⊆ V(l) ∪ V(ck).
(c) for any x ∈ V(l)∪V(ck), we have xθ′ ∗

↪−→� Rm−1xρk and xθ
∗

↪−→� Sn−1

xρk.
If k = 0 then take ρ0 = θ|V(l), and (a)–(c) follow. Suppose k > 0.
Since r contains an extra variable and R (or S) is properly oriented,
we have V(sk) ⊆ V(l) ∪ V(ck−1). Thus, by induction hypothesis on
(c), we have skθ

∗
↪−→� Sn−1 skρk−1 and skθ′ ∗

↪−→� Rm−1 skρk−1. Further-
more, we have skθ

∗→Rm−1 tkθ and skθ′ ∗→Sn−1 tkθ′ by Rm−1 � cθ

and Sn−1 � cθ′, respectively. Hence, skρk−1
∗←−↩� Sn−1 skθ

∗
↪−→� Rm−1 tkθ

and tkθ′ ∗←−↩� Sn−1 skθ′ ∗
↪−→� Rm−1 skρk−1. Then, by applying induction

hypothesis and Lemma 3, we obtain q′, r′ such that skρk−1
∗

↪−→� Rm−1

q′ ∗←−↩� Sn−1 tkθ and tkθ′ ∗
↪−→� Rm−1 r′ ∗←−↩� Sn−1 skρk−1. Thus, one obtains

r′ ∗←−↩� Sn−1 skρk−1
∗

↪−→� Rm−1 q′. Again, by applying induction hypoth-
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esis and Lemma 3, we obtain s′ such that r′ ∗
↪−→� Rm−1 s′ ∗←−↩� Sn−1 q′.

Thus, we have tkθ
∗

↪−→� Sn−1 s′ and tkθ′ ∗
↪−→� Rm−1 s′.

We know that tk is either a ground Ru-normal form or a linear con-
structor term (w.r.t. R) by the right-stability of R, and that tk is
either a ground Su-normal form or a linear constructor term (w.r.t.
S) by the right-stability of R. Suppose tk is a ground Ru-normal
form or tk is a ground Su-normal form. Then, tkθ′ = tkθ = tk by
V(tk) = ∅, and thus, tk = s′ by tkθ′ ∗

↪−→� Rm−1 s′. Furthermore, as we
are assuming V(r) � V(l), we know V(si) ⊆ V(l) ∪ V(ci−1) from the
proper-orientedness of R (or S). Thus, V(l)∪V(ck) = V(l)∪V(ck−1).
Hence, ρk := ρk−1 satisfies (a)–(c). Suppose otherwise. Then tk is
linear and is a constructor term w.r.t. both R and S. Then, by
tkθ

∗
↪−→� Sn−1 s′, there exists a substitution ρ such that s′ = tkρ and

dom(ρ) ⊆ V(tk) such that for any x ∈ V(tk), xθ
∗

↪−→� Sn−1 xρ. Fur-
thermore, by tkθ′ ∗

↪−→� Rm−1 s′, there exists a substitution ρ′ such
that s′ = tkρ′ and dom(ρ′) ⊆ V(tk) such that for any x ∈ V(tk),
xθ′ ∗

↪−→� Rm−1 xρ′. Now, because tkρ = s′ = tkρ′, we know xρ = xρ′

for any x ∈ V(tk), and thus ρ = ρ′ from dom(ρ), dom(ρ′) ⊆ V(tk).
We also have V(tk) ∩ (V(l) ∪ V(ck−1)) = ∅ by the right-stability of R
(or S), and thus, dom(ρ) ∩ dom(ρk−1) = ∅. Hence, ρk := ρk−1 ∪ ρ is
a substitution, and ρk satisfies (a)–(c). This completes the induction
proof for existence of substitutions ρk satisfying (a)–(c) (1 ≤ k ≤ j).
Now consider the substitution ρj . Since R (and S) is a 3-CTRS, we
have V(r) ⊆ V(l)∪V(cj). Thus, by the condition (c), Ni = rθ

∗
↪−→� Sn−1

rρj and Pi = rθ′ ∗
↪−→� Rm−1 rρj hold. Thus, taking Qi := rρj , and we

have Ni
∗

↪−→� Sn−1 Qi and Pi
∗

↪−→� Rm−1 Qi.

ii Case (β). Let Mi
A′

1→Rm
M̃i

A′
2,...,A′

q̄

↪−→� Sn
Ni. The proof of this case is

illustrated in Fig. 3 (left). Because there exists an overlap between
l → r ⇐ c ∈ R and l′ → r′ ⇐ c′ ∈ S, there is substitution θ′′ and
a position p ∈ PosF (l′) such that Mi = l′θ′′ = l′θ′′[lθ′′]p = lθ′′[A′

1]p.
Then, M̃i = l′[r]pθ′′, Pi = r′θ′′, Rm−1 � cθ′′ and Sn−1 � c′θ′′. Then,
there exists an CCP 〈u, v〉 ⇐ 〈d, d′〉 ∈ CCP(R,S), where u = l′[r]pσ,
v = r′σ, d = cσ and d′ = c′σ for the mgu σ of l′|p and l. Then, as
(l′θ′′)p = lθ′′, we have θ′′ = ρ ◦ σ for some ρ. Thus, Pi = r′θ′′ =
(r′σ)ρ = vρ, M̃i = l′[r]pθ′′ = (l′[r]pσ)ρ = uρ, Rm−1 � dρ, and Sn−1 �
d′ρ. Hence, by our critical pair condition (2), uρ ↪−→� Sn

◦ ∗
↪−→� S<n

s

and vρ
∗

↪−→� Rm
s for some s, and thus, by taking P̃i := sρ, we have

M̃i ↪−→� Sn
P̃ ′

i

∗
↪−→� S<n

P̃i and Pi
∗

↪−→� Rm
P̃i for some P̃ ′

i .

Suppose M̃i
C1,...,Cr̄

↪−→� Sn
P̃ ′

i . Let Γ ′ = {A′
i | ∃Cj .A

′
i ⊂ Cj} ∪ {Ci |

∃A′
j .Ci ⊆ A′

j}. Occurrences in Γ ′ are distinct, and for any C̃ ∈ Γ ′,
there exists A′

j (2 ≤ j ≤ q̄) such that C̃ ⊆ A′
j . Hence, |Γ ′| ≤
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Mi Pi

M̃i P̃i P̃i

Ni ◦ Q̃i Qi

Sn

Sn S<n

RmRm

Rm Rm Rm

Sn S<n S<n

CCP(1)

I.H. & Lemma 3I.H.

Mi

A1 ∗

C1, . . . , Cr̄

A2, . . . , Aq̄ ∗ ∗

∗

∗

∗

Mi Pi

M̃i Q̃i

Ni ◦ Qi

Sn

Sn

RmRm

Rm−1
Rm

Sn S<n

Lemma 4

I.H. & Lemma 3

Mi

A1 , . . . , Ar̄

∗ ∗

∗

Fig. 3. Case 2.(a).ii (left) and Case 2.(b) (right)

∑q̄
j=2 |A′

j | <
∑q̄

j=1 |A′
j | ≤ |Γ |. Thus, one can apply induction hypoth-

esis to obtain Q̃i such that Ni ↪−→� Sn
◦ ∗

↪−→� S<n
Q̃i and P̃ ′

i

∗
↪−→� Rm

Q̃i.
By applying induction hypothesis and Lemma 3 once again, we know
that there exists Qi such that Q̃

∗
↪−→� S<n

Qi
∗←−↩� Rm

P̃i.

(b) Case that A′
j

∗→Rm−1 Ã′
j for any A′

j ∈ X ′. Since Mi

A′
1,...,A′

q̄

↪−→� Rm
Ni

and A′
1, . . . , A

′
q̄ are parallel, one can rewrite A′

j ∈ Y ′ first. That is,

Mi

A′′
1 ,...,A′′

r̄
↪−→� Rm

M̃i
∗→Rm−1 Ni where Y ′ = {A′′

1 , . . . , A′′
r̄}. The proof of

this case is illustrated in Fig. 3 (right). Then, as each A′′
j is contained in

θ′, by Lemma 4, there exists Q̃ such that M̃i →Sn
Q̃ and Pi ↪−→� Rm

Q̃.
Furthermore, as →Sn

⊆ ↪−→� Sn
and ∗→Rm−1 ⊆ ∗

↪−→� Rm−1 , one can apply
induction hypothesis and Lemma 3 to Ni

∗←Rm−1 M̃i →Sn
Q̃ to obtain

Qi such that Ni ↪−→� Sn
◦ ∗

↪−→� S<n
Qi and Q̃

∗
↪−→� Rm

Qi.

Finally, from Lemma 2 we conclude that R and S are level-commutative. ��
A level-confluence criterion is obtained by taking R = S. Note that one can

use CCPout instead of CCP in the first condition, contrast to the commutativity
criterion, as the second condition implies the part for CCP in(R) of it.

Corollary 1. Let R be a left-linear, properly oriented, right-stable 3-CTRS. If
the following conditions are satisfied, then R is level-confluent:

1. for any 〈u, v〉 ⇐ 〈c, c′〉 ∈ CCPout(R), m,n ≥ 1 and substitution ρ, if cρ ⊆
∗→Rm−1 and c′ρ ⊆ ∗→Rn−1 then uρ −→� Rn

◦ ∗→R<n
◦ ∗←Rm

vρ, and
2. for any 〈v, u〉 ⇐ 〈c′, c〉 ∈ CCP in(R), m,n ≥ 1 and substitution ρ, if cρ ⊆

∗→Rm−1 and c′ρ ⊆ ∗→Rn−1 then vρ −→� Rm
◦ ∗→R<m

uρ.
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Example 1. Let R and S be the following CTRSs:

R =

⎧
⎨

⎩

p(x) → q(x)
r(x) → s(p(x))
s(x) → f(y) ⇐ p(x) ≈ y

⎫
⎬

⎭
S =

⎧
⎨

⎩

p(x) → r(x)
q(x) → s(p(x))
s(x) → f(y) ⇐ p(x) ≈ y

⎫
⎬

⎭

We have CCP(R,S) = {〈q(x), r(x)〉 ⇐ 〈∅, ∅〉} and CCP in(S,R) = ∅. Note that
the overlap of s(x) → f(y) ⇐ p(x) ≈ y ∈ R and s(x) → f(y) ⇐ p(x) ≈ y ∈ S
is not considered, as these rules are identical; the case 2.(a).i of the proof above
treats this case. Now, because we have q(x) →Sn

s(p(x)) and r(x) →Rm
s(p(x))

(n,m ≥ 1) the condition (1) of the Theorem 1 is satisfied. Other conditions of
the theorem are also satisfied. Thus, R and S are level-commutative. Similarly,
one can show R ∪ S is level-confluent.

Example 2. Take CTRSs R = R′ ∪ Rf and S = S ′ ∪ Rf such that

R′ =
{
p(x, y) → r(x, y) ⇐ x ≈ a
q(x, y) → p(x, y) ⇐ x ≈ a

}

S ′ =
{
p(x, y) → q(x, y) ⇐ y ≈ b
r(x, y) → p(x, y) ⇐ y ≈ b

}

and Rf = {f(0) → a, f(s(x)) → b ⇐ f(x) ≈ a, f(s(x)) → a ⇐ f(x) ≈ b}.
We have CCP(R,S) = { (a) : 〈r(x, y), q(x, y)〉 ⇐ 〈{x ≈ a}, {y ≈ b}〉, (b) :
〈a, b〉 ⇐ 〈{f(x) ≈ b}, {f(x) ≈ a}〉, (c) : 〈b, a〉 ⇐ 〈{f(x) ≈ a}, {f(x) ≈ b}〉}, and
CCP in(S,R) = ∅. For the CCP (a), let m,n ≥ 1 and ρ be any substitution, and
suppose that ρ(x) →Rm−1 a and ρ(y) →Sn−1 b. Then, we have r(ρ(x), ρ(y)) →Sn

p(ρ(x), ρ(y)) and q(ρ(x), ρ(y)) →Rm
p(ρ(x), ρ(y)). Also, note that there is no

term t such that t
∗→R b and t

∗→S a (or t
∗→R a and t

∗→S b). Thus, the
condition (1) of the Theorem 1 holds for CCPs (a)–(c). Other conditions of the
theorem are also satisfied. Thus, R and S are level-commutative. Similarly, one
can show R ∪ S is level-confluent.

Since TRSs can be regarded as CTRSs with no conditions and they are triv-
ially properly-oriented, right-stable, and of type 3, this theorem covers Propo-
sition 1. However, this does not mean our theorem broaden the scope of TRSs
that can be guaranteed to commute—because rewrite steps of TRSs are level
1 rewrite steps in CTRSs, our condition reduces to the one of Proposition 1 in
TRSs. Thus, when restricting to TRSs, Theorem 1 coincides Proposition 1.

On the other hand, Corollary 1 properly extends Proposition 2, as witnessed
by R ∪ S in Examples 1, 2.

4 Critical Pair Criteria for Join and Semi-Equational
CTRSs

In this section, we explore critical pair criteria for join and semi-equational
CTRSs, following our approach in the previous section.

First, let us fix additional notions and notations that will be used in this
section. A rewrite step of join CTRS R is defined via the following TRS Rn
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(n ∈ N), which are inductively given as follows: R0 = ∅, Rn+1 = {lσ → rσ | l →
r ⇐ c ∈ R, cσ ⊆ ∗→Rn

◦ ∗←Rn
}. For semi-equational CTRS R, we modify the

second clause as: Rn+1 = {lσ → rσ | l → r ⇐ c ∈ R, cσ ⊆ ∗↔Rn
}. Similarly to

the oriented case, a rewrite step s →R t of R is given as s →R t iff s →Rn
t for

some n, and the smallest n such that s →Rn
t is called the level of the rewrite

step s →R t. We write ↓Rn
(↓R) for the relation ∗→Rn

◦ ∗←Rn
(resp. ∗→R ◦ ∗←R).

In this section (except Subsect. 4.2), in order to distinguish three types of
CTRSs, we write Ro for an oriented CTRS, Rj for a join CTRS, and Rs for a
semi-equational CTRS. Similarly, notations Ro

n,Rj
n, . . . are employed. Notations

Ro
n � cσ (Rj

n � cσ, Rs
n � cσ) stands for cσ ⊆ ∗→Ro

n
(resp. cσ ⊆ ↓Rj

n
, cσ ⊆ ∗↔Rs

n
).

The following basic relations between rewrite relation on three types of
CTRSs on each level are essentially proved in [18, Lemmas 1 and 2].

Lemma 5. Let R be a CTRS. Then →Ro
n

⊆ →Rj
n

⊆ →Rs
n
for each n.

Notions of orthogonality, proper-orientedness and right-stability are syntax-
oriented, and their definitions remain same for other types of CTRSs. Note that
even under the conditions of proper-orientedness and right-stability, →Ro

n
=

→Rj
n

does not hold in general.

4.1 Level-Confluence of Join and Semi-Equational 3-CTRSs

In [14, Corollary 5.3], Proposition 2 is applied to show the corresponding class
of join CTRSs are level-confluent:

Proposition 3 ([14]). Let R be an orthogonal, properly oriented, right-stable
3-CTRS. Then Rj is level-confluent.

Given our Theorem 1, a natural question is whether a similar extension is
possible for our theorem. In this subsection, we give a partially positive answer
to this question—we generalize the result above to the level-confluence part
(Corollary 1) of our theorem, even though a similar extension does not work for
level-commutation. Indeed, we show that above proposition can be extended to a
more general setting of CTRSs where the orthogonality requirement is replaced
with level-confluence of Ro. Furthermore, the generalization is obtained not only
for join CTRSs but also for semi-equational CTRSs.

The next two lemmas are abstractions of the ones [14, Lemmas 5.1 and 5.2],
where the proofs remain almost the same.

Lemma 6. Let R be a properly oriented, right-stable 3-CTRS such that Ro is
level-confluent. Let l → r ⇐ s1 ≈ t1, . . . , sj ≈ tj ∈ R. If siσ ↓Ro

n−1
tiσ for any

1 ≤ i ≤ j then lσ ↓Ro
n

rσ.

Lemma 7. Let R be a properly oriented, right-stable 3-CTRS such that Ro is
level-confluent. If s →Rs

n
t then s ↓Ro

n
t.

Now we present the claimed result:
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Theorem 2. Let R be a properly oriented, right-stable 3-CTRS. If Ro is level-
confluent then Rj and Rs are level-confluent.

Proof. Let R be a properly oriented, right-stable 3-CTRS such that Ro is level-
confluent. Suppose t1

∗←Rj
n

s
∗→Rj

n
t2 (t1

∗←Rs
n

s
∗→Rs

n
t2). Then t1

∗←Rs
n

s
∗→Rs

n

t2 by Lemma 5. Thus, by Lemma 7, t1
∗↔Ro

n
t2. Hence, t1 ↓Ro

n
t2 follows by

the level-confluence of Ro. Using again Lemma 5, this implies t1 ↓Rj
n

t2 (resp.
t1 ↓Rs

n
t2). ��

Thus, Corollary 1 can be applied to show the level-confluence of join and
semi-equational CTRSs. Note here that the conditions of Corollary 1 is stated
in terms of →o

R not in that of →j
R or →s

R.

4.2 Commutation of Semi-Equational 3-CTRSs

A most fundamental ingredient of the proof presented (inherited from [14]) is to
use induction on the level of rewrite relation. It seems, however, applying this
approach for join and semi-equational CTRSs contains fundamental difficulty.
Without the induction on the level, what can we do within the parallel-closed
approach? In this subsection, we will exhibit one alternative approach for semi-
equational CTRSs.

In [1], it is reported that left-linear parallel-closed semi-equational 1-CTRSs
are confluent. By examining its proof detail, we can extend it to commutativity
of 3-CTRSs as follows. Below, notation R � cσ (etc.) stands for cσ ⊆ ∗↔R.

Theorem 3. Let R,S be semi-equational left-linear 3-CTRSs. Suppose the fol-
lowing conditions are satisfied:

1. for any 〈u, v〉 ⇐ 〈c, c′〉 ∈ CCP(R,S) and any substitution ρ, if R � cσ and
S � c′σ, then uρ −→� S ◦ ∗←R vρ, and

2. for any 〈v, u〉 ⇐ 〈c′, c〉 ∈ CCP in(S,R) and any substitution ρ, if R � cρ and
S � c′ρ, then vρ −→� R uρ.

Furthermore, assume −→� S ⊆ ∗↔R, −→� R ⊆ ∗↔S and R ∩ S is a 2-CTRS. Then,
R and S commute.

We remark that conditions −→� S ⊆ ∗↔R and −→� R ⊆ ∗↔S are used to close
nested peaks, and that the condition that R ∩ S is a 2-CTRS is required to
resolve for peaks obtained by the same rule.

Example 3. Let R and S be the following left-linear semi-equational 3-CTRSs:

R = {q(x, y) → p(y, x), p(x, y) → q(x′, y′) ⇐ x ≈ x′, y ≈ y′}
S = {p(x, y) → q(y, x), q(x, y) → p(x′, y′) ⇐ x ≈ x′, y ≈ y′}

By induction on the level n, one can show →Sn
⊆ ∗→Rn

and →Rn
⊆ ∗→Sn

.
Thus, conditions −→� S ⊆ ∗↔R are −→� R ⊆ ∗↔S are satisfied. Clearly, R ∩ S = ∅
is a 2-CTRS. We have CCP(R,S) = {〈q(x′, y′), q(y, x)〉 ⇐ 〈{x ≈ x′, y ≈
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y′}, ∅〉, {〈p(y, x), p(x′, y′)〉 ⇐ 〈∅, {x ≈ x′, y ≈ y′}〉} and CCP in(S,R) =
∅. Clearly, ρ(x) ∗↔R ρ(x′) and ρ(y) ∗↔R ρ(y′) imply p(ρ(x′), ρ(y′)) →R
q(ρ(y), ρ(x)), and ρ(x) ∗↔S ρ(x′) and ρ(y) ∗↔S ρ(y′) imply q(ρ(x), ρ(y)) ←S
p(ρ(y), ρ(x)). Thus, all conditions of the Theorem 3 are satisfied. Thus, R and
S commute.

Note the conditions −→� S ⊆ ∗↔R and −→� R ⊆ ∗↔S of Theorem 3 imply
∗↔R = ∗↔S , i.e. R and S have the same underlying logic.

5 Conclusion

We have given a critical pair criterion for ensuring level-commutativity of left-
linear properly-oriented right-stable oriented 3-CTRSs. Our result generalizes a
sufficient criterion for commutativity of left-linear TRSs of Toyama [16]. It also
properly extends level-confluence of orthogonal properly-oriented right-stable
oriented 3-CTRSs of Suzuki et al. [14]. We then have showed this result can be
applied to obtain a criterion for level-confluence of left-linear properly-oriented
right-stable join and semi-equational 3-CTRSs, generalizing a result of [14]. We
have also explored a similar but different approach of Aoto and Toyama [1] to
obtain a criterion for the commutation of semi-equational 3-CTRSs.

Wirth [17] also gave a criterion of level-confluence for possibly non-orthogonal
CTRSs that generalizes a sufficient criterion for confluence of left-linear TRSs
of [16]. He adapted the approach of [16] for a framework of join CTRSs. It also
incorporates some ideas of [14] so as to give the notions of (weak-)quasi-normal
CTRSs, etc. A critical key difference with the usual conditional rewriting such
as employed in our paper, however, is that the validity of conditions needs to
be satisfied under a kind of constructor discipline. This restriction considerably
simplifies proof arguments dealing with conditional parts, paying the penalty
of going apart from the standard framework. On the other hand, despite these
sharp differences on the underlying frameworks of ours and [17], interestingly,
the critical pair criterion of Theorem 3 and Wirth’s critical pair criterion ([17,
Definition 28]) resemble very much.

Over various formalisms of rewriting, considerable efforts have been spent on
automating confluence checks in recent years. Yearly competition2 of confluence
tools started in 2012; the category of CTRS has been also introduced in 2014. In
recent competitions, confluence of oriented 3-CTRSs, which our main theorem
deal with, has been focused in the category of CTRS. Known confluence tools for
CTRSs include CONFident [6], ConCon [13], CO3 [9] and ACP [2]. We note here
that all these tools fail to show confluence of R∪S of Example 23. Among these
tools (at least) ConCon and ACP incorporate checking of confluence criterion of
[14]. We have been working on the automation of our results, but it is yet under

2 http://project-coco.uibk.ac.at/.
3 Experimented for CoCo 2022 participants ACP, CO3, CONFident and a CoCo 2020
participant ConCon, via CoCoWeb [7].

http://project-coco.uibk.ac.at/
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development. Recent advances in confluence tools for CTRSs include automa-
tion of infeasibility checking [5]—we believe some approaches for automation of
infeasibility checking can be adapted for automation of our criterion.

Formalization by interactive theorem provers such as Isabelle/HOL, Coq,
PVS4, etc. have been of great interest in recent years. Formalization is also
indispensable for certification of results obtained by confluence tools. Regarding
for results of [14], a formalization in Isabelle/HOL has been reported by Ster-
nagel and Sternagel [12]. On the other hand, formalization of our results remains
completely as a future work.
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supported by JSPS KAKENHI No. 21K11750.
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