
Learning Proof Transformations and Its
Applications in Interactive Theorem

Proving

Liao Zhang1,2(B) , Lasse Blaauwbroek3 , Cezary Kaliszyk1,4 ,
and Josef Urban2

1 University of Innsbruck, Innsbruck, Austria
zhangliao714@gmail.com

2 Czech Technical University in Prague, Prague, Czech Republic
3 Institut des Hautes Etudes Scientifiques Paris, Paris, France

4 International Neurodegenerative Disorders Research Center,
Prague, Czech Republic

Abstract. Interactive theorem provers are today increasingly used to
certify mathematical theories. To formally prove a theorem, reasoning
procedures called tactics are invoked successively on the proof states
starting with the initial theorem statement, transforming them into sub-
sequent intermediate goals, and ultimately discharging all proof obliga-
tions. In this work, we develop and experimentally evaluate approaches
that predict the most likely tactics that will achieve particular desired
transformations of proof states. First, we design several characterizations
to efficiently capture the semantics of the proof transformations. Then
we use them to create large datasets on which we train state-of-the-art
random forests and language models. The trained models are evaluated
experimentally, and we show that our best model is able to guess the right
tactic for a given proof transformation in 74% of the cases. Finally, we
use the trained methods in two applications: proof shortening and tactic
suggesting. To the best of our knowledge, this is the first time that tac-
tic synthesis is trained on proof transformations and assists interactive
theorem proving in these ways.

Keywords: Interactive theorem proving · Machine learning · Neural
networks

1 Introduction

Interactive theorem provers (ITPs) [15] are sophisticated systems used for con-
structing machine-verified proofs. Various proof assistants, such as HOL4 [31],
HOL Light [14], Lean [23], Isabelle/HOL [24], and Mizar [3], are used by formal-
izers. Coq [33] is one of the most popular proof assistant systems. Coq formalizers
invoke reasoning procedures called tactics that transform proof states into sim-
pler proof states, eventually discharging all proof obligations and thus proving
the initial proof state.
c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 236–254, 2023.
https://doi.org/10.1007/978-3-031-43369-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_13&domain=pdf
http://orcid.org/0000-0002-4574-8843
http://orcid.org/0000-0003-2910-8069
http://orcid.org/0000-0002-8273-6059
http://orcid.org/0000-0002-1384-1613
https://doi.org/10.1007/978-3-031-43369-6_13

Learning Proof Transformations and Its Applications in ITP 237

Theorem rev_length : ∀ l : list nat, length (rev l) = length l.
Proof.

intros l. induction l as [| n l’ IHl’].
- reflexivity.
- simpl. rewrite → app_length. simpl. rewrite → IHl’.

rewrite add_comm. reflexivity.
Qed.

Fig. 1. A formal Coq proof, showing the equality property of the lengths of a list and
its reverse

To give a simple example, we show a Coq proof of the equality of the lengths of
a list and its reverse (Fig. 1). To complete the proof, one can perform induction
on the list l (with the help of the tactic induction l as [| n l’ IHl’]),
splitting the proof state into a case where l is empty and a case where l is
nonempty. In the first case, the goal reduces to length (rev []) = length
[], which is easily discharged using simple computation. In the second case, we
obtain the induction hypothesis IHl’ that states length (rev l’) = length
l’ and need to prove that the equation still holds when the original list has a
natural number n prepended to it. After some simplification, we transform the
length of the concatenation of two lists into the summation of their individual
lengths. Then, with the help of the induction hypothesis, we simplify the goal.
Finally, we rewrite the goal by the commutative property of addition and obtain
a simple equation to prove.

A Coq proof state consists of a list of hypotheses and a goal that needs
to be proven. Given a proof state before the tactic application, the tactic may
either transform the before state to several after states or finish the proof. The
semantic of a tactic is captured by the (usually infinite) set of proof state trans-
formations that can potentially be generated by that tactic. In this work, we
approximate that infinite set with a finite dataset of transformations that occur
in real proofs written by Coq users. We then use machine learning models to
gain an understanding of tactics using their approximated semantics.

As an example, Fig. 2 presents the before and after states of the tactic
rewrite add_comm at its position in Fig. 1. In this particular case, the hypothe-
ses remain unchanged, but in the goal, the two sides of the addition are swapped.

Fig. 2. The before and after states of rewrite add_comm in Fig. 1, with hypotheses
above the dashed line and the required goal below it.

238 L. Zhang et al.

In this paper, we consider the machine learning task of predicting a tactic
capable of generating a given proof state transformation and investigate the
applications of this task. Formally, given a before state ps and n after states
{ps′}1..n, we attempt to predict a tactic t that transforms ps to {ps′′}1..n such
that ps′

i is equal to ps′′
i modulo α-equivalence for every i.

1.1 Motivation

Tactic prediction methods have so far relied solely on before states, typically
to guide automated tactical proof search in systems like Tactician [6]. We are
interested in synthesizing tactics based both on the before and after states for a
number of reasons.

First, there are multiple interesting applications of this task. For example,
formalizers may want to arrive at a particular proof state, given a particular
initial proof state. Or, given particular before and after states that were gener-
ated with a sequence of tactics, we may want to find a single tactic capturing
the transformation, thus shortening and simplifying the proof, and teaching the
formalizer how to use the available tactics.

Second, our work is the first step to designing a novel human-like proof
search strategy. When mathematicians write pencil-and-pen proofs, they often
first imagine some intermediate goals and then sequentially fill in the gaps. This
provides another motivation: our trained predictors can recommend the tactics
that will bridge the gaps between such intermediate human-designed proof goals.

Third, the task can be of particular importance for the ITPs which support
constructing proofs in a declarative proof style, such as Isabelle, Mizar, and
Lean. In declarative-style proofs often the after states are specified by the user
manually. A large formal library, Mizar Mathematical Library [2], is developed
in a declarative style. The Isabelle Archive of Formal Proofs (one of the most
developed libraries today) is also predominantly written in a declarative style.
Our approach can be directly applied to predict tactics able to fill the gap
between two subsequent declarative statements.

Finally, the learned tactic embeddings could be used to perform MuZero-
style [30] reinforcement learning, which means obtaining the after states by com-
bining the embeddings of the before states and of the tactics without actually
running the ITP. This could be particularly useful when some tactic applications
require large computational resources.

1.2 Contributions

The main contributions of our paper can be summarized as follows.

1. To our best knowledge, we are the first to predict tactics based on the trans-
formation they make between before and after states.

2. In Sect. 2, to capture the semantics of tactics, we design three characteriza-
tions: feature difference, anti-unification, and tree difference.

Learning Proof Transformations and Its Applications in ITP 239

3. In Sect. 4, we conduct experiments to verify the strengths of our characteri-
zations with a random forests classifier and the GPT-2 language model.

4. In Sect. 5, we propose and evaluate two applications of the task, namely tactic
suggestion and proof shortening.

Besides the above-mentioned contributions, Sect. 3 introduces the preliminaries
of the learning technology used in this paper. We discuss two related research
fields in Sect. 6. The conclusions and future work are presented in Sect. 7.

2 Proof State Characterizations

To train the machine learning models, we need to provide characterizations of
the before and after states. Apart from directly using the unprocessed textual
representation of proof states, we design three characterizations: feature differ-
ence, anti-unification, and tree difference.

2.1 Feature Difference

To characterize the proof states, we start with the features used by [42]. In that
work, the features were used to apply machine learning to predict tactics for
proof states. For example, GOAL-$l’ and HYPS-Coq.Lists.List.rev-$l’ are
two features extracted from the before state in Fig. 2. The prefixes GOAL and
HYPS denote whether a feature belongs to the goal or the hypotheses. The sym-
bol $l’ denotes a node that occurs in the abstract syntax tree (AST) of the
proof state. The prefix $ means that l’ denotes a named variable. We sub-
sequently consider the nodes connected in the AST. For example, the feature
Coq.Lists.List.rev-$l’ means that the identifier of the reversion operation
of a list and the list l’ are connected in the AST.

For the current work, we additionally consider feature difference. From the
before state ps and after states {ps′}1..n, we extract features f and {f ′}1..n,
respectively using the procedure discussed above. We define f ′ as the union of
{f ′}1..n. By set difference, we compute the disappeared features f − f ′ and the
appearing features f ′ − f . The disappeared features and appearing features are
together used as feature difference characterization of the tactic.

2.2 Anti-unification

Anti-unification, first proposed by Plotkin [27] and Reynolds [29], aims to cal-
culate generalizations of the given objects. Since Coq is based on the Calculus
of Inductive Constructions (CIC) [25], an appropriate anti-unification algorithm
for Coq should be higher-order. However, higher-order anti-unification is unde-
cidable [26]. Therefore, we first convert Coq terms to first-order terms so that
we can execute a decidable and efficient first-order anti-unification algorithm.

To encode Coq terms into first-order logic, we transform them recursively
following the AST. First-order applications and constants are encoded directly,

240 L. Zhang et al.

State

Hyps

n

nat

l’

list

nat

IHl’

=

length

rev

l’

length

l’

Goal

=

+

Var0 Var1 S

length

l’

Fig. 3. The least general generalization of the before and after states in Fig. 2

other applications use the apply functor app and all other cases use special
first-order functions (e.g., a dependent product is encoded as a first-order func-
tion prod). The goal of the before state in Fig. 2 will be converted to the first-
order term = (+(length(l′), S(O)), S(length(l′))). The non-leaves =, +, length, S
denote function symbols. The leaves l′ and O denote constants.

Terms in first-order anti-unification are defined as t ::= x | a | f(t1, ..., tn)
where x is a variable, a is a constant, f is an n-ary function symbol, and t is
a term. In this paper, letters s, t, u denote terms, letters f, g, h denote function
symbols, letters a, b denote constants, and letters x, y denote variables. Substi-
tutions map variables to terms and are usually written in the form of sets. We
can represent a substitution σ as a set {x �→ σ(x) | x �= σ(x)} where σ(x)
is the term mapped by x. The application of a substitution σ to a term t is
represented as tσ. If t is a variable, then tσ = σ(t). If t = f(t1, ..., tn), then
tσ = f(t1σ, ..., tnσ). A term u is called a generalization of a term t if there exists
a substitution σ such that uσ = t. For instance, the term f(g(x), y) is a gener-
alization of the term f(g(a), h(a, b)). The substitution σ is {x �→ a, y �→ h(a, b)}
such that f(g(x), y)σ = f(g(a), h(a, b)).

Anti-unification aims to obtain the least general generalization (lgg) of two
terms s and t. A term u is called a generalization of s and t if there exist
substitutions σ1 and σ2 such that uσ1 = s ∧ uσ2 = t. A generalization u′ of s
and t is called the lgg if, for any generalization u of s and t, there is a substitution
σ, such that u′σ = u. Assuming φ is a bijective function from a pair of terms to
a variable, given two terms s and t, the anti-unification algorithm AU calculates
the lgg using the two rules below.
– AU(s, t) = f(AU(s1, t1), ..., AU(sn, tn)) if s = f(s1, ..., sn), t = f(t1, ..., tn)
– AU(s, t) = φ(s, t) if the preceding rule does not match.

Figure 3 presents the lgg of the before and after states considered in Fig. 2.
Compared to the before state, most of the nodes in the lgg remain the same.

Learning Proof Transformations and Its Applications in ITP 241

The differences stay in the left side of the equality in the goal: length l’ is
substituted with Var0, and the natural number 1 is substituted with Var1. We
need to apply the substitutions {var0 �→ length l′, var1 �→ 1} and {var0 �→
1, var1 �→ length l′} to the lgg to obtain the before and after states, respectively.

We compute the lggs of the goals and the hypotheses separately. We can
directly anti-unify the goals of the before and after states. However, the num-
ber of hypotheses may be changed by the tactic application. For instance, the
tactic intros introduces new hypotheses, while the tactic clear H removes the
hypothesis H. Suppose we are anti-unifying the hypotheses hyps(h1, ..., hn) and
hyps(h1, ..., hn, hn+1). The first rule of anti-unification immediately fails, and
the second rule will generate a variable that corresponds to all hypotheses in the
before state and all hypotheses in the after states. Therefore, anti-unifying all
hypotheses together prevents us from developing a compact characterization. To
calculate the lggs of hypotheses, we first match the hypotheses with the same
names. Then, we compute an lgg on each pair. We refer to the hypotheses that
are only in the before state and only in the after state as respectively deleted
hypotheses and inserted hypotheses. Different from the pairwise hypotheses, we
do not perform anti-unification on the deleted hypotheses and inserted hypothe-
ses, and they remain unchanged.

We choose anti-unification because it can generate a more compact repre-
sentation compared with directly utilizing the before and after states. Consider
Fig. 2, we need a Coq string of the before state and another Coq string of the
after state to characterize the transformation. Notice that many parts of the
before state are unchanged after the tactic application. It is redundant to repre-
sent these unchanged parts twice in both the before and after states. However,
anti-unification enables us to use a single lgg and the substitutions to character-
ize the transformation. The unchanged parts of the before and after states are
shared in the lgg. Moreover, previous research has demonstrated that features
based on generalization are very helpful for theorem proving [19].

2.3 Tree Difference

In addition to anti-unification, we propose a characterization based on a tree
difference algorithm [21]. Compared to anti-unification, tree difference is better
at generalizing the differences between the before and after states. Tree differ-
ence extends the standard Unix diff [16] algorithm by the capability to compute
the differences according to the tree structures. Since proof states have tree
structures, such tree differences can be used to characterize the transformations.

Take the before and after states in Fig. 2 for demonstration. First, for the
hypotheses that are the same in the before and after states, we keep them
unchanged. Therefore, the hypotheses n, l’, and IHl’ remain the same.

The next step is to extract common subtrees from the original trees (except
for the unchanged hypotheses) to obtain more compact characterizations. We
focus on the ASTs of Coq terms. Assuming there is an oracle to judge whether
the current subtree is a common subtree, we traverse a tree from the root. The
calculation of the oracle is explained in the original paper [21]. If the current

242 L. Zhang et al.

subtree is a common subtree and not a leaf node, we substitute it with a hole.
We do not substitute leaves with holes because, in practice, the substitutions of
leaves lead to many unexpected holes. The same common subtrees should always
be substituted with the same hole. The results of applying the substitutions to
the before and after states are called the deletion context and the insertion
context, respectively. After the substitutions, the deletion and insertion contexts
are shown in Fig. 4.

Afterward, we calculate the greatest common prefix (gcp) of the deletion and
insertion contexts and obtain a patch. According to the original algorithm, if the
two trees have the same non-hole node, we keep the node unchanged and execute
the algorithm on their children. Otherwise, we denote them as a change.

Fig. 4. The deletion and insertion contexts of the before and after states in Fig. 2.
Hole0, Hole1, and Hole2 denote length l’, 1, and S(length l’), respectively.

Fig. 5. The patch of the before and after states in Fig. 2

Learning Proof Transformations and Its Applications in ITP 243

Similar to anti-unification, due to the deletion, insertion, and reordering
of the hypotheses, we need to adjust the gcp algorithm for proof states. We
match hypotheses by their names and obtain the deleted hypotheses, inserted
hypotheses, and matched hypotheses as in Sect. 2.2. We only calculate gcps
on the matched hypotheses. The deleted hypotheses and inserted hypotheses
are represented as a change. Executing gcp on proof states returns a patch in
the format of state(hyps_patch, goal_patch) where hyps_patch is constructed
by hyps(h1, ..., hn, change(del_hyps, ins_hyps)). Each hi is the patch of two
matched hypotheses. Figure 5 depicts the patch of the before and after states in
Fig. 2.

Fig. 6. The result of applying the closure function to the patch in Fig. 5

Subsequently, we need to calculate the closure of a patch. The intention
is to confirm that every change is closed: the left and right sides contain the
same holes. Notice that the patch in Fig. 5 contains two unclosed changes,
Change(Hole0, Hole1) and Change(Hole1, Hole0). The closure function will
go to the subtree, whose root is the parent node of the unclosed change. Then,
restore the subtree with the deletion and insertion contexts before we exe-
cute gcp on them. The procedure repeats until all changes are closed. Since
the gcp function on proof states also returns a patch in a tree structure, we
can run the closure function on it. If any patch of matched hypotheses hi or
change(del_hyps, ins_hyps) are not closed, we restore the hyps_patch with
the original deletion and insertion contexts of the hypotheses. Then, if the
goal_patch or the deletion and insertion contexts of the hypotheses are not
closed, we restore the patch of the proof states with the entire deletion and
insertion contexts of the two proof states. Figure 6 depicts the patch after the
execution of the closure function.

244 L. Zhang et al.

The final step is to replace the identical changes with their origin term. The
original algorithm may cause identical changes, such as Change(Hole2, Hole2)
in Fig. 6. Since we want a compact characterization, they are not necessary.

Tree difference is better at generalizing the differences compared to anti-
unification. Take the example in Fig. 2 for instance. The lgg in Fig. 3 merely
shows that the proof state changes in the position of the variables. The substitu-
tions may be different if we execute rewrite add_comm on different proof states.
However, in the patch generated by the tree difference in Fig. 6, the changes are
generalized because we substitute common subterms with holes and will be the
same even if we execute rewrite add_comm on different proof states.

2.4 Input Formats

During training, the language model receives the string
<Characterization> Tactic: <Tactic> as input. <Characterization> has
four variations:

– Before:<Before State>
– Before:<Before State> After:[<After State>]
– Anti:[<Substs> <Delete_hyps> <Insert_hyps> <Lgg>]
– TreeDiff:[<Patch> <Hole>]

A proof state is represented as a sequent <Hyps> |- <Goal>. The plain texts
(like Tactic:) serve as prompts, while the placeholders (such as <Before State>
and <Tactic>) are substituted according to the proof context. [] denotes a list.
During prediction, the language model receives <Characterization> Tactic:
as input and outputs the predicted tactics.

Random forests are fed discrete features as input. For feature difference,
the disappeared features and appearing features are distinguished from each
other (appearing features and disappeared features as introduced in Sect. 2.1).
To utilize anti-unification, we convert the lgg and the terms in the substitution
that should be used to obtain the before and after states to features in three
disjoint spaces. For anti-unification, we also distinguish the features of deleted
hypotheses and inserted hypotheses from other ones. For tree difference, we
distinguish the gcp of the proof states, the origin and the destination of changes,
and the common subterms into four spaces.

3 Learning Models

We consider two machine learning models for the task. The models will be com-
pared experimentally in the next section.

The first model is a random forest classifier [7]. Random forests are based
on decision trees. In decision trees, leaves represent labels (tactics in our case),
and internal nodes correspond to features. A rule is a path from the root to
a non-leaf. It represents the conjunction of all features on the path. A rule is
determined by maximizing the information gain of examples. For instance, if we

Learning Proof Transformations and Its Applications in ITP 245

have examples with labels {b, b, b, a, a}, we want to generate a rule that passes
all examples with the label a to its left child and all examples with the label b
to its right child. A forest makes predictions by voting based on a large number
of decision trees. Random forests contain several sub-forests. Each sub-forest
is built on a random subset of the entire dataset. We choose a random forest
implementation that has previously been used to predict tactics for Coq [42].

The other used machine learning technique is the pre-trained language model
GPT-2 [28]. GPT-2 is based on neural networks, which consist of many artificial
neurons to learn from training data. The self-attention [35] technique is inten-
sively applied in GPT-2 to differentially weigh every part of the input data.
As a language model, GPT-2 predicts the probability distribution of the next
word given a sequence of words as the input. GPT-2 is a pre-trained language
model. The concept of pre-training imitates the learning process of humans.
When humans encounter a new task, humans do not need to learn it from
scratch. They will transfer and reuse their old knowledge to learn to solve it.
Similarly, GPT-2 is pre-trained on a large natural language dataset BooksCor-
pus [43]. Afterward, GPT-2 can reuse the knowledge of natural language learned
from pre-training to solve new tasks. To be adapted to a new task, we need to
fine-tune GPT-2 on a relatively small dataset and slightly modify the weights
learned from pre-training. We decide on GPT-2 because pre-trained language
models have recently demonstrated outstanding achievements in natural lan-
guage process (NLP) [8] and formal mathematics [34,39].

4 Experiments

We perform the experiments on the dataset extracted from the Coq standard
library. The dataset consists of 158, 494 states extracted from 11, 372 lemmas.
We randomly split the dataset into three subsets for training, validation, and
testing in an 80-10-10% ratio. First, we use 100 trees by default and opti-
mize the Gini Impurity [22]. Gini Impurity is a metric of the information gain.
After the optimization, we set the Gini Impurity to its best value, try various
numbers of trees and obtain the optimized number of trees. Finally, the best
combination of Gini Impurity and the number of trees is determined for each
characterization. The experiments with GPT-2 are based on the Hugging Face
library [38]. In particular, we employ the smallest GPT-2. The hyper-parameters
are: eta = 3e − 4, num_beams = 3, batch_size = 32. During training, we apply
a linear schedule with the first 20% training steps for warm-up. The remain-
ing parameters are left as their default values. At most 50 tokens are predicted
for a single tactic. We truncate the input on the left side if it is longer than
the maximal length limitation of GPT-2 (1024 tokens). Language models have
length limitations for efficiency. The attention mechanism used by them causes
a quadratic usage of memory as the length of tokens scales. Every model is
trained for 25 epochs on an NVIDIA V100 GPU, and the snapshot with the
highest accuracy on the validation dataset is selected for testing.

Table 1 depicts the results of our experiments. The accuracies of the combina-
tions of before states with after states are significantly better than only relying

246 L. Zhang et al.

Table 1. Results on the test dataset, showing how often the prediction makes the same
transformation as the tactic in the library. The transformations are considered modulo
α-equivalence.

random forests GPT-2
before 43.23% 46.84%
before after 52.17% 67.45%
feature difference 59.34% –
anti-unification 58.59% 71.74%
tree difference 58.98% 73.83%

on the before states in both random forests and GPT-2. Thus, we conclude
that taking after states into consideration is very helpful to learn the seman-
tics of tactics. The accuracies of GPT-2 are significantly higher than random
forests, which confirms that the pre-trained language model is a more advanced
machine learning technique compared to random forests. For random forests,
all of the feature difference, anti-unification, and tree difference perform better
than the unprocessed before and after states. This indicates that our character-
izations can extract more precise features for random forests. We do not apply
GPT-2 to feature differences, as it relies on natural language. In principle, it
would be possible to give it feature differences directly as input, but as there
are very few similarities between features and natural language it would be a
serious disadvantage to the model. The knowledge grasped by pretraining is dif-
ficult to be used to understand features. Although feature difference is a little
better than anti-unification and tree difference, their results are quite similar.
The probable explanation is that random forests are not good at learning from
sophisticated features. Random forests cannot learn meaningful knowledge from
all three characterizations and almost only learn to make correct predictions for
the simple tactics. Similarly, with GPT-2, anti-unification and tree difference
provide more accurate predictions than the unprocessed before and after states.
We suppose the explanation is that we are able to appropriately shorten the
length of the input and also keep important information about the proof trans-
formation. Appropriately shortening the input length is beneficial for GPT-2
because it has a maximal limitation on the number of input tokens. Table 2
compares the percentages of the inputs that are longer than the maximal length
limitation. The statistics show that our implementation significantly reduces the
probability that the input is over the maximal length limitation. Tree difference
can provide more accurate predictions compared to anti-unification with both
random forests and GPT-2. This may be attributed to that the generalization
made by tree difference is easier to learn by machine learning models.

Learning Proof Transformations and Its Applications in ITP 247

Table 2. The ratios of how many inputs exceed the maximal length limitation

before before after anti-unification tree difference
ratio 2.07% 7.96% 4.07% 3.90%

5 Applications

In this section, we propose two promising applications of the task. We only
evaluate the most accurate of the methods proposed in the previous Sect. 4
(GPT-2) on the two tasks.

The first, more direct application, is making tactic suggestions. Given a before
state, it is common for an ITP user to have an intuition of the intermediate proof
states that are necessary to complete the proof. However, sometimes the user
cannot guess the appropriate tactic needed to make the transformations. Using
our model with the before state and the imagined intermediate states, the user
can get a complete proposed proof as output. Hence, our model will predict the
likely tactics to perform the transformations.

The other application is shortening existing Coq proofs. Specifically, for the
transformation ps0 ⇒t0 ps1 ⇒t1 ps2... ⇒tn psn+1, where ps is a proof state and
t is a tactic, we want to predict a tactic t′ such that ps0 ⇒t′ ps′ where ps′ and
psn+1 are equal under α-equivalence. Thus, we can replace the tactic sequence
with a single tactic and decrease the length of the Coq proof. A restriction for this
task is that because we are only interested in exploring shorter paths between
proof states, psn+1 should not be a finishing state.

Table 3. The first five tactics suggested by each characterization. The tactics displayed
in bold result in the desired after states.

before before after anti-unification tree difference
1 trivial rewrite <- minus_n_O rewrite <- minus_n_O rewrite sub_0_r
2 simpl rewrite sub_0_r rewrite Nat.sub_0_r rewrite Nat.sub_0_r
3 rewrite <- minus_n_O rewrite<− minus_n_0 simpl simpl
4 rewrite<− plus_n_O simpl rewrite sub_0_r rewrite<− sub_0_r
5 auto rewrite<− sub_0_r rewrite<− plus_n_O apply sub_0_r

5.1 Tactic Suggestion

We view the experiments in Sect. 4 as the evaluation of tactic suggestions. The
before and after states extracted from the Coq standard library are considered
as the states that are presented in the Coq editor and those in users’ minds,
respectively. The results show that taking the after states into consideration,
together with the more compact characterization, is essential for correctly sug-
gesting tactics.

248 L. Zhang et al.

The following is an actual tactic suggestion question taken from the Coq
Discourse Forum1. The question can be summarized as finding a tactic that
transforms the following before state to the after state. The goal of the before
state is to prove that the element indexed by m − 0 in a list equals the element
indexed by m.

– Before state: l : list nat, x:nat, m : nat, H0 : 1 <= m |- nth
(m - 0) l 0 = nth m l 0

– After state: l : list nat, x:nat, m : nat, H0 : 1 <= m |- nth m l
0 = nth m l 0

Table 3 shows the first five tactics predicted by each model. If we consider only
the before state, we will obtain the correct prediction in the third place. However,
the first two synthesized tactics using anti-unification, tree difference as well as
unprocessed before and after states are appropriate. Besides the tactics displayed
in bold, other tactics do not perform the expected transformation due to various
reasons. Some tactics such as trivial, simpl, and auto do not change the proof
state. The tactics rewrite <- plus_n_O and apply sub_0_r are not applicable
and cause errors. The lemma minus_n_0 used in rewrite <- minus_n_0 does
not exist in the Coq standard library. Although rewrite <- sub_0_r does not
cause an error, it leads to an unexpected after state l : list nat, x:nat, m :
nat, H0 : 1 <= m |- nth (m - 0) l 0 = nth m l 0 - 0. Since the opera-
tions executed by trivial, simpl, and auto are quite complicated and may
depend on the context, we assume it is difficult for the model to comprehen-
sively understand them. Their occurrences in the first five predictions may be
mainly because they occur quite frequently in the training data. The results
confirm that the combination of before and after states is beneficial for suitably
suggesting tactics.

5.2 Shortening Proofs

The results presented in the previous Sect. 4 focused on decomposed tactics. This
means compound tactic expressions that perform several steps at once have been
decomposed into individual tactic invocations. We apply the technique that is
developed by [5] to decompose the tactics. Here, we utilize the same models;
however, we focus on the original human-written tactics and try to shorten
these (shortening expanded tactics would be unfair). For all tactic sequences of
lengths two and three in the training dataset, we input their before and after
states into the model. In our experiment, we can only consider the states in
the training dataset since our model is trained on all present tactics. Compared
to the validation dataset and testing dataset, our model should be able to give
better predictions on proof shortening for the training dataset. The amount of
original tactics in the training dataset is 56,788. The model synthesizes 10 tactics
for each sequence, and we execute them in Coq to verify that they perform the
same transformation as the sequence modulo α-equivalence.
1 https://coq.discourse.group/t/how-to-avoid-awkward-assertions/1153/2.

https://coq.discourse.group/t/how-to-avoid-awkward-assertions/1153/2

Learning Proof Transformations and Its Applications in ITP 249

Table 4. The shortening ratios and amounts of redundant tactics with different char-
acterizations and sequence lengths.

length before before after anti-unification tree difference
2 ratio 0.379% 0.824% 0.891% 0.833%

number 215 468 506 473
3 ratio 0.039% 0.148% 0.151% 0.148%

number 22 84 86 84

The results are presented in Table 4. We define the number of redundant
tactics of ps0 ⇒t0 ps1 ⇒t1 ps2... ⇒tn psn+1 as n. The shortening ratio is defined
as the number of all discovered redundant tactics divided by the total number
of occurrences of tactics in the training dataset. In this section, our method
only applies to a tactic sequence that, besides the last tactic, every intermediate
tactic produces a single after state. While in Sect. 4, our experiments apply to
tactic applications that may produce several after states. The reason is that it
is difficult to calculate the number of redundant tactics if intermediate tactics
produce several after states. The tactic sequence will become a tree of tactics,
and each path consists of a sequence of tactics. We initially expected that the
shortening ratios would not be very high because of the selected dataset. Indeed,
the Coq standard library is written by Coq experts and has been edited and
improved for decades, so we expected that there is not much room to improve.
However, given the size of the dataset, the proposed technique can find a number
of redundant tactics, which lets us conclude that taking the after states into
consideration is useful for proof shortening.

We discover many interesting cases, where proofs can be optimized. We
present two examples of such proofs in Table 5. The first is about the Riemann
integral where ring and field denote algebraic structures. The Coq user first
substituted a subterm in the proof state, rewrote the goal by several lemmas,
and finally applied a lemma about rings. However, our model discovers the non-
trivial transformation on ring can be completed with a single transformation in
field.

In the second example, the Coq library authors first applied the lemma
Qle_lteq to transform the goal into a disjunction. Later, they selected the left
side of the disjunction to continue the proof. Our model is able to figure out that
the operation is redundant. Indeed it finds another lemma Qlt_le_weak that is
able to immediately transform the goal to the left part of the disjunction.

In addition to such more impressive examples of simpler, shorter proofs, our
model is also able to find a few abbreviations. Such abbreviations make the proof
shorter but do not necessarily improve their readability. For instance, our model
sometimes combines unfold Un_growing and intro into intros x y P H n. It
uses the implicit mechanism of intros to unfold Un_growing. However, a Coq
user will not be able to understand what operation intros x y P H n conducts
without actually executing the Coq script.

250 L. Zhang et al.

Table 5. Two examples of shortening of proofs using the prediction. In both of the
presented cases, a single tactic provides an equivalent transformation as a sequence of
tactics. Since the hypotheses are not changed in any of the presented examples, we
omit them and only present the goals for simplicity.

1 field makes the same transformation as
(Tactic1. Tactic2.)

State 1 = (x - (x + h0)) * - / h0

Tactic1 replace (x - (x + h0)) with (- h0); [|
ring]

State 1 = - h0 * - / h0

Tactic2 rewrite Ropp_mult_d istr_l_reverse;
rewrite Ropp_mult_distr_r_reverse;
rewrite Ropp_involutive; apply Rinv_r_sym

State h0 <> 0

2 apply Qlt_le_weak makes the same
transformation as (Tactic1. Tactic2.)

State (Qabs (xn p - yn q) <= 1 # z * k)%Q

Tactic1 apply Qle_lteq

State (Qabs (xn p - yn q) < 1 # z * k)%Q ∨
(Qabs (xn p - yn q) == 1 # z * k)%Q

Tactic2 left

State (Qabs (xn p - yn q) < 1 # z * k)%Q

6 Related Work

Several problems originating in formal mathematics and theorem proving have
been considered from the machine learning point of view. One of the most
explored ones is premise selection [1]. The goal of this task is to find lemmas
in a large library, that are most likely to prove a given conjecture. For premise
selection, the meaning of dependency in formal mathematics has been explored
using both approaches that try to explicitly define the logical semantics [19],
as well as approaches that use deep learning for this [36]. Next, it is possible
to apply machine learning to guide inference-based theorem provers. As part of
this task, implicitly the meaning of provability and step usefulness are derived
by the learning methods. This has been explored in the two top-performing first-
order theorem provers [17,32] as well as in higher-order logic automated theorem
proving [10]. Similarly, the meaning of the usefulness of a proof step has been
considered, for example as part of the HOLStep [18], where various machine
learning methods try to predict if particular inferences are needed in a proof.
All these tasks are different from the task that we propose in the current paper.

Various proof automation systems have emerged to construct proofs by tac-
tic prediction and proof search. SEPIA infers tactics for Coq by tactic trace
and automata [13]. TacticToe [12] and Tactician [5,42] apply classical statistical

Learning Proof Transformations and Its Applications in ITP 251

learning techniques such k-nearest neighbors [9] and random forests [7] to gen-
erate tactic predictions based on the before states. Several systems use neural
networks for the same task, e.g. HOList [4], CoqGym [41], and Lime [40]. These
are all different from the current work that considers the after states as well.

Autoformalization [20] is a machine translation task applied to formal mathe-
matical proofs. The accuracy of the best methods applied to the task is still very
weak in comparison with human formalization [37], however, the neural methods
already show some minimal understanding of the meaning of formalization, for
example by finding equivalent formulations. Again this is a different task from
the one considered in the current work.

7 Conclusion

In this paper, we propose a new machine learning task, with which we aim to cap-
ture the semantics of tactics in formal mathematics. Based on a dataset of almost
160 thousand proof states we consider synthesizing a tactic that transforms a
before state to the expected after states. We implement three novel character-
izations to describe the transformation: feature difference, anti-unification, and
tree difference. The results of the experiments confirm the effectiveness of our
characterizations. Two applications of the task are discussed: tactic suggestion
for declarative proofs and proof shortening.

In the future, we will investigate if tactic embeddings can be used directly.
We can also try to estimate the after states by calculating the embeddings of
the before state and the tactic or align tactics between systems in a similar way
to how concepts are already aligned between systems [11].

Acknowledgements. This work was partially supported by the ERC Starting Grant
SMART no. 714034, the ERC Consolidator grant AI4REASON no. 649043, the
European Regional Development Fund under the Czech project AI&Reasoning no.
CZ.02.1.01/0.0/0.0/15_003/0000466, the Cost action CA20111 EuroProofNet, the
ERC-CZ project POSTMAN no. LL1902, Amazon Research Awards, and the EU ICT-
48 2020 project TAILOR no. 952215.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning
52(2), 191–213 (2013). https://doi.org/10.1007/s10817-013-9286-5

2. Bancerek, G., et al.: The role of the Mizar mathematical library for interactive
proof development in Mizar. J. Autom. Reasoning 61, 9–32 (2018)

3. Bancerek, G., et al.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette, J.,
Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp.
261–279. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_17

4. Bansal, K., Loos, S., Rabe, M., Szegedy, C., Wilcox, S.: HOList: an environment
for machine learning of higher order logic theorem proving. In: International Con-
ference on Machine Learning, pp. 454–463. PMLR (2019)

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/978-3-319-20615-8_17

252 L. Zhang et al.

5. Blaauwbroek, L., Urban, J., Geuvers, H.: Tactic learning and proving for the Coq
proof assistant. In: Albert, E., Kovács, L. (eds.) LPAR 2020: 23rd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC,
vol. 73, pp. 138–150. EasyChair (2020). https://doi.org/10.29007/wg1q

6. Blaauwbroek, L., Urban, J., Geuvers, H.: The Tactician. In: Benzmüller, C., Miller,
B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 271–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53518-6_17

7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
8. Brown, T., et al.: Language models are few-shot learners. Adv. Neural Inf. Process.

Syst. 33, 1877–1901 (2020)
9. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst.

Man Cybern. 4, 325–327 (1976)
10. Färber, M., Brown, C.: Internal guidance for Satallax. In: Olivetti, N., Tiwari, A.

(eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 349–361. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1_24

11. Gauthier, T., Kaliszyk, C.: Aligning concepts across proof assistant libraries. J.
Symbolic Comput. 90, 89–123 (2019). https://doi.org/10.1016/j.jsc.2018.04.005

12. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: TacticToe: Learning
to prove with tactics. J. Autom. Reasoning 65(2), 257–286 (2021)

13. Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using inferred
automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 246–255. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21401-6_16

14. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

15. Harrison, J., Urban, J., Wiedijk, F.: History of interactive theorem proving. In:
Computational Logic, Handbook of the History of Logic, vol. 9, pp. 135–214. Else-
vier (2014)

16. Hunt, J.W., MacIlroy, M.D.: An algorithm for differential file comparison. Bell
Laboratories Murray Hill (1976)

17. Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6_20

18. Kaliszyk, C., Chollet, F., Szegedy, C.: HolStep: a machine learning dataset for
higher-order logic theorem proving. In: ICLR 2017, OpenReview.net (2017)

19. Kaliszyk, C., Urban, J., Vyskocil, J.: Efficient semantic features for automated
reasoning over large theories. In: Yang, Q., Wooldridge, M.J. (eds.) IJCAI 2015,
pp. 3084–3090. AAAI Press (2015)

20. Kaliszyk, C., Urban, J., Vyskočil, J.: Automating formalization by statistical and
semantic parsing of mathematics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP
2017. LNCS, vol. 10499, pp. 12–27. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66107-0_2

21. Miraldo, V.C., Swierstra, W.: An efficient algorithm for type-safe structural diffing.
Proc. ACM Program. Lang. 3(ICFP), 1–29 (2019)

22. Mitchell, T.M., Mitchell, T.M.: Machine Learning, vol. 1. McGraw-hill, New York
(1997)

23. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean
theorem prover (System Description). In: Felty, A.P., Middeldorp, A. (eds.) CADE

https://doi.org/10.29007/wg1q
https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/10.1007/978-3-319-40229-1_24
https://doi.org/10.1016/j.jsc.2018.04.005
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/978-3-319-66107-0_2
https://doi.org/10.1007/978-3-319-66107-0_2

Learning Proof Transformations and Its Applications in ITP 253

2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_26

24. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): 5. the rules of the game. In:
Isabelle/HOL. LNCS, vol. 2283, pp. 67–104. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9_5

25. Paulin-Mohring, C.: Introduction to the calculus of inductive constructions (2015)
26. Pfenning, F.: Unification and anti-unification in the calculus of constructions. In:

LICS, vol. 91, pp. 74–85 (1991)
27. Plotkin, G.D.: A further note on inductive generalization. Mach. Intell. 6, 101–124

(1971)
28. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language

models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)
29. Reynolds, J.C.: Transformational systems and algebraic structure of atomic for-

mulas. Mach. Intell. 5, 135–151 (1970)
30. Schrittwieser, J., et al.: Mastering atari, go, chess and shogi by planning with a

learned model. Nature 588(7839), 604–609 (2020)
31. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,

Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7_6

32. Suda, M.: Vampire with a brain is a good ITP hammer. In: Konev, B., Reger,
G. (eds.) FroCoS 2021. LNCS (LNAI), vol. 12941, pp. 192–209. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86205-3_11

33. The coq development team: Coq reference manual 8.11.1 (2020). https://coq.
github.io/doc/v8.11/refman/index.html

34. Urban, J., Jakubův, J.: First neural conjecturing datasets and experiments. In:
Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 315–
323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_24

35. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

36. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by
deep graph embedding. In: Advances in Neural Information Processing Systems,
vol. 30 (2017)

37. Wang, Q., Brown, C.E., Kaliszyk, C., Urban, J.: Exploration of neural machine
translation in autoformalization of mathematics in Mizar. In: Blanchette, J.,
Hritcu, C. (eds.) Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2020. pp. 85–98. ACM (2020). https://
doi.org/10.1145/3372885.3373827

38. Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771 (2019)

39. Wu, Y., et al.: Autoformalization with large language models. arXiv preprint
arXiv:2205.12615 (2022)

40. Wu, Y., Rabe, M.N., Li, W., Ba, J., Grosse, R.B., Szegedy, C.: Lime: Learning
inductive bias for primitives of mathematical reasoning. In: International Confer-
ence on Machine Learning, pp. 11251–11262. PMLR (2021)

41. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: International Conference on Machine Learning, pp. 6984–6994. PMLR
(2019)

42. Zhang, L., Blaauwbroek, L., Piotrowski, B., Černỳ, P., Kaliszyk, C., Urban, J.:
Online machine learning techniques for Coq: a comparison. In: Kamareddine,
F., Sacerdoti Coen, C. (eds.) CICM 2021. LNCS (LNAI), vol. 12833, pp. 67–83.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81097-9_5

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-030-86205-3_11
https://coq.github.io/doc/v8.11/refman/index.html
https://coq.github.io/doc/v8.11/refman/index.html
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1145/3372885.3373827
https://doi.org/10.1145/3372885.3373827
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2205.12615
https://doi.org/10.1007/978-3-030-81097-9_5

254 L. Zhang et al.

43. Zhu, Y., et al.: Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 19–27 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Learning Proof Transformations and Its Applications in Interactive Theorem Proving
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Proof State Characterizations
	2.1 Feature Difference
	2.2 Anti-unification
	2.3 Tree Difference
	2.4 Input Formats

	3 Learning Models
	4 Experiments
	5 Applications
	5.1 Tactic Suggestion
	5.2 Shortening Proofs

	6 Related Work
	7 Conclusion
	References

