
Uli Sattler
Martin Suda (Eds.)

 123

LN
AI

 1
42

79

14th International Symposium, FroCoS 2023
Prague, Czech Republic, September 20–22, 2023
Proceedings

Frontiers of
Combining Systems

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14279
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Uli Sattler · Martin Suda
Editors

Frontiers of
Combining Systems
14th International Symposium, FroCoS 2023
Prague, Czech Republic, September 20–22, 2023
Proceedings

Editors
Uli Sattler
University of Manchester
Manchester, UK

Martin Suda
Czech Technical University in Prague
Prague, Czech Republic

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-43368-9 ISBN 978-3-031-43369-6 (eBook)
https://doi.org/10.1007/978-3-031-43369-6

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-43369-6
http://creativecommons.org/licenses/by/4.0/

Preface

These proceedings contain the papers selected for presentation at the 14th International
Symposium on Frontiers of Combining Systems (FroCoS 2023). The symposium was
held during September 20–22, 2023 at Czech Technical University in Prague (CTU),
CzechRepublic. It was co-locatedwith the 32nd International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2023).

FroCoS is themain international event for research on the development of techniques
andmethods for the combination and integration of formal systems, their modularization
and analysis. Previous FroCoS meetings have been organized across the world, since
1996; see Figures 1 and 2 for a global and a European view of the locations of past and
present meetings.

Fig. 1. A global map showing locations of past and current FroCoS meetings

FroCoS 2023 received 22 high-quality paper submissions, which were evaluated by
the members of the Program Committee who did a great job at thoroughly evaluating
these submissions regarding their technical and presentational quality and providing
helpful feedback to the authors. Reviewing was single-blind and each paper was subject
to at least three reviews, followedby sometimes extensive discussionswithin theProgram
Committee and, in three cases, a second round of reviewing. In the end, 14 papers were
selected for presentation at the symposium and for publication.We have grouped them in
this volume according to the following topic classification: (1) analysis of programs and
equations, (2) unification, (3) decidable fragments, (4) frameworks, and (5) higher-order
theorem proving.

Together with the Program Committee, we considered suitable candidates to give an
invited talk, and were delighted to have found five outstanding invited speakers:

vi Preface

Fig. 2. A Europe-centric map showing locations of past and current FroCoS meetings in Europe
and Asia

– Marta Bílková, Czech Academy of Sciences, Czechia (joint with TABLEAUX 2023)
– Chad E. Brown, Czech Technical University in Prague, Czechia (joint with

TABLEAUX 2023)
– Valentin Goranko, Stockholm University, Sweden (joint with TABLEAUX 2023)
– Katalin Fazekas, TU Wien, Austria
– Yoni Zohar, Bar-Ilan University, Israel

We would like to thank all the people who contributed to making FroCoS 2023 a
success. In particular, we thank the members of the Program Committee and the external
reviewers for their excellent, timely work and for providing the authors with insightful
feedback. Of course we thank the authors for submitting high-quality papers, taking the
reviewers’ feedback into account, and presenting their work in a way that is accessible to
the broad FroCoS audience. Next, we thank the invited speakers for their inspiring talks.
Moreover, we thank the local organisers and the Czech Technical University in Prague
for organising and supporting FroCoS. Finally, we gratefully acknowledge financial
support from Springer.

July 2023 Uli Sattler
Martin Suda

Organization

Program Committee Chairs

Uli Sattler University of Manchester, UK
Martin Suda Czech Technical University in Prague,

Czech Republic

Steering Committee

Franz Baader Dresden University of Technology, Germany
Clare Dixon University of Manchester, UK
Marcelo Finger University of São Paulo, Brazil
Andreas Herzig Université Paul Sabatier in Toulouse, France
Boris Konev University of Liverpool, UK
Andrei Popescu University of Sheffield, UK
Giles Reger Amazon Web Services, USA & University of

Manchester, UK

Program Committee

Carlos Areces Universidad Nacional de Córdoba, Argentina
Alessandro Artale Free University of Bolzano-Bozen, Italy
Franz Baader TU Dresden, Germany
Haniel Barbosa Universidade Federal de Minas Gerais, Brazil
Peter Baumgartner CSIRO Canberra, Australia
Clare Dixon University of Manchester, UK
Mathias Fleury University of Freiburg, Germany
Didier Galmiche LORIA, Université de Lorraine, France
Silvio Ghilardi Università degli Studi di Milano, Italy
Jürgen Giesl RWTH Aachen University, Germany
Andreas Herzig IRIT at Université Paul Sabatier, France
Roman Kontchakov Birkbeck, University of London, UK
Paliath Narendran University at Albany - SUNY, USA
Aina Niemetz Stanford University, USA
Naoki Nishida Nagoya University, Japan

viii Organization

Giles Reger Amazon Web Services, USA & University of
Manchester, UK

Andrew Reynolds University of Iowa, USA
Christophe Ringeissen LORIA, Université de Lorraine, France
Philipp Rümmer University of Regensburg, Germany
Renate A. Schmidt University of Manchester, UK
Roberto Sebastiani University of Trento, Italy
Viorica Sofronie-Stokkermans University of Koblenz, Germany
K. Subramani West Virginia University, USA
Dmitriy Traytel University of Copenhagen, Denmark
Christoph Weidenbach Max Planck Institute for Informatics, Germany
Piotr Wojciechowski West Virginia University, USA
Akihisa Yamada AIST, Japan

Local Organisers

Karel Chvalovský Czech Technical University in Prague,
Czech Republic

Jan Jakubův Czech Technical University in Prague,
Czech Republic

Martin Suda Czech Technical University in Prague,
Czech Republic

Josef Urban Czech Technical University in Prague,
Czech Republic

Cezary Kaliszyk University of Innsbruck, Austria

Additional Reviewers

Daniel Cloerkes RWTH Aachen University, Germany
Jan-Christoph Kassing RWTH Aachen University, Germany
Nao Hirokawa JAIST, Japan
Hans-Jörg Schurr University of Iowa, USA
Karel Chvalovský Czech Technical University in Prague,

Czech Republic
Boris Konev Liverpool University, UK
Madalina Erascu West University of Timisoara, Romania

Abstracts of Invited Talks

Incremental Reasoning in Embedded SAT Solvers

Katalin Fazekas

TU Wien, Austria

Abstract. Embedding SAT solvers as sub-reasoning engines into more
complex tools is a common practice in various application domains. For
instance, SAT-basedmodel checkers exploit modern solvers as black-box
oracles, while solvers for Satisfiability Modulo Theories (SMT), Maxi-
mum Satisfiability (MaxSAT) or other combinatorial problems combine
SAT solverswith various reasoning or optimization engines. Such embed-
ded SAT solvers are used incrementally in most cases, i.e., the exact same
SAT solver instance is reused to solve multiple related SAT queries. The
goal of incremental reasoning is to exploit the shared constraints between
consecutive SAT queries and thereby avoid repeated work and reduce
solving time.

In this talk, first we briefly survey the functionalities supported by
IPASIR, the standard API of incremental SAT solvers, which integrates
solvers as black-boxes into larger systems. Then, we present our recently
proposed extension to that interface which allows us to modify and refine
SATqueries already during solving and thereby to benefit from incremen-
tal reasoning even more. The proposed extension, as we demonstrate by
our experiments, captures the most essential functionalities that are suffi-
cient to simplify and improve use caseswhere amore fine-grained interac-
tion between the SAT solver and the rest of the system is required.Wewill
present our experiments where we extended CaDiCaL, a state-of-the-art
incremental SAT solver, with our proposed interface and evaluated it on
two representative use cases: enumerating graphs within the SATmodulo
Symmetries framework (SMS), and embedding it as the main CDCL(T)
SAT engine in the SMT solver cvc5. Following that, we overview the key
open challenges in such use cases to efficiently combine some complex
crucial features of modern SAT solvers, such as inprocessing and proof
production, with incremental reasoning. At the end, we briefly present
possible ways to address some of these challenges.

This is a joint work with Aina Niemetz, Mathias Preiner, Markus
Kirchweger, Stefan Szeider, and Armin Biere.

https://orcid.org/0000-0002-0497-3059

On Datatypes, Synergies, and Unicorns: Recent
Developments in Theory Combination

Yoni Zohar

Bar-Ilan University, Israel

Abstract. A Satisfiability Modulo Theories (SMT) solver is a tool that
takes as input a first-order formula, and determines its T-satisfiability,
that is, the existence of a first-order structure that satisfies it, as well as
the axioms of some first-order theory T. Some theories are considered
primitive, such as the theories of integers, reals, arrays, and lists. Other
theories are considered combined, as they are obtained by the combina-
tion of existing theories. Examples include the theory of arrays of integers,
or of lists of reals.

Now, assume that you have an SMT solver that supports two theories.
How hard would it be to extend it so that it supports their combination?
The classical answer to this question was given by Nelson-Oppen. They
designed a decision procedure for a given combined theory by first puri-
fying the input formula to two parts, one for each theory; then guessing
equalities and disequalities between the shared variables of the two parts;
and finally calling the two decision procedures for the separate theories on
the part of the purified formula that is relevant to them, plus the guessed
set of (dis)equalities.

The correctness of this combination method requires the two com-
bined theories to be stably infinite, a model theoretic property related to
the existence of infinite models. However, not all theories of interest are
stably infinite. (For example, the theory of fixed-size bit-vectors is not.)

This state of affairs led to the development of various other com-
bination methods that rely on various model theoretic notions, such as
shiny, gentle, and polite theories. For each combination method, the cor-
responding properties of the theories need to be proven in order to be
used with that method. And indeed, various theories have been shown to
admit such properties.

In this talk I will survey recent results in the field of theory combi-
nation. First, I will sketch a proof that theories of datatypes (e.g., lists,
trees) can be combined with any other theory, using the polite combina-
tion method. Next, I will show how the original Nelson-Oppen method

https://orcid.org/0000-0002-2972-6695

xiv Y. Zohar

can be integrated together with the polite combination method in a syner-
geticway that reduces the number of guesses one needs tomake. Finally, a
taxonomy of various model theoretic properties from theory combination
will be presented, where the properties will be analyzed and compared.
This will include the description of open problems which relate to a
certain kind of theories (that are called “unicorns”).

Contents

Analysis of Programs and Equations

Targeting Completeness: Using Closed Forms for Size Bounds of Integer
Programs . 3

Nils Lommen and Jürgen Giesl

Recurrence-Driven Summations in Automated Deduction 23
Visa Nummelin, Jasmin Blanchette, and Sander R. Dahmen

Formal Verification of Bit-Vector Invertibility Conditions in Coq 41
Burak Ekici, Arjun Viswanathan, Yoni Zohar, Cesare Tinelli,
and Clark Barrett

Unification

Weighted Path Orders Are Semantic Path Orders . 63
Teppei Saito and Nao Hirokawa

KBO Constraint Solving Revisited . 81
Yasmine Briefs, Hendrik Leidinger, and Christoph Weidenbach

A Critical Pair Criterion for Level-Commutation of Conditional Term
Rewriting Systems . 99

Ryota Haga, Yuki Kagaya, and Takahito Aoto

Decidable Fragments

Logic of Communication Interpretation: How to Not Get Lost in Translation . . . 119
Giorgio Cignarale, Roman Kuznets, Hugo Rincon Galeana,
and Ulrich Schmid

Symbolic Model Construction for Saturated Constrained Horn Clauses 137
Martin Bromberger, Lorenz Leutgeb, and Christoph Weidenbach

Frameworks

Combining Finite Combination Properties: Finite Models and Busy Beavers . . . 159
Guilherme V. Toledo, Yoni Zohar, and Clark Barrett

xvi Contents

Formal Reasoning Using Distributed Assertions . 176
Farah Al Wardani, Kaustuv Chaudhuri, and Dale Miller

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 195
Sibylle Möhle

Higher-Order Theorem Proving

Hammering Floating-Point Arithmetic . 217
Olle Torstensson and Tjark Weber

Learning Proof Transformations and Its Applications in Interactive
Theorem Proving . 236

Liao Zhang, Lasse Blaauwbroek, Cezary Kaliszyk, and Josef Urban

Translating SUMO-K to Higher-Order Set Theory . 255
Chad E. Brown, Adam Pease, and Josef Urban

Author Index . 275

Analysis of Programs and Equations

Targeting Completeness: Using Closed
Forms for Size Bounds of Integer

Programs

Nils Lommen(B) and Jürgen Giesl(B)

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany
lommen@cs.rwth-aachen.de, giesl@informatik.rwth-aachen.de

Abstract. We present a new procedure to infer size bounds for integer
programs automatically. Size bounds are important for the deduction of
bounds on the runtime complexity or in general, for the resource analy-
sis of programs. We show that our technique is complete (i.e., it always
computes finite size bounds) for a subclass of loops, possibly with non-
linear arithmetic. Moreover, we present a novel approach to combine
and integrate this complete technique into an incomplete approach to
infer size and runtime bounds of general integer programs. We prove
completeness of our integration for an important subclass of integer pro-
grams. We implemented our new algorithm in the automated complexity
analysis tool KoAT to evaluate its power, in particular on programs with
non-linear arithmetic.

1 Introduction

There are numerous incomplete approaches for automatic resource analysis
of programs, e.g., [1,2,5,8,10,15,19,21,29,33]. However, also many complete
techniques to decide termination, analyze runtime complexity, or study mem-
ory consumption for certain classes of programs have been developed, e.g.,
[3,4,6,7,16,17,20,22,27,34,36]. In this paper, we present a procedure to com-
pute size bounds which indicate how large the absolute value of an integer vari-
able may become. In contrast to other complete procedures for the inference of
size bounds which are based on fixpoint computations [3,6], our technique can
also handle (possibly negative) constants and exponential size bounds. Similar to
our earlier paper [27], we embed a procedure which is complete for a subclass of
loops (i.e., it computes finite size bounds for all loops from this subclass) into an
incomplete approach for general integer programs [8,19]. In this way, the power
of the incomplete approach is increased significantly, in particular for programs
with non-linear arithmetic. However, in the current paper we tackle a completely
different problem than in [27] (and thus, the actual new contributions are also
completely different), because in [27] we embedded a complete technique in order

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2).

c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 3–22, 2023.
https://doi.org/10.1007/978-3-031-43369-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_1&domain=pdf
http://orcid.org/0000-0003-3187-9217
http://orcid.org/0000-0003-0283-8520
https://doi.org/10.1007/978-3-031-43369-6_1

4 N. Lommen and J. Giesl

to infer runtime bounds, whereas now we integrate a novel technique in order to
infer size bounds. As an example, we want to determine bounds on the absolute
values of the variables during (and after) the execution of the following loop.

while (x3 > 0) do (x1, x2, x3, x4)←(3·x1+2·x2,−5·x1−3·x2, x3−1, x4+x2
3) (1)

We introduce a technique to compute size bounds for loops which admit a
closed form, i.e., an expression which corresponds to applying the loop’s update
n times. Then we over-approximate the closed form to obtain a non-negative,
weakly monotonically increasing function. For instance, a closed form for x3 in
our example is x3 − n, since the value of x3 is decreased by n after n iterations.
The (absolute value of this) closed form can be over-approximated by x3 + n,
which is monotonically increasing in all variables. Finally, each occurrence of
n is substituted by a runtime bound for the loop. Clearly, (1) terminates after
at most x3 iterations. So if we substitute n by the runtime bound x3 in the
over-approximated closed form x3 + n, then we infer the linear bound 2 · x3 on
the size of x3. Due to the restriction to weakly monotonically increasing over-
approximations, we can plug in any over-approximation of the runtime and do
not necessarily need exact bounds.

Structure. We introduce our technique to compute size bounds by closed forms
in Sect. 2 and show that it is complete for a subclass of loops in Sect. 3. After-
wards in Sect. 4, we incorporate our novel technique into the incomplete setting
of general integer programs. In Sect. 5 we demonstrate how size bounds are used
in automatic complexity analysis and study completeness for classes of general
programs. In Sect. 6, we conclude with an experimental evaluation of our imple-
mentation in the tool KoAT and discuss related work. All proofs can be found
in [28].

2 Size Bounds by Closed Forms

In this section, we present our novel technique to compute size bounds for loops
by closed forms in Theorem 7. We start by introducing the required preliminar-
ies. Let V = {x1, . . . , xd} be a set of variables. F(V) is the set of all formulas
built from inequations p > 0 for polynomials p ∈ Q[V], ∧, and ∨. A loop (ϕ, η)
consists of a guard ϕ ∈ F(V) and an update η : V → Z[V] mapping variables
to polynomials. A closed form clxi (formally defined in Definition 1 below) is
an expression in n and in the (initial values of the) variables x1, . . . , xd which
corresponds to the value of xi after iterating the loop n times. For our purpose
we only need closed forms which hold for all n ≥ n0 for some fixed n0 ∈ N. More-
over, we restrict ourselves to closed forms which are so-called normalized poly-
exponential expressions [16]. Nonetheless, our procedure works for any closed
form expression with a finite number of arithmetic operations (i.e., the number
of operations must be independent of n). We extend the application of functions
like η : V → Z[V] also to polynomials, vectors, and formulas, etc., by replacing
each variable v in the expression by η(v). So in particular, (η2◦η1)(x) = η2(η1(x))

Targeting Completeness: Using Closed Forms for Size Bounds 5

stands for the polynomial η1(x) in which every variable v is replaced by η2(v).
Moreover, ηn denotes the n-fold application of η.

We call a function σ : V → Z a state. By σ(exp) or σ(ϕ) we denote the
number resp. Boolean value which results from replacing every variable v by the
number σ(v) in the arithmetic expression exp or the formula ϕ.

Definition 1 (Closed Forms). For a loop (ϕ, η), an arithmetic expression
clxi is a closed form for xi with start value n0 ∈ N if clxi =

∑
1≤j≤� αj ·naj ·bn

j

with �, aj ∈ N, bj ∈ A,1 αj ∈ A[V], and for all σ : V ∪ {n} → Z with σ(n) ≥ n0

we have σ(clxi) = σ(ηn(xi)). Similarly, we call cl = (clx1 , . . . , clxd) a closed
form of the update η (resp. for the loop (ϕ, η)) with start value n0 if for all
1 ≤ i ≤ d, clxi are closed forms for xi with start value n0.

Example 2. In Sect. 3 we will show that for the loop (1), a closed form for x1

(with start value 0) is clx1 = 1
2 ·α · (−i)n + 1

2 ·α · in where α = (1+3i) ·x1 +2i ·x2.
Here, α denotes the complex conjugate of α, i.e., the sign of those monomials is
flipped where the coefficient is a multiple of the imaginary unit i. A closed form
for x4 (also with start value 0) is clx4 = x4 + n · (16 + x3 + x2

3 − x3 · n − n
2 + n2

3).

Our aim is to compute bounds on the sizes of variables and on the runtime.
As in [8,19], we only consider bounds which are weakly monotonically increasing
in all occurring variables. Their advantage is that we can compose them easily
(i.e., if f and g increase monotonically, then so does f ◦ g).

Definition 3 (Bounds). The set of bounds B is the smallest set with N =
N ∪ {ω} ⊆ B, V ⊆ B, and {b1 + b2, b1 · b2, kb1} ⊆ B for all k ∈ N and b1, b2 ∈ B.

Size bounds should be bounds on the values of variables up to the point
where the loop guard is not satisfied anymore for the first time. To define size
bounds, we introduce the runtime complexity of a loop (whereas we considered
the runtime complexity of arbitrary integer programs in [8,19,27]). Let Σ denote
the set of all states σ : V → Z and let |σ| be the state with |σ|(x) = |σ(x)| for
all x ∈ V.

Definition 4 (Runtime Complexity for Loops). The runtime complexity
of a loop (ϕ, η) is rc : Σ → N with rc(σ) = inf{n ∈ N | σ(ηn(¬ϕ))}, where
inf ∅ = ω. An expression r ∈ B is a runtime bound if |σ|(r) ≥ rc(σ) for all
σ ∈ Σ.

Example 5. The runtime complexity of the loop (1) is rc(σ) = max(0, σ(x3)).
For example, x3 is a runtime bound, as |σ|(x3) ≥ max(0, σ(x3)) for all states
σ ∈ Σ.

A size bound on a variable x is a bound on the absolute value of x after n
iterations of the update η, where n is bounded by the runtime complexity. In
contrast to the definition of size bounds for transitions in integer programs from
[8], Definition 6 requires that size bounds also hold before evaluating the loop.
1 A is the set of algebraic numbers, i.e., the field of all roots of polynomials in Z[x].

6 N. Lommen and J. Giesl

Definition 6 (Size Bounds for Loops). SB : V → B is a size bound for
(ϕ, η) if for all x ∈ V and all σ ∈ Σ, we have |σ|(SB(x)) ≥ sup{|σ(ηn(x))| | n ≤
rc(σ)}.

For any algebraic number c ∈ A, as usual �|c| is the smallest natural number
which is greater or equal to c’s absolute value. Similarly, for any poly-exponential
expression p =

∑
j(

∑
i ci,j ·βi,j)·naj ·bn

j where ci,j ∈ A and the βi,j are normalized
monomials of the form xe1

1 ·. . .·xed

d , �|p| denotes
∑

j (
∑

i�|ci,j | · βi,j)·naj ·�|bj |n.
We now determine size bounds by over-approximating the closed form clx

by the non-negative, weakly monotonically increasing function �|clx|. Then we
substitute n by a runtime bound r (denoted by “[n/r]”). Due to the monotonicity,
this results in a bound on the size of x not only at the end of the loop, but
also during the iterations of the loop. Since the closed form is only valid for n
iterations with n ≥ n0, we ensure that our size bound is also correct for less than
n0 iterations by symbolically evaluating the update, where we over-approximate
maxima by sums. As mentioned, see [28] for the proofs of all new results.

Theorem 7 (Size Bounds for Loops withClosed Forms). Let cl be a closed
form for the loop (ϕ, η) with start value n0 and let r ∈ B be a runtime bound.
Then the (absolute) size of x ∈ V is bounded by sbx =�|clx|�[n/r] +

∑
0≤i<n0

|ηi(x)|.
Hence, the function SB with SB(x) = sbx for all x ∈ V is a size bound for (ϕ, η).

Example 8. As mentioned, for the loop (1), a closed form for x1 with start value
0 is clx1 = 1

2 · α · (−i)n + 1
2 · α · in where α = (1 + 3i) · x1 + 2i · x2. Hence,

�|clx1 | =
⌈
|12 · α · (−i)n + 1

2 · α · in|
⌉

= (
⌈
| 1+3i

2 |
⌉

· x1 + �|i| · x2) · �| − i|n +

(
⌈
|1−3i

2 |
⌉
·x1+�| − i|·x2)·�|i|n = 4·x1+2·x2, as

⌈
|1+3i

2 |
⌉

=
⌈
| 1−3i

2 |
⌉

=
⌈√

10
2

⌉
= 2

and �|i| = �| − i| = 1. So our approach infers linear size bounds for x1 and x2

(the similar computations for x2 are omitted) while [8] only infers exponential
size bounds.

As this over-approximation does not depend on n, it directly yields a size
bound, i.e., sbx1 = �|clx1 |. In contrast, in the over-approximation �|clx4 | =
x4 +n

(
1 + x3 + x2

3 + x3 · n + n + n2
)
, we have to replace n by a runtime bound

like x3. Thus, we obtain the overall size bound sbx4 = x4 + 3 · x3
3 + 2 · x2

3 + x3.

Although this section focused on closed forms which are poly-exponential
expressions, our technique is applicable to all loops where we can compute over-
approximating bounds for the closed form and the runtime complexity. For exam-
ple, the update η(x) = x2 has the closed form x(2n), but it does not admit a
poly-exponential closed form due to x’s super-exponential growth. However, by
instantiating n by a runtime bound, we can still compute a size bound for this
update. The reason for focusing on poly-exponential expressions is that we can
compute such a closed form for all so-called solvable loops automatically, see
Sect. 3.

Targeting Completeness: Using Closed Forms for Size Bounds 7

3 Size and Runtime Bounds for Solvable Loops

In this section, we present a class of loops where our technique of Theorem 7
is “complete”. The technique relies on the computation of suitable closed forms
and of runtime bounds. In Sect. 3.1, we show that poly-exponential closed forms
can be computed for all solvable loops [17,23,25,26,32,36]. Then we prove in
Sect. 3.2 that finite runtime bounds are computable for all terminating solvable
loops with only periodic rational eigenvalues.

A loop (ϕ, η) is solvable if η is a solvable update (see Definition 9 below
for a formal definition), which partitions V into blocks S1, . . . ,Sm (and loop
guards ϕ are not relevant for closed forms). Each block allows updates with cyclic
dependencies between its variables and non-linear dependencies on variables in
blocks with lower indices.

Definition 9 (Solvable Update [17,23,25,26,32,36]). An update η : V →
Z[V] is solvable if there exists a partition S1, . . . ,Sm of {x1, . . . , xd} such that
for all 1 ≤ i ≤ m we have ηSi

= ASi
· xSi

+ pSi
for an ASi

∈ Z|Si|×|Si| and a
pSi

∈ Z[
⋃

j<i Sj]|Si|, where ηSi
is the vector of all η(xj) and xSi

is the vector
of all xj with j ∈ Si. The eigenvalues of a solvable loop are defined as the union
of the eigenvalues of all matrices ASi

. The loop is homogeneous if pSi
= 0 for

all 1 ≤ i ≤ m.

Example 10. The loop (1) is an example for a solvable loop using the partition
S1 = {x1, x2}, S2 = {x3}, and S3 = {x4}.

The crucial idea for our results in Sect. 3.1 and 3.2 is to reduce the prob-
lem of finding closed forms and runtime bounds from solvable loops to triangu-
lar weakly non-linear loops (twn-loops) [16,17,20]. A twn-update is a solvable
update where each block Sj has cardinality one. Thus, a twn-update is trian-
gular, i.e., the update of a variable does not depend on variables with higher
indices. Furthermore, the update is weakly non-linear, i.e., a variable does not
occur non-linear in its own update. We are mainly interested in loops over Z,
but to handle solvable updates, we will transform them into twn-updates with
coefficients from A.

Definition 11 (TWN-Update [16,17,20]). An update η : V → A[V] is twn
if for all 1 ≤ i ≤ d we have η(xi) = ci · xi + pi for some ci ∈ A and some
polynomial pi ∈ A[x1, . . . , xi−1]. A loop with a twn-update is called a twn-loop.

Clearly, (1) is not a twn-loop due to the cyclic dependency between x1 and x2.

3.1 Closed Forms for Solvable Loops

Lemma 12 (which extends [17, Thm. 16] from solvable updates with real eigenval-
ues to arbitrary solvable updates) illustrates that one can transform any solvable
update ηs into a twn-update ηt by an automorphism ϑ. Here, ϑ is induced by
the change-of-basis matrix of the Jordan normal form of each block of ηs. Note
that the Jordan normal form is always computable in polynomial time (see [9]).

8 N. Lommen and J. Giesl

Lemma 12 (Transforming Solvable Updates (see [17], Thm. 16). Let
ηs be a solvable update. Then ϑ : V → A[V] is an automorphism, where ϑ is
defined by ϑ(S) = P · xS for each block S, where J(AS) = P · AS · P−1 is the
Jordan normal form of AS . Furthermore, ηt = ϑ−1 ◦ ηs ◦ ϑ is a twn-update.

Example 13 To illustrate Lemma 12, we transform the solvable update ηs of (1)
into a twn-update ηt. As the blocks S2 = {x3} and S3 = {x4} have cardinality
one, we only have to consider S1 = {x1, x2}. The restriction of ηs to S1 is

(x1
x2

)
←

AS1 ·
(x1
x2

)
with AS1 =

(3 2
−5 −3

)
. So we get the Jordan normal form J(AS1) =

P · AS1 · P−1 =
(−i 0

0 i

)
where P =

(
− 5

2 i
1
2 (1−3i)

5
2 i

1
2 (1+3i)

)
and P−1 =

(
1
5 (i−3) − 1

5 (i+3)
1 1

)
.

Thus, we have the following automorphism ϑ and its inverse ϑ−1:

ϑ
(

x1
x2

)
= P ·

(
x1
x2

)
=

(
− 5

2 i · x1 + 1
2 (1 − 3i) · x2

5
2 i · x1 + 1

2 (1 + 3i) · x2

)
, ϑ

(
x3
x4

)
=

(
x3
x4

)

ϑ−1
(

x1
x2

)
= P −1 ·

(
x1
x2

)
=

(
1
5 (i − 3) · x1 − 1

5 (i + 3) · x2
x1 + x2

)
, ϑ−1

(
x3
x4

)
=

(
x3
x4

)

Hence, ηt = ϑ−1 ◦ ηs ◦ ϑ is the following twn-update:

ηt(x1) = −i · x1, ηt(x2) = i · x2, ηt(x3) = x3 − 1, ηt(x4) = x4 + x2
3

The reason for transforming solvable updates to twn-updates is that for
the latter, we can re-use our previous algorithm from [16] to compute poly-
exponential closed forms. While [16] only considered updates with linear arith-
metic over Z, it can directly be extended to twn-updates over A.

Lemma 14 (Closed Forms for TWN-Updates (see [16])). Let η be a
twn-update. Then a (poly-exponential) closed form is computable for η.

Example 15. For ηt from Example 13, we obtain the following closed form (with
start value 0): clt = ((−i)n ·x1, in ·x2, x3−n, x4+n(16 +x3+x2

3−x3 ·n− n
2 + n2

3)).

So to obtain a closed form of a solvable update ηs, we first transform it into
a twn-update ηt via Lemma 12, and then compute the closed form clt of ηt

(Lemma 14). We now show how to obtain a closed form for ηs from clt.

Theorem 16 (Closed Forms for Solvable Updates). Let ηs be a solvable
update and ϑ be an automorphism as in Lemma 12 such that ηt = ϑ−1 ◦ ηs ◦ ϑ
is a twn-update. If clt is a closed form of ηt with start value n0, then cls =
ϑ ◦ clt ◦ ϑ−1 is a closed form of ηs with start value n0.

Example 17. In Example 13 we transformed ηs into the twn-update ηt via an
automorphism ϑ and in Example 15, we gave a closed form clt of ηt. Thus, by
Theorem 16, we can infer a closed form cls = ϑ ◦ clt ◦ ϑ−1 of ηs. For example,
we compute a closed form for x1 with start value 0 (clx2

s can be inferred in a
similar way):

clx1
s =

(
1
5 (i − 3) · x1 − 1

5 (i + 3) · x2

)
[v/clv

t | v ∈ V] [v/ϑ(v) | v ∈ V]

=
(
1
5 (i − 3) · (−i)n · x1 − 1

5 (i + 3) · in · x2

)
[v/ϑ(v) | v ∈ V]

= 1
2 ((1 + 3i) · x1 + 2i · x2

︸ ︷︷ ︸
α

) · (−i)n + 1
2 ((1 − 3i) · x1 − 2i · x2

︸ ︷︷ ︸
α

) · in.

Targeting Completeness: Using Closed Forms for Size Bounds 9

3.2 Periodic Rational Solvable Loops

In Sect. 3.1, we discussed how to compute closed forms for solvable updates (by
transforming them to twn-updates). However to compute size bounds, we have
to instantiate the variable n in the closed forms by runtime bounds (Theorem 7).
In [20], it was shown that (polynomial) runtime bounds can always be computed
for terminating twn-loops over the integers. However, in general, transforming
solvable loops via Lemma 12 yields twn-updates which may contain algebraic
(complex) numbers. We now show that for the subclass of terminating periodic
rational solvable loops, our approach is “complete” (i.e., finite runtime bounds
and thus, also finite size bounds are always computable).

Definition 18 (Periodic Rational [25]). A number λ ∈ A is periodic rational
if λp ∈ Q for some p ∈ N with p > 0. The period of λ is the smallest such p with
λp ∈ Q. A solvable loop is periodic rational (i.e., it is a prs loop) with period p
if all its eigenvalues λ are periodic rational and p is the least common multiple of
all their periods. A prs loop is a unit prs loop if |λ| ≤ 1 for all its eigenvalues λ.

So i, −i, and
√

2·i are periodic rational with period 2, while
√

2+i is not periodic
rational. The following lemma from [25] gives a bound on the period of prs loops
and thus yields an algorithm to detect prs loops and to compute their period.

Lemma 19 (Bound on the Period [25]). Let A ∈ Zn×n. If λ is a periodic
rational eigenvalue of A with period p, then p ≤ n3.

Now we show that by chaining (i.e., by performing p iterations of a prs loop
with period p in a single step), one can transform any prs loop into a solvable loop
with only integer eigenvalues. Then, our previous results on twn-loops [17,20]
can be used to infer runtime bounds for these loops.

Definition 20 (Chaining Loops). Let L = (ϕ, η) be a loop and p ∈ N \ {0}.
Then Lp = (ϕp, ηp) results from iterating L p times, i.e., ϕp = ϕ ∧ η(ϕ) ∧
η(η(ϕ)) ∧ . . . ∧ ηp−1(ϕ) and ηp(v) = ηp(v) for all v ∈ V.

Example 21. The eigenvalues ±i of (1) have period 2. Chaining yields
(ϕ∧η(ϕ), η2):

while (x3 >0 ∧ x3 >1) do (x1, x2, x3, x4) ← (−x1, −x2, x3−2, x4+(x3−1)2+x2
3) (2)

Due to Lemma 12 we can transform every solvable update into a twn-update
by a (linear) automorphism ϑ. For prs loops, ϑ’s range can be restricted to Q[V],
i.e., one does not need algebraic numbers. So, we first chain the prs loop L and
then compute a Q-automorphism ϑ transforming the chained loop Lp into a
twn-loop Lt via Lemma 12. Then we can infer a runtime bound for Lt as in [20].
The reason is that all factors ci in the update of Lt are integers and thus, we can
compute a closed form

∑
j αj ·naj ·bn

j such that αj ∈ Q[V] and bj ∈ Z. Afterwards,
the runtime bound for Lt can be lifted to a runtime bound for the original loop

10 N. Lommen and J. Giesl

by reconsidering the automorphism ϑ. Similarly, in order to prove termination
of the prs loop L, we analyze termination of Lt on ϑ(Zd) = {ϑ(x) | x ∈ Zd}.2

Lemma 22 (Runtime Bounds for PRS Loops). Let L be a prs loop with
period p and let Lp = (ϕp, ηp) result from chaining as in Definition 20. From ηp,
one can compute a linear automorphism ϑ : V → Q[V] as in Lemma 12, such
that:

(a) Lp is solvable and only has integer eigenvalues.
(b) (ϑ−1 ◦ ηp ◦ ϑ) : V → Q[V] is a twn-update as in Definition 11 such that all

ci ∈ Z.
(c) Lt = (ϕt, ηt) with ϕt = ϑ−1(ϕp) and ηt = ϑ−1◦ηp◦ϑ is a twn-loop. Moreover,

the following holds:
• L terminates on Zd iff
• Lp terminates on Zd iff
• Lt terminates on ϑ(Zd) = {ϑ(x) | x ∈ Zd}.

(d) If r is a runtime bound3 for Lt, then p·�|ϑ(r)|�+p−1 is a runtime bound for
L.

Runtime
Bound:

prs loop L
p · �|ϑ(r)|� + p − 1

Lp

�|ϑ(r)|�
Lt with ηt : V → Q[V]

r by [17, 20]

Size Bound:
solvable loop L

cls

L′
t with η′

t : V → A[V]
clt by [16]

chaining

Lemma 22 (a)

ϑ : V → Q[V]

Lemma 22 (b)

Lemma 22 (c) & (d) Lemma 22 (c) & (d)
Thm. 7

Lemma 12 by ϑ′ : V → A[V]

Thm. 16

Fig. 1. Illustration of Runtime and Size Bound Computations

Since we can detect prs loops and their periods by Lemma 19, Lemma 22
allows us to compute runtime bounds for all terminating prs loops. This is illus-
trated in Fig. 1: For runtime bounds, L is transformed to Lp by chaining and Lp

is transformed further to Lt by an automorphism ϑ. The runtime bound r for Lt

can then be transformed into a runtime bound for Lp and further into a runtime
bound for L. For size bounds, L is directly transformed to a twn-loop L′

t by an
automorphism ϑ′. The closed form clt obtained for L′

t is transformed via the
automorphism ϑ′ into a closed form cls for L. Then the runtime bound for L is
inserted into this closed form to yield a size bound for L. So in Fig. 1, standard
arrows denote transformations of loops and wavy arrows denote transformations
of runtime bounds or closed forms.
2 By [17], termination of Lt on ϑ(Zd) is reducible to invalidity of a formula ∃x ∈

Qd.ψϑ(Zd) ∧ ξLt . Here, ψϑ(Zd) holds iff x ∈ ϑ(Zd) and ξLt holds iff Lt does not
terminate on x. As shown in [17], non-termination of linear twn-loops with integer
eigenvalues is NP-complete and it is semi-decidable for twn-loops with non-linear
arithmetic.

3 More precisely, |σ|(r) ≥ inf{n ∈ N | σ(ηn
t (¬ϕt))} must hold for all σ : V → ϑ(Zd).

Targeting Completeness: Using Closed Forms for Size Bounds 11

Theorem 23 (Completeness of Size and Runtime Bound Computation
for Terminating PRS Loops). For all terminating prs loops, polynomial
runtime bounds and finite size bounds are computable. For terminating unit prs
loops, all these size bounds are polynomial as well.

Example 24. For the loop L from (1), we computed Lp for p = 2 in (2), see
Example 21. As Lp is already a twn-loop, we can use the technique of [20]
(implemented in our tool KoAT) to obtain the runtime bound x3 for Lp. Lemma
22 yields the runtime bound 2 · x3 + 1 for the original loop (1). Of course, here
one could also use (incomplete) approaches based on linear ranking functions
(also implemented in KoAT, see, e.g., [8,19]) to directly infer the tighter runtime
bound x3 for the loop (1).

4 Size Bounds for Integer Programs

Up to now, we focused on isolated loops. In the following, we incorporate our
complete approach from Sect. 2 and 3 into the setting of general integer programs
where most questions regarding termination or complexity are undecidable. For-
mally, an integer program is a tuple (V,L, �0, T) with a finite set of variables V,
a finite set of locations L, a fixed initial location �0 ∈ L, and a finite set of tran-
sitions T . A transition is a 4-tuple (�, ϕ, η, �′) with a start location � ∈ L, target
location �′ ∈ L\{�0}, guard ϕ ∈ F(V), and update η : V → Z[V]. To simplify the
presentation, we do not consider “temporary” variables (whose update is non-
deterministic), but the approach can easily be extended accordingly. Transitions
(�0, , ,) are called initial and T0 denotes the set of all initial transitions.

�0 �1 �2

t0 : ϕ = (x3 > 0 ∧ x5 > 0)

t3 : ϕ = (x5 > 1)
η(x1) = 2 · x5 η(x2) = 3 · x5
η(x3) = x5 η(x4) = x3
η(x5) = x5 − 1

t1 : ϕ = (x3 > 0)
η(x1) = 3 · x1 + 2 · x2
η(x2) = −5 · x1 − 3 · x2
η(x3) = x3 − 1
η(x4) = x4 + x2

3

t4 : ϕ = (x1 > 0)

η(x1) = x1 − 1
t2

Fig. 2. An Integer Program with Non-Linear Size Bounds

Example 25. In the integer program of Fig. 2, we omitted identity updates
η(v) = v and guards where ϕ is true. Here, V = {x1, . . . , x5} and L = {�0, �1, �2},
where �0 is the initial location. Note that the loop in (1) corresponds to transition
t1.

Definition 26 (Correspondence between Loops and Transitions). Let
t = (�, ϕ, η, �) be a transition with ϕ ∈ F(V ′) for some variables V ′ ⊆ V such
that η(x) = x for all x ∈ V \ V ′ and η(x) ∈ Z[V ′] for all x ∈ V ′. A loop (ϕ′, η′)

12 N. Lommen and J. Giesl

with ϕ′ ∈ F({x1, . . . , xd}) and η′ : {x1, . . . , xd} → Z[{x1, . . . , xd}] corresponds
to the transition t via the variable renaming π : {x1, . . . , xd} → V ′ if ϕ is π(ϕ′)
and for all 1 ≤ i ≤ d we have η(π(xi)) = π(η′(xi)).

To define the semantics of integer programs, an evaluation step moves from
one configuration (�, σ) ∈ L×Σ to another configuration (�′, σ′) via a transition
(�, ϕ, η, �′) where σ(ϕ) holds. Here, σ′ is obtained by applying the update η on
σ. From now on, we fix an integer program P = (V,L, �0, T).

Definition 27 (Evaluation of Programs). For configurations (�, σ), (�′, σ′)
and t = (�t, ϕ, η, �′

t) ∈ T , (�, σ) →t (�′, σ′) is an evaluation step if � = �t,
�′ = �′

t, σ(ϕ) = true, and σ(η(v)) = σ′(v) for all v ∈ V. Let →T =
⋃

t∈T →t,
where we also write → instead of →t or →T . Let (�0, σ0) →k (�k, σk) abbreviate
(�0, σ0) → . . . → (�k, σk) and let (�, σ) →∗ (�′, σ′) if (�, σ) →k (�′, σ′) for some
k ≥ 0.

Example 28. If we encode states as tuples (σ(x1), . . . , σ(x5)) ∈ Z5, then
(−6,−8, 2, 1, 1) →t0 (−6,−8, 2, 1, 1) →2

t1 (6, 8, 0, 6, 1) →t2 (6, 8, 0, 6, 1) →6
t4

(0, 8, 0, 6, 1).

Now we define size bounds for variables v after evaluating a transition t:
SB(t, v) is a size bound for v w.r.t. t if for any run starting in σ0 ∈ Σ,
|σ0|(SB(t, v)) is greater or equal to the largest absolute value of v after eval-
uating t.

Definition 29 (Size Bounds [8,19]). A function SB : (T × V) → B is a
(global) size bound for the program P if for all (t, x) ∈ T ×V and all states σ0 ∈ Σ
we have |σ0|(SB(t, x)) ≥ sup{|σ′(x)| | ∃ �′ ∈ L. (�0, σ0) (→∗ ◦ →t) (�′, σ′)}.

Later in Lemma 35, we will compare the notion of size bounds for transitions
in a program from Definition 29 to our earlier notion of size bounds for loops
from Definition 6.

Example 30. As an example, we give size bounds for the transitions t0 and t3 in
Fig. 2. Since t0 does not change any variables, a size bound is SB(t0, xi) = xi for
all 1 ≤ i ≤ 5. Note that the value of x5 is never increased and is bounded from
below by 0 in any run through the program. Thus, SB(t3, x3) = x5 = SB(t3, x5).
Similarly, we have SB(t3, x1) = 2 · x5, SB(t3, x2) = 3 · x5, and SB(t3, x4) = x3.

To infer size bounds for transitions as in Definition 29 automatically, we
lift local size bounds (i.e., size bounds which only hold for a subprogram with
transitions T ′ ⊆ T \T0) to global size bounds for the complete program. For the
subprogram, one considers runs which start after evaluating an entry transition
of T ′.

Definition 31 (Entry Transitions [8]). Let ∅ �= T ′ ⊆ T \ T0. The entry
transitions of T ′ are ET ′ = {t | t = (, , , �) ∈ T \ T ′ and there is a (�, , ,) ∈
T ′}.

Targeting Completeness: Using Closed Forms for Size Bounds 13

Example 32. For the program in Fig. 2, we have E{t1} = {t0, t3} and E{t4} = {t2}.

Definition 33 (Local Size Bounds). Let ∅ �= T ′ ⊆ T \ T0 and t′ ∈ T ′.
SBt′ : V → B is a local size bound for t′ w.r.t. T ′ if for all x ∈ V and all σ ∈ Σ:4

|σ|(SBt′(x)) ≥ sup{|σ′(x)| | ∃�′ ∈ L, (, , , �) ∈ ET ′ . (�, σ) (→∗
T ′ ◦ →t′) (�′, σ′)}.

Theorem 34 below yields a novel modular procedure to infer (global) size
bounds from previously computed local size bounds. A local size bound for a
transition t′ w.r.t. a subprogram T ′ ⊆ T \ T0 is lifted by inserting size bounds
for all entry transitions. Again, this is possible because we only use weakly
monotonically increasing functions as bounds. Here, “b [v/pv | v ∈ V]” denotes
the bound which results from replacing every variable v by pv in the bound b.

Theorem 34 (Lifting Local Size Bounds). Let ∅ �= T ′ ⊆ T \ T0, let SBt′

be a local size bound for a transition t′ w.r.t. T ′ and let SB : (T × V) → B
be a size bound for P. Let SB′(t′, x) =

∑
r∈ET ′ SBt′(x) [v/SB(r, v) | v ∈ V] and

SB′(t, x) = SB(t, x) for all t′ �= t. Then SB′ is also a size bound for P.

To obtain local size bounds which can then be lifted via Theorem 34, we
look for transitions tL that correspond to a loop L and then we compute a size
bound for L as in Sect. 2 and 3. The following lemma shows that size bounds
for loops as in Definition 6 indeed yield local size bounds for the corresponding
transitions.5

Lemma 35 (Local Size Bounds via Loops). Let SBL be a size bound for
a loop L (as in Definition 6) which corresponds to a transition tL via a variable
renaming π. Then π ◦ SBL ◦ π−1 is a local size bound for tL w.r.t. {tL} (as in
Definition 33).

Example 36. SBL(x4) = x4 + 3 · x3
3 + 2 · x2

3 + x3 is a size bound for x4 in the
loop (1), see Example 8. This loop corresponds to transition t1 in the program
of Fig. 2. Since E{t1} = {t0, t3} by Example 32, Theorem 34 yields the following
(non-linear) size bound for x4 in the full program of Fig. 2 (see Example 30 for
SB(t0, v) and SB(t3, v)):

SB(t1, x4) = SBL(x4) [v/SB(t0, v) | v ∈ V] + SBL(x4) [v/SB(t3, v) | v ∈ V]

= (x4 + 3 · x3
3 + 2 · x2

3 + x3) + (x3 + 3 · x3
5 + 2 · x2

5 + x5)

= 2 · x3 + 2 · x2
3 + 3 · x3

3 + x4 + x5 + 2 · x2
5 + 3 · x3

5

Analogously, we infer the remaining size bounds SB(t1, xi), e.g., SB(t1, x1) =
(4 · x1 + 2 · x2) [v/SB(t0, v) | v∈V] + (4 · x1 +2 · x2) [v/SB(t3, v) | v∈V] = 4 · x1 +
2 · x2 + 14 · x5.
4 To simplify the formalism, in this definition, we consider every possible configuration

(�, σ) and not only configurations which are reachable from the initial location �0.
5 Local or global size bounds for transitions only have to hold if the transition is indeed

taken. In contrast, size bounds for loops also have to hold if there is no loop iteration.
This will be needed in Theorem 38 to compute local size bounds for simple cycles.

14 N. Lommen and J. Giesl

Our approach alternates between improving size and runtime bounds for
individual transitions. We start with SB(t0, x) = |η(x)| for initial transitions
t0 ∈ T0 where η is t0’s update, and SB(t,) = ω for t ∈ T \ T0. Here, similar to
the notion �|p| in Sect. 2, for every polynomial p =

∑
j cj · βj with normalized

monomials βj , |p| is the polynomial
∑

j |cj | · βj . To improve the size bounds of
transitions that correspond to (possibly non-linear) solvable loops, we can use
closed forms (Theorem 7) and the lifting via Theorem 34. Otherwise, we use an
existing incomplete technique [8] to improve size bounds (where [8] essentially
only succeeds for updates without non-linear arithmetic). In this way, we can
automatically compute polynomial size bounds for all remaining transitions and
variables in the program of Fig. 2 (e.g., we obtain SB(t2, x1) = SB(t1, x1) =
4 · x1 + 2 · x2 + 14 · x5).

Both the technique from [8] and our approach from Theorem 7 rely on run-
time bounds to compute size bounds. On the other hand, as shown in [8,19,27],
size bounds for “previous” transitions are needed to infer (global) runtime
bounds for transitions in a program. For that reason, the alternated compu-
tation resp. improvement of global size and runtime bounds for the transitions
is repeated until all bounds are finite. We will illustrate this in more detail in
Sect. 5.

In Definition 26 and Lemma 35 we considered transitions with the same start
and target location that directly correspond to loops. To increase the applica-
bility of our approach, as in [27] now we consider so-called simple cycles, where
iterations through the cycle can only be done in a unique way. So the cycle must
not have subcycles and there must not be any indeterminisms concerning the
next transition to be taken. Formally, C = {t1, . . . , tn} ⊆ T is a simple cycle
if there are pairwise different locations �1, . . . , �n such that ti = (�i, , , �i+1)
for 1 ≤ i ≤ n − 1 and tn = (�n, , , �1). To handle simple cycles, we chain
transitions.6

Definition 37 (Chaining (see, e.g., [27])). Let t1, . . . , tn ∈ T where ti =
(�i, ϕi, ηi, �i+1) for all 1 ≤ i ≤ n − 1. Then the transition t1 . . . tn =
(�1, ϕ, η, �n+1) results from chaining t1, . . . , tn where

ϕ = ϕ1 ∧ η1(ϕ2) ∧ η2(η1(ϕ3)) ∧ . . . ∧ ηn−1(. . . η1(ϕn) . . .)
η(v) = ηn(. . . η1(v) . . .) for all v ∈ V, i.e., η = ηn ◦ . . . ◦ η1.

Now we want to compute a local size bound for the transition tn w.r.t. a
simple cycle C = {t1, . . . , tn} where a loop L corresponds to t1 . . . tn via
π. Then a size bound SBL for the loop L yields the size bound π ◦ SBL ◦
π−1 for tn regarding runs through C starting in t1. However, to obtain a local
size bound SBtn w.r.t. C, we have to consider runs starting after any entry
transition (, , , �i) ∈ EC . Hence, we use | ηn(. . . ηi(π(SBL(π−1(x)))) . . .) | for
any (, , , �i) ∈ EC . In this way, we also capture evaluations starting in �i, i.e.,
without evaluating the complete cycle.

6 The chaining of a loop L in Definition 20 corresponds to p − 1 chaining steps of a
transition tL via Definition 37, i.e., to tL 	 . . . 	 tL.

Targeting Completeness: Using Closed Forms for Size Bounds 15

Theorem 38 (Local Size Bounds for Simple Cycles). Let C = {t1, . . . , tn}
⊆ T be a simple cycle and let SBL be a size bound for a loop L which corresponds
to t1 . . . tn via a variable renaming π. Then a local size bound SBtn for tn w.r.t.
C is SBtn(x) =

∑
1≤i≤n,(, , ,�i)∈EC | ηn(. . . ηi(π(SBL(π−1(x)))) . . .) |.

Example 39. As an example, in the program of Fig. 2 we replace t1 = (�1, x3 >
0, η1, �1) by t1a = (�1, true, η1a, �′

1) and t1b = (�′
1, x3 > 0, η1b, �1) with a new

location �′
1, where η1a(v) = η1(v) for v ∈ {x1, x2}, η1b(v) = η1(v) for v ∈ {x3, x4},

and η1a resp. η1b are the identity on the remaining variables. Then {t1a, t1b}
forms a simple cycle and Theorem 38 allows us to compute local size bounds
SBt1b and SBt1a w.r.t. {t1a, t1b}, because the chained transitions t1a t1b = t1
and t1bt1a both correspond to the loop (1). They can then be lifted to global size
bounds as in Example 36 using size bounds for the entry transitions E{t1a,t1b} =
{t0, t3}.

This shows how we choose t′ and T ′ when lifting local size bounds to global
ones with Theorem 34: For a transition t′ we search for a simple cycle T ′ such
that chaining the cycle results in a twn- or suitable solvable loop and the size
bounds of ET ′ are finite. For all other transitions, we compute size bounds as
in [8].

5 Completeness of Size and Runtime Analysis
for Programs

For individual loops, we showed in Theorem 23 that polynomial runtime bounds
and finite size bounds are computable for all terminating prs loops. In this
section, we discuss completeness of the size bound technique from the previous
section and of termination and runtime complexity analysis for general integer
programs. We show that for a large class of programs consisting of consecutive
prs loops, in case of termination we can always infer finite runtime and size
bounds.

To this end, we briefly recapitulate how size bounds are used to compute
runtime bounds for general integer programs, and show that our new technique
to infer size bounds also results in better runtime bounds. We call RB : T → B a
(global) runtime bound if for every transition t ∈ T and state σ0 ∈ Σ, |σ0|(RB(t))
over-approximates the number of evaluations of t in any run starting in (�0, σ0).

Definition 40 (Runtime Bound [8,19]). A function RB : T → B is a
(global) runtime bound if for all t ∈ T and all states σ0 ∈ Σ, we have
|σ0|(RB(t)) ≥ sup{n ∈ N | ∃ (�′, σ′). (�0, σ0) (→∗

T ◦ →t)n (�′, σ′)}.

For our example in Fig. 2, a global runtime bound for t0, t2, and t3 is
RB(t0) = 1 and RB(t2) = RB(t3) = x5, as x5 is bounded from below by
t3’s guard x5 > 1 and the value of x5 decreases by 1 in t3, and no transition
increases x5.

16 N. Lommen and J. Giesl

To infer global runtime bounds automatically, similar as for size bounds, we
first consider a smaller subprogram T ′ ⊆ T and compute local runtime bounds
for non-empty subsets T ′

> ⊆ T ′. A local runtime bound measures how often
a transition t ∈ T ′

> can occur in a run through T ′ that starts after an entry
transition r ∈ ET ′ . Thus, local runtime bounds do not consider how many T ′-
runs take place in a global run and they do not consider the sizes of the variables
before starting a T ′-run. We lift these local bounds to global runtime bounds
for the complete program afterwards.

Definition 41 (Local Runtime Bound [27]). Let ∅ �= T ′
> ⊆ T ′ ⊆ T .

RBT ′
>

∈ B is a local runtime bound for T ′
> w.r.t. T ′ if for all t ∈ T ′

>, all
r ∈ ET ′ with r = (�, , ,), and all σ ∈ Σ, we have |σ|(RBT ′

>
) ≥ sup{n ∈ N |

∃σ0, (�′, σ′). (�0, σ0) →∗
T ◦ →r (�, σ) (→∗

T ′ ◦ →t)n (�′, σ′)}.

Example 42. In Fig. 2, local runtime bounds for T ′
> = T ′ = {t1} and for T ′

> =
T ′ = {t4} are RB{t1} = x3 and RB{t4} = x1. Local runtime bounds can often
be inferred automatically by approaches based on ranking functions (see, e.g.,
[8]) or by the complete technique for terminating prs loops (see Theorem 23).

If we have a local runtime bound RBT ′
>

w.r.t. T ′, then setting RB(t) to∑
r∈ET ′ RB(r) · (RBT ′

>
[v/SB(r, v) | v∈V]) for all t ∈ T ′

> yields a global runtime
bound [27]. Here, we over-approximate the number of local T ′-runs which are
started by an entry transition r ∈ ET ′ by an already computed global runtime
bound RB(r). Moreover, we instantiate each v ∈ V by a size bound SB(r, v) to
consider the size of v before a local T ′-run is started. So as mentioned in Sect. 4,
we need runtime bounds to infer size bounds (see Theorem 7 and the inference of
global size bounds in [8]), and on the other hand we need size bounds to compute
runtime bounds. Thus, our implementation alternates between size bound and
runtime bound computations (see [8,27] for a more detailed description of this
alternation).

Example 43. Based on the local runtime bounds in Example 42, we can compute
the remaining global runtime bounds for our example. We obtain RB(t1) =
RB(t0) · (x3 [v/SB(t0, v) | v ∈ V]) + RB(t3) · (x3 [v/SB(t3, v) | v ∈ V]) = x3 + x2

5

and RB(t4) = RB(t2) · (x1 [v/SB(t2, v) | v ∈ V]) = x5 · (4 · x1 + 2 · x2 + 14 · x5).
Thus, overall we have a quadratic runtime bound

∑
1≤i≤5 RB(ti). Note that it is

due to our new size bound technique from Sect. 2–4 that we obtain polynomial
runtime bounds in this example. In contrast, to the best of our knowledge, all
other state-of-the-art tools fail to infer polynomial size or runtime bounds for
this example. Similarly, if one modifies t4 such that instead of x1, x4 is decreased
as long as x4 > 0 holds, then our approach again yields a polynomial runtime
bound, whereas none of the other tools can infer finite runtime bounds.

Finally, we state our completeness results for integer programs. For a set
C ⊆ T and �, �′ ∈ L, let � �C �′ hold iff there is a transition (�, , , �′) ∈ C. We
say that C is a component if we have � �+

C �′ for all locations �, �′ occurring in
C, where �+

C is the transitive closure of �C . So in particular, we must also have

Targeting Completeness: Using Closed Forms for Size Bounds 17

� �+
C � for all locations � in the transitions of C. We call an integer program

simple if every component is a simple cycle that is “reachable” from any initial
state.

Definition 44 (Simple Integer Program). An integer program (V,L, �0, T)
is simple if every component C ⊆ T is a simple cycle, and for every entry
transition (, , , �) ∈ EC and every σ0 ∈ Σ, there is an evaluation (�0, σ0) →∗

T
(�, σ0).

In Fig. 2, T \ {t0} is a component that is no simple cycle. However, if we
remove t3 and replace t0’s guard by true, then the resulting program P ′ is
simple (but not linear). A simple program terminates iff each of its isolated
simple cycles terminates. Thus, if we can prove termination for every simple
cycle, then the overall program terminates. Hence, if after chaining, every simple
cycle corresponds to a linear, unit prs loop, then we can decide termination
and infer polynomial runtime and size bounds for the overall integer program.
For terminating, non-unit prs loops, runtime bounds are still polynomial but
size bounds can be exponential. Hence, then the global runtime bounds can be
exponential as well. Note that in the example program P ′ above, the eigenvalues
of the update matrices of t1 and t4 have absolute value 1, i.e., t1 and t4 correspond
to unit prs loops. Hence, by Theorem 45 we obtain polynomial runtime and size
bounds for P ′.

Theorem 45 (Completeness Results for Integer Programs)

(a) Termination is decidable for all simple linear integer programs where after
chaining, all simple cycles correspond to prs loops.

(b) Finite runtime and size bounds are computable for all simple integer pro-
grams where after chaining, all simple cycles correspond to terminating prs
loops.

(c) If in addition to (b), all simple cycles correspond to unit prs loops, then the
runtime and size bounds are polynomial.

In the definition of simple integer programs (Definition 44), we required that
for every component C and every entry transition (, , , �) ∈ EC , there is an
evaluation (�0, σ0) →∗

T (�, σ0) for every σ0 ∈ Σ. If one strengthens this by
requiring that one can reach � from �0 using only transitions whose guard is true
and whose update is the identity, then the class of programs in Theorem 45 (a)
is decidable (there are only n ways to chain a simple cycle with n transitions
and checking whether a loop is a prs loop is decidable by Lemma 19).

6 Conclusion and Evaluation

Conclusion. In this paper, we developed techniques to infer size bounds auto-
matically and to use them in order to obtain bounds on the runtime complexity
of programs. This yields a complete procedure to prove termination and to infer

18 N. Lommen and J. Giesl

runtime and size bounds for a large class of integer programs. Moreover, we
showed how to integrate the complete technique into an (incomplete) modular
technique for general integer programs. To sum up, we presented the following
new contributions in this paper:

(a) We showed how to use closed forms in order to infer size bounds for loops
with possibly non-linear arithmetic in Theorem 7.

(b) We proved completeness of our novel approach for terminating prs loops
(see Theorem 23) in Sect. 3.

(c) We embedded our approach for loops into the setting of general integer
programs in Sect. 4 and showed completeness of our approach for simple
integer programs with only prs loops in Sect. 5.

(d) Finally, we implemented a prototype of our procedure in our re-
implementation of the tool KoAT, written in OCaml. It integrates the compu-
tation of size bounds via closed forms for twn-loops and homogeneous (and
thus linear) solvable loops into the complexity analysis for general integer
programs.7

To infer local runtime bounds as in Definition 41, KoAT first applies
multiphase-linear ranking functions (see [5,19]), which can be done very effi-
ciently. For twn-loops where no finite bound was found, it then uses the com-
putability of runtime bounds for terminating twn-loops (see [17,20,27]). When
computing size bounds, KoAT first applies the technique of [8] for reasons of
efficiency and in case of exponential or infinite size bounds, it tries to compute
size bounds via closed forms as in the current paper. Here, SymPy [30] is used
to compute Jordan normal forms for the transformation to twn-loops. Moreover,
KoAT applies a local control-flow refinement technique [19] (using the tool iRank-
Finder [13]) and preprocesses the program in the beginning, e.g., by extending
the guards of transitions with invariants inferred by Apron [24]. For all SMT prob-
lems, KoAT uses Z3 [31]. In the future, we plan to extend the runtime bound
inference of KoAT to prs loops and to extend our size bound computations also
to suitable non-linear non-twn-loops.

Evaluation. To evaluate our new technique, we tested KoAT on the 504 bench-
marks for Complexity of C Integer Programs (CINT) from the Termination Prob-
lems Data Base [35] which is used in the annual Termination and Complexity
Competition (TermComp) [18]. Here, all variables are interpreted as integers over
Z (i.e., without overflows). To distinguish the original version of KoAT [8] from
our re-implementation, we refer to them as KoAT1 resp. KoAT2. We used the
following configurations of KoAT2, which apply different techniques to infer size
bounds.

• KoAT2orig uses the original technique from [8] to infer size bounds.
• KoAT2+SIZE additionally uses our novel approach with Theorem 7, 34, and

38.
7 For a homogeneous solvable loop, the closed form of the twn-loop over A that results

from its transformation is particularly easy to compute.

Targeting Completeness: Using Closed Forms for Size Bounds 19

The CINT collection contains almost only examples with linear arithmetic
and the existing tools can already solve most of its benchmarks which are not
known to be non-terminating.8 While most complexity analyzers are essentially
restricted to programs with linear arithmetic, our new approach also succeeds on
programs with non-linear arithmetic. Some programs with non-linear arithmetic
could already be handled by KoAT due to our integration of the complete tech-
nique for the inference of local runtime bounds in [27]. But the approach from
the current paper increases KoAT’s power substantially for programs (possibly
with non-linear arithmetic) where the values of variables computed in “earlier”
loops influence the runtime of “later” loops (e.g., the modification of our example
from Fig. 2 where t4 decreases x4 instead of x1, see the end of Example 43).

Table 1. Evaluation on the Collection CINT+

O(1) O(n) O(n2) O(n>2) O(EXP) < ω AVG+(s) AVG(s)

KoAT2+SIZE 26 233 (2) 71 (1) 25 (9) 3 (2) 358 (14) 9.97 22.88

KoAT2orig 26 232 (1) 70 15 5 (4) 348 (5) 8.29 21.52

MaxCore 23 220 (4) 67 (1) 7 0 317 (5) 1.96 5.25

CoFloCo 22 197 (1) 66 5 0 290 (1) 0.59 2.68

KoAT1 25 170 (1) 74 12 8 (3) 289 (4) 0.96 3.49

Loopus 17 171 (1) 50 (1) 6 (1) 0 244 (3) 0.40 0.40

Therefore, we extended CINT by 15 new typical benchmarks including the
programs in (1), Fig. 2, and the modification of Fig. 2 discussed above, as well
as several benchmarks from the literature (e.g., [3,6]), resulting in the collec-
tion CINT+. For KoAT2 and KoAT1, we used Clang [11] and llvm2kittel [14] to
transform C into integer programs as in Sect. 4. We compare KoAT2 with KoAT1
[8] and the tools CoFloCo [15], MaxCore [2] with CoFloCo in the backend, and
Loopus [33]. These tools also rely on variants of size bounds: CoFloCo uses a set
of constraints to measure the size of variables w.r.t. their initial and final val-
ues, MaxCore’s size bound computations build upon [12], and Loopus considers
suitable bounding invariants to infer size bounds.

Table 1 gives the results of our evaluation, where as in TermComp, we used a
timeout of 5 min per example. The first entry in every cell denotes the number of
benchmarks from CINT+ for which the tool inferred the respective bound. The
number in brackets only considers the 15 new examples. The runtime bounds
computed by the tools are compared asymptotically as functions which depend
on the largest initial absolute value n of all program variables. So for example,
KoAT2+SIZE proved a linear runtime bound for 231 + 2 = 233 benchmarks,
i.e., rc(σ) ∈ O(n) holds for all initial states where |σ(v)| ≤ n for all v ∈ V.

8 iRankFinder [13] proves non-termination for 119 programs in CINT. KoAT2orig
already infers finite runtimes for 343 of the remaining 504 − 119 = 386 examples
in CINT.

20 N. Lommen and J. Giesl

Overall, this configuration succeeds on 358 examples, i.e., “< ω” is the number
of examples where a finite bound on the runtime complexity could be computed
by the tool within the time limit. “AVG+(s)” denotes the average runtime of
successful runs in seconds, whereas “AVG(s)” is the average runtime of all runs.

Already on the original benchmarks CINT, integrating our novel technique
for the inference of size bounds leads to the most powerful approach for run-
time complexity analysis. The effect of the new size bound technique becomes
even clearer when also considering our new examples which contain non-linear
arithmetic and loops whose runtime depends on the results of earlier loops in the
program. Thus, the new contributions of the paper are crucial in order to extend
automated complexity analysis to larger programs with non-linear arithmetic.

KoAT’s source code, a binary, and a Docker image are available at https://
koat.verify.rwth-aachen.de/size. This website also has details on our experiments,
a list and description of the new examples, and web interfaces to run KoAT’s
configurations directly online.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theoret. Comput. Sci. 413, 142–159 (2012).
https://doi.org/10.1016/j.tcs.2011.07.009

2. Albert, E., Bofill, M., Borralleras, C., Mart́ın-Mart́ın, E., Rubio, A.: Resource
analysis driven by (conditional) termination proofs. Theory Pract. Logic Program.
19, 722–739 (2019). https://doi.org/10.1017/S1471068419000152

3. Ben-Amram, A.M., Jones, N.D., Kristiansen, L.: Linear, polynomial or exponen-
tial? Complexity inference in polynomial time. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 67–76. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 7

4. Ben-Amram, A.M., Pineles, A.: Flowchart programs, regular expressions, and
decidability of polynomial growth-rate. In: Hamilton, G.W., Lisitsa, A., Nemy-
tykh, A.P. (eds.) VPT 2016. EPTCS, vol. 216, pp. 24–49 (2016). https://doi.org/
10.4204/EPTCS.216.2

5. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601–620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 32

6. Ben-Amram, A.M., Hamilton, G.W.: Tight worst-case bounds for polynomial loop
programs. In: Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425,
pp. 80–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17127-8 5

7. Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817963 34

8. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing runtime
and size complexity of integer programs. ACM Trans. Program. Lang. Syst. 38,
1–50 (2016). https://doi.org/10.1145/2866575

9. Cai, J.-Y.: Computing Jordan normal forms exactly for commuting matrices in
polynomial time. Int. J. Found. Comput. Sci. 5(3/4), 293–302 (1994). https://doi.
org/10.1142/S0129054194000165

https://koat.verify.rwth-aachen.de/size
https://koat.verify.rwth-aachen.de/size
https://doi.org/10.1016/j.tcs.2011.07.009
https://doi.org/10.1017/S1471068419000152
https://doi.org/10.1007/978-3-540-69407-6_7
https://doi.org/10.4204/EPTCS.216.2
https://doi.org/10.4204/EPTCS.216.2
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-030-17127-8_5
https://doi.org/10.1007/11817963_34
https://doi.org/10.1145/2866575
https://doi.org/10.1142/S0129054194000165
https://doi.org/10.1142/S0129054194000165

Targeting Completeness: Using Closed Forms for Size Bounds 21

10. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Grove, D., Blackburn, S.M. (eds.) PLDI 2015, pp. 467–478 (2015). https://doi.
org/10.1145/2737924.2737955

11. Clang. Clang Compiler. https://clang.llvm.org/
12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) POPL 1978, pp.
84–96 (1978). https://doi.org/10.1145/512760.512770

13. Doménech, J.J., Genaim, S.: iRankFinder. In: Lucas, S. (ed.) WST 2018, p. 83
(2018). https://wst2018.webs.upv.es/wst2018proceedings.pdf

14. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: Schmidt-Schauß, M. (ed.) RTA 2011. LIPIcs, vol. 10,
pp. 41–50 (2011).https://doi.org/10.4230/LIPIcs.RTA.2011.41

15. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed
as cost relations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 254–273. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 16

16. Frohn, F., Giesl, J.: Termination of triangular integer loops is decidable. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 426–444. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 24

17. Frohn, F., Hark, M., Giesl, J.: Termination of polynomial loops. In: Pichardie, D.,
Sighireanu, M. (eds.) SAS 2020. LNCS, vol. 12389, pp. 89–112. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-65474-0 5. https://arxiv.org/abs/1910.
11588

18. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination and
complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.)
TACAS 2019. LNCS, vol. 11429, pp. 156–166. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17502-3 10

19. Giesl, J., Lommen, N., Hark, M., Meyer, F.: Improving automatic complexity anal-
ysis of integer programs. In: Ahrendt, W., Beckert, B., Bubel, R., Johnsen, E.B.
(eds.) The Logic of Software: A Tasting Menu of Formal Methods. LNCS, vol.
13360, pp. 193–228. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
08166-8 10

20. Hark, M., Frohn, F., Giesl, J.: Polynomial loops: beyond termination. In: Albert,
E., Kovács, L. (eds.) LPAR 2020. EPiC, vol. 73, pp. 279–297 (2020). https://doi.
org/10.29007/nxv1

21. Hoffmann, J., Das, A., Weng, S.-C.: Towards automatic resource bound analysis
for OCaml. In: Castagna, G., Gordon, A.D. (eds.) POPL 2017, pp. 359–373 (2017).
https://doi.org/10.1145/3009837.3009842

22. Hosseini, M., Ouaknine, J., Worrell, J.: Termination of linear loops over the integers.
In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) ICALP 2019.
LIPIcs, vol. 132 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.118

23. Humenberger, A., Jaroschek, M., Kovács, L.: Invariant generation for multi-path
loops with polynomial assignments. In: Dillig, I., Palsberg, J. (eds.) VMCAI 2018.
LNCS, vol. 10747, pp. 226–246. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73721-8 11

24. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

25. Kincaid, Z., Breck, J., Cyphert, J., Reps, T.: Closed forms for numerical loops. Proc.
ACM Program. Lang. 3(POPL), 1–29 (2019). https://doi.org/10.1145/3290368

https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1145/2737924.2737955
https://clang.llvm.org/
https://doi.org/10.1145/512760.512770
https://wst2018.webs.upv.es/wst2018proceedings.pdf
https://doi.org/10.4230/LIPIcs.RTA.2011.41
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-65474-0_5
https://arxiv.org/abs/1910.11588
https://arxiv.org/abs/1910.11588
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-031-08166-8_10
https://doi.org/10.1007/978-3-031-08166-8_10
https://doi.org/10.29007/nxv1
https://doi.org/10.29007/nxv1
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.4230/LIPIcs.ICALP.2019.118
https://doi.org/10.1007/978-3-319-73721-8_11
https://doi.org/10.1007/978-3-319-73721-8_11
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1145/3290368

22 N. Lommen and J. Giesl

26. Kovács, L.: Reasoning algebraically about P-solvable loops. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78800-3 18

27. Lommen, N., Meyer, F., Giesl, J.: Automatic complexity analysis of integer pro-
grams via triangular weakly non-linear loops. In: Blanchette, J., Kovács, L., Pat-
tinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385, pp. 734–754. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-10769-6 43

28. Lommen, N., Giesl, J.: Targeting completeness: using closed forms for size bounds
of integer programs. CoRR, abs/2307.06921 (2023). https://doi.org/10.48550/
arXiv.2307.06921

29. López-Garćıa, P., Darmawan, L., Klemen, M., Liqat, U., Bueno, F., Hermenegildo,
M.V.: Interval-based resource usage verification by translation into Horn clauses
and an application to energy consumption. Theory Pract. Logic Program. 18(2),
167–223 (2018). https://doi.org/10.1017/S1471068418000042

30. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3
(2017). https://doi.org/10.7717/peerj-cs.103

31. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

32. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial loop
invariants: algebraic foundation. In: Gutierrez, J. (ed.) ISSAC 2004, pp. 266–273
(2004). https://doi.org/10.1145/1005285.1005324

33. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of imper-
ative programs using difference constraints. J. Autom. Reason. 59(1), 3–45 (2017).
https://doi.org/10.1007/s10817-016-9402-4

34. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9 6

35. TPDB. (Termination Problems Data Base). https://github.com/TermCOMP/
TPDB

36. Ming, X., Li, Z.-B.: Symbolic termination analysis of solvable loops. J. Symb. Com-
put. 50, 28–49 (2013). https://doi.org/10.1016/j.jsc.2012.05.005

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-78800-3_18
https://doi.org/10.1007/978-3-031-10769-6_43
https://doi.org/10.48550/arXiv.2307.06921
https://doi.org/10.48550/arXiv.2307.06921
https://doi.org/10.1017/S1471068418000042
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1005285.1005324
https://doi.org/10.1007/s10817-016-9402-4
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://doi.org/10.1016/j.jsc.2012.05.005
http://creativecommons.org/licenses/by/4.0/

Recurrence-Driven Summations
in Automated Deduction

Visa Nummelin1 , Jasmin Blanchette1,2(B) , and Sander R. Dahmen1

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{visa.nummelin,s.r.dahmen,j.c.blanchette}@vu.nl

2 Ludwig-Maximilians-Universität München, Munich, Germany
jasmin.blanchette@lmu.de

Abstract. Many problems in mathematics and computer science
involve summations. We present a procedure that automatically proves
equations involving finite summations, inspired by the theory of holo-
nomic sequences. The procedure is designed to be interleaved with the
activities of a higher-order automatic theorem prover. It performs an
induction and automatically solves the induction step, leaving the base
cases to the theorem prover.

1 Introduction

Finite summations—that is, summations
∑n

i=mti over finitely many terms ti—
are ubiquitous in mathematics and computer science, but they are poorly sup-
ported by automatic theorem provers. One reason is that summations are higher-
order, whereas most theorem provers are first-order.

In recent years, we have seen the rise of higher-order provers [2,3,16–18].
With these provers,

∑n
i=mti can be represented as sum m n (λi. ti); the tradi-

tional
∑

syntax can be seen as syntactic sugar. But despite the use of heuristics
[17, Sect. 4], higher-order provers are ill-equipped to reason inductively. A simple
problem such as

∑n
i=0i = n(n + 1)/2 is a formidable challenge for them, even if

we include axioms for +, ·, /, and
∑

together with an induction principle.
In this paper, we introduce a procedure for proving such equations in a

higher-order prover. The procedure is triggered by a proof goal of the form
k
∑

s + t = u, possibly with some conditions (Sect. 2). In a refutational prover,
the equation would be negated, as k

∑
s + t �= u, and would correspond to the

negated conjecture, a problem axiom, or some clause derived by the prover.
Our procedure translates facts about summations to linear recurrences. These

recurrences have almost the same form as multivariate holonomic sequences [20],
which, while not being a prerequisite for reading this paper, strongly inspired our
work. Each recurrence is associated with a multivariate sequence—a sequence
with one or more indices. In this paper, the word “sequence” generally means
“multivariate sequence.”

The procedure has three steps.

c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 23–40, 2023.
https://doi.org/10.1007/978-3-031-43369-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_2&domain=pdf
http://orcid.org/0000-0001-7049-6847
http://orcid.org/0000-0002-8367-0936
http://orcid.org/0000-0002-0014-0789
https://doi.org/10.1007/978-3-031-43369-6_2

24 V. Nummelin et al.

1. Initialization (Sect. 3): Heuristically choose terms in the goal to generalize and
perform induction on. Among the problem axioms, select those of a suitable
form as initial recurrences for the procedure.

2. Propagation (Sect. 4): From the initial recurrences, compute recurrences cor-
responding to the goal. For +, ·, and

∑
expressions occurring in the goal,

recurrences are computed from the recurrences of their direct subexpressions.
3. Induction (Sect. 5): If the final recurrences for the goal involve only the goal

and no other sequences, use them for induction. If they make the difference
of successive values of k

∑
s+ t−u constantly 0, this establishes the induction

step. Then reduce the goal to a set of base cases and give these to the prover.

Propagation and induction apply holonomic-style techniques almost as a black
box. Initialization connects them to the overall proof search.

For example, to prove
∑n

i=0i = n(n + 1)/2, the procedure would transform
the equation into recurrences and find out that the difference

∑n
i=0i−n(n+1)/2

remains constant as n increases, thereby establishing the induction step. If that
difference is constantly 0, we get

∑n
i=0i = n(n + 1)/2; in general, it suffices to

prove a number of base cases, which are left to the prover. This example is very
simple, but the procedure scales up to more sophisticated problems (Sect. 6). An
implementation is under way in the Zipperposition prover [17].

The procedure treats
∑

as an interpreted (built-in) symbol. The summation
expression evaluates to a value in a commutative group, or a ring if ring multipli-
cation is present. The commutative group or ring gives us +, ·, and −. These are
also interpreted, as are numerals. Integers, including indices, can multiply group
elements. Based on the interpretation, we use the forms t = u and t − u = 0
interchangeably.

Compared with Wilf–Zeilberger pairs [19] and other methods (Sect. 7), the
main benefit of our procedure is that it goes beyond holonomic sequences and
supports both uninterpreted functions and an infinite number of base cases. Our
procedure is widely applicable and may help prove not only difficult summations
in a restrictive form but also easier summations in a more general form, which
is useful in a general-purpose theorem prover. At the heart of our work is the
novel combination of techniques from superposition and holonomic sequences,
which is visible both in the prover integration (Sect. 2) and in the computation
of so-called excess terms (Sect. 4). We refer to our technical report [14] for more
details.

2 Inference Rule

Our procedure can be integrated into a theorem prover, where it takes the form
of an inference rule that complements the prover’s existing rules. Our technical
report discusses an integration with satisfiability modulo theories (SMT) and
tableaux; here, we present a rule for superposition:

C1 · · · Cl C ′ ∨ t[�s] �= 0
Summation

D ∨ C ′ ∨ ∨
�b∈B t[�b] �= 0

Recurrence-Driven Summations in Automated Deduction 25

These side conditions apply:

• t[�s] is an expression that can be brought into the general form k
∑n

i=mt′ + t′′;
• the procedure selects, generalizes, and performs an induction on the subterms

�s of t (Sect. 3);
• the procedure succeeds at proving the induction step based on initial recur-

rences derived from C1, . . . , Cl (Sect. 3) and their propagation (Sect. 4);
• the procedure identifies B as the finite set of base cases of the induction,

where each case is a vector �b of terms of the same length as �s (Sect. 5); and
• the subclause D captures potential conditions determined by the procedure.

The intuition behind the rule is that the conclusion should be easier to refute
than the rightmost premise. As for the premises C1, . . . , Cl, they can contain
useful information about �s, often about bounds.

3 Initialization

The first step of our procedure is to recognize the structure of recurrences. Vari-
ables on which we can perform induction appear as Skolem constants in the
negated goal. Further opportunities for induction can be created by generalizing
complex terms. Also as part of this step, we must choose which terms represent
(multivariate) sequences and which clauses represent their recurrences.

Theory Detection. We require the necessary theory of summation to be pre-
defined. Specifically, this refers to the inductive theory of integers, axioms for
commutative groups (including multiplication by integers), and the definition of
summation from 0 by

∑−1
n=0fn = 0 and

∑m+1
n=0 fn =

∑m
n=0fn + fm+1 even for

negative m ∈ Z. Other finite intervals than [0,m] are expressible as differences.
Ring multiplication may be absent, so we do not take it as predefined. Instead,

we search candidate binary operators from the negated goal. For each candidate,
we can try to prove left and right distributivity by syntactically looking for that
axiom or by running another instance of the prover. Distributivity is the only
necessary property to apply the procedure, but associativity, commutativity, and
the unit element can also be used in simplifications.

Term Generalization. Term generalization transforms Skolem constants or
complex terms into variables and then performs an induction on the variables.
We propose a straightforward heuristic: For each nonnumeral subterm s of type
Z occurring in the negated goal, generalize s if s stays variable-free even after
recursively applying this heuristic on the proper subterms of s itself. For example,
in the following variable-free integer terms, the underlined subterms would be
generalized: a, 123, f 0 2, 2f (g (−1)) (−3a), f 1 (g (a + 1)), f (g a) 7a.

Let �s = (s1, . . . , sd) be the subterms chosen for generalization. Then, based
on the negated goal C ′ ∨ t[�s] �= 0 (as in the Summation rule), generalization
sets up the goal ∀�n ∈ N. t[�n] = 0 where N ⊆ Z

d collects the bounds of �s (often
N = N

d). We try to prove this goal up to base cases and other mild conditions.

26 V. Nummelin et al.

The generalization makes it possible to use induction to prove that the goal
sequence term t[�n]—a function of �n—equals zero on N . We try to prove the
generalized goal assuming ¬C ′ and some extra conditions E such as the base
cases of the induction. Then, instantiating �n := �s, we conclude C ′∨¬E∨t[�s] = 0.
This, together with the negated goal C ′ ∨ t[�s] �= 0, implies a conclusion of the
form C ′ ∨ ¬E for the Summation rule. Note that C ′ is not generalized.

The set N embodies knowledge about �s that we find among existing clauses
C1, . . . , Cl and the condition ¬C ′. The free variables of ¬C ′ are interpreted as
constants, and they can also occur in �s. For example, assume that �s = f s′ and
�n = n and that the generalized goal contains the factorial n!. Its recurrence
must be in a conditional clause—e.g., (m + 1)! = (m + 1) m! ∨ 0 �≤ m. To use
this recurrence for n!, we need n ≥ 0, which we can ensure using N if we find a
bounding clause f s′ ≥ 0 or its generalization such as f m ≥ 0 where m is a free
variable. The more we know about �s, the more recurrences we can get. At the
same time, N must allow induction, so we keep it convex by considering only
coordinatewise bounds of �s.

Form of Sequence Terms. Sequence terms are terms of the underlying higher-
order logic that our procedure can work with. From their structure, we distin-
guish (pointwise) addition and multiplication, summation, and affine substitu-
tion. This gives a first-order grammar to express the sequence terms.

Definition 1. Sequence terms on a ring A are inductively defined as follows.
The logic’s terms of type A with distinguished integer variables �n are sequence
terms. If f�n and g�n are sequence terms with d variables �n, then so are f�n + g�n,
f�n · g�n,

∑�c•�n+a
i=0 f{nj �→i}�n, and σf�n = fσ�n where �c is a vector, a is an integer,

�c • �n = c1n1 + · · · + cdnd, and σ is an affine substitution (meaning σ�m = q �m +�b
for a matrix q and a vector �b); a, the entries of �c, and the entries of σ (meaning
the entries of q and �b) must be numerals.

Remark 2. In Definition 1 and in the sequel, a commutative group can be
used instead of a ring if ring multiplication is absent. In this case, all formulas
involving ring multiplication (e.g., f�n · g�n) should be ignored.

We view sequence terms as functions Z
d → A. We then write the sequence

terms from the definition compactly as f + g, f · g,
∑a

j f , and σf , and call
a = �c • �n + d an affine variable sum. Moreover, since ·, ∑a

j , and σ all distribute
over +, we can write any sequence term as c1f

1+· · ·+ckfk where the coefficients
cj are numerals and the sequence terms f j are distinct and do not contain +.
Finally, we forbid variable shadowing:

∑a
nj=0 binds nj , and while

∑a
j

∑b
jg and

∑nj

j g and other references to nj outside
∑a

j are syntactically valid, we avoid
such forms by renaming them during encoding and never reintroducing them.

Choice of Initial Recurrences. Semantically, the recurrences we look for
are multivariate heterogeneous linear finite-fixed-step equations with polynomial
coefficients. An archetypical example is

(
n2 + 1

)
fn+2,m+1 + mfn+1,m = nmfn,m+1 − 2hn,m + (m − n) hn,m+1 + 1 (1)

Recurrence-Driven Summations in Automated Deduction 27

Here, the sequences f, h, 1 are bivariate, and the sequence indices are all of the
form n + k or m + k for numerals k ∈ Z, amounting to finite fixed steps.

The general form is 0 = P1g
1 + · · · + Pkgk = �P •�g where �g =

(
g1, ..., gk

)
is a

tuple of sequence terms and �P is a tuple of operator polynomials as defined below.
If k = 1, we have a homogeneous recurrence of g1; otherwise, it is heterogeneous.

Definition 3. Operator polynomials are a Z-algebra with composition as prod-
uct (meaning closed under addition, composition, and integer multiplication)
spanned by the multiplier and shift operators:

• The multiplier operator Mj of index j multiplies a multivariate sequence f
by the variable nj of index j: (Mjf)�n = njf�n.

• The shift operator Sj = {nj
→ nj + 1} of index j increments the variable nj

of index j of a multivariate sequence f by one: (Sjf)�n = f{nj �→nj+1}�n.

With d index variables, the operator polynomials look like ordinary polyno-
mials Z[M1, ...,Md, S1, ..., Sd], but the composition product is noncommutative
since SiMi = MiSi + Si for all i = 1, . . . , d (a derivation of which is given
in the next section directly above equation (2)). As an example of expressing
recurrences in terms of operator polynomials, consider the previous archetypical
recurrence (1). Taking n as the first and m as the second variable, the recurrence
reads

((M2
1 + 1)S2

1S2 + M2S1 − M1M2S2) · f + (2 − (M2 − M1)S2) · h + (−1) · 1 = 0

Remark 4. The expression �P • �g identifying a recurrence is itself a sequence
term. It suffices to observe that if f is a sequence term, then so are the substi-
tution Sjf and the product Mjf = (�n
→ nj) · f with the projection sequence
term �n
→ nj .

As sketched in Sect. 1, we must select some of the problem axioms as initial
recurrences for the procedure. This is accomplished as follows. Let there be an
edge between two axioms of the form C ∨ s = t (where C may be empty) if they
both contain a top-level occurrence of the same sequence g, i.e., an occurrence of
g that is not nested inside an uninterpreted function symbol. The axioms then
form a graph. We take as initial recurrences the connected component of the
generalized goal.

By a sequence g, we mean the f �a part of a term of the form f �a �n where f is
an uninterpreted function symbol, �a is a tuple of variable-free terms, and �n is a
nonempty tuple of integer variables or affine (i.e., linear term + constant term)
combinations of them. The tuples �a and �n may in general be interleaved.

In other contexts, an analogous step is known as lemma filtering or premise
selection [4, Sect. 2]. Clutter from irrelevant facts is less of an issue in the context
of our procedure because it can use only linear recurrences. Beyond this, our
simple heuristic does nothing to avoid clutter.

What should we do about conditions such as C in C ∨ f �a �n = t? We could
forbid them and work only with unit equations such as f �a �n = t. We could collect

28 V. Nummelin et al.

them and put them in the D component of the Summation rule’s conclusion.
Or we could attempt to prove them when the initial recurrences are selected. In
our ongoing implementation, we chose the first option, but what the best option
is remains an open question.

4 Propagation

Holonomic sequences can be defined by homogeneous recurrences with polyno-
mial coefficients and finitely many base cases. They are closed under the four
operations that build sequence terms (+, ·,∑a

j , σ), which especially makes their
equality decidable [20]. The closure is realized by four procedures to derive recur-
rences of a sequence term from the recurrences of its immediate subterms, which
we call propagation. We can propagate independently of the base cases and hence
work on nonholonomic sequence terms [6]. Although we expect the holonomic
subcase to be decidable in our setting, in general decidable equality is lost. Addi-
tionally, unlike in the holonomic setting, we allow heterogeneous recurrences. We
will build this into our noncommutative Gröbner basis setup that is used in the
propagation procedures.

Gröbner Bases of Recurrence Operators. A (generalized) Gröbner basis is
a certain well-behaved generating set of a left-ideal of (possibly noncommutative)
polynomials. Equivalently, we will view it as a system of polynomial equations
that is complete for rewriting. Given a polynomial equation P = 0, for every
monomial M we get a rewrite rule as follows. Decompose MP as MP = L + R
where L is the leading monomial of MP w.r.t. a fixed monomial ordering times
its coefficient. Then L = −R gives rise to a rewrite rule L → −R. A system of
equations is complete for rewriting if every one of its consequences can be proved
via rewriting by these rules.

Example 5. The system
{
ab2 = a + b, a2b = a + 1

}
does not prove its conse-

quence a2 = b by rewriting. (We can see that a2 = b is a consequence by
multiplying the first equation by a and the second equation by b and then by
subtracting the two equations.) In the other direction, the system’s Gröbner basis{
a2 = b, b2 = a + 1

}
does give rewrite proofs ab2 −−−−−→

b2=a+1
a2 + a −−−→

a2=b
b + a and

a2b −−−→
a2=b

b2 −−−−−→
b2=a+1

a + 1.

A theory of Gröbner bases exists for various polynomial algebras [10]. In
our setting, a sufficient requirement is that all indeterminates X,Y commute up
to lower-order terms: XY − Y X ∈ ZX + ZY + Z. The operator polynomials of
Definition 3 fall into this category with the natural choice of taking all multiplier
and shift operators as indeterminates. Indeed, for any sequence term f , we have
the noncommutation relations

(SjMjf)�n = (Sj (�n
→ njf�n))�n = (nj + 1) (Sjf)�n = ((MjSj + Sj) f)�n

and all other pairs of multipliers and shifts commute exactly. That is:

SiMj = MjSi + δi,jSi SiSj = SjSi MiMj = MjMi (2)

Recurrence-Driven Summations in Automated Deduction 29

for all i and j, where δi,j equals 1 if i = j and 0 otherwise. When we consider a
formal polynomial algebra (necessary to perform Gröbner basis computations),
we will usually mean polynomials with integer coefficients and indeterminates
M1,M2, . . . , S1, S2, . . . satisfying (2). Exceptionally, when we use propagation to
substitution, we will consider compositions of shifts formally as further individual
indeterminates, as explained above Procedure 12. Apart from this exceptional
setting, we fix a choice of monomials as follows.

Definition 6. In our setting, a monomial is a polynomial of the form Mx1
1 · · ·

Mxd

d Sy1
1 · · · Syd

d where the exponents xj , yj ∈ N are numerals.

Due to the (non)commutation relations (2), polynomials can be written as
sums of monomials times their integer coefficients. This makes working with
these noncommutative polynomials similar to working with commutative ones.
A major difference is that monomials are not closed under product, as illustrated
by S1·M1 = M1S1+S1. This complicates the definition of monomial order below,
which in turn defines how to interpret a polynomial equation as a rewrite rule.

Definition 7. A monomial order � is a well-founded total order on monomials
such that for all monomials A,B,C, if A � B, then the leading monomial of CA
is �-smaller than the leading monomial of CB; here, the leading monomial of a
nonzero polynomial P means the �-largest monomial occurring in P .

Buchberger’s algorithm to compute Gröbner bases (also in a noncommutative
context) is similar to saturation-based theorem proving. It repeatedly derives
from polynomial equations P = 0 and R = 0 new equations AP −BR = 0 where
coefficient–monomial products A,B make the leading monomials of AP and BR
cancel. It suffices to take A,B with smallest total degree and coprime coefficient.
A and B play a similar role to the most general unifier in superposition. Since Sj

is semantically bijective, we can and always do cancel it, replacing SjR = 0 by
R = 0. This modified completion into a Gröbner basis always terminates. The
standard termination proof reduces to applying noetherianity of commutative
polynomials over Z or Dickson’s lemma [10].

A single operator polynomial P1 perfectly encodes a linear homogeneous
recurrence 0 = P1g of a sequence term g. However, we allow any heterogeneous
recurrence of the form 0 = �P • �f = P1f

1 + · · · + Pkfk where �f =
(
f1, . . . , fk

)

is an arbitrary tuple of different sequence terms. We can encode this by a sin-
gle operator polynomial for the duration of one Gröbner basis computation as
follows. Let �f enumerate exactly once all the sequence terms needed to express
the current recurrences with the help of operator polynomials. Let �f depend on
d variables. For each f j , we consider a shift Fj := Sd+j w.r.t. a so far unused
variable. Then the operator polynomial �P • �F encodes 0 = �P • �f .

This encoding does not respect the semantics of operator polynomials; to
recover it, we must apply the substitution {�F
→ �f}. However, products such
as F1F2 remain uninterpretable even with ring-valued sequences because the
operator product—function composition—is different from multiplication of f j ’s.
Hence, we will simply discard uninterpretable polynomials after the Gröbner
basis computation. Moreover, from now on, we will freely write f j for Fj .

30 V. Nummelin et al.

Definition 8. Let X1, . . . , Xn be an enumeration of all multiplier and shift
indeterminates. An (X1, . . . , Xk)-elimination order is a monomial order such
that Xj � X

ak+1
k+1 · · ·Xan

n for all indices j ≤ k and all exponents ak+1, . . . , an ∈ N.

Our default choice for the order is to compare total degree in X1, ...,Xk and
break ties using the total degree reverse lexicographical order [7, Chapter 2 §2].

Procedure 9. Eliminating indeterminates X1, . . . , Xk from a finite system of
equations E means computing a Gröbner basis G of E w.r.t. an (X1, . . . , Xk)-
elimination order and then discarding all polynomials from G that contain any
of X1, . . . , Xk or that are not linear in the indeterminates encoding sequence
terms. (As mentioned above, during the Gröbner basis computation, whenever
we derive a polynomial SjR, we replace it by R.)

While in principle any Gröbner basis would suffice for elimination, our default
choice is to compute the reduced Gröbner basis (i.e., the fully simplified one).
The nonlinear polynomials can be discarded as soon as they are derived during
the Gröbner basis computation instead of only at the end. Recurrence equations
produced by elimination are logical consequences of the input equations, as we
explain in our technical report.

Despite the formally equivalent roles of all sequence terms f i in the recurrence
0 = �P • �f , we associate with every recurrence a sequence term f j . It is often
convenient to write such a recurrence of f j as Pjf

j+e = 0 where the excess terms
e = �P•�f−Pjf

j contain all sequence terms f i except f j . The choice of f j among �f
will be determined by the definition of excess terms (Definition 18). However, this
choice remains irrelevant for the individual propagation steps, described below.
We adapt these steps from the four closure properties of holonomic sequences
by carrying excess terms along.

Propagation to Addition. Let us start with addition of sequence terms.

Procedure 10. Let f and g be sequence terms, and let h be the formal name of
their addition f +g. The associated recurrences F of f and G of g are propagated
to those of h by eliminating f and g from F ∪G∪{h = f + g}. (By Procedure 9,
this involves computing a Gröbner basis for these equations and then discarding
the equations containing f or g as well as the corresponding nonlinear terms.)

Actually, the same propagation technique works if f + g is replaced by any
expression in the general recurrence format �P • �l (a dot product of operator
polynomials �P and sequence terms �l). The key is that the defining equation
h = �P •�l is again a linear recurrence. Such propagations could also be done by
iterating more primitive propagations.

Example 11. Consider the goal
∑n

j=0aj = gn + a0 given g0 = 0 and gn+2 =
gn +an+1 +an+2 for all n ∈ N. The defining recurrence of g can be written using
the operator polynomials as S2

1g = g+S1a+S2
1a. The defining recurrence of the

sum fn :=
∑n

j=0aj is S1f = f + S1a. We must prove that hn := gn + a0 − fn

Recurrence-Driven Summations in Automated Deduction 31

is 0. To achieve this, we propagate recurrences to h using the elimination proce-
dure described above (Procedure 9) and the total-degree-based (f, g)-elimination
order with f ≺ g. Leading monomials are shown in bold:

0 = S2
1g − g − S1a − S2

1a recurrence of g

−S2
1 0 = g + a0 − f − h definition of h

0 = −g − S1a − S2
1a − a0 + S2

1f + S2
1h

−S1 0 = S1f − f − S1a recurrence of f

0 = −g − S1a − a0 + S2
1h + S1f

− 0 = S1f − f − S1a recurrence of f

0 = −g − a0 + S2
1h + f

+ 0 = g + a0 − f − h definition of h

0 = S2
1h − h

In this example, hn+2−hn = 0 is the only recurrence that does not contain f and
g, so we discard the rest of the Gröbner basis calculation. Since hn+2 − hn = 0
contains only the sequence h, we can use it to prove the induction step (of size
2) of a proof of ∀n. hn = 0. We are then left with the two base cases h0 = 0 and
h1 = 0, which the Summation inference would include in its conclusion without
auxiliary symbols (f and h) as

∑0
j=0aj �= g0 + a0 ∨ ∑1

j=0aj �= g1 + a0.

Propagation to Substitution. Consider a numeral matrix a = [akj]kj ∈ Z
d×D

and a vector �b ∈ Z
d. They characterize an affine substitution σ = {�n
→ a�n +�b}

= {nk
→ ∑D
j=1akjnj +bk | 1 ≤ k ≤ d}. As an operator on sequences, σ performs

an affine change of variables: (σf)�n = fa�n+�b.
Clearly, any recurrence Pf = 0 of f implies σPf = 0. Moreover, if σP = P ′σ,

then P ′σf = 0 gives a recurrence of σf . Finding such a P ′ for a general P can be
reduced to finding an operator polynomial P ′

X satisfying σX = P ′
Xσ for every

indeterminant X. This amounts to pushing all indeterminates X leftwards. For
multipliers, we have σ(M1, . . . ,Md) = (a(M1, . . . ,MD) +�b) σ. In contrast, shifts
are easily pushed only rightwards—namely, Sjσ = σS

a1j
1 · · · Sadj

d . Consequently,
the recurrences of f must be first expressed in terms of the composite shifts
Sj := S

a1j
1 · · · Sadj

d . As operators, these satisfy the (non)commutation relations

SjMk = (Mk + akj)Sj SiSj = SjSi SiSj = SjSi (3)

This makes the Sj ’s suitable as indeterminates in Gröbner basis computations.
Accordingly, for propagation to substitution, we enlarge our formal polyno-

mial algebra to also contain the indeterminates S1,S2, . . . satisfying the rela-
tions (3), while also keeping (2). We note that, as operators, the indeterminates
further satisfy (essentially by definition) the relations

Sj

∏
k: akj<0 S

|akj |
k =

∏
k: akj>0 S

akj

k for j ∈ {1, . . . , D} (4)

32 V. Nummelin et al.

We add these new relations to the system of recurrence equations of which we
compute the Gröbner basis. Finally, we extend our notion of monomial from Def-
inition 6 to mean any polynomial of the form Mx1

1 · · · Mxd

d Sy1
1 · · · Syd

d S
z1
1 · · · SzD

D

where the exponents xj , yj , zj ∈ N are numerals.

Procedure 12. Recurrences of a sequence term f are propagated to its affine
substitution (σf)�n = fa�n+�b as follows. Eliminate each Sk from the system
of polynomial equations containing both the recurrences of f and the rela-
tions (4). Every resulting recurrence P (�M,�S)f + e = 0 implies a recurrence
P (a �M +�b, �S)σf +σe = 0 of σf where we have collected the indeterminates into
vectors and where e are excess terms that do not contain f .

Example 13. Consider
∑n2

n1=0

(
n1

n2−n1

)
= Fn2+1 where the Fibonacci numbers

are defined by F1 = F2 = 1 and
(
S2
1 − S1 − 1

)
F = 0. For the binomial

coefficient
(·
·
)
n1,n2

=
(
n1
n2

)
= n1!

n2!(n1−n2)!
, the recurrence from Pascal’s trian-

gle reads as (S1S2 − S2 − 1)
(·
·
)

= 0 and extends
(
n1
n2

)
from 0 ≤ n2 ≤ n1

to all n2 ∈ Z and n1 ∈ N. Moreover, we have
(
n1
n2

)
= n1

n2

(
n1−1
n2−1

)
—i.e.,

((M2 + 1) S1S2 − M1 − 1)
(·
·
)

= 0. We want to propagate these recurrences to
the substitution σ = {n1
→ n1, n2
→ n2 − n1}. We have S1σ = σS1S

−1
2 and

S2σ = σS2. So we introduce for S1S
−1
2 and S2 the indeterminates S1 and S2

whose characterizing recurrences (4) read

(S1S2 − S1)
(·
·
)

= 0 (i) (S2 − S2)
(·
·
)

= 0 (ii)

Next, we eliminate S1, S2 in favor of S1,S2. Here, (ii) immediately rewrites every
S2 to S2 and then (i) becomes (−S1 + S1S2)

(·
·
)

= 0, which rewrites every S1.
The remaining steps to complete a Gröbner basis w.r.t. some total-degree order
are irrelevant for what we want to illustrate. We factor the result for readability:

(−S1 + S1S2)
(·
·
)

= 0 (−S2 + S2)
(·
·
)

= 0
(
S1S

2
2 − S2 − 1

) (·
·
)

= 0 ((M2 + 1)S2 − M1 + M2)
(·
·
)

= 0

((M1 + 1) S1S2 − (M1 − M2 + 2) S1 − M1 − 1)
(·
·
)

= 0

((M1 − M2 + 1) (M1 − M2 + 2)S1 − M1M2 − M2)
(·
·
)

= 0

Now σ maps the lowest four recurrences to recurrences of fn1,n2 =
(

n1
n2−n1

)

below:
(
S1S

2
2 − S2 − 1

)
f = 0 ((M2 − M1 + 1) S2 − 2M1 + M2) f = 0

((M1 + 1) S1S2 − (2M1 − M2 + 2) S1 − M1 − 1)f = 0
((2M1 − M2 + 1) (2M1 − M2 + 2) S1 − (M1 + 1) (M2 − M1))f = 0

The next step is to propagate to the summation. We postpone it to Example 16.

Recurrence-Driven Summations in Automated Deduction 33

Propagation to Product. Let · be ring multiplication or more generally a
group bihomomorphism. If the sequence terms f and g depend on disjoint sets
of variables, recurrences of fg = f · g are essentially a union of recurrences
of f and g. Namely, let Pf + e = 0 be any recurrence of f where P is an
operator polynomial on the variables of f and the excess terms e do not contain
f . Then P (fg) + eg = 0 because g is effectively a constant to P , and similarly
for recurrences of g. With the help of this special case, propagation to product
can be reduced to propagation to substitution, as explained below.

Procedure 14. Let f and g be sequence terms parameterized by the variables
�n = (nj)

d
j=1. Let �m = (nj+d)

d
j=1 be a tuple of fresh variables. The recurrences

of f and g are propagated to their pointwise product fg in two steps. First, the
recurrences of the variable-disjoint product f�ng�m are the union of the recurrences
of f�n multiplied on the right by g�m and of those of g�m multiplied on the left by
f�n. Then the recurrences of f�ng�n = {�m
→ �n} (f�ng�m) are found by propagating
to substitution using Procedure 12.

Propagation to Summation. We finally consider the summations
∑n2

n1=0f�n.
We can assume that the variables are numbered so that the sum acts on the first
two. Similarly to above, we consider the consequence

∑n2
n1=0Pf�n +

∑n2
n1=0e�n = 0

of a recurrence Pf + e = 0 of the sequence term f where P is an operator
polynomial and e are excess terms. We want to find an operator polynomial P ′

such that
∑n2

n1=0P becomes P ′∑n2
n1=0 up to excess terms. Like for substitutions,

finding such a P ′ for P can be reduced to finding an operator polynomial P ′
X

satisfying
∑n2

n1=0X = P ′
X

∑n2
n1=0 up to excess terms for every indeterminant X.

The result will be a recurrence P ′∑n2
n1=0f�n + e′ = 0 of

∑n2
n1=0f�n.

Procedure 15. Recurrences of a sequence term f are propagated to its sum∑n2
n1=0f�n as follows. First, eliminate multipliers M1 from all recurrences of f .

Every resulting recurrence Pf + e = 0 implies
∑n2

n1=0Pf�n +
∑n2

n1=0e�n = 0. Here,
P is an operator polynomial that does not contain M1, and the excess terms
e do not contain f . Next, each of these recurrences is rewritten into the form
P ′∑n2

n1=0f�n +E0 +En2 +
∑n2

n1=0e�n = 0 where P ′ is an operator polynomial and
the Em’s are part of excess terms built by applying some operator polynomials
and the substitution {n1
→ m} to f . This is achieved by commuting

∑n2
n1=0

with indeterminates other than S1 and S2. These two indeterminates are instead
handled by

∑n2
n1=0S1g�n =

∑n2
n1=0g�n + {n1
→ n2 + 1} g�n − {n1
→ 0} g�n

∑n2
n1=0S2g�n = S2

∑n2
n1=0g�n − S2 {n1
→ n2} g�n

Example 16. Let us continue the proof of
∑n2

n1=0

(
n1

n2−n1

)
= Fn2+1 from Exam-

ple 13. There we found for the summand fn1,n2 =
(

n1
n2−n1

)
a recurrence

(S1S
2
2 −S2−1)f = 0. It is actually the only recurrence after eliminating M1 as a

first step of propagation to summation. Next, we set S1 to 1 using a telescoping
identity:

∑n2
n1=0S1S

2
2f =

∑n2
n1=0S

2
2f + {n1
→ n2} S1S

2
2f − {n1
→ 0} S2

2f

34 V. Nummelin et al.

Then we push the remaining shifts S2 leftwards:
∑n2

n1=0

(
S2
2 − S2

)
f = S2

∑n2
n1=0 (S2 − 1) f − S2 {n1
→ n2} (S2 − 1) f

=
(
S2
2 − S2

) ∑n2
n1=0f − S2

2 {n1
→ n2} f − S2 {n1
→ n2} (S2 − 1) f

Hence, in total we have
∑n2

n1=0

(
S1S

2
2 − S2 − 1

)
f − (

S2
2 − S2 − 1

) ∑n2
n1=0f

= {n1 �→ n2}S1S2
2f − {n1 �→ 0}S2

2f − S2
2 {n1 �→ n2} f − S2 {n1 �→ n2} (S2 − 1) f

=
(
n2+1

1

) − (
0

n2+2

) − (
n2+2

0

) − (
n2+1

1

)
+

(
n2+1

0

)

=���(
n2+1

1

) − 0 − 1 −���(
n2+1

1

)
+ 1 = 0

Since (S1S
2
2 −S2 − 1)f = 0, we have

(
S2
2 − S2 − 1

) ∑n2
n1=0f = 0. Now this is the

same recurrence that Fn2+1 satisfies and hence the final propagation to difference
gives

(
S2
2 − S2 − 1

)
(
∑n2

n1=0f −Fn2+1) = 0. This proves an induction step of size
2 and leaves two base cases that can be discharged by a theorem prover.

Iteration on Excess Terms. Let g be the term from the negated goal to be
proved to be 0. After propagating along the structure of g, we end up with
recurrences of the form Pg = e where P is an operator polynomial and the
excess terms e do not contain g. In the holonomic case, e will be syntactically
0. We have also observed that e is often 0 in the nonholonomic case as well.
But if e is not syntactically 0, then Pg = e cannot immediately be used for a
proof by induction. A solution is to iterate a full series of propagations with e in
place of g to find P2e = e2 and conclude P2Pg = P2e = e2, then repeat as long
as necessary. This process will always terminate, although it might fail to find
recurrences.

We will impose an order on the sequence terms to accomplish three things.
First, we get a proper definition of which terms in a recurrence are excess.
Second, well-foundedness of the order will guarantee termination of the iter-
ation of full propagations to excess terms. Third, the iterations can be inter-
leaved with basic normalizations such as {n1
→ 2n1} M1 {n1
→ 3n1+1} f →
2M1 {n1
→ 6n1+2} f .

Definition 17. The spine of a sequence term f without addition, denoted by
spine f , is the sequence term obtained intuitively by erasing operator polynomials
from f . Precisely, this means fully reducing f by the rewrite rules at → t,
Mjt → t, {�n
→ b�n + �c}t → {�n
→ b�n}t, and

∑�c•�n+a
j t → ∑�c•�n

j t where a, �c, and
the matrix b are all numeric.

Shift indeterminates mix with other substitutions, which explains the last
two rules. For example, spine {n1
→ 2n1} M1 {n1
→ 3n1 + 1} f = {n1
→ 2n1}
{n1
→ 3n1} f . If we have a sequence term c1g

1 + · · · + ckgk with addition, it
contains multiple spines, one for each gj . The significance of spines is that when

Recurrence-Driven Summations in Automated Deduction 35

we derive a more complex consequence from a recurrence (during elimination by
applying an operator polynomial to it), its spines do not become more complex.

We can easily describe how each propagation step changes the spines of the
involved sequence terms. Propagation to the addition f +g produces only spines
ef and eg in the resulting recurrences, where ef denotes a spine of a term from
a recurrence of f and analogously for eg. Moreover, propagation to the substi-
tution σf produces σef , propagation to the product fg produces (spine f)eg

and ef (spine g), and propagation to the summation
∑n2

n1=0f produces {n1
→ 0}
(spine f), {n1
→ n2} (spine f), and

∑n2
n1=0ef , where ef and eg are as above.

We want propagations to preserve the invariant that excess terms are small.
Given how spines change under propagation, a term order on spines offers a way
to define smallness. We choose an order that also orients simplifications.

Definition 18. Fix a Knuth–Bendix order with argument coefficients [12] with
exactly three weights W

∑a
n=0 > W (·) > 3Wσ > 0 and all argument coefficients

set to 2. Moreover, projection sequence terms corresponding to Mj ’s (Remark 4)
must have equal weights, and substitutions with fewer bindings must have
lower precedence. The excess (partial) order on addition-free sequence terms is
obtained by comparing the spines of terms using this fixed order. Excess terms
of a recurrence are all its nonmaximal sequence terms w.r.t. the excess order.

The weights for the excess order are arranged to be compatible with nor-
malization, which pushes substitutions to the leaf nodes of the term tree and
pulls summations towards the root. The resulting normal form is simply the
typical way of writing terms without explicit substitutions. It is also the nor-
mal form of the rewrite system consisting of the applicable associativity and/or
commutativity rules of · as well as the following rules:

s · ∑a
j t → ∑a

j st 1t, t1, {} t → t
(∑a

j s
)

· t → ∑a
j st (σ ∪ {nj
→ a}) u → σu

σ
∑a

j t → ∑σa
j σt (σ ∪ {nj
→ a}) Mj → a

∑c
jt → {nj
→ 0} t + · · · + {nj
→ c} t σ (ts) → σt · σs

∑−c
j t → −{nj
→ −1} t − · · · − {nj
→ 1 − c} t σσ′t → (σ ◦ σ′) t

where s, t, u are sequence terms, u does not contain the variable nj , a is an
affine variable sum, Mj = �n
→ nj is a projection sequence term, σ, σ′ are affine
substitutions, and the numeral c is nonnegative.

These rules produce additions, which must be interpreted as follows. For any
rule above of the general form t0 → c1t1 + · · · + cktk, the actual rewrite on the
level of entire recurrences is f [t0]+R = 0 → c1f [t1]+· · ·+ckf [tk]+R = 0 where
cj are numerals, the sequence terms f [tj] are equal except for the distinguished
subterm tj , and R is the sum of the remaining terms in the recurrence.

To conclude termination, it suffices to prove that t0 dominates each of t1, . . . ,
tk individually. The proof is in our technical report. It makes apparent our choices
of weights and argument coefficients for the transfinite Knuth–Bendix order.

36 V. Nummelin et al.

5 Induction

After propagation, we consider all recurrences Pg = 0 of the goal sequence
term g to be proved to be 0. In exceptionally fortunate cases, the operator
polynomial P is ±1 and we are unconditionally done because, for any group, the
multiplication-by-±1 map is invertible. This happens when the objective is to
prove a recurrence that this method derives as a substep anyway. Otherwise, we
apply induction and leave as conditions the base cases as well as invertibility of
the multiplication maps associated with the leading monomials’ coefficients.

A common case is that variables range over natural numbers and we have a
final recurrence with leading shift Sb1

1 · · · Sbd
d w.r.t. any monomial order. Then the

values
⋃d

j=1

{
�n ∈ N

d | nj < bj

}
suffice for the base cases, as a union of stacked

hyperplanes that is infinite unless d ≤ 1, but it corresponds to only
∑d

j=1bj

one-variable substitutions {nj
→ a} for 1 ≤ j ≤ d and 0 ≤ a < bj . If our eager
generalization produced variables that do not participate in their induction (i.e.,
their bj ’s are 0), they are replaced back to their original values.

If there is more than one applicable final recurrence, we take the intersection
of their base value sets w.r.t. the same monomial order. To see that it works,
consider any point outside the intersection. It is a nonbase point w.r.t. some final
recurrence and hence the induction step can be taken by the recurrence.

To represent the intersection as substitutions, we distribute it over the hyper-
plane stack unions. This results in a union of hyperline stacks of the form
N(J,�b) :=

{
�n ∈ N

d | nj < bj for all j ∈ J
}

where J ⊆ {1, . . . , d} and �b vary.
One such stack is represented by

∏
j∈J bj substitutions {nj
→ aj | j ∈ J} where

the aj ’s are chosen arbitrarily such that 0 ≤ aj < bj . Unfortunately, distribution
duplicates some base cases. To compensate, if I ⊆ J and �b ≥ �c pointwise, then
N(I,�b) ⊇ N(J,�c), so that N(J,�c) can be removed in favor of N(I,�b).

If a variable n ∈ Z is unbounded, we perform two inductions on the rays:
0 ≤ n and n < b if b base cases are needed. The backward induction on n < b can
be transformed into an induction on N by the change of variables n
→ b− 1−n.

6 Examples

Our procedure can prove the induction step of holonomic sequence formulas such
as Example 13, the binomial formula:

(a + b)h =
∑h

n=0

(
h
n

)
anbh−n

(
a+b
h

)
=

∑h
n=0

(
a
n

)(
b

h−n

)

Heterogeneous recurrences, which are beyond the holonomic fragment, enable
proving elementary general sequence formulas such as Example 11 and the fol-
lowing:

∑h
n=0fh−n =

∑h
n=0fn

∑k
h=0

∑h
n=0fh,n =

∑k
n=0

∑k
h=nfh,n

If we ignore the holonomic base case requirements, we can for example prove
the induction steps of Abel’s binomial formula and of some Stirling number

Recurrence-Driven Summations in Automated Deduction 37

identities:

(a + b)h =
∑h

n=0

(
h
n

)
a (a − n)n−1 (b + n)h−n

hk/h! =
∑h

n=0 {k
n} /(h − n)!

Here, the Stirling numbers of the second kind {k
n} are one of many special non-

holonomic sequences that frequently arise in combinatorics. They count the num-
ber of partitions of a k-element set into n subsets.

As further demonstration, we apply our procedure to the last equation. For
convenience, we will use the name of a variable also to denote its multiplier
operator. Moreover, we will use the uppercase version of the name of a variable
to denote its shift operator. The defining recurrence of the Stirling numbers
then reads (KN − (n + 1) N − 1) {k

n} = 0 for k, n ≥ 0, where K and N denote
the shift operators for the variables k and n, the first n denotes the multiplier
for the variable n, and the second n is the variable itself. This recurrence is
complemented by the initial values {00} = 1 and {n

0} = {0
n} = 0 if n �= 0.

Starting from the right, the inverse m!−1 of the factorial satisfies the recur-
rence (mM + M − 1) m!−1 = 0 that holds for all m ∈ Z by extension. This must
be found in the initialization step because there is no propagation to division.
Propagation to the substitution {m
→ h − n} then gives the following recur-
rences, factored for clarity:

((h − n + 1) H − 1) (h − n)!−1 = 0 (N − h + n) (h − n)!−1 = 0

To propagate to product, we consider
{

k1
n1

}
and (h2 − n2)!−1 with variables

renamed apart. We must propagate to the substitution {nj
→ n, hj
→ h,
kj
→ k | j ∈ {1, 2}} the recurrences of

{
k1
n1

}
(h2 − n2)!−1 given by the following

five operator polynomials:

K1N1 − (n1 + 1) N1 − 1 and H1 − 1 from
{

k1
n1

}

(h2 − n2 + 1) H2 − 1, N2 − h2 + n2, and K2 − 1 from (h2 − n2)!−1

We added here the trivial recurrences given by H1 − 1 and K2 − 1 implied by
the independence from h1 and k2. Among the defining recurrences (4) of the
compound shift indeterminates N,H,K, the recurrence H1H2 − H simplifies to
H2 − H by H1 − 1 and K1K2 − K to K1 − K by K2 − 1. (In other words, the
factorwise renaming of already disjoint variables h and k amounts to renam-
ing in the entire product.) The third compound shift recurrence, N1N2 − N ,
simplifies to (h2 − n2) N1 − N by N2 − h2 + n2. The part of the Gröbner
basis with only compound shifts is then straightforwardly finished with the
result {KN − (n1 + 1) N − h2 + n2, (h2 − n2 + 1) H − 1}. Hence this propaga-
tion step yields

(KN − (n + 1) N − h + n)
{k

n}
(h − n)!

= 0 ((h − n + 1) H − 1)
{k

n}
(h − n)!

= 0

To sum over n, we first eliminate n from the previous two recurrences and
conclude (H (K − h) + (N − 1) (KH − (h + 1) H + 1)) ({k

n} / (h − n)!) = 0. The

38 V. Nummelin et al.

sum has natural boundaries, meaning that the summand vanishes outside them.
This guarantees that there will be no excess terms, which we also tediously
discover when pulling out the indeterminates:

h∑

n=0
(N − 1)

P
︷ ︸︸ ︷
(KH − (h + 1) H + 1)

{k
n}

(h − n)!
= P

({
k

h+1

}

(−1)!
− {k

0}
h!

)

= −{
k+1
0

}
/ (h + 1)! + {k

0} ((h + 1) H − 1) h!−1 = 0
h∑

n=0
H (K − h)

{k
n}

(h − n)!
− H (K − h)

h∑

n=0

{k
n}

(h − n)!
= − (K − h)

{
k

h+1

}

(−1)!
= 0

Here, by the recurrence of the inverse of the factorial, we get (−1)!−1 = 0. So we
obtain a recurrence H (K − h)

∑h
n=0 {k

n} / (h − n)! = 0 for the left-hand side of
our goal. For the right-hand side, we unproblematically obtain (K − h)

(
hk/h!

)
=

0. Hence H (K − h) zeros out the difference hk/h! − ∑h
n=0 {k

n} / (h − n)!. The
largest shift HK of the operator H (K − h) determines that the two sets of base
cases h = 0 and k = 0 are sufficient for induction.

7 Related Work

Holonomic sequences [20] are closely related to our work. Unlike our approach,
which allows infinitely many base cases as long as they are finitely representable
(Sect. 5), they are limited to a finite number of base cases. Relaxing this limita-
tion yields approximately the homogeneous version of our propagation procedure
(i.e., without excess terms), whose theory Chyzak, Kauers, and Salvy laid out
[6]. Heterogeneity amounts to module Gröbner bases [5,8,13]. Its integration into
propagations makes elementary identities about general sequences automatically
provable, which may be of interest for general-purpose theorem provers.

In practice, hypergeometric sums are common holonomic sequences that
have much faster algorithms available. Gosper’s indefinite summation [9] can
be applied to compute Wilf–Zeilberger pairs [19], which offer compact proof cer-
tificates for definite sum identities. These fast methods admit generalizations to
the full holonomic setting. See Koutschan’s thesis [11] for an overview.

Finding a closed form instead of only checking it for a summation is a different
but related task. A common approach is to perform a recurrence solving phase
after recurrence computation, as in the Mathematica package Sigma [1,15].

8 Conclusion

We presented a procedure for proving equations involving summations within an
automatic higher-order theorem prover. The procedure is inspired by holonomic
sequences and partly generalizes them. It expresses the problem as recurrences
and derives new recurrences from existing ones. In case of success, it shows the
induction step of a proof by induction, leaving the base cases to the prover.

As future work, we want to continue implementing the procedure in Zip-
perposition [17]. We hope that the subsequent practical experiments help us to
settle how side conditions of initial recurrences ought to be handled.

Recurrence-Driven Summations in Automated Deduction 39

Acknowledgment. We thank Pascal Fontaine for his ideas on how to integrate our
procedure into SMT and tableaux. We also thank Anne Baanen, Pascal Fontaine, Mark
Summerfield, and the anonymous reviewers for suggesting improvements.

Nummelin and Blanchette’s research has received funding from the Netherlands
Organization for Scientific Research (NWO) under the Vidi program (project No.
016.Vidi.189.037, Lean Forward). Dahmen’s research has received funding from the
NWO under the Vidi program (project No. 639.032.613, New Diophantine Directions).

References

1. Abramov, S.A., Bronstein, M., Petkovsek, M., Schneider, C.: On rational and
hypergeometric solutions of linear ordinary difference equations in ΠΣ*-field exten-
sions. J. Symb. Comput. 107, 23–66 (2021)

2. Barbosa, H., Reynolds, A., El Ouraoui, D., Tinelli, C., Barrett, C.: Extending SMT
solvers to higher-order logic. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI),
vol. 11716, pp. 35–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29436-6 3

3. Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-order
logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12166, pp. 278–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51074-9 16

4. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formaliz. Reason. 9(1), 101–148 (2016)

5. Bueso, J., Gómez-Torrecillas, J., Verschoren, A.: Gröbner bases for modules.
In: Bueso, J., Gómez-Torrecillas, J., Verschoren, A. (eds.) Algorithmic Methods
in Non-Commutative Algebra: Applications to Quantum Groups, pp. 169–202.
Springer, Dordrecht (2003). https://doi.org/10.1007/978-94-017-0285-0 5

6. Chyzak, F., Kauers, M., Salvy, B.: A non-holonomic systems approach to special
function identities. In: Johnson, J.R., Park, H., Kaltofen, E. (eds.) Symbolic and
Algebraic Computation, International Symposium, ISSAC 2009, Seoul, Republic
of Korea, 29–31 July 2009, pp. 111–118. ACM (2009)

7. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics, 4th edn. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16721-3

8. Fajardo, W., Gallego, C., Lezama, O., Reyes, A., Suárez, H., Venegas, H.: Gröbner
bases of modules. In: Gallego, C., Lezama, O., Reyes, A., Suárez, H., Venegas, H.
(eds.) Skew PBW Extensions. AA, vol. 28, pp. 261–286. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53378-6 14

9. Gosper, R.W.: Decision procedure for indefinite hypergeometric summation. Proc.
Natl. Acad. Sci. USA 75(1), 40–42 (1978)

10. Kandri-Rody, A., Weispfenning, V.: Non-commutative Gröbner bases in algebras
of solvable type. J. Symb. Comput. 9(1), 1–26 (1990)

11. Koutschan, C.: Advanced applications of the holonomic systems approach. ACM
Comm. Comput. Algebra 43(3/4), 119 (2009)

12. Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-
Like properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 348–362. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75560-9 26

https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1007/978-3-030-51074-9_16
https://doi.org/10.1007/978-3-030-51074-9_16
https://doi.org/10.1007/978-94-017-0285-0_5
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-030-53378-6_14
https://doi.org/10.1007/978-3-540-75560-9_26
https://doi.org/10.1007/978-3-540-75560-9_26

40 V. Nummelin et al.

13. Maletzky, A., Immler, F.: Gröbner bases of modules and Faugère’s f4 algorithm in
Isabelle/HOL. CoRR abs/1805.00304 (2018)

14. Nummelin, V., Blanchette, J., Dahmen, S.R.: Automated deduction with
recurrence-driven summations (technical report). Technical report (2023). https://
lean-forward.github.io/pubs/sums report.pdf

15. Schneider, C.: Symbolic summation assists combinatorics. Sem. Lothar. Combin.
56, 1–36 (2007)

16. Steen, A., Benzmüller, C.: Extensional higher-order paramodulation in Leo-III. J.
Autom. Reason. 65(6), 775–807 (2021)

17. Vukmirović, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tourret,
S.: Making higher-order superposition work. J. Autom. Reason. 66(4), 541–564
(2022)

18. Vukmirović, P., Blanchette, J., Schulz, S.: Extending a high-performance prover to
higher-order logic. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023.
LNCS, vol. 13994, pp. 111–129. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-30820-8 10

19. Wilf, H.S., Zeilberger, D.: Rational functions certify combinatorial identities. J.
Am. Math. Soc. 3(1), 147–158 (1990)

20. Zeilberger, D.: A holonomic systems approach to special functions identities. J.
Comput. Appl. Math. 32(3), 321–368 (1990)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://lean-forward.github.io/pubs/sums_report.pdf
https://lean-forward.github.io/pubs/sums_report.pdf
https://doi.org/10.1007/978-3-031-30820-8_10
https://doi.org/10.1007/978-3-031-30820-8_10
http://creativecommons.org/licenses/by/4.0/

Formal Verification of Bit-Vector
Invertibility Conditions in Coq

Burak Ekici1 , Arjun Viswanathan2 , Yoni Zohar3(B) , Cesare Tinelli2 ,
and Clark Barrett4

1 Muğla Sıtkı Koçman University, Muğla, Turkey
2 The University of Iowa, Iowa City, USA
3 Bar-Ilan University, Ramat Gan, Israel

yoni.zohar@biu.ac.il
4 Stanford University, Stanford, USA

Abstract. We prove the correctness of invertibility conditions for the
theory of fixed-width bit-vectors—used to solve quantified bit-vector for-
mulas in the Satisfiability Modulo Theories (SMT) solver cvc5— in the
Coq proof assistant. Previous work proved many of these in a com-
pletely automatic fashion for arbitrary bit-width; however, some were
only proved for bit-widths up to 65, even though they are being used to
solve formulas over larger bit-widths. In this paper we describe the pro-
cess of proving a representative subset of these invertibility conditions
in Coq. In particular, we describe the BVList library for bit-vectors in
Coq, our extensions to it, and proofs of the invertibility conditions.

1 Introduction

Many applications in hardware and software verification rely on bit-precise rea-
soning, which can be modeled using the SMT-LIB 2 theory of fixed-width bit-
vectors [3]. While Satisfiability Modulo Theories (SMT) solvers are able to reason
about bit-vectors of fixed width, they currently require all widths to be expressed
concretely (by a numeral) in their input formulas. For this reason, they cannot
be used to prove properties of bit-vector operators that are parametric in the
bit-width, such as the associativity of bit-vector concatenation. Proof assistants
such as Coq [25], which have direct support for dependent types, are better
suited for such tasks.

Bit-vector formulas that are parametric in the bit-width arise in the verifica-
tion of parametric Boolean functions and circuits (see, e.g., [13]). In our case, we
are mainly interested in parametric lemmas that are relevant to internal tech-
niques of SMT solvers for the theory of fixed-width bit-vectors. These include, for
example, rewrite rules, refinement schemes, and preprocessing passes. Such tech-
niques are developed a priori for every possible bit-width. Meta-reasoning about
the correctness of such solvers then requires bit-width independent reasoning.

In this paper, we focus on parametric lemmas that originate from a quantifier-
instantiation technique implemented in the SMT solver cvc5 [2]. This technique
c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 41–59, 2023.
https://doi.org/10.1007/978-3-031-43369-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_3&domain=pdf
http://orcid.org/0000-0002-6602-7906
http://orcid.org/0009-0005-4464-8807
http://orcid.org/0000-0002-2972-6695
http://orcid.org/0000-0002-6726-775X
http://orcid.org/0000-0002-9522-3084
https://doi.org/10.1007/978-3-031-43369-6_3

42 B. Ekici et al.

is based on invertibility conditions [15]. For a trivial case of an invertibility
condition, consider the equation x + s = t. where x, s and t are variables of the
same bit-vector sort. In the terminology of Niemetz et al. [15], this equation is
“invertible for x.” A general inverse, or “solution,” is given by the term t−s. Since
there is always such an inverse, the invertibility condition for x+ s = t is simply
the universally true formula �. The formula stating this fact, referred to here as
an invertibility equivalence, is � ⇔ ∃x. x + s = t, which is valid in the theory of
fixed-width bit-vectors, for any bit-width. In contrast, the equation x · s = t is
not always invertible for x. A necessary and sufficient condition for invertibility
in this case was found in [15] to be (−s | s) & t = t. So, the invertibility
equivalence (−s | s) & t = t ⇔ ∃x. x · s = t is valid for any bit-width. Notice
that the invertibility condition does not contain x. Hence, invertibility conditions
can be seen as a technique for quantifier elimination.

In [15], a total of 160 invertibility conditions were provided. However, they
were verified only for bit-widths up to 65, due to the reasoning limitations of
SMT solvers mentioned earlier. Recent work [16,17] addresses this challenge by
translating the invertibility equivalences to the combined theory of non-linear
integer arithmetic and uninterpreted functions. This approach was partially suc-
cessful, but failed to verify over a quarter of the equivalences.

We verify invertibility equivalences proposed in [15] by proving them interac-
tively in Coq. From a representative subset of the invertibility equivalences, we
prove 19 equivalences, 12 of which were not proven in [16,17]. For the remain-
ing 7, that were already proved there, our Coq proofs provide more confidence.
Our results offer evidence that proof assistants can support automated theorem
provers in meta-verification tasks. To facilitate the verification of invertibility
equivalences, we use a rich Coq library for bit-vectors, which is a part of the
SMTCoq project [10]. This Coq library models the theory of fixed-width bit-
vectors adopted by the SMT-LIB 2 standard [3]. For this work, we extended the
library with the arithmetic right-shift operation and the unsigned weak less-than

Table 1. The signatures Σ1 and Σ0 with SMT-LIB 2 syntax. Σ1 consists of the oper-
ators in the entire table. Σ0 consists of the operators in the upper part.

Symbol SMT-LIB Syntax Sort

=, �= =, distinct σ[n] × σ[n] → Bool

<u, >u, ≤u, ≥u bvult, bvugt, bvule, bvuge σ[n] × σ[n] → Bool

∼ , − bvnot, bvneg σ[n] → σ[n]

&, |, <<, >>, >>a bvand, bvor, bvshl, bvlshr, bvashr σ[n] × σ[n] → σ[n]

+ bvadd σ[n] × σ[n] → σ[n]

<s, >s, ≤s, ≥s bvslt, bvsgt, bvsle, bvsge σ[n] × σ[n] → Bool

·, mod, ÷ bvmul, bvurem, bvudiv σ[n] × σ[n] → σ[n]

◦ concat σ[n] × σ[m] → σ[n+m]

[u : l] extract σ[n] → σ[u−l+1]

Formal Verification of Bit-Vector Invertibility Conditions in Coq 43

and greater-than predicates. To summarize, the contributions of this paper are as
follows: (i) a description of the SMTCoq bit-vector library; (ii) extensions to the
signature and proofs of the library; and (iii) formal proofs in Coq of invertibil-
ity equivalences. These contributions, while important in their own right, have
the potential to go beyond the verification of invertibility equivalences. For (i)
and (ii), we envision that the library, as well as its extension, will be useful for
the formalization of other bit-precise reasoning mechanisms, especially related to
SMT, such as rewriting rules, lemma schemas, interactive verification, and more.
For (iii), invertibility conditions are primarily used for quantifier instantiation
(see, e.g., [15]). We hope that the increased confidence in their correctness will
encourage their usage in other contexts and in more solvers. Further, the for-
mal proofs can serve as guiding examples for other proofs related to bit-precise
reasoning.

The remainder of this paper is organized as follows. After technical pre-
liminaries in Sect. 2, we formalize invertibility conditions in Sect. 3 and discuss
previous attempts at verifying them. In Sect. 4, we describe the Coq library and
our extensions to it. In Sect. 5, we discuss our Coq proofs. We conclude in Sect. 6
with directions for future work. A preliminary version of this work was presented
as an extended abstract in the proceedings of the PxTP 2019 workshop [11]. The
current version is more detailed and complete. In particular, the one Coq proof
that was missing in [11] is now completed.

2 Preliminaries

2.1 Theory of Bit-Vectors

We assume the usual terminology of many-sorted first-order logic with equality
(see, e.g., [12]). We denote equality by =, and use x �= y as an abbreviation
for ¬(x = y). The signature ΣBV of the SMT-LIB 2 theory of fixed-width bit-
vectors defines a unique sort for each positive integer n, which we denote by σ[n].
For every positive integer n and bit-vector of width n, the signature contains a
constant symbol of sort σ[n], representing that bit-vector, which we denote as
a binary string of length n. The function and predicate symbols of ΣBV are as
described in the SMT-LIB 2 standard. Formulas of ΣBV are built from variables,
bit-vector constants, and the function and predicate symbols of ΣBV , along with
the usual logical connectives and quantifiers. We write ψ[x1, . . . , xn] to represent
a formula whose free variables are from the set {x1, . . . , xn}.

The semantics of ΣBV -formulas is given by interpretations where the domain
of σ[n] is the set of bit-vectors of width n, and the function and predicate symbols
are interpreted as specified by the SMT-LIB 2 standard. A ΣBV -formula is
valid in the theory of fixed-width bit-vectors if it is satisfied by every such
interpretation.

Table 1 contains the operators from ΣBV for which invertibility conditions
were defined in [15]. We define Σ1 to be the signature that contains only these
symbols. Σ0 is the sub-signature obtained by only taking the operators from the

44 B. Ekici et al.

upper part of the table. We use the (overloaded) constant 0 to represent the
bit-vectors composed of all 0-bits.

2.2 Coq

The Coq proof assistant is based on the calculus of inductive constructions
(CIC) [20]. It implements properties as types, and proofs as terms, reducing
proof-checking to type-checking. Coq has a rich type system, that allows for
highly expressive propositions to be stated and proved in this manner. One par-
ticular feature of interest is that of dependent types — types that can depend
on values — through which one can express correctness properties within types.
We refer to non-dependent types as simple types.

The Coq module system — in addition to allowing for principled separations
of large developments — allows the abstraction of complex types along with
operations over them as modules. A module signature or module type acts as
an interface to a module, specifying the type it encapsulates along with the
signatures of the associated operators. A functor is a module-to-module function.

3 Invertibility Conditions and Their Verification

In [15], a technique to solve quantified bit-vector formulas is presented, which is
based on invertibility conditions.

Definition 1. An invertibility condition for a variable x in a ΣBV -literal
�[x, s, t] is a formula IC[s, t] such that ∀s.∀t. IC[s, t] ⇔ ∃x. �[x, s, t] is valid
in the theory of fixed-width bit-vectors.

Example 1. The invertibility condition for x in x & s = t is t & s = t. ��
In [15], invertibility conditions are defined for a representative set of liter-

als � over the bit-vector operators of Σ1, having a single occurrence of x. The
soundness of the technique proposed in that work relies on the correctness of the
invertibility conditions. Every literal �[x, s, t] and its corresponding invertibility
condition IC[s, t] induce an invertibility equivalence.

Definition 2. The invertibility equivalence associated with the literal �[x, s, t]
and its invertibility condition IC[s, t] is the formula

IC[s, t] ⇔ ∃x. �[x, s, t] (1)

The correctness of invertibility equivalences should be verified for all possible
sorts for the variables x, s, t for which the condition is well sorted. Concretely,
one needs to prove the validity of the following formula:

∀n : N. n > 0 ⇒ ∀s : σ[n].∀t : σ[n]. IC[s, t] ⇔ ∃x : σ[n]. �[x, s, t] (2)

This was done in [15], but only for concrete values of n from 1 to 65, using
solvers for the theory of fixed-width bit-vectors. In contrast, Eq. (2) cannot even

Formal Verification of Bit-Vector Invertibility Conditions in Coq 45

be expressed in this theory. To overcome this limitation, later work suggested
a translation from bit-vector formulas over parametric bit-widths to the theory
of non-linear integer arithmetic with uninterpreted functions [16,17]. Thanks to
this translation, the authors were able to verify the correctness of 110 out of
160 invertibility equivalences. For the remaining 50 equivalences, it then seems
appropriate to use a proof-assistant, as this allows for more intervention by the
user who can provide crucial intermediate steps. Even for the 110 invertibility
equivalences that were proved, the level of confidence achieved by proving them
in a proof assistant would be greater than an automatic verification by an SMT
solver due to the smaller trusted code-base of proof assistants in relation to those
of automatic theorem provers such as SMT solvers.

Coq

auto-ind

auto-65

Fig. 1. The level of confidence achieved by the different approaches.

Figure 1 depicts the level of confidence achieved by the various approaches
to verify invertibility equivalences. The smallest circle, labelled auto-65, repre-
sents the approach taken by [15], where invertibility equivalences were verified
automatically up to 65 bits. While a step in the right direction, this approach
is insufficient, because invertibility conditions are used for arbitrary bit-widths.
The next circle, labeled auto-ind, depicts the approach of [17], which addresses
the restrictions of auto-65 by providing bit-width independent proofs of the
invertibility equivalences. However, both auto-65 and auto-ind provide proofs
by SMT solvers, which are less trusted than ITPs. The largest circle (Coq) cor-
responds to work presented in the current paper which, while addressing the
limitations of auto-65 via bit-width independent proofs, also provides stronger
verification guarantees by proving the equivalences in an interactive theorem
prover. Moreover, with this approach, we were able to prove equivalences that
couldn’t be fully verified (for arbitrary bit-widths) by either auto-65 or auto-ind.

4 The BVList Library

In this section, we describe the Coq library we use and the extensions we devel-
oped with the goal of formalizing and proving invertibility equivalences. Vari-

46 B. Ekici et al.

ous formalizations of bit-vectors in Coq exist. The internal Coq library of bit-
vectors [9] is one, but it has only definitions and no lemmas. The Bedrock Bit
Vectors Library [6] treats bit-vectors as words (machine integers). The SSRBit
Library [5] represents bit-vectors as finite bit-sets in Coq and extracts them
to OCaml machine integers. Our library is more suited to the SMT-LIB 2 bit-
vectors, and includes operators that are not fully covered by any of the previ-
ously mentioned libraries. More recently, Shi et al. [22] developed a library called
CoqQFBV that presents a bit-vector type as a sequence of Booleans, defines
operators over it, and proves the correctness of these operations with respect
to a (machine integer) semantics. [22] uses this library to define a bit-blasting
algorithm in Coq, that is extracted into an OCaml program to perform certified
bit-blasting. Since CoqQFBV covers the entire SMT-LIB 2 bit-vector signature,
it would be a good alternative to ours in formalizing and proving invertibility
conditions. Our library offers a rich set of lemmas over bit-vector operations that
makes it suitable for proofs of invertibility conditions and other bit-vector prop-
erties. Bit-vectors have also been formalized in other proof assistants. Within
the Isabelle/HOL framework, one can utilize the library developed by Beeren et
al. [4] to align with SMT-LIB 2 bit-vector operations. Furthermore, Harrison [1]
presents a formalization of finite-dimensional Euclidean space within HOL light,
accompanied by an implementation of vectors.

4.1 BVList Without Extensions

BVList was developed for SMTCoq [10], a Coq plugin that enables Coq to
dispatch proofs to external proof-producing solvers. While the library was only
briefly mentioned in [10], here we provide more details.

The library adopts the little-endian notation for bit-vectors, following the
internal representation of bit-vectors in SMT solvers such as cvc5, and corre-
sponding to lists in Coq. This makes arithmetic operations easier to perform
since the least significant bit of a bit-vector is the head of the Boolean list that
represents it.

Another choice is how to formalize the bit-vector type. A dependently-typed
definition is natural, since then the type of a bit-vector is parameterized by its
length. However, such a representation leads to some difficulties in proofs. Depen-
dent pattern-matching or case-analysis with dependent types is cumbersome and
unduly complex (see, e.g., [23]), because of the complications brought by unifica-
tion in Coq (which is inherently undecidable [24]). A simply-typed definition, on
the other hand, does not provide such obstacles for proofs, but is less natural, as
the length becomes external to the type. The BVList library defines for conve-
nience both the dependently and the simply typed version of bit-vectors. It uses
the Coq module system to separate them, and a functor that connects them,
avoiding redundancy. The relationship between the two definitions is depicted
in Fig. 2.

In BVList, a dependently-typed bit-vector is a record parameterized by its
size n and consisting of two fields: a Boolean list and a condition to ensure that
the list has length n. This type, and the corresponding lemmas and properties
over it, are encapsulated by the BITVECTOR LIST module of type BITVECTOR. A

Formal Verification of Bit-Vector Invertibility Conditions in Coq 47

simply-typed or raw bit-vector representation is simply a Boolean list which,
along with its associated operators and lemmas is specified by module signature
RAWBITVECTOR and implemented in module RAWBITVECTOR LIST. In other words,
the interface of BVList offers dependently-typed bit-vectors, while the underly-
ing operators are defined and proofs are performed using raw bit-vectors.

RAWBITVECTOR_LIST : RAWBITVECTOR

BITVECTOR_LIST : BITVECTOR

RAW2BITVECTOR

Fig. 2. Modular separation of BVList

A functor called RAW2BITVECTOR derives corresponding definitions and proofs
over dependently-typed bit-vectors within the module for dependent-types, when
it is applied to RAWBITVECTOR LIST. The functor establishes a correspondence
between the two theories so that one can first prove a bit-vector property in
the context of the simply-typed theory and then map it to its corresponding
dependently-typed one via the functor module. Otherwise put, users of the
library can encode theorem statements more naturaly, and in a more expres-
sive environment employing dependent types. For proofs, one can unlift them
(by the functor) to the equivalent encodings with simple types, and prove them
there.

4.2 Extending BVList

Out of the 13 bit-vector functions and 10 predicates contained in Σ1, BVList
had direct support for 10 functions and 6 predicates. The predicate symbols
that were not directly supported were the weak inequalities ≤u, ≥u, ≤s, ≥s and
the unsupported function symbols were >>a, ÷, and mod . We extended BVList
with the operator >>a and the predicates ≤u and ≥u in order to support the
corresponding invertibility conditions. Additionally, we redefined << and >> in
order to simplify the proofs of invertibility conditions over them.1

We focused on invertibility conditions for literals of the form x � s �� t and
s � x �� t, where � and �� are respectively function and predicate symbols in Σ0.
Σ0 was chosen as a representative set because it is both expressive enough (in
the sense that other operators can be easily translated to this fragment), and

1 Both the extended library and the proofs of invertibility equivalences can be found
at https://github.com/ekiciburak/bitvector/tree/frocos23.

https://github.com/ekiciburak/bitvector/tree/frocos23

48 B. Ekici et al.

feasible for proofs in Coq using the library. In particular, it was chosen as one
that would require the minimal amount of changes to BVList. As a result, such
literals, as well as their invertibility conditions, contain only operators supported
by BVList (after its extension with >>a, ≤u, and ≥u). Supporting the full set
of operators in Σ1, both in the library and the proofs is left for future work.

1 Fixpoint ule_list_big_endian (x y : list bool) :=
2 match x, y with

3 | [], [] ⇒ true

4 | [], _ ⇒ false

5 | _, [] ⇒ false

6 | xi:: x’, yi:: y’ ⇒ ((eqb xi yi) && (ule_list_big_endian x’ y’))
7 || ((negb xi) && yi)
8 end.
9

10 Definition ule_list (x y: list bool) :=
11 (ule_list_big_endian (rev x) (rev y)).
12

13 Definition bv_ule (a b : bitvector) :=
14 if @size a =? @size b then

15 ule_list a b

16 else

17 false.
18

19 Definition bv_ule n (bv1 bv2:bitvector n) : bool := M.bv_ule bv1 bv2.

Fig. 3. Definitions of ≤u in Coq.

In what follows, we describe our extensions to BVList with weak unsigned
inequalities, alternative definitions for logical shifts, and the arithmetic right
shift operator.

Weak Unsigned Inequalities. We added both weak inequalities for unsigned
bit-vectors, ≤u and ≥u. We illustrate this extension via that of the ≤u opera-
tor (the extension of ≥u is similar). The relevant Coq definitions are provided
in Fig. 3. The top three definitions (including the fixpoint) cover the simply-
typed representation, and the fourth, bv ule is the dependently-typed represen-
tation that invokes the definition with the same name from module M of type
RAWBITVECTOR. Like most other operators, ≤u (over raw bit-vectors) is defined
over a few layers. The function bv ule, at the highest layer, ensures that com-
parisons are between bit-vectors of the same size and then calls ule list. Since
we want to compare bit-vectors starting from their most significant bits and the
input lists start instead with the least significant bits, ule list first reverses
the two lists. Then it calls ule list big endian, which we consider to be at the
lowest layer of the definition. This function does a lexicographic comparison of
the two lists, starting from the most significant bits.

Formal Verification of Bit-Vector Invertibility Conditions in Coq 49

To see why the addition of ≤u to the library is useful, consider, for example,
the following parametric lemma, stating that ∼0 is the largest unsigned bit-
vector of its type:

∀x : σ[n]. x ≤u ∼0 (3)

Without an operator for the weak inequality, we would write it as:

∀x : σ[n]. x <u ∼0 ∨ x = ∼0 (4)

1 Definition shl_one_bit (a: list bool) :=
2 match a with

3 | []⇒ []
4 | _ ⇒ false :: removelast a

5 end.
6

7 Fixpoint shl_n_bits (a: list bool) (n: nat) :=
8 match n with

9 | O ⇒ a

10 | S n’ ⇒ shl_n_bits (shl_one_bit a) n’
11 end.
12

13 Definition shl_n_bits_a (a: list bool) (n: nat) :=
14 if (n <? length a)%nat then

15 mk_list_false n ++ firstn (length a -n) a
16 else

17 mk_list_false (length a).
18

19 Theorem bv_shl_eq: forall (a b : bitvector), bv_shl a b = bv_shl_a a b.

Fig. 4. Various definitions of <<.

In such cases, since the definitions of <u and = have a similar structure to that
of ≤u, we strip down the layers of <u and = separately, whereas using ≤u, we
only do this once.

Left and Right Logical Shifts. We have redefined the shift operators <<
and >> in BVList. Figure 4 shows both the original and new definitions of <<.
Those of >> are similar. Originally, << was defined using the shl one bit and
shl n bits. The function shl one bit shifts the bit-vector to the left by one
bit and is called by shl n bits as many times as necessary. The new definition
shl n bits a uses mk list false which constructs the necessary list of 0 bits
and appends (++ in Coq) to it the bits to be shifted from the original bit-vector,
which are retrieved using the firstn function, from the Coq standard library
for lists. The nat type used in Fig. 4 is the Coq representation of Peano natural
numbers that has 0 and S as its two constructors — as depicted in the cases
rendered by pattern matching n (lines 9-10). The theorem at the bottom of

50 B. Ekici et al.

Fig. 4 asserts the equivalence of the two representations, allowing us to switch
between them, when needed. In the extended library, bv shl defines the left shift
operation using shl n bits whereas bv shl a does it using shl n bits a. This
new representation was useful in proving some of the invertibility equivalences
over shift operators (see, e.g., Example 4 below).

Arithmetic Right Shift. Unlike logical shifts that were already defined in
BVList and for which we have added alternative definitions, arithmetic right
shift was not defined at all. We provided two alternative definitions for it, very
similar to the definitions of logical shifts — bv ashr and bv ashr a. Both defini-
tions are conditional on the sign of the bit-vector (its most-significant bit). Apart
from this detail, the definitions take the same approach taken by shl n bits and
shl n bits a from Fig. 4. Operator bv ashr uses the definition of an indepen-
dent shift and repeats it as many number of times as necessary, and bv ashr a
uses either mk list false or mk list true to append the necessary number of
sign bits to the shifted bits.

5 Proving Invertibility Equivalences in Coq

In this section we provide specific details about proving invertibility equiva-
lences in Coq. We start by outlining the general approach for proving invertibil-
ity equivalences in Sect. 5.1. Then, Sect. 5.2 presents detailed examples of such
proofs. Section 5.3 summarizes the results and impact of these proofs.

5.1 General Approach

The natural representation of bit-vectors in Coq is the dependently-typed repre-
sentation, and therefore the invertibility equivalences are formulated using this
representation. In keeping with the modular approach described in Sect. 4, how-
ever, proofs in this representation are composed of proofs over simply-typed
bit-vectors, which are easier to reason about. Most of the work is on proving an
equivalence over raw bit-vectors. Then, we derive the proof of the corresponding
equivalence over dependently-typed bit-vectors using a smaller, boilerplate set
of tactics. Since this derivation process is mostly the same across many equiva-
lences, these tactics are a good candidate for automation in the future.

When proving an invertibility equivalence IC[s, t] ⇔ ∃x. �[x, s, t], we first
split it into two sub-goals: the left-to-right and right-to-left implications. For
proving the left-to-right implication, since Coq implements a constructive logic,
the only way to prove an existentially quantified formula is to construct the
literal witnessing it. Thus, in addition to being able to prove the equivalence,
a positive side-effect of our proofs are actual inverses for x in literals of the
form �[x, s, t]. In Niemetz et al. [16], these are called conditional inverses, as the
fact that they are inverses is conditional on the correctness of the invertibility
condition. There, such inverses were synthesized automatically for a subset of
the literals. In each of our Coq proofs, such an inverse is found, even when the

Formal Verification of Bit-Vector Invertibility Conditions in Coq 51

proof is done by case-splitting. This provides a more general solution than the
one in [16], which did not consider case-splitting.

Example 2. Consider the literal s >>a x ≥u t. Its invertibility condition is (s ≥u

∼s) ∨ (s ≥u t). The left-to-right implication of the invertibility equivalence is:

∀s, t : σ[n]. (s ≥u ∼s) ∨ (s ≥u t) ⇒ ∃x : σ[n]. s >>a x ≥u t

Here, case splitting is done on the disjunction in the invertibility condition.
When s ≥u ∼s is true, the inverse for x is the bit-vector constant that correspond
to the length of the s, namely n; when s ≥u t is true, the inverse is 0. ��

In addition to BVList, several proofs of invertibility equivalences bene-
fited from CoqHammer [7], a plug-in that aims at extending the level of
automation in Coq by combining machine learning and automated reasoning
techniques in a similar fashion to what is done in by Sledgehammer [21] in
Isabelle/HOL [18]. CoqHammer, when triggered on some Coq goal, (i) submits
the goal together with potentially useful terms to external solvers/automated-
provers, (ii) attempts to reconstruct returned proofs (if any) directly in the Coq
tactic language Ltac [8], and (iii) outputs the set of tactics closing the goal in
case of success. As we directly employ these tactics inside BVList, one does not
need to install CoqHammer in order to build the library, although it would be
beneficial for further extensions.

5.2 Detailed Examples

In this section we provide specific examples for proofs of invertibility equiva-
lences. The first example illustrates the two-theories approach of the library.

Example 3. Consider the literal s >>a x <u t. Its invertibility condition is ((s <u

t ∨ ¬(s <s 0)) ∧ t �= 0). Figure 5 shows the proof of the following direction of
the corresponding invertibility equivalence:

∀s, t : σ[n]. (∃x : σ[n]. s >>a x <u t) ⇒ ((s <u t ∨ ¬(s <s 0)) ∧ t �= 0)

In the proof, lines 8–11 transform the dependent bit-vectors from the goal and
the hypotheses into simply-typed bit-vectors. Then, lines 12–14 invoke the corre-
sponding lemma for simply-typed bit-vectors (called InvCond.bvashr ult2 rtl)
along with some simplifications. ��

Most of the effort in this project went into proving equivalences over raw
bit-vectors, as the following example illustrates.

Example 4. Consider the literal x << s >u t. Its invertibility condition is (t <u

∼0<< s). The corresponding invertibility equivalence is:

∀s, t : σ[n]. (t <u ∼0<< s) ⇔ (∃x : σ[n]. x << s >u t) (5)

52 B. Ekici et al.

The left-to-right implication is easy to prove using ∼0 itself as the witness of the
existential proof goal and considering the symmetry between >u and <u. The
proof of the right-to-left implication relies on the following lemma:

∀x, s : σ[n]. (x << s) ≤u (∼0<< s) (6)

From the right side of the equivalence in Eq. (5), we get some skolem x for
which x << s >u t holds. Flipping the inequality, we have that t <u x << s; using
this, and transitivity over <u and ≤u, the lemma given by Eq. (6) gives us the
left side of the equivalence in Eq. (5).

As mentioned in Sect. 4, we have redefined the shift operators << and >> in
the library. This was instrumental, for example, in the proof of Eq. (6).

1 Theorem bvashr_ult2_rtl :
2 forall (n : N), forall (s t : bitvector n),
3 (exists (x : bitvector n), (bv_ult (bv_ashr_a s x) t = true)) ->
4 (((bv_ult s t = true) ∨ (bv_slt s (zeros n)) = false) ∧
5 (bv_eq t (zeros n)) = false).
6 Proof.
7 intros n s t H.
8 destruct H as ((x, Hx), H).
9 destruct s as (s, Hs).

10 destruct t as (t, Ht).
11 unfold bv_ult, bv_slt, bv_ashr_a, bv_eq, bv in ∗. cbn in ∗.
12 specialize (InvCond.bvashr_ult2_rtl n s t Hs Ht); intro STIC.
13 rewrite Hs, Ht in STIC. apply STIC.
14 now exists x.
15 Qed.

Fig. 5. A proof of one direction of the invertibility equivalence for >>a and <u using
dependent types.

The new definition uses firstn and ++, over which many useful properties
are already proven in the standard library. This benefits us in manual proofs, and
in calls to CoqHammer, since the latter is able to use lemmas from the imported
libraries to prove the goals that are given to it. Using this representation, proving
Eq. (6) reduces to proving Lemmas bv ule 1 firstn and bv ule pre append,
shown in Fig. 6. The proof of bv ule pre append benefited from the property
app comm cons from the standard list library of Coq, whereas firstn length le
was useful in reducing the goal of bv ule 1 firstn to the Coq equivalent of Eq.
(3). The statements of the properties mentioned from the standard library are
also shown in Fig. 6. ��

Finally, we examine what was considered a challenge problem in the previous
version of this work [11]. The next example details how we completed the proof.

Formal Verification of Bit-Vector Invertibility Conditions in Coq 53

Example 5. Consider the literal (x >> s) >u t. Its invertibility condition is t <u

(∼s >> s). Now consider the following direction of the corresponding invertibility
equivalence:

∀s, t : σ[n]. t <u (∼s >> s) ⇒ ∃x : σ[n]. (x >> s) >u t (7)

Figure 7 contains the theorem stating the equivalence, and some lemmas used
within its proof. A crucial step in the proof of the implication is to rewrite the
definition of the right shift operator bv shr to its alternate definition bv shr a
(see Sect. 4.2). Unfolding the alternative definition leads to a case-analysis on
the following condition:

toNat(s) < len(x)

where toNat casts a bit-vector to its natural number representation, and len
returns the length of a bit-vector as a natural number.

1 Lemma bv_ule_1_firstn : forall (n : nat) (x : bitvector),
2 (n < length x)%nat ->
3 bv_ule (firstn n x) firstn n (mk_list_true (length x))) = true.
4

5 Lemma bv_ule_pre_append : forall (x y z : bitvector),
6 bv_ule x y = true -> bv_ule (z ++ x) (z ++ y) = true.
7

8 Theorem app_comm_cons : forall (x y:list A) (a:A),
9 a :: (x ++ y) = (a :: x) ++ y

10

11 Lemma firstn_length_le: forall l:list A, forall n:nat,
12 n <= length l -> length (firstn n l) = n.

Fig. 6. Examples of lemmas used in proofs of invertibility equivalences.

The challenge in the proof arises in the positive case of the condition, which
reduces to a proof of first bits zero (see Fig. 7). first bits zero says that
given toNat(s) < len(s), the most-significant len(s) − toNat(s) bits of s are 0.
As seen in Fig. 4, the second argument to the top-most layer of the shift (called
from bv shl eq) is a bit-vector that specifies the number of times to shift the
bit-vector in the first argument. This second argument is converted to a natural
number by the abstract toNat function invoked above, the concrete definitions
of which are specified in Fig. 7 as list2nat be a and list2N. At the same level
of abstraction, we use rev for the list reversal function corresponding to the
Coq function of the same name, and firstn also for its Coq namesake (firstn
n l returns the n most significant bits of l), so that first bits zero can be
specified as follows:

toNat(s) < len(s) ⇒ firstn (len(s) − toNat(s)) (rev(s)) = 0

The intuition behind its validity is that if the most-significant len(s)−toNat(s)
bits were not 0 then they would contribute to the value of toNat(s), making it

54 B. Ekici et al.

greater than or equal to len(s) and thus falsifying the condition. However, it is
challenging to convert this intuition into a proof using induction over lists, as
explained in what follows.

To prove first bits zero, we redefined list2N as a tail-recursive function
list2NTR. This step was proven to be sound by a lemma of equivalence between
the two definitions (list2N eq). Since list2N is not tail recursive, it only begins
computation at the end of the input list representing a bit-vector. Such a def-
inition further complicates the proof of first bits zero when based on the
typical induction principle over the structure of the Boolean list underlying the
bit-vector s. This is because it does not easily reduce (via ι-reduction for induc-
tive definitions [19]), into a useful expression in the step case of the intended
induction.

The advantage of tail recursion in this context is best illustrated by Fig. 8
where x is a Boolean variable and xs represents an arbitrary Boolean list. The

1 Theorem bvshr_ugt_ltr : forall (n : N), forall (s t : bitvector n),
2 (bv_ult t (bv_shr (bv_not s) s) = true) ->
3 (exists (x : bitvector n), bv_ugt (bv_shr x s) t = true).
4

5 Lemma first_bits_zero : forall (s : bitvector),
6 (N.to_nat (list2N s) < length s)%nat ->
7 firstn (length s - N.to_nat (list2N s)) (rev s) =
8 mk_list_false (length s -N.to_nat (list2N s)).
9

10 Lemma first_bits_zeroA : forall (s : bitvector),
11 (length s >= (list2NTR s))%nat ->
12 firstn (length s - (list2NTR s)) s =
13 mk_list_false (length s -(list2NTR s)).
14

15 Fixpoint list2N (a: list bool) :=
16 match a with

17 | [] ⇒ 0
18 | x :: xs ⇒ if x then N.succ_double (list2N xs) else
19 N.double (list2N xs)
20 end.
21

22 Definition list2nat_be_a (a: list bool) := N.to_nat (list2N a).
23

24 Fixpoint list2NR (a: list bool) (n: nat) :=
25 match a with

26 | [] ⇒ n

27 | x :: xs ⇒ if x then list2NR xs (2 ∗ n + 1) else
28 list2NR xs (2 ∗ n)
29 end.
30

31 Definition list2NTR (a: list bool) := list2NR a 0.
32

33 Lemma list2N_eq: forall (s: bitvector),
34 list2NTR (rev s) = N.to_nat (list2N s).

Fig. 7. Invertibility equivalence for >> and >u and some lemmas used by its proof.

Formal Verification of Bit-Vector Invertibility Conditions in Coq 55

x: bool xs: list bool IH: firstn (len(xs) − toNat(xs)) (rev(xs)) = 0

Goal: firstn (len(xs) + 1 − toNat(x :: xs)) (rev(x :: xs)) = 0
(8)

x: bool xs: list bool IH: firstn (len(xs) − toNatTR(xs)) (xs) = 0

Goal: firstn (len(xs) + 1 − toNatTR(xs ++ [x])) (xs ++ [x]) = 0
(9)

Fig. 8. Sub-goals generated in the proof of first bits zero. Note that 0 is a bit-vector
constant of the appropriate length (list of falses).

derivation of the goal from the inductive hypothesis (IH) in derivation (8) from
Fig. 8 is complicated in Coq because the functions firstn and rev are not well-
matched with list2N, if not incompatible. For instance, observe that the in the
inductive step (Goal), as the first argument to firstn increases, the number of
bits fetched from the list increases towards the right. However, due to the little-
endian notation of bit-vectors and the fact that the list cons function (::) can be
seen as incrementing its argument list to its left, the rev function must be used
to corrects the direction of increase of the second argument to firstn. Despite
this correction, an induction over s must deal with two structurally different
lists.

In contrast, the tail-recursive definition of list2NTR hides the rev func-
tion. This is illustrated in derivation (9) in Fig. 8, where toNatTR corresponds
to list2NTR. Furthermore, such an induction over lists using append (++) to
the right, rather than cons to the left is possible thanks to the reverse induc-
tion principle2. Closing such a goal allowed us to prove the list2NTR-variant
of first bits zero, specified as first bits zeroA in Fig. 7, and the proof of
equivalence between the two definitions (list2N eq) allowed us to use this in
closing the original goal (7). ��

5.3 Results

Table 2 summarizes the results of proving invertibility equivalences for invertibil-
ity conditions in the signature Σ0. In the table, �means that the invertibility
equivalence was successfully verified in Coq but not in Niemetz et al. [17], and
� means the opposite; �� means that the invertibility equivalence was verified
using both approaches. We successfully proved all invertibility equivalences over
= that are expressible in Σ0, including 4 that were not proved in [17]. For the
rest of the predicates, we focused only on the 8 invertibility equivalences that
were not proved in [17], and succeeded in proving all of them.

Our work thus complements [17] in verifying all invertibility conditions in
Σ0 for arbitrary bit-widths, by proving all 12 equivalences that were previously
unverified, and corroborating 7 others that were verified by SMT solvers. It also
complements [15], which verified all invertibility conditions in Σ1, but only up
to bit-width of 65.
2 see rev ind in https://coq.inria.fr/library/Coq.Lists.List.html.

https://coq.inria.fr/library/Coq.Lists.List.html

56 B. Ekici et al.

Table 2. Proved invertibility equivalences in Σ0 where �� ranges over the given pred-

icate symbols. �means that the invertibility equivalence was successfully verified in

Coq but not in [17], whereas � means the opposite; �� means that the invertibility
equivalence was verified using both approaches.

�[x] = �= <u >u ≤u ≥u

−x �� t �� � � � � �
∼x �� t �� � � � � �
x & s �� t � � � � � �
x | s �� t � � � � � �
x << s �� t � � � � � �
s << x �� t �� � � � � �
x >> s �� t �� � � � � �
s >> x �� t �� � � � � �
x >>a s �� t � � � � � �
s >>a x �� t �� � � � � �
x + s �� t �� � � � � �

6 Conclusion and Future Work

We have described our work on verifying bit-vector invertibility conditions in
the Coq proof assistant, which required extending the BVList library in Coq. In
addition to describing the library and our extensions to it, this paper presented
details about the Coq proofs of the invertibility equivalences. These were done
on a representative subset of the operators from the theory of bit-vectors that
is well-supported by the extended library. We were able to prove in Coq all the
equivalences that were left unproven in previous attempts for all bit-widths, and
also to prove in Coq some equivalences that were proven automatically before,
thus increasing confidence in their correctness.

The most immediate direction for future work is proving more of the invert-
ibility equivalences supported by the bit-vector library. In addition, we plan to
extend the library so that it supports the full syntax in which invertibility con-
ditions are expressed, namely Σ1. This will also increase the potential usage of
the library for other applications. Another direction for future work is to extend
the proofs for invertibility conditions where some of the bits are known. Such
invertibility conditions were introduced by Niemetz and Preiner [14]. However,
their formal verification for every bit-width is yet to be done.

Acknowledgements. This work was funded in part by NSF-BSF grant numbers
2110397 (NSF) and 2020704 (BSF), and ISF grant number 619/21.

Formal Verification of Bit-Vector Invertibility Conditions in Coq 57

References

1. Harrison, J.: A HOL theory of euclidean space. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005). https://
doi.org/10.1007/11541868 8

2. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 24

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: A.
Gupta & D. Kroening, editors: Proceedings of the 8th International Workshop on
Satisfiability Modulo Theories (Edinburgh, UK) (2010)

4. Beeren, J., et al.: Finite Machine Word Library. Archive of Formal Proofs. https://
isa-afp.org/entries/WordLib.html Formal proof development (2016)

5. Blot, A., Dagand, P.É., Lawall, J.: Bit Sequences and Bit Sets Library. Available
at https://github.com/pedagand/ssrbit

6. Chajed, T., et al.: Bedrock Bit Vectors Library. Available at https://github.com/
mit-plv/bbv

7. Czajka, L., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory.
J. Autom. Reason. 61(1-4), pp. 423–453 (2018). https://doi.org/10.1007/s10817-
018-9458-4

8. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNAI, vol. 1955, pp. 85–95. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44404-1 7

9. Duprat, J.: Library Coq. Bool. Bvector. https://coq.inria.fr/library/Coq.Bool.
Bvector.html

10. Ekici, B., et al.: SMTCoq: a plug-in for integrating SMT solvers into Coq. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 126–133.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 7

11. Ekici, B., Viswanathan, A., Zohar, Y., Barrett, C.W., Tinelli, C.: Verifying Bit-
vector Invertibility Conditions in Coq (Extended Abstract). In Giselle Reis &
Haniel Barbosa, editors: Proceedings Sixth Workshop on Proof eXchange for The-
orem Proving, PxTP 2019, Natal, Brazil, August 26, 2019. EPTCS 301, pp. 18–
26 (2019). https://doi.org/10.4204/EPTCS.301.4. Available at https://doi.org/10.
4204/EPTCS.301.4

12. Herbert, B. Enderton (2001): Chapter TWO - First-Order Logic. In Herbert B.
Enderton, editor: A Mathematical Introduction to Logic (Second Edition), sec-
ond edition edition, Academic Press, Boston, pp. 67–181, https://doi.org/10.1016/
B978-0-08-049646-7.50008-4

13. Gupta, A., Fisher, A.L.: Representation and symbolic manipulation of linearly
inductive boolean functions. In: Proceedings of the 1993 IEEE/ACM Interna-
tional Conference on Computer-aided Design, ICCAD ’93, IEEE Computer Society
Press, Los Alamitos, CA, USA, pp. 192–199 (1993). Available at http://dl.acm.
org.stanford.idm.oclc.org/citation.cfm?id=259794.259827

14. Niemetz, A., Preiner, M.: Ternary Propagation-Based Local Search for more Bit-
Precise Reasoning. In: FMCAD, IEEE, pp. 214–224 (2020)

15. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified
bit-vectors using invertibility conditions. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10982, pp. 236–255. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96142-2 16

https://doi.org/10.1007/11541868_8
https://doi.org/10.1007/11541868_8
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://isa-afp.org/entries/Word Lib.html
https://isa-afp.org/entries/Word Lib.html
https://github.com/pedagand/ssrbit
https://github.com/mit-plv/bbv
https://github.com/mit-plv/bbv
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/3-540-44404-1_7
https://coq.inria.fr/library/Coq.Bool.Bvector.html
https://coq.inria.fr/library/Coq.Bool.Bvector.html
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.4204/EPTCS.301.4
https://doi.org/10.4204/EPTCS.301.4
https://doi.org/10.4204/EPTCS.301.4
https://doi.org/10.1016/B978-0-08-049646-7.50008-4
https://doi.org/10.1016/B978-0-08-049646-7.50008-4
http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=259794.259827
http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=259794.259827
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16

58 B. Ekici et al.

16. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: Towards
satisfiability modulo parametric bit-vectors. J. Autom. Reason. 65(7), 1001–1025
(2021). https://doi.org/10.1007/s10817-021-09598-9

17. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: Towards
bit-width-independent proofs in SMT Solvers. In: Fontaine, P. (ed.) CADE 2019.
LNCS (LNAI), vol. 11716, pp. 366–384. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29436-6 22

18. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): 5. the rules of the game. In:
Isabelle/HOL. LNCS, vol. 2283, pp. 67–104. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9 5

19. Paulin-Mohring, C.: Inductive definitions in the system Coq rules and properties.
In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0037116

20. Paulin-Mohring, C.: Introduction to the Calculus of Inductive Constructions. In:
Bruno Woltzenlogel Paleo & David Delahaye, editors: All about Proofs, Proofs for
All, Studies in Logic (Mathematical logic and foundations) 55, College Publica-
tions. https://hal.inria.fr/hal-01094195 (2015)

21. Paulsson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a Practical Link Between Automatic and Interactive Theorem Provers. In: Sut-
cliffe, G., Schulz, S., Ternovska, E., eds: The 8th International Workshop on the
Implementation of Logics, IWIL 2010, Yogyakarta, Indonesia, October 9, 2011,
EPiC Series in Computing 2, EasyChair, pp. 1–11, https://doi.org/10.29007/36dt.
Available at https://doi.org/10.29007/36dt

22. Shi, X., Fu, Y.-F., Liu, J., Tsai, M.-H., Wang, B.-Y., Yang, B.-Y.: CoqQFBV: a
scalable certified SMT quantifier-free bit-vector solver. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12760, pp. 149–171. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81688-9 7

23. Sozeau, M.: Equations: A dependent pattern-matching compiler. In: Proceedings
of the 1st International Conference on Interactive Theorem Proving (ITP 2010),
pp. 419–434 (2010). https://doi.org/10.1007/978-3-642-14052-5 29

24. Spies, S., Forster, Y.: Undecidability of higher-order unification formalised in Coq.
In: Blanchette, J., Hritcu, C., eds.: Proceedings of the 9th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA,
USA, January 20–21, 2020, ACM, pp. 143–157, https://doi.org/10.1145/3372885.
3373832. Available at https://doi.org/10.1145/3372885.3373832

25. The Coq development team (2019): The Coq Proof Assistant Reference Manual
Version 8.9. Available at https://coq.inria.fr/distrib/current/refman/

https://doi.org/10.1007/s10817-021-09598-9
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/BFb0037116
https://hal.inria.fr/hal-01094195
https://doi.org/10.29007/36dt
https://doi.org/10.29007/36dt
https://doi.org/10.1007/978-3-030-81688-9_7
https://doi.org/10.1007/978-3-030-81688-9_7
https://doi.org/10.1007/978-3-642-14052-5_29
https://doi.org/10.1145/3372885.3373832
https://doi.org/10.1145/3372885.3373832
https://doi.org/10.1145/3372885.3373832
https://coq.inria.fr/distrib/current/refman/

Formal Verification of Bit-Vector Invertibility Conditions in Coq 59

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Unification

Weighted Path Orders Are Semantic Path
Orders

Teppei Saito(B) and Nao Hirokawa

JAIST, Nomi, Japan
{saito,hirokawa}@jaist.ac.jp

Abstract. We explore the relationship between weighted path orders
and (monotonic) semantic path orders. Our findings reveal that weighted
path orders can be considered instances of a variant of semantic path
orders that comprise order pairs. This observation leads to a generaliza-
tion of weighted path orders that does not impose simplicity on their
underlying algebras. As a result, the generalized version is capable of
proving termination of term rewrite systems beyond the realm of sim-
ple termination. In order to assess practicality we provide experimental
data comparing generalized weighted path orders with the original ones
as well as other well-known classes of reduction orders.

Keywords: Term Rewriting · Termination · Weighted Path Order ·
Semantic Path Order

1 Introduction

Reduction orders are a fundamental tool in termination analysis of term rewrite
systems, and they also underlie completion-based automated theorem proving.
Weighted path orders (WPOs) [27] are known as a versatile class of reduction
orders; WPOs can simulate (generalized) Knuth–Bendix orders [7,13,16] and
lexicographic path orders [12], depending on the choice of parameters, namely
simple monotone algebras and precedences. In fact, weighted path orders are so
powerful that they characterize simple termination of term rewrite systems [20,
Definition 6.3.7], that is, a term rewrite system is simply terminating if and only
if it admits a compatible WPO. Besides automated termination analysis [14,26],
WPOs are used in reachability analysis [25], and automated theorem proving
[11,18].

Another well-known class of reduction orders is the class of monotonic seman-
tic path orders (MSPOs) [4,5], which are a monotonic version of semantic path
orders (SPOs) [12]. MSPOs take triples of orders (called reduction triples) as
parameters, and provide a complete characterization of terminating term rewrite

T. Saito—supported by JST SPRING, Grant Number JPMJSP2102. N. Hirokawa—
supported by JSPS KAKENHI Grant Number JP22K11900.

c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 63–80, 2023.
https://doi.org/10.1007/978-3-031-43369-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_4&domain=pdf
http://orcid.org/0009-0001-9786-0044
http://orcid.org/0000-0002-8499-0501
https://doi.org/10.1007/978-3-031-43369-6_4

64 T. Saito and N. Hirokawa

systems: A term rewrite system is terminating if and only if it admits a com-
patible MSPO. However, the relationship between WPOs and MSPOs has not
been known [24].

In this paper, we give a solution to the open problem, demonstrating an effec-
tive construction of an MSPO from the algebra and the precedence of a given
WPO. The key of the proof lies in finding a suitable new variant of MSPOs,
which is described as follows: First, the variant uses lexicographic comparison [4,
Definition 4.5.1], as the original WPOs [27, Definition 5] are based on this
comparison strategy. Second, the variant employs reduction triples [4, Defini-
tion 4.1.19] because an example shows that a variant based on (quasi-)reduction
pairs [5, Definition 4] leads to an invalid construction.

The obtained simulation result leads to a generalization of WPOs that
does not impose simplicity on their underlying algebras. The generalization
can show termination of term rewrite systems that are not simply terminat-
ing. This is a sharp contrast to the termination proving power of WPOs. In
addition, upgrading WPOs to GWPOs can be done with little implementa-
tion effort, so we anticipate that tools which employ WPOs as reduction orders
(e.g. [11,14,18,23,25,26]) may benefit from power of GWPOs.

The remaining part of the paper is organized as follows. After recalling
notions and notations for term rewriting and WPOs in Sect. 2, we introduce
a slightly modified version of semantic path orders that employs order pairs in
Sect. 3. In Sect. 4 we show that weighted path orders are instances of semantic
path orders. Using this fact, we introduce a generalization of WPOs in Sect. 5.
In Sect. 6 experimental data for (generalized) weighted path orders are reported.
As in the case of MSPOs [5, Section 5.2], GWPOs are capable of simulating a
basic version of the dependency pair method [1]. This is discussed in Sect. 7. The
paper is concluded by stating related work in Sect. 8.

2 Preliminaries

Throughout the paper, we assume familiarity with term rewriting [3,20]. First
we briefly recall basic notions for term rewriting and reduction orders, and then
introduce weighted path orders.

2.1 Term Rewriting

Let F be a signature and V a countable set of variables with F ∩ V = ∅. The
set of all terms built from F and V is referred to as T (F ,V), or just as T when
F and V are clear from the context. When we need to indicate the arity n of a
function symbol f , we write f (n) for f . Quasi-orders on the signature are called
(quasi-)precedences. A quasi-precedence � is called well-founded if its strict part
� is well-founded. The size |t| of a term t is the number of function symbols and
variables occurring in t. Let � be a constant with � /∈ F . Contexts are terms
over F ∪{�} that contain exactly one �. The term resulting from replacing � in
a context C by a term t is denoted by C[t]. We write s � t if there is a context C

Weighted Path Orders Are Semantic Path Orders 65

with s = C[t]. The strict part of � is denoted by �. A substitution is a mapping
σ from variables to terms such that {x ∈ V | σ(x) �= x} is finite. The application
tσ of a substitution σ to a term t is inductively defined as follows: tσ = σ(t) if t
is a variable, and tσ = f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn).

A pair (�, r) of terms is said to be a rewrite rule if � is not a variable and
every variable in r occurs in �. Rewrite rules (�, r) are written by � → r. A set of
rewrite rules is called a term rewrite system (TRS). Let R be a TRS. We write
DR for the set of defined symbols {f | f(�1, . . . , �n) → r ∈ R}. The relation →R
is defined on terms as follows: s →R t if there exist a rewrite rule � → r ∈ R,
a context C, and a substitution σ such that s = C[�σ] and t = C[rσ] hold. The
TRS R is said to be terminating if there is no infinite sequence t1 →R t2 →R · · · .
A relation � on terms is closed under contexts if C[s] � C[t] holds whenever
s � t and C is a context, and it is called closed under substitutions or just stable
if sσ � tσ holds whenever s � t and σ is a substitution. We say � has the
subterm property if s � t for all terms s, t satisfying s�t. Relations closed under
contexts and substitutions are called rewrite relations.

Termination is often shown by using orders. We say that a rewrite relation is
a rewrite preorder or reduction order if it is a preorder or a well-founded order,
respectively. A TRS R is compatible with a strict order > if R ⊆ >.

Proposition 1. A TRS R is terminating if R is compatible with some reduction
order >.

An ordered F-algebra is a triple (A, {fA}f∈F , >), where A is a set called a
carrier, fA is an n-ary function on A (called an interpretation function) associ-
ated with each f (n) ∈ F , and > is a strict order on A. Let A = (A, {fA}f∈F , >)
be an ordered algebra. A mapping from V to A is called an assignment for A. The
interpretation [α]A(t) of a term t under an assignment α is inductively defined as
follows: [α]A(t) = α(t) if t is a variable, and [α]A(t) = fA([α]A(t1), . . . , [α]A(tn))
if t = f(t1, . . . , tn). We write s >A t if [α]A(s) > [α]A(t) for all assignments α.
The relation >A is a strict order. Similarly we write s �A t if [α]A(s) � [α]A(t)
holds for all assignments α, where � stands for the reflexive closure of >. The
relation �A is a quasi-order, and satisfies �A · >A · �A ⊆ >A. We say that the
ordered algebra A is

– simple if fA(a1, . . . , ai, . . . , an) � ai for all f (n) ∈ F , 1 � i � n, and
a1, . . . , an ∈ A;

– weakly monotone if fA(a1, . . . , ai, . . . , an) � fA(a1, . . . , b, . . . , an) for all f (n) ∈
F , argument positions 1 � i � n, and a1, . . . , an, b ∈ A with ai > b;

– simple monotone if it is simple and weakly monotone; and
– well-founded if > is well-founded.

If > is well-founded, so is >A. If A is a weakly monotone algebra, �A is a rewrite
preorder. If in addition A is simple, �A has the subterm property � ⊆ �A.

2.2 Weighted Path Orders

Weighted path orders (WPOs) are reduction orders introduced by Yamada et
al. [27]. The definition of WPOs is based on the pair of an ordered algebra A

66 T. Saito and N. Hirokawa

and a precedences �. A WPO compares terms s, t as a generalized KBO does:
First the terms are compared by s >A t. If only weak inequality s �A t holds
then their root symbols, say f and g, are compared by the precedence �. If again
only weak inequality f � g holds, arguments are compared lexicographically.

Lexicographic comparison is formalized as follows. Let > be a strict order on
a set A and let A∗ denote the set of all strings (tuples) over A. The lexicographic
extension >lex of > is defined on A∗ as follows: (a1, . . . , an) >lex (b1, . . . , bm) if
there is a natural number k < n such that

– aj = bj for all 1 � j � k, and
– either k = m, or k < m and ak+1 > bk+1.

It is known that >lex is a strict order on A∗.

Definition 1 ([27]). Let A be an ordered F-algebra and � a precedence. The
weighted path order >wpo is defined on terms over F as follows: s >wpo t if

1. s >A t, or
2. s �A t, s = f(s1, . . . , sm), and one of the following conditions holds.

a. si �wpo t for some 1 � i � m.
b. t = g(t1, . . . , tn) and s >wpo tj for all 1 � j � n, and moreover

(i) f � g, or
(ii) f � g and (s1, . . . , sm) >lex

wpo (t1, . . . , tn).

Here �wpo denotes the reflexive closure of >wpo.

Theorem 1 ([27]). Suppose that the signature is finite. For every simple mono-
tone well-founded algebra and well-founded precedence the induced relation >wpo

is a reduction order with the subterm property.

Example 1. Consider the following TRS R taken from [27, Example 9]:

f(g(x)) → g(f(f(x))) f(h(x)) → h(h(f(x)))

Let A be the simple monotone algebra on N with fA(x) = hA(x) = x and
gA(x) = x + 1. Take a precedence � with f � g � h. The relation f(g(x)) >wpo

g(f(f(x))) is verified by the following derivation:

f(g(x)) �A g(f(f(x))) f � g

f(g(x)) >A f(f(x))
WPO 1

f(g(x)) >wpo f(f(x))
WPO 2b(i)

f(g(x)) >wpo g(f(f(x)))

Here WPO 1 and WPO 2b(i) indicate the corresponding conditions in Definition
1. Similarly, one can verify f(h(x)) >wpo h(h(f(x))). Therefore, R ⊆ >wpo follows.
Hence, we conclude that R is terminating.

The following example shows that the simplicity condition cannot be dropped
from Theorem 1.

Example 2. Any WPO >wpo induced by the weakly monotone but non-simple
algebra A on N with aA = 1 and fA(x) = 0 lacks well-foundedness as it admits
the cyclic sequence f(a) >wpo f(f(a)) >wpo f(a).

Weighted Path Orders Are Semantic Path Orders 67

3 Semantic Path Orders Based on Order Pairs

Borralleras [4, Definition 4.1.19] introduced a variant of SPO that employs a pair
of a quasi-order and a strict order. This variant compares arguments of terms
by a multiset order. In order to simulate WPOs which compare arguments in a
lexicographic manner, we introduce another variant of SPO.

We say that the pair (�, >) of a quasi-order � and a strict order > is an
order pair if � · > · � ⊆ >. The inclusion is referred to as compatibility. We say
that an order pair (∼,) on terms is stable if both 	∼ and 	 are stable.

Definition 2. Let (∼,) be a stable order pair on T \ V.1 The semantic path
order >spo (SPO) is defined on terms as follows: s >spo t if s = f(s1, . . . , sm)
and one of the following conditions hold:

1. si �spo t for some 1 � i � m.
2. t = g(t1, . . . , tn) and s >spo tj for all 1 � j � n, and moreover

a. s 	 t, or
b. s 	∼ t and (s1, . . . , sm) >lex

spo (t1, . . . , tn).

Here �spo denotes the reflexive closure of >spo.

Remark 1. The standard definitions of SPOs ([12] and [4, Definition 4.1.19]) use
the multiset extension of >spo in SPO 2b instead of the lexicographic extension.
The lexicographic version of SPOs, introduced by Borralleras [4, Definition 4.5.1],
can be obtained by setting 	 to the strict part of 	∼ in Definition 2.

Example 3. Lexicographic path orders (LPOs) are special instances of SPOs.
Let � be a precedence. Define f(s1, . . . , sm) 	∼ g(t1, . . . , tn) by f � g, and let
	 be the strict part of 	∼. The semantic path order induced by (∼,) is the
lexicographic path order induced by �.

Let (∼,) be a stable order pair on T \ V and let >spo be the semantic path
order induced by (∼,). The transitivity, reflexivity, and stability of >spo are
straightforward. A small remark is that the compatibility 	∼ · 	 · 	∼ ⊆ 	 is used
in the proof of the transitivity.

Lemma 1. The SPO >spo is a stable strict order.
�
When the signature is infinite, the lexicographic version of SPOs is not well-

founded in general even if 	 is well-founded. This forms a contrast to the multiset
versions of SPOs mentioned in Remark 1.

Example 4. Consider the signature consisting of a(0), b(0), and f
(i)
i for all num-

bers i ∈ N. Let � be a well-founded precedence satisfying a � b and fi � fj for
all i, j ∈ N. The pair (∼,) defined as in Example 3 is an order pair with 	
well-founded, but the SPO >spo induced from (∼,) admits the infinite chain:

f1(a) >spo f2(b, a) >spo f3(b, b, a) >spo · · ·

See [22, Section 3] and [19, Section 3] for related discussions.
1 The restriction to T \ V is not essential but meant to be a minimum requirement.

Observe that Definition 2 uses the order pair only when s and t are not variables.

68 T. Saito and N. Hirokawa

Well-foundedness of >spo is restored by assuming existence of an upper bound
of arities. We refer to this property as boundedness of the signature. Needless to
say, a signature is bounded whenever it is finite.

Hereafter we assume that 	 is well-founded and F is bounded. For showing
that >spo is well-founded, we adopt Buchholz’s method [6]. One can find a similar
proof in [27, Lemma 8]. We write SN(>spo) for the set of all terms t such that
there is no infinite descending sequence t >spo t1 >spo t2 >spo · · · starting from
t.2 The following properties are immediate:

– The restriction of >spo to SN(>spo) is a well-founded order on SN(>spo).
– t ∈ SN(>spo) if u ∈ SN(>spo) for all terms u with t >spo u.

Buchholz’s method proves well-foundedness by well-founded induction. To
express our well-founded order for induction, we recall the notion of the lexico-
graphic product of order pairs. Let (�1, >1), . . . , (�n, >n) be n order pairs on
sets A1, . . . , An, respectively. The lexicographic product (�1, >1)⊗· · ·⊗(�n, >n)
is the strict order > defined on A1×· · ·×An as follows: (a1, . . . , an) > (b1, . . . , bn)
if there exists an index k ∈ {1, . . . , n} such that ak >k bk and aj �j bj for all
1 � j < k. Note that the lexicographic product > is well-founded if every >i is
well-founded.

Given a set A, we write A�k for the union of Ai for all i � k. If a strict order
> on A is well-founded, then the restriction of >lex to A�k is also well-founded,
see [19, Section 3]. Thus, the lexicographic product given by

(∼,) ⊗ (�lex
spo, >

lex
spo) ⊗ (�,�)

is a well-founded order on (T \V)×T �M ×T . Here M stands for the maximum
arity in the signature F , and �lex

spo for the reflexive closure of >lex
spo.

Lemma 2. The term u belongs to SN(>spo) whenever t = f(t1, . . . , tn) >spo u
and t1, . . . , tn ∈ SN(>spo).

Proof. We show the claim by well-founded induction on (t, (t1, . . . , tn), u) with
respect to . Here we proceed by analyzing the derivation of t >spo u. If t >spo

u is derived from SPO 1 then ti �spo u for some i ∈ {1, . . . , n}. In this case
u ∈ SN(>spo) trivially follows from ti ∈ SN(>spo). If t >spo u is derived from
SPO 2a or SPO 2b, then u is of the form g(u1, . . . , um) and t >spo uj for all
j ∈ {1, . . . , m}. From u � uj we have (t, (t1, . . . , tn), u) (t, (t1, . . . , tn), uj). So
from the induction hypothesis ui ∈ SN(>spo) for each j. For showing our goal
u ∈ SN(>spo) fix an arbitrary term v with u >spo v. We further distinguish the
case of SPO 2a and that of SPO 2b.

a. If t >spo u is derived from SPO 2a then t 	 u. Thus, (t, (t1, . . . , tn), u)
(u, (u1, . . . , um), v), and the induction hypothesis yields v ∈ SN(>spo).

2 SN stands for strong normalization, which is another name of termination.

Weighted Path Orders Are Semantic Path Orders 69

b. If t >spo u is derived from SPO 2b then we additionally have t 	∼ u and
(t1, . . . , tn) >lex

spo (u1, . . . , um). Thus, (t, (t1, . . . , tn), u) (u, (u1, . . . , um), v)
holds. So from the induction hypothesis we obtain v ∈ SN(>spo).

In either case v ∈ SN(>spo). So we conclude u ∈ SN(>spo).
�

Lemma 3. The relation >spo is well-founded.

Proof. We show that t ∈ SN(>spo) by induction on |t|. If t is a variable trivially
t ∈ SN(>spo). Otherwise, Lemma 2 applies.
�

Theorem 2. Every semantic path order is a stable well-founded order, provided
that the signature is bounded.
�

In general, semantic path orders are not closed under contexts. For a remedy,
Borralleras et al. [5] propose the use of another preorder with the harmony
property. This results in monotonic semantic path orders.

Definition 3 ([4, Definition 4.1.20]). A triple (�,	∼,) is a reduction triple if
� is a rewrite preorder on terms, (∼,) is a stable order pair on T \ V with 	
well-founded, and � and 	∼ have the harmony property, meaning that for every
f (n) ∈ F the implication

si � t =⇒ f(s1, . . . , si, . . . , sn) 	∼ f(s1, . . . , t, . . . , sn)

holds for all terms s1, . . . , sn, t and argument positions 1 � i � n.

Definition 4. Let (�,	∼,) be a reduction triple, and let >spo be the semantic
path order induced from (∼,). The monotonic semantic path order s >mspo t
(MSPO) is defined as s � t and s >spo t.

Theorem 3. Every monotonic semantic path order is a reduction order, pro-
vided that the signature is bounded.

Proof. The proof due to Borralleras et al. [5, Theorem 2] goes through.
�

4 Simulating WPOs by SPOs

We show that WPOs are instances of SPOs by constructing a suitable order
pair (∼,) from a weakly monotone well-founded algebra A and a well-founded
precedence �. For terms s = f(s1, . . . , sm), t = g(t1, . . . , tn) we write s 	∼ t if
s >A t, or both s �A t and f � g. Similarly, we define s 	 t if s >A t, or
both s �A t and f � g. It is worth noting that the proof of [27, Lemma 8] also
combines the interpretation order and precedence in a lexicographic manner.

Lemma 4. The pair (∼,) is a stable order pair with 	 well-founded.
�

70 T. Saito and N. Hirokawa

In the remaining part of the section we consider the WPO >wpo induced by
A and �, and the SPO >spo induced by the corresponding order pair (∼,).
Note that 	 is not a strict part of 	∼ in general, as >A is not necessarily the
strict part of �A. This is why we decoupled 	 from 	∼ in Definition 2; see also
Remark 1.

Example 5. Let the signature F = {f(1)}. Consider the trivial precedence f � f
and the algebra A over the carrier N with the interpretation fA(x) = 2x. On the
one hand we have f(f(x)) 	∼ f(x) from f(f(x)) �A f(x) but not f(x) 	∼ f(f(x)) as
f(x) �A f(f(x)). On the other hand f(f(x)) 	 f(x) does not hold.

We illustrate how the derivation of >wpo in Example 1 is simulated by the
semantic path order.

Example 6 (continued from Example 1). From f(g(x)) �A g(f(f(x))) and f � g
the inequality f(g(x)) 	 g(f(f(x))) is obtained. Moreover, we have f(g(x)) >A
f(f(x)). Since �A has the subterm property, the subterm f(x) of f(f(x)) also
satisfies f(g(x)) >A f(x). Thus we obtain f(g(x)) 	 f(f(x)), f(x). Therefore,
f(g(x)) >spo g(f(f(x))) is verified as follows:

f(g(x)) 	 g(f(f(x)))

f(g(x)) 	 f(f(x))

f(g(x)) 	 f(x)

x �spo x
SPO1

g(x) �spo x
SPO1

f(g(x)) >spo x
SPO2a

f(g(x)) >spo f(x)
SPO2a

f(g(x)) >spo f(f(x))
SPO2a

f(g(x)) >spo g(f(f(x)))

Similarly, f(h(x)) >spo h(h(f(x))) can be verified. Hence, the inclusion R ⊆ >spo

holds. Observe that the use of WPO 1 in Example 1 is replaced by successive
application of SPO 1 and SPO 2a.

As shown in the example, the subterm property of �A is a key for filling in
the gap between >spo and >wpo.

Lemma 5. Suppose that A is simple. If s >wpo t then s >spo t.

Proof. We prove the claim by induction on |s|+ |t|. Let s = f(s1, . . . , sm) >wpo t.
Depending on the derivation of s >wpo t, we distinguish five cases.

– Suppose that t is a variable and s >wpo t is derived from s >A t. One can
verify that t occurs in s. Because s is not a variable, s � t follows. By the
subterm property of >spo we obtain s >spo t.

– Suppose that t = g(t1, . . . , tn) and s >wpo t is derived from s >A t. From
s >A t we obtain s 	 t. Since A is simple, for every 1 � j � n we have
s >A t �A tj , which leads to s >A tj . Hence, s >spo t is derived as follows:

s 	 t

∀j. s >A tj
WPO 1

∀j. s >wpo tj
I.H.

∀j. s >spo tj
SPO 2a

s >spo g(t1, . . . , tn) = t

Weighted Path Orders Are Semantic Path Orders 71

– Suppose that s >wpo t is derived as follows:

s �A t si �wpo t
WPO 2a

s = f(s1, . . . , sn) >wpo t

By the induction hypothesis we have si �spo t for some i, and thus s >spo t.
– Suppose that s >wpo t is derived as follows:

s �A t f � g ∀j. s >wpo tj
WPO 2b(i)

s = f(s1, . . . , sn) >wpo g(t1, . . . , tm) = t

From s �A t and f � g we obtain s 	 t. Thus, we have:

s 	 t

∀j. s >wpo tj
I.H.

∀j. s >spo tj
SPO 2a

s = f(s1, . . . , sn) >spo g(t1, . . . , tm) = t

– Suppose that s >wpo t is derived as follows:

s �A t f � g ∀j. s >wpo tj (s1, . . . , sn) >lex
wpo (t1, . . . , tm)

WPO 2b(ii)
s = f(s1, . . . , sn) >wpo g(t1, . . . , tm) = t

From s �A t we obtain s 	∼ t. Thus, we have:

s 	∼ t

∀j. s >wpo tj
I.H.

∀j. s >spo tj

(s1, . . . , sn) >lex
wpo (t1, . . . , tm)

I.H.
(s1, . . . , sn) >lex

spo (t1, . . . , tm)
SPO 2b

s = f(s1, . . . , sn) >spo g(t1, . . . , tm) = t

In any case we have s >spo t.
�

Next we prove the converse direction of Lemma 5. The next lemma is a basic
property of WPOs.

Lemma 6. If s >wpo t then s �A t.
�

Lemma 7. Suppose that A is simple. If s >spo t then s >wpo t.

Proof. We prove the claim by induction on |s| + |t|. We distinguish three cases,
depending on the derivation of s >spo t.

– Suppose that s >spo t is derived as follows:

si �spo t
SPO 1

s = f(s1, . . . , sn) >spo t

72 T. Saito and N. Hirokawa

The induction hypothesis yields si �wpo t for some i. By Lemma 6 and the
subterm property of �A we have s �A t. Thus, we obtain the following
derivation of s >wpo t:

s �A t si �wpo t
WPO 2a

s = f(s1, . . . , sn) >wpo t

– Suppose that s >spo t is derived as follows:

s 	 t ∀j. s >spo tj
SPO 2a

s = f(s1, . . . , sn) >spo g(t1, . . . , tn) = t

According to the definition of s 	 t, we further distinguish two subcases. If
s >A t then s >wpo t is immediate. Otherwise, s �A t and f � g hold. In this
case we derive s >wpo t as follows:

s �A t f � g

∀j. s >spo tj
I.H.

∀j. s >wpo tj
WPO 2b(i)

s = f(s1, . . . , sn) >wpo g(t1, . . . , tm) = t

– Suppose that s >spo t is derived as follows:

s 	∼ t ∀j. s >spo tj (s1, . . . , sn) >lex
spo (t1, . . . , tm)

SPO 2b
s = f(s1, . . . , sn) >spo g(t1, . . . , tm) = t

Because of s 	∼ t, we have s >A t or both s �A t and f � g. In the former case
s >wpo t is immediate. In the latter case s >wpo t is derived by WPO 2b(ii)
as follows:

s �A t f � g

∀j. s >spo tj
I.H.∀j. s >wpo tj

(s1, . . . , sn) >lex
spo (t1, . . . , tm)

I.H.
(s1, . . . , sn) >lex

wpo (t1, . . . , tm)

s = f(s1, . . . , sn) >wpo g(t1, . . . , tm) = t

In any case we have s >wpo t.
�

As a consequence, >wpo and >spo coincide, provided that A is simple. This
result can be extended to monotonic semantic path orders.

Lemma 8. The triple (�A,	∼,) is a reduction triple.
�

Let >mspo denote the monotonic semantic path order induced from �A and
>spo. Since s >wpo t implies s �A t (Lemma 6), s >mspo t is equivalent to
s >spo t. By using this equivalence together with Lemmata 5 and 7, we obtain
the following result.

Theorem 4. The three orders >wpo, >spo, and >mspo coincide, provided that A
is simple.
�

Weighted Path Orders Are Semantic Path Orders 73

5 Generalized Weighted Path Orders

According to Theorem 4, weighted path orders can be defined as monotonic
semantic path orders. Moreover, Lemma 8 reveals that even for non-simple alge-
bras the construction of reduction triples is valid. This observation suggests a
generalization of weighted path orders, which does not impose simplicity on
algebras. Besides, we exploit the fact that stable order pairs need not be closed
under contexts, marking root symbols of function applications; see [1] and [5,
Definition 5].

Let F be a signature. For each f ∈ F we associate a marked function symbol
f � /∈ F of the same arity. The set {f � | f ∈ F} is denoted by F �. For each
term t = f(t1, . . . , tn) ∈ T (F ,V) we denote f �(t1, . . . , tn) by t�. Let A be a
weakly monotone well-founded (F∪F �)-algebra and � a well-founded precedence
on F . The pair (∼

�,	�) of relations on T (F ,V) \ V is defined as follows: Let
s = f(s1, . . . , sn) and t = g(t1, . . . , tm). We write s 	∼

� t if s� >A t�, or s� �A t�

and f � g. Similarly, we write s 	� t if s� >A t�, or s� �A t� and f � g. The
relation � is defined as the restriction of �A to T (F ,V).

Proposition 2. The triple (�,	∼
�,	�) is a reduction triple on T (F ,V).
�

Definition 5. The generalized weighted path order (GWPO) >gwpo induced
from A and � is the monotonic semantic path order induced from (�,	∼

�,	�).

Corollary 1. Every generalized weighted path order is a reduction order, pro-
vided that the signature is bounded.
�

For convenience, we reformulate the definition of >gwpo in the style of Defi-
nition 1.

Definition 6. The relation >wpo′ is defined on terms as follows: s >wpo′ t if
s = f(s1, . . . , sm) and one of the following conditions hold.

1. si �wpo′ t for some 1 � i � m.
2. t = g(t1, . . . , tn), s� �A t�, and s >wpo′ tj for all 1 � j � n, and moreover

a. s� >A t�,
b. f � g, or
c. f � g and (s1, . . . , sm) >lex

wpo′ (t1, . . . , tn).

Proposition 3. The SPO >spo induced from (∼
�,	�) coincides with >wpo′ . For

all terms s and t the relation s >gwpo t is equivalent to s �A t and s >wpo′ t.
�

Corollary 2. The relations >gwpo and >wpo coincide, provided that A is simple
and fA(x1, . . . , xn) = f �

A(x1, . . . , xn) for all f (n) ∈ F .
�

Since polynomial interpretation orders [15] and Knuth–Bendix orders [13] as
well as LPOs are simulated by WPOs [27], they are also subsumed by GWPOs.
We demonstrate termination proofs by GWPOs with a few examples. All exam-
ples are not handled by WPOs.

74 T. Saito and N. Hirokawa

Example 7. Consider the TRS R for round-up division:

p(0) → 0 x − 0 → x 0 ÷ s(y) → 0

p(s(x)) → x x − s(y) → p(x) − y s(x) ÷ s(y) → s((x − y) ÷ s(y))

Let A be the weakly monotone algebra on N with the interpretations

0A = 0 sA(x) = x + 1 pA(x) = x x −A y = x x ÷A y = x

0�
A = 0 s�A(x) = 0 p�

A(x) = 0 x −�
A y = y x ÷�

A y = x + y

and let � be an arbitrary precedence. The GWPO induced from A and � orients
all rules in R. In particular, x−s(y) >wpo′ p(x)−y is derived from the inequalities
x −� s(y) >A p(x) −� y and x −� s(y) >A p�(x).

Example 8. Consider the TRS R taken from [2, Example 4.28], which computes
the bit length of a natural number:

half(0) → 0 half(s(0)) → 0 half(s(s(x))) → s(half(x))
bits(0) → 0 bits(s(x)) → s(bits(half(s(x))))

Let A be the weakly monotone algebra on N with:

0A = 0 sA(x) = x + 1 halfA(x) = max{0, x − 1} bitsA(x) = x

0�
A = 0 s�A(x) = x + 1 half�A(x) = max{0, x − 1} bits�A(x) = x

The GWPO >gwpo induced by A and a precedence � with half, bits � s sat-
isfies R ⊆ >gwpo as � �A r and � >wpo′ r for all rules � → r ∈ R. In par-
ticular, bits(s(x)) >wpo′ s(bits(half(s(x)))) is derived as follows. The inequality
bits(s(x)) >wpo′ bits(half(s(x))) is derived from repeated application of WPO′ 2a:

bits�(s(x)) >A bits�(half(s(x)))

bits�(s(x)) >A half�(s(x))

s(x) �wpo′ s(x)

bits(s(x)) >wpo′ s(x)

bits(s(x)) >wpo′ half(s(x))

bits(s(x)) >wpo′ bits(half(s(x)))

Thus, bits(s(x)) >wpo′ s(bits(half(s(x)))) follows from WPO′ 2b with bits � s and
bits�(s(x)) �A s�(bits(half(s(x)))).

6 Experimental Results

In order to evaluate GWPOs in termination analysis we implemented a prototype
termination tool based on Proposition 1 and Corollary 1. Following the automa-
tion techniques of WPO [27], we search a suitable weakly monotone well-founded
algebra from two classes of algebras over N: One is linear interpretation and the
other is max/plus interpretation. Since simplicity of algebras is not required for
GWPOs, we may use more general forms of interpretations.

Weighted Path Orders Are Semantic Path Orders 75

Linear Interpretations. Algebras A of this class use linear polynomials over
N like Example 7. For each f (n) ∈ F ∪ F � its interpretation is of the form
fA(x1, . . . , xn) = c0 + c1x1 + · · · + cnxn where c0 ∈ N and c1, . . . , cn ∈ {0, 1}.
Simple monotone algebras for WPOs3 are obtained by setting c1 = · · · = cn =
1, fA = f �

A for all f (n) ∈ F , and those for Knuth–Bendix orders (KBOs) are
obtained by further restriction for admissibility, see [27]. Comparison of linear
polynomials is reduced to that of coefficients by using the following trivial fact:

Proposition 4. Let f(x1, . . . , xn) = c0 + c1x1 + · · · + cnxn and g(x1, . . . , xn) =
d0 + d1x1 + · · · + dnxn be linear polynomials over N. The next statements hold.

– f � g if and only if c0 � d0 and ci � di for all 1 � i � n.
– f > g if and only if c0 > d0 and ci � di for all 1 � i � n.

Here f � g (f > g) means that f(a1, . . . , an) � g(a1, . . . , an) (f(a1, . . . , an) >
g(a1, . . . , an)) for all a1, . . . , an ∈ N.

Max/plus Interpretations. Algebras A of this class use a combination of + and
max like Example 8. For each f (n) ∈ F ∪ F � its interpretation is of the form
fA(x1, . . . , xn) = max{c0, c1 + c′

1x1, · · · , cn + c′
nxn} where c0 ∈ N, c1, . . . , cn ∈ Z

and c′
1, . . . , c

′
n ∈ {0, 1}. Simple monotone algebras for WPOs are obtained by

imposing c1, . . . , cn ∈ N, c′
1 = · · · = c′

n = 1, fA = f �
A for all f (n) ∈ F , and alge-

bras for lexicographic path orders (LPOs) are obtained by additionally setting
c0 = c1 = · · · = cn = 0 for all f (n) ∈ F as in [27]. The restriction c1, . . . , cn ∈ N

is necessary for WPOs because allowing c1, . . . , cn < 0 results in non-simple
interpretations such as max{0, x − 1}. Under this form of algebras, an interpre-
tation of a term is flattened to the form of max{g1, . . . , gm} where g1, . . . , gm are
linear polynomials over N. So comparison of max/plus interpretation is reduced
to that of coefficients, using the following trivial fact and Proposition 4 in turn:

Proposition 5. Let G and H be non-empty sets of linear polynomials over N.
The next statements hold.

– max G � max H if and only if for every h ∈ H there exists a linear polynomial
g ∈ G with g � h.

– max G > max H if and only if for every h ∈ H there exists a linear polynomial
g ∈ G with g > h.

Since precedence constraints can be regarded as inequalities on natural num-
bers [28], searching a suitable combination of a precedence and an interpretation
is done by solving linear arithmetic constraints (with if-then-else expressions).

The problem set for experiments consists of 1511 term rewrite systems from
version 11.3 of the Termination Problem Database (TPDB) [21]. The reference
implementation uses the SMT solver Z3 [17] as an external tool for solving linear
constraints. The experiments were run on a PC with Intel Core i7-1065G7 CPU
(1.30 GHz) and 16 GB memory.
3 Our WPOs based on linear interpretations correspond to WPO(Sum) by Yamada

et al. [27] but without status functions.

76 T. Saito and N. Hirokawa

Table 1. Experiments on 1511 TRSs from TPDB 11.3.

interpretations linear max/plus

order KBO WPO GWPO LPO WPO GWPO

proved TRSs 103 122 357 149 221 385

timeouts (60 sec) 8 9 9 12 12 28

Now let us discuss the experimental results.4 Table 1 shows that, as a whole,
use of non-simple algebras substantially improves termination analysis, at the
small cost of extra running time. In particular, in the case of linear interpretation,
GWPOs significantly outperform WPOs. As a matter of fact, linear WPOs are
unable to orient variable duplicating rules � → r such as f(x) → g(x, x) since
� �A r cannot be satisfied, but this does not apply to GWPOs based on linear
interpretations with {0, 1}-coefficients. In the case of max/plus interpretations
there are two TRSs (with over 100 rules) that are proved to be terminating by
WPOs, but not by GWPOs due to the time limit. This indicates that using
non-simple algebras for max/plus interpretation can result in increase of search
space. This is not the case for linear interpretations.

7 Simulating Dependency Pairs by GWPOs

The powerfulness of GWPOs revealed in Sect. 6 can partly be explained by the
fact that GWPO is capable of simulating a basic result of the dependency pair
method [1]. To show the fact, we recall the dependency pair method. The set
DP(R) of dependency pairs of a TRS R is defined as follows:

DP(R) = {�� → g�(t1, . . . , tn) | � → r ∈ R, r � g(t1, . . . , tn), and g ∈ DR}

An order pair (�,) on terms is a reduction pair if � is a rewrite preorder and
	 is a well-founded stable order. The following theorem states a basic result of
the dependency pair method.

Theorem 5 ([1]). A TRS R is terminating if R ⊆ � and DP(R) ⊆ 	 for
some reduction pair (�,).

We illustrate Theorem 5, using the fact that every weakly monotone algebra
A on N induces the reduction pair (�A, >A).

Example 9. Consider the TRS R = {f(f(x)) → f(g(f(x))), f(x) → g(x)}. We
show the termination of R using Theorem 5. The set DP(R) consists of the two
dependency pairs:

f�(f(x)) → f�(g(f(x))) f�(f(x)) → f�(x)

4 The implementation and the detailed experimental data are available at: https://
www.jaist.ac.jp/project/maxcomp/23frocos/

https://www.jaist.ac.jp/project/maxcomp/23frocos/
https://www.jaist.ac.jp/project/maxcomp/23frocos/

Weighted Path Orders Are Semantic Path Orders 77

By taking the {f, g, f�, g�}-algebra A with the interpretations

fA(x) = x + 1 gA(x) = 0 f�A(x) = x g�
A(x) = 1

the inclusions R ⊆ �A and DP(R) ⊆ >A hold. Hence, R is terminating.

We show that every termination proof by Theorem 5 with a weakly monotone
algebra on N can be simulated by a GWPO. This class of algebras include linear
polynomial interpretations and max/plus interpretations described in Sect. 6.
Let R be a TRS and A a weakly monotone (F ∪ F �)-algebra on N satisfying
R ⊆ �A and DP(R) ⊆ >A. Define the (F ∪ F �)-algebra B on N by

fB(a1, . . . , an) = fA(a1, . . . , an)

f �
B(a1, . . . , an) =

{
f �

A(a1, . . . , an) + 1 if f ∈ DR
0 otherwise

for each f (n) ∈ F . Let >gwpo and >wpo′ denote the orders induced from B and
an arbitrary but fixed precedence. First, let us see that R ⊆ >gwpo holds for the
last example.

Example 10 (continued from Example 9). The corresponding algebra B is:

fB(x) = x + 1 gB(x) = 0 f�B(x) = x + 1 g�
B(x) = 0

We have R ⊆ �B by construction. The inequality f(f(x)) >wpo′ f(g(f(x))) is
derived by successive application of WPO′ 2a as follows:

f�(f(x)) >B f�(g(f(x)))

f�(f(x)) >B g�(f(x))

f�(f(x)) >B f�(x)

x �wpo′ x

f(x) >wpo′ x

f(f(x)) >wpo′ f(x)

f(f(x)) >wpo′ g(f(x))

f(f(x)) >wpo′ f(g(f(x)))

The inequality f(x) >wpo′ g(x) follows from f�(x) >B g�(x). Hence R ⊆ >gwpo.
Note that neither f�(f(x)) >A g�(f(x)) nor f�(x) >A g�(x) holds.

Now we verify that R ⊆ >gwpo holds in general. By construction R ⊆ �B
is immediate from R ⊆ �A. So it remains to show R ⊆ >wpo′ . We prove the
following stronger property.

Lemma 9. Let � → r ∈ R. For every subterm t of r the relation � >wpo′ t holds.

Proof. We use structural induction on t. If t is a variable, then x must be a
subterm of �, and thus � >wpo′ t. Otherwise, t is in the form of g(t1, . . . , tn). The
induction hypothesis yields � >wpo′ tj for all 1 � j � n. We claim �� >B t�, from
which the desired inequality � >wpo′ t follows by WPO′ 2a. To show the claim,
consider an arbitrary assignment α for B. Depending on g, we distinguish two
cases.

78 T. Saito and N. Hirokawa

– If g /∈ DR then [α]B(��) = [α]A(��) + 1 > 0 = [α]B(t�).
– If g ∈ DR then �� → t� ∈ DP(R). The assumption DP(R) ⊆ >A yields the

inequality �� >A t�. Thus, [α]B(��) = [α]A(��) + 1 > [α]A(t�) + 1 = [α]B(t�).

In either case [α]B(��) > [α]B(t�) is obtained. Hence, �� >B t� holds.
�

Theorem 6. The inclusion R ⊆ >gwpo holds.
�

8 Conclusion

We have shown that weighted path orders can be simulated by a suitable variant
of SPOs based on order pairs, and introduced a generalization of WPOs whose
termination proving power goes beyond the realm of simple termination. To
conclude the paper, we discuss related work and future work.

Simulating KBOs by SPOs. A key observation for simulating WPOs by SPOs
is that weight comparison can be simulated by successive application of SPO 1
and SPO 2a as observed in Example 6. Another observation is that the SPOs are
already reduction orders without a help of harmonious rewrite preorders. These
two observations owe to Geser’s work [9, Theorem 5], where it is shown that
extended KBOs [7, Sect. 5] can be simulated by SPOs. Unifying our result and
Geser’s result is future work.

General Path Orders. In this paper the lexicographic versions of path orders
were investigated. However, it is very likely that the same result can be obtained
even if we adopt multiset comparison or status functions. General path orders
(GPOs) [8,10] are a unifying framework for such extensions, parameterizing the
way to compare arguments. It is worth investigating simulation results between
GPOs and WPOs by extending the parameters of GPOs so as to take order
pairs.

Reduction Pairs Based on WPOs. In order to build reduction pairs from WPOs
Yamada et al. [27, Sect. 4] extended the definition of WPOs by the notion of
partial status function π. The extension allows us to specify argument positions
π(f) = [i1, . . . , im] compared in WPO 2b and WPO 2b(ii) for each function sym-
bol f (n) ∈ F ∪ F �. We anticipate that partial status functions can also be inte-
grated into GWPOs and the thus-obtained version characterizes the reduction
pair version of WPOs.

Acknowledgements. We are grateful to Vincent van Oostrom for his valuable ques-
tions and comments on our preliminary work. We also thank Alfons Geser for his
support on literature. The suggestions by the anonymous referees greatly helped to
improve the presentation of the paper.

Weighted Path Orders Are Semantic Path Orders 79

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoret.
Comput. Sci. 236, 133–178 (2000). https://doi.org/10.1016/S0304-3975(99)00207-
8

2. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using
dependency pairs. Tech. rep, RWTH Aachen (2001)

3. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge Univ. Press (1998).
https://doi.org/10.1017/CBO9781139172752

4. Borralleras, C.: Ordering-Based Methods for Proving Termination Automatically.
Ph.D. thesis, Universitat Politècnica de Catalunya (2003)

5. Borralleras, C., Ferreira, M., Rubio, A.: Complete monotonic semantic path order-
ings. In: Proc. 17th International Conference on Automated Deduction. LNCS
(LNAI), vol. 1831, pp. 346–364 (2000). https://doi.org/10.1007/10721959 27

6. Buchholz, W.: Proof-theoretic analysis of termination proofs. Ann. Pure Appl.
Logic 75, 57–65 (1995). https://doi.org/10.1016/0168-0072(94)00056-9

7. Dershowitz, N.: Orderings for term-rewriting systems. Theoret. Comput. Sci. 17,
279–301 (1982). https://doi.org/10.1016/0304-3975(82)90026-3

8. Dershowitz, N., Hoot, C.: Natural termination. Theoret. Comput. Sci. 142, 179–
207 (1995). https://doi.org/10.1016/0304-3975(94)00275-4

9. Geser, A.: On a monotonic semantic path ordering. Tech. Rep. 92–13, Ulmer
Informatik-Berichte, Universität Ulm, Germany (1992)

10. Geser, A.: An improved general path order. Appl. Algebra Eng. Commun. Comput.
7, 469–511 (1996). https://doi.org/10.1007/BF01293264

11. Jakub̊uv, J., Kaliszyk, C.: Relaxed weighted path order in theorem proving. Math.
Comput. Sci. 14(3), 657–670 (2020). https://doi.org/10.1007/s11786-020-00474-0

12. Kamin, S., Lévy, J.: Two generalizations of the recursive path ordering. Tech. rep.,
University of Illinois (1980), unpublished manuscript

13. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press
(1970)

14. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: Proc. 20th International Conference on Rewriting Techniques and Applications.
LNCS, vol. 5595, pp. 295–304 (2009). https://doi.org/10.1007/978-3-642-02348-
4 21

15. Lankford, D.: On proving term rewriting systems are noetherian. Louisiana Tech-
nical University, Tech. rep. (1979)

16. Middeldorp, A., Zantema, H.: Simple termination of rewrite systems. Theoret.
Comput. Sci. 175, 127–158 (1997). https://doi.org/10.1016/S0304-3975(96)00172-
7

17. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Proc. 14th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems. LNCS, vol. 4963, pp. 337–340 (2008). https://doi.org/10.1007/978-3-
540-78800-3 24

18. Saito, T., Hirokawa, N.: Toma 0.2: An equational theorem prover. In: Proceedings
of 11th Workshop on Confluence. p. 59 (2022), the tool is available at https://
www.jaist.ac.jp/project/maxcomp/

19. Sternagel, C., Thiemann, R.: Formalizing Knuth–Bendix orders and Knuth–Bendix
completion. In: Proc. 13th International Conference on Rewriting Techniques and
Applications. LIPIcs, vol. 21, pp. 287–302 (2013). https://doi.org/10.4230/LIPIcs.
RTA.2013287

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/10721959_27
https://doi.org/10.1016/0168-0072(94)00056-9
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1016/0304-3975(94)00275-4
https://doi.org/10.1007/BF01293264
https://doi.org/10.1007/s11786-020-00474-0
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1016/S0304-3975(96)00172-7
https://doi.org/10.1016/S0304-3975(96)00172-7
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.jaist.ac.jp/project/maxcomp/
https://www.jaist.ac.jp/project/maxcomp/
https://doi.org/10.4230/LIPIcs.RTA.2013287
https://doi.org/10.4230/LIPIcs.RTA.2013287

80 T. Saito and N. Hirokawa

20. Terese: Term Rewriting Systems. Cambridge University Press (2003)
21. Termination Community: The Termination Problem Database (TPDB). https://

github.com/TermCOMP/TPDB. Accessed 12 May 2023
22. Toyama, Y.: Termination of S-expression rewriting systems: Lexicographic path

ordering for higher-order terms. In: Proc. 15th International Conference on Rewrit-
ing Techniques and Applications. LNCS, vol. 3091, pp. 40–54 (2004). https://doi.
org/10.1007/978-3-540-25979-4 3

23. Winkler, S., Moser, G.: MædMax: A Maximal Ordered Completion Tool. In:
Galmiche, D., Schulz, S., Sebastiani, R. (eds.) Proc. 9th International Joint Confer-
ence on Automated Reasoning. LNCS (LNAI), vol. 10900, pp. 472–480. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 31

24. Yamada, A.: Towards a unified method for termination. In: Proc. 16th Workshop
on Termination, pp. 248–267 (2018), the presentation slides are available at http://
wst2018.webs.upv.es/

25. Yamada, A.: Term orderings for non-reachability of (conditional) rewriting. In:
Proc. 11th International Joint Conference on Automated Reasoning. LNCS, vol.
13385, pp. 248–267 (2022). https://doi.org/10.1007/978-3-031-10769-6 15

26. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya Termination Tool. In: Proc. Joint
25th International Conference on Rewriting Techniques and Applications and 12th
International Conference on Typed Lambda Calculi and Applications. vol. 8560,
pp. 466–475 (2014). https://doi.org/10.1007/978-3-319-08918-8 32

27. Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving.
Sci. Comput. Program. 111, 110–134 (2015). https://doi.org/10.1016/j.scico.2014.
07.009

28. Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. J. Autom. Reason.
43, 173–201 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://doi.org/10.1007/978-3-540-25979-4_3
https://doi.org/10.1007/978-3-540-25979-4_3
https://doi.org/10.1007/978-3-319-94205-6_31
http://wst2018.webs.upv.es/
http://wst2018.webs.upv.es/
https://doi.org/10.1007/978-3-031-10769-6_15
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1016/j.scico.2014.07.009
https://doi.org/10.1016/j.scico.2014.07.009
http://creativecommons.org/licenses/by/4.0/

KBO Constraint Solving Revisited

Yasmine Briefs1,2(B) , Hendrik Leidinger1,2 , and Christoph Weidenbach1

1 Max Planck Institute for Informatics, Saarbrücken, Germany
{ybriefs,hleiding,weidenbach}@mpi-inf.mpg.de

2 Graduate School of Computer Science,
Saarland Informatics Campus, Saarbrücken, Germany

Abstract. KBO constraint solving is very well-known to be an NP-
complete problem. Motivated by the needs of the family of SCL calculi,
we consider the particular case where all terms occurring in a constraint
are bound by a (single) ground term. We show that this problem and
variants of this problem remain NP-complete even if the form of atoms in
the constraint is further restricted. In addition, for a non-strict, partial
term ordering solely based on symbol counting constraint solving remains
NP-complete. Nevertheless, we provide a new simple algorithm testing
KBO constraint solvability that performs well on benchmark examples.

Keywords: KBO Constraint Solving · NP-complete problem · Weight
Ordering Constraint Solving

1 Introduction

The family of SCL calculi (Clause Learning from Simple Models) [2,5,13] per-
form reasoning on a set of first-order clauses. They develop a trail of ground
literals with respect to a ground term (atom) bound β and an ordering ≺. All
ground literals on the trail are ≺ (or �) smaller than the ground term (atom)
β and ≺ should in particular have the property that for any term t there are
only finitely many literals s such that s ≺ t. In case SCL does not detect a con-
flict with respect to a finite, exhaustive trail of ground literals, they constitute
a model candidate for the clause set [4]. If SCL detects a conflict it learns a
new first-order non-ground clause. It is derived by resolution and factoring with
guidance from the trail. A natural choice for the ordering ≺ is the Knuth-Bendix
(KBO) ordering [9]. For the ground case, a KBO relation can be efficiently com-
puted [14]. All SCL calculi propagate literals from clauses with respect to the
trail. For example, given a trail [P (a)] and a clause ¬P (x) ∨ R(x, y) the lit-
eral R(a, y) could be propagated. The SCL theory only enables ground literals
on the trail, however, in practice it is not affordable to put all groundings of
R(a, y) on the trail that are ≺ smaller than β. Therefore, we already considered
trail literals with variables when we developed a two-watched literal scheme for
SCL [3]. Recall that this propagation situation is not exceptional as typically
not all literals in a clause carry all occurring variables. The consequence of this
c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 81–98, 2023.
https://doi.org/10.1007/978-3-031-43369-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_5&domain=pdf
http://orcid.org/0009-0007-9917-7517
http://orcid.org/0000-0003-2634-4154
http://orcid.org/0000-0001-6002-0458
https://doi.org/10.1007/978-3-031-43369-6_5

82 Y. Briefs et al.

extension is that for SCL we now need to decide solvability of conjunctions of
inequations ti ≺ β where the ti may contain (shared) variables, i.e., we have to
decide solvability of a particular form of KBO constraints if ≺ is the KBO.

For the SCL(EQ) calculus [13] the requirements on constraint solving get
more sophisticated. Now the trail is a sequence of unit (in)equalities and propa-
gation and conflicting clauses are decided with respect to the resulting congru-
ence. For an extended congruence closure algorithm [6,8,15,16] we need now in
addition to inequations ti ≺ β to consider inequalities ti �= si in order to separate
congruence classes. In its simplest form, constraints consist of inequations ti ≺ β
and inequalities ti �= si where β and the si are ground, so called simple right-
ground constraints, Definition 4. In a more general setting, the si carry variables
and then a quantifier alternation on variables occurring in si but not in ti needs
to be considered. Such constraints are called alternating, Definition 27.

In this paper we investigate the complexity of all these variants with respect
to a KBO <, Definitions 3, 4, 25, 27, but also a weaker non-strict ordering based
on pure symbol counting, Definition 22. Except for constraints bound by a single
ground term, Proposition 26, all problems are NP-hard, Propositions 5, 21, 24,
28.

Korovin and Voronkov developed a decision procedure [10] for KBO con-
straints consisting of inequations sj < tj only and refined it to an NP algo-
rithm [11]. According to Löchner [14], these results are “of more theoretical inter-
est” because they are “too involved to be implemented with reasonable effort”. In
fact, to the best of our knowledge we present the first implemented algorithm for
KBO constraint solving in this paper. Later, Korovin and Voronkov [12] showed
that checking satisfiability of a KBO constraint consisting of a single inequation
s < t can be done in polynomial time. For the special case of a right-ground con-
straint consisting of a single inequation s < t, what their algorithm essentially
does is assigning the minimal constant to every variable.

To the best of our knowledge the problem of simple right-ground KBO con-
straints has never been studied before. We are also not aware of any implemen-
tation of a KBO constraint solving algorithm. The paper is now organized as
follows: In Sect. 3 we prove the NP-completeness of this problem and present
an algorithm to solve it. In Sect. 4 we study the complexity of variants of this
problem including alternating constraints. We also consider a non-strict, partial
ordering based on symbol counting and weaker than a KBO. The algorithm for
right-ground constraints is extended to alternating constraints. In Sect. 5 we put
the algorithm developed in Sects. 3 and 4 to practice and end the paper with a
discussion of the obtained results, Sect. 6.

2 Preliminaries

In the following let Σ be a signature, i.e., a finite set of function symbols. Every
function symbol f has an associated arity which we denote by arity(f). Function
symbols c with arity(c) = 0 are called constants. We denote the set of all terms
by T (Σ,X) where X is an infinite set of variables. Vars(t) denotes the set of

KBO Constraint Solving Revisited 83

variables occurring in the term t. A term t is called ground if it contains no
variables, i.e., Vars(t) = ∅. The set of all ground terms is denoted by T (Σ).
We assume that Σ contains at least one non-constant function and at least one
constant, i.e., that T (Σ) is infinite. For otherwise, constraint solving becomes
trivial. A substitution is a mapping σ : X → T (Σ,X) such that σ(x) �= x for
only finitely many x ∈ X . The application tσ of a substitution σ to a term
t ∈ T (Σ,X) is defined in the usual way. We call a substitution grounding for
some term t ∈ T (Σ,X) if tσ is ground. A substitution σ is a matcher from s
to t if sσ = t. We consider the following version of the Knuth-Bendix ordering
(KBO) on ground terms:

Definition 1 (KBO on Ground Terms [9]). Let 	 be a strict total ordering
(a precedence) on Σ, and w : Σ → N

+ a weight function. w is extended to terms
recursively by w(f(t1, . . . , tn)) = w(f)+

∑n
i=1 w(ti). The Knuth-Bendix ordering

>KBO induced by 	 and w is defined by s >KBO t iff

1. w(s) > w(t), or
2. w(s) = w(t), and

(a) s = f(s1, . . . , sm), t = g(t1, . . . , tn) and f 	 g, or
(b) s = f(s1, . . . , sm), t = f(t1, . . . , tm) and (s1, . . . , sm) >lex

KBO (t1, . . . , tm).

In particular, the precedence is strict and total, no unary function f with
w(f) = 0 is allowed and all weights are natural numbers. It can be shown
that >KBO is a strict, total and well-founded ordering on ground terms. In the
following, we simply write > for >KBO.

Definition 2. A KBO constraint C is a finite set of atoms t#s where t, s ∈
T (Σ,X) and # ∈ {<,>, �=,≤,≥,=}. We say that C = {t1#1s1, . . . , tn#nsn} is
satisfiable if there exists a substitution σ that is grounding for all tj , sj such that

n∧

j=1

tjσ #j sjσ.

Such a grounding substitution σ is called a solution.

Definition 3. A right-ground KBO constraint C is a KBO constraint where
s1, . . . , sn ∈ T (Σ), i.e., only the tj may contain variables.

Definition 4. A simple right-ground KBO constraint C is a right-ground KBO
constraint where # ∈ {<, �=}.

For simple right-ground KBO constraints, we prefer more explicit notation:
We now assume t1, . . . , tn, l1, . . . , lm ∈ T (Σ,X), s1, . . . , sn, r1, . . . , rm ∈ T (Σ)
and call C satisfiable if there exists a substitution σ that is grounding for all
tj , lj such that

⎛

⎝
n∧

j=1

tjσ < sj

⎞

⎠ ∧
⎛

⎝
m∧

j=1

ljσ �= rj

⎞

⎠ .

84 Y. Briefs et al.

3 Simple, Right-Ground KBO Constraints

We start by investigating the complexity of simple, right-ground KBO constraint
solving.

Proposition 5. Checking satisfiability for simple right-ground KBO constraints
is NP-hard.

Proof. We reduce from MONOTONE 3SAT which is NP-complete by [7]. Let
N M be a set of clauses where N consists of the clauses with only positive
literals and M consists of the clauses with only negative literals. We consider a
signature with a constant a, a ternary function f and a unary function g. We use
a KBO instance where all weights are 1 and f 	 g 	 a. For every propositional
variable P occurring in N M , we introduce a variable xP . Then the equation
xP = a stands for P is true and xP �= a stands for P is false.

Now every positive clause (P ∨ Q ∨ R) ∈ N is encoded as an inequation
f(xP , xQ, xR) < f(g(a), g(a), g(a)). Obviously, this inequation can only be sat-
isfied by a grounding that maps at least one of these variables to a, i.e., that
sets at least one of P,Q,R to true.

Every negative clause (¬P ∨ ¬Q ∨ ¬R) ∈ M is encoded as an inequality
f(xP , xQ, xR) �= f(a, a, a). Obviously, this can only be satisfied if not all of these
variables are mapped to a, i.e., if at least one of P,Q,R is false.

Now the clause set has a solution iff there is a solution to the constructed
simple right-ground KBO constraint. Assume N M is satisfiable by a valuation
β. Then for every propositional variable P map xP to a if β(P) = 1 and to g(a)
otherwise. As explained above, this grounding will satisfy the constraint. Now
let σ be a solution to the constraint. Then the valuation β where β(P) = 1 if
σ(xP) = a and β(P) = 0 otherwise satisfies N M .

We have added |M | inequalities and |N | inequations which can be constructed
in polynomial time, so the reduction works in polynomial time. ��
Proposition 6. Checking satisfiability for simple right-ground KBO constraints
is in NP.

Proof. Let C = {t1 < s1, . . . , tn < sn, l1 �= r1, . . . , lm �= rm} be a constraint.
If for some inequality lj �= rj , there is no matcher from lj to rj , we can ignore
this inequality since it is true for every grounding. If for some inequality lj �= rj ,
it actually holds that lj = rj , then this inequality is impossible to satisfy, so
we are done. After sorting out these two cases, as rj is ground, every inequality
lj �= rj has a unique matcher τj which has linear size with respect to rj . In the
following, we say that the term τj(x) is restricted by the inequality lj �= rj . The
inequality lj �= rj then signifies

∨

x∈Vars(lj)

σ(x) �= τj(x).

For the inequations tj < sj , it is obviously optimal to assign the smallest
possible term to every variable. Larger terms only have to be considered due to

KBO Constraint Solving Revisited 85

the inequalities lj �= rj . If there is a grounding σ that satisfies tj < sj , then any
grounding σ′ with σ′(x) ≤ σ(x) for all variables x satisfies tj < sj . Hence, if
there exists a solution, then there also exists a solution that only uses the m+1
smallest terms for every variable. This is because every inequality lj �= rj only
restricts at most one term for every variable, so for every variable the m + 1
smallest terms contain the smallest term that is not restricted for that variable.

As we only have to consider the m+ 1 smallest terms for every variable, the
size of the groundings we have to consider is polynomially bounded by the input
size. Let f be the function with the maximal arity and let p = arity(f). Let a
be the smallest constant. We claim that every of the m + 1 smallest terms has
at most mp + 1 symbols. Proof by contradiction: Assume t0 is one of the m + 1
smallest terms with #t0 > mp + 1. Perform the following m times: Obtain ti+1

by replacing any subterm g(s1, . . . , sn), where the si are constants, by a. The
number of symbols decreases by at most p, so #ti > (m− i)p+1. As none of the
ti is a constant, such a subterm always exists. After m steps, we obtain terms
t0 > t1 > · · · > tm with #tm > (m − m)p + 1 = 1, i.e., tm is not a constant, so
tm > a. This contradicts the fact that t0 was one of the m + 1 smallest terms
since at least m + 1 terms are smaller than t0. Thus, we can guess a grounding
and check in polynomial time whether it is a solution. ��

Next we propose an algorithm for testing satisfiability of simple right-ground
KBO constraints. Of course, by Proposition 6, there already exists an algorithm,
but we expect that the following algorithm performs better in practice. Let C
be a simple right-ground KBO constraint with n inequations tj < sj and m
inequalities lj �= rj .

Assume that Vars ({tj | 1 ≤ j ≤ n} ∪ {lj | 1 ≤ j ≤ m}) = {x1, . . . , xk}. As
explained in the proof of Proposition 6, we only have to consider the m + 1
smallest terms for the grounding, so to begin, we generate an ordered list S of
the m+1 smallest terms. This way, a grounding substitution σ corresponds to a
vector �v ∈ N

k where vi < m+1 is the index of the term σ(xi) in S, i.e., S[vi] =
σ(xi). Let σ(�v) with σ(�v)(xi) := S[vi] denote the grounding corresponding to the
vector �v. Later on, we give a dynamic programming algorithm to compute the
k smallest terms for some number k. Actually, we do not directly generate the
m + 1 smallest terms, but start with a constant number of terms and generate
more terms as needed.

The algorithm is given by three inference rules that are represented by an
abstract rewrite system. They operate on a state which is either ⊥ or a four-tuple
(T ;�v;F ;C) where T is a sequence of variables, the trace; �v ∈ N

k is a grounding
substitution in vector notation, the current grounding ; F is a set of forbidden
groundings; and C is a simple right-ground KBO constraint. The initial state
for a constraint C is (ε; (0, . . . , 0); ∅;C), i.e., the trace is empty, every variable is
mapped to the smallest constant and there are no forbidden groundings.

We use the following partial ordering ≤F on groundings: �v ≤F �u iff for all
i ∈ {1, . . . , k} we have vi ≤ ui. By inc(�v, i) we denote the grounding �v′ with
v′
i = vi +1 and v′

l = vl for all l ∈ {1, . . . , k} with l �= i, i.e., the grounding where
we increase the term for the variable xi by one. Analogously, we define dec(�v, i),

86 Y. Briefs et al.

where we instead decrease the term for the variable xi by one, i.e., v′
i = vi − 1.

The two operations inc and dec are only used when they are well-defined, i.e.,
they yield a grounding �v ∈ N

k where vi < m+1. The operation inc is only used
when an inequality lj �= rj is not satisfied, and this can happen at most m times
without intermediate Backtrack steps. The operation dec(�v, i) is only used for
Backtrack, and by Lemma 15, in this case vi > 0.

The role of F is that we want to keep the algorithm from considering wrong
groundings again. For all �u ∈ F , we do not visit states with grounding �v if
�v ≥F �u. When we Backtrack, we insert the current grounding into F . The trace
T records the last updated variables so Backtrack is able to undo the last Increase
operation. As will be proven in Theorem 18, the algorithm terminates in ⊥ iff
there exists no solution, and if there exists a solution, then it terminates in a
state where the current grounding �v is a solution.

Increase (T ;�v;F ;C) ⇒KCS (Txi;�v′;F ;C)

provided �v′ = inc(�v, i), ljσ(�v) = rj for some lj �= rj ∈ C, ljσ(�v′) �= rj and there

is no �u ∈ F with �v′ ≥F �u

Backtrack (Txi;�v;F ;C) ⇒KCS (T ;�v′;F ∪ {�v};C)

provided �v′ = dec(�v, i) and either

1. ljσ(�v) = rj for some lj �= rj ∈ C, but for all l ∈ {1, . . . , k}, we have that
ljσ(inc(�v, l)) �= rj implies that there is a �u ∈ F with inc(�v, l) ≥F �u, or

2. tjσ(�v) ≥ sj for some tj < sj ∈ C

Fail (ε;�v;F ;C) ⇒KCS ⊥

provided either

1. ljσ(�v) = rj for some lj �= rj ∈ C, but for all l ∈ {1, . . . , k}, we have that
ljσ(inc(�v, l)) �= rj implies that there is a �u ∈ F with inc(�v, l) ≥F �u, or

2. tjσ(�v) ≥ sj for some tj < sj ∈ C

Informally, Increase is applicable if some inequality lj �= rj is not fulfilled and
we can fix this with the new grounding inc(�v, i) which is not forbidden by F .
Backtrack undoes an operation and is applicable if either some inequality lj �= rj
is not fulfilled, but Increase is not applicable, or if some inequation tj < sj is not
fulfilled. Fail is applicable if Backtrack would be applicable on an empty trace,
i.e., there is no operation to undo.

Obviously, there is no state on which we can apply both Backtrack and Fail.

Definition 7. A reasonable strategy is a strategy that prefers Backtrack and Fail
over Increase.

KBO Constraint Solving Revisited 87

Example 8. Consider a signature with constants a, b, c and a binary function f .
We set w(a) = 1;w(b) = w(c) = 2;w(f) = 3 and a ≺ b ≺ c ≺ f . We consider the
constraint

C = {x1 �= a, f(x1, x2) < f(a, c)}.

The m+1 smallest terms, where m = 1, are a, b. This is the unique execution
of the algorithm. In order to increase readability, for �v, we write the terms instead
of the indices.

(ε; (a, a); ∅;C)

⇒Increase
KCS (x1; (b, a); ∅;C)

⇒Backtrack
KCS (ε; (a, a); {(b, a)};C)

⇒Fail
KCS ⊥

The algorithm terminates in ⊥, so there is no solution.

Example 9. Consider a signature with constants a, b, a binary function g and a
ternary function f . Let w(a) = 1, w(b) = w(f) = w(g) = 2 and a ≺ b ≺ g ≺ f .
The constraint is

C = {x1 < b, g(x2, a) < g(b, b), f(x1, x2, x3) �= f(a, a, a), g(x1, x2) �= g(a, b)}.

The m + 1 smallest terms, where m = 2, are a, b, g(a, a).

(ε; (a, a, a); ∅;C)

⇒Increase
KCS (x1; (b, a, a); ∅;C)

⇒Backtrack
KCS (ε; (a, a, a); {(b, a, a)};C)

⇒Increase
KCS (x2; (a, b, a); {(b, a, a)};C)

⇒Increase
KCS (x2x2; (a, g(a, a), a); {(b, a, a)};C)

⇒Backtrack
KCS (x2; (a, b, a); {(b, a, a), (a, g(a, a), a)};C)

⇒Backtrack
KCS (ε; (a, a, a); {(b, a, a), (a, g(a, a), a), (a, b, a)};C)

⇒Increase
KCS (x3; (a, a, b); {(b, a, a), (a, g(a, a), a), (a, b, a)};C)

The algorithm has found a solution, so no rule is applicable and it terminates.
Note that after the third and fifth operation, we cannot increase x1 because
(b, b, a) ≥F (b, a, a) ∈ F .

Next we prove the correctness of the algorithm.

Lemma 10. If (ε; (0, . . . , 0); ∅;C) ⇒l
KCS (T ;�v′;F ;C), then there is no �u ∈ F

with �v′ ≥F �u.

88 Y. Briefs et al.

Proof. We prove this by induction on l. For l = 0, this holds since F = ∅. For
l > 0, the last applied rule must have been either Increase or Backtrack. If the
last applied rule was Increase, then there cannot be such a �u because Increase
does not modify F and because this is part of the condition of the Increase
rule. Now assume the last applied rule was Backtrack, so the previous state was
(Txi;�v;F ′;C) with �v′ = dec(�v, i) and F = F ′ ∪ {�v}. If there was some �u in F
such that �v′ ≥F �u, then, since �v′ <F �v, we have �v >F �u. Hence, by the induction
hypothesis, �u /∈ F ′, so as F = F ′ ∪ {�v}, it must hold that �u = �v, contradiction
to �v >F �u. ��
Lemma 11. If (ε; (0, . . . , 0); ∅;C) ⇒i

KCS (T ; �u;F ;C) ⇒l
KCS (T ′; �u′;F ′;C) for

l > 0, then �u �= �u′ or F �= F ′.

Proof. If all l rule applications are applications of the Increase rule, then clearly
�u <F �u′, so in particular, �u �= �u′. There is no rule that removes elements from
F , so F ⊆ F ′. If there is at least one application of the Backtrack rule among
the l rule applications, the current assignment �v is added to F , and by Lemma
10, �v /∈ F , so F is modified and F �= F ′. ��
Proposition 12. ⇒KCS is well-founded, i.e., the algorithm always terminates.

Proof. By Lemma 11, we can reach every combination of �v and F at most once.
For �v, there are (m + 1)k possibilities. We only add occurring groundings to F ,
so the number of possibilities for F is upper bounded by the number of subsets
of all possible groundings which is 2(m+1)k . Thus, the number of reached states
is finite (it is at most (m + 1)k2(m+1)k), so the algorithm terminates. ��

Of course, the upper bounds in the proof of Proposition 12 are far too high
and the algorithm will run much faster in practice.

Lemma 13. If (ε; (0, . . . , 0); ∅;C) ⇒l
KCS (T ;�v;F ;C) and �u ∈ F , then for all

�u′ ≥F �u it holds that �u′ cannot be a solution.

Proof. The proof is by induction on l. For l = 0, we have F = ∅, so this holds. For
l > 0, if the last applied rule was Increase, the statement follows by the induction
hypothesis since F is not modified. Now assume that the last applied rule was
Backtrack. Let (T ′;�v′;F ′;C) be the previous state. We only have to show that all
�u′ ≥F �v′ cannot be solutions, for all other elements of F = F ′ ∪{�v′}, this follows
by the induction hypothesis. First assume that Backtrack is applicable because
of condition (1). Then �v′ cannot be a solution since ljσ(�v′) = rj . For �u′ >F �v′, if
ljσ(�u′) = rj , then �u′ clearly cannot be a solution. Otherwise, there is a variable
xi such that �u′ ≥F inc(�v′, i) and ljσ(inc(�v′, i)) �= rj . However, it is part of
condition (1) that then, there is an element �u′′ ∈ F ′ with �u′′ ≤F inc(�v′, i) ≤F �u′,
so by the induction hypothesis, �u′ cannot be a solution. If Backtrack is applicable
because of condition (2), then tiσ(�v′) ≥ si for some i ∈ {1, . . . , n}. Clearly, if
�u′ ≥F �v′, then also tiσ(�u′) ≥ si, so �u′ cannot be a solution. ��

KBO Constraint Solving Revisited 89

Corollary 14. If (ε; (0, . . . , 0); ∅;C) ⇒l
KCS (T ;�v;F ;C) and condition (1) or

condition (2) of Fail is fulfilled for (T ;�v;F), then for all �u ≥F �v, �u cannot be a
solution.

Proof. The conditions for Fail are the same as the conditions for Backtrack, so
this follows by the proof of Lemma 13. ��
Lemma 15. If (ε; (0, . . . , 0); ∅;C) ⇒l

KCS (T ;�v;F ;C), then for all i ∈ {1, . . . , k}
the number of occurrences of xi on the trace T equals vi.

Proof. In the following, we denote the number of occurrences of xi in T by
C(T, xi). The proof is by induction on l. If l = 0, the statement trivially holds.
For l > 0 let (T ′;�v′;F ′;C) be the previous state. If the last applied rule was
Increase, then T = T ′xi and �v = inc(�v′, i), so

C(T, xi) = C(T ′, xi) + 1 IH= v′
i + 1 = vi.

For j �= i, C(T, xj) = C(T ′, xj) and vj = v′
j , so the statement follows by the

induction hypothesis. If the last applied rule was Backtrack, then T ′ = Txi and
�v = dec(�v′, i), so

C(T, xi) = C(T ′, xi) − 1 IH= v′
i − 1 = vi.

Again, for j �= i, C(T, xj) = C(T ′, xj) and vj = v′
j , so the statement follows by

the induction hypothesis. ��
Lemma 16. If (ε; (0, . . . , 0); ∅;C) ⇒l

KCS (T ;�v;F ;C) ⇒Fail
KCS ⊥, then there exists

no solution.

Proof. Since Fail is applicable on (T ;�v;F ;C), T = ε, so by Lemma 15, �v =
(0, . . . , 0). Hence, by Corollary 14, for all �u ≥F (0, . . . , 0), �u cannot be a solution,
so there exists no solution. ��
Lemma 17. If (ε; (0, . . . , 0); ∅;C) ⇒l

KCS (T ;�v;F ;C) and no rule is applicable
on (T ;�v;F ;C) then �v is a solution.

Proof. Assume that for some j ∈ {1, . . . , n}, we had tjσ(�v) ≥ sj . Then, either
Backtrack or Fail would be applicable. Now assume that for some j ∈ {1, . . . , m},
we had ljσ(�v) = rj . Then, either Increase or Backtrack would be applicable. ��
Theorem 18. The algorithm is correct: If there exists a solution, then starting
from (ε; (0, . . . , 0); ∅;C), the algorithm terminates in a state (T ;�v;F ;C) where
�v is a solution. If there is no solution, the algorithm terminates in ⊥.

Proof. Follows by Proposition 12, Lemma 16 and Lemma 17. ��
We have implemented the above algorithm in the context of the SPASS

reasoning workbench. The efficiency of the algorithm depends on the respective
variables we choose for Increase. If there exists a solution, then there exists an
execution using only the rule Increase. The following criteria might be useful to
select the best variable for Increase:

90 Y. Briefs et al.

– We prefer variables that do not occur in “critical” inequations, or in a min-
imal number of inequations. A “critical” inequation is one where the weight
difference is 0 or close to 0.

– We prefer variables xi for which the next term is not restricted by any inequal-
ity lj �= rj .

– We prefer variables xi for which the next term does not have a larger weight,
or for which the increase in weight is minimal.

– We prefer variables that fix multiple inequalities lj �= rj instead of just one.

It is possible to calculate and maintain some score for every variable here and
decide based on this score. The exact selection criteria still need to be further
explored.

A remaining problem from the presentation of the algorithm is how to com-
pute the k smallest terms. If the occurring weights are rather small, the following
dynamic programming algorithm might be useful in practice. The idea is to com-
pute all terms of a specific weight for increasing weights until we generated at
least k terms. Unfortunately, there may be exponentially many terms of a spe-
cific weight where the exponent is the maximal arity of a function and the base
is the number of terms of smaller weights. However, k is bounded above by the
number of inequalities m, the number of terms with smaller weights is bounded
above by k and the maximal arity is probably small, so it is to be expected that
this is not a big problem.

As it is probably hard to find the next possible weight, we simply always
increase the weight by 1 starting by the weight of the smallest constant. Our
DP array is two-dimensional, one dimension having the weight and the other
dimension having the size of the tuple from 1 to max_arity. Actually, it is four-
dimensional since every entry is a list of tuples of terms and every tuple is a list
of its entries. A tuple of size 1 is just a term of the specific weight. The tuples
of larger size are needed for the DP transitions where they serve as argument
tuples for the functions. We maintain an array smallest_terms that will in the
end contain the at least k smallest terms.

We iterate over the weights starting at the weight of the minimal constant.
Let curweight denote the current weight. The idea is to compute all terms of
weight curweight, sort them, add them to smallest_terms, and proceed with
weight curweight + 1 if |smallest_terms| is still smaller than k. To do so, if
curweight is not the smallest weight, we first compute the tuples of size 2 to
max_arity for the previous weight. This is done via DP: For tuple size i we iterate
over the terms s ∈ smallest_terms. Then we iterate over the tuples t of size i−1
and weight curweight−1−w(s) using the DP array and add (s, t) to the current
DP entry. Afterwards, we calculate all terms of weight curweight by iterating
over all symbols f and all tuples t of size arity(f) and weight curweight − w(f)
using the DP array. Then, the term f(t) has weight curweight.

We finish this section by a discussion of potential heuristics, sufficient condi-
tions for a simple right-ground KBO constraint to have a solution. As explained
before, every inequality lj �= rj rules out any assignment that satisfies τj , the
matcher from lj to rj . Now assume we have m inequalities and know that there

KBO Constraint Solving Revisited 91

are more than m solutions for the inequation t < s, then one might think that
there is a grounding that solves all inequalities lj �= rj and the inequation t < s.
However, this is not true.

Example 19. Consider a signature with constants a, b and c and a binary function
f . The weights are w(a) = 1;w(b) = w(c) = 2;w(f) = 3 and we use a ≺ b ≺ c ≺
f as a precedence. Now consider the constraint

C = {x �= a, f(x, y) < f(a, c)}.

The inequation has two solutions, namely {x �→ a, y �→ a} and {x �→ a, y �→ b}.
However, it has no solution where x is not mapped to a, so for the overall
problem, there is no solution.

So the above sufficient condition needs to refined in order to be correct.
However, calculating the number of solutions is again NP-hard.

Proposition 20. Calculating the number of solutions σ for some right-ground
inequation t < s is NP-hard.

Proof. We reduce from the Unbounded Subset Sum Problem (USSP) which is
NP-complete by [7]. Let s1, . . . , sn, T ∈ N

+. We have to find out whether there
are x1, . . . , xn ∈ N such that

∑n
i=1 xisi = T , i.e., whether there is a multiset of

values from {s1, . . . , sn} that sums up to T . Assume we had an oracle that could
compute the number of solutions for any inequation l < r where r is ground. We
will use this oracle twice.

For both uses, we use a signature with constants c and d and unary functions
f1, . . . , fn. We have w(c) = 1, w(fi) = si for i ∈ {1, . . . , n} and d ≺ c ≺ f1 ≺
· · · ≺ fn. For the first case, set w(d) = T+2. Using the oracle with the inequation
x < d, we get the number of terms smaller than d. Since d is the smallest term
of weight T + 2, this is exactly the number of terms with weight ≤ T + 1. For
the second case, set w(d) = T + 1. Again, using the oracle with the inequation
x < d, we get the number of terms smaller than d. This time, this is the number
of terms with weight ≤ T . If we now subtract those values, we get the number
of terms with weight exactly T + 1.

Now the USSP has a solution iff the number of terms with weight exactly
T +1 is not 0. Every term t of weight T +1 must have the constant c as subterm
since the weight of d is too large. The rest of t must consist of the unary functions.
Hence, the weights of the unary functions used sum up to T + 1 − 1 = T . Since
the weights of the unary functions correspond to the numbers from the USSP,
this yields a solution for the USSP. Conversely, given a solution to the USSP, we
can construct a term of weight T + 1 analogously. ��

The problem with the aforementioned insufficient condition is that an
inequality lj �= rj does not necessarily rule out only one grounding, but pos-
sibly infinitely many groundings. This happens if there are variables that are
not restricted by the matcher τj of lj and rj . However, the criterion can be
refined to a correct sufficient condition. If we restrict ourselves to the m + 1

92 Y. Briefs et al.

smallest terms again, we would again at least have a finite number of ground-
ings that lj �= rj rules out. If we now sum up these numbers over all inequalities,
we have an upper bound on the total number of ruled out groundings. For the
inequation t < s, the same problem with variables that do not occur arises (there
may be infinitely many solutions), so here, we restrict ourselves to the m + 1
smallest terms again. If now, the number of solutions for t < s is larger than the
upper bound on the total number of ruled out groundings, we can actually be
sure that there is a solution. However, this correct sufficient condition is hard to
compute and therefore seems to be not very useful in practice.

4 Further Constraint Variants and Ordering Relaxation

In this section we study further variants of constraint problems and eventually
extend the algorithm of Sect. 3 to alternating KBO constraints.

Proposition 21. Checking satisfiability for right-ground KBO constraints
restricted to strict inequations is NP-hard.

Proof. The proof strategy is the same as the one used in the proof of Proposition
5. The encoding for positive clauses stays the same as < is still allowed. For
negative clauses ¬P ∨ ¬Q ∨ ¬R we encode them as f(xP , xQ, xR) > f(a, a, a).
This inequation can only be satisfied by a grounding that does not map all of
these variables to a, and is trivially satisfied by any such grounding. ��

In particular, we have seen that only having constraints of the form ti < si
and ti > si suffices to make the problem NP-hard. Next we turn to a weaker term
ordering ≤sym solely based on symbol counting. Even for this ordering constraint
solving remains NP-hard.

Definition 22. For ground terms t, s ∈ T (Σ), we define t ≤sym s : ⇐⇒
|sym(t)| ≤ |sym(s)|, i.e., t does not contain more symbols than s.

Definition 23. A right-ground symbol constraint C is a finite set of atoms t#s
with t ∈ T (Σ,X), s ∈ T (Σ) and # ∈ {≤sym, �=}. Satisfiability is defined analo-
gously to the satisfiability of KBO constraints.

Proposition 24. Checking satisfiability for right-ground symbol constraints is
NP-hard.

Proof. The proof strategy is the same as the one used in the proof of Proposition
5. We encode positive clauses P ∨Q∨R as f(xP , xQ, xR) ≤ f(g(a), g(a), a). The
only way to satisfy this inequation is to map at least one of these variables to a.
Negative clauses ¬P ∨ ¬Q ∨ ¬R are encoded as f(xP , xQ, xR) �= f(a, a, a). ��

In particular, the NP-hardness of these problems is not caused by the com-
plicated structure of the KBO since the problem is already NP-hard for a com-
parison as simple as counting the number of symbols.

KBO Constraint Solving Revisited 93

Our next variants are motivated by the definition of congruence classes with
respect to terms with variables. For the first variant, all instances of the defining
term t have to be smaller than a single ground term β and different from ground
terms s1, . . . , sn.

Definition 25. A simple, single ground KBO constraint C consists of terms
t ∈ T (Σ,X) and s1, . . . , sn, β ∈ T (Σ). We say that C is satisfiable if there exists
a substitution σ that is grounding for t such that

⎛

⎝
n∧

j=1

tσ �= sj

⎞

⎠ ∧ tσ < β.

Proposition 26. Assuming that we are given the n+1 smallest terms, checking
satisfiability of simple, single right-ground KBO constraints is in P.

Proof. Actually, for this problem, if a reasonable strategy (Definition 7) is used,
the algorithm from Sect. 3 runs in polynomial time. The key difference to the
other problems is that here, every variable occurs in every inequality, so every
inequality rules out at most one grounding. We first show that we can only reach
polynomially many states. First, consider states (T ;�v;F ;C) where tσ(�v) < β.
If �v does not violate any inequality t �= si, then the algorithm terminates, so
there is at most one such state. For every inequality t �= si, there is at most one
grounding �v that violates it. We claim that we reach at most k + 1 states with
current grounding �v where k is the number of variables. �v is reached at most
once using Increase because otherwise, there must be an intermediate Backtrack,
so �v would be inserted into F . If we reach �v using Backtrack for some variable
xi, then inc(�v, i) was inserted into F , so for every variable xi, we can reach �v
using Backtrack at most once. Hence, �v is reached at most k + 1 times.

Now, consider states (T ;�v;F ;C) where tσ(�v) ≥ β. Since a reasonable strategy
is used, we must have reached this state from a state that does not violate t < β,
so by the argumentation before, at most k such states can be reached for every
inequality, so at most n · k in total where n is the number of inequalities.

Hence, in total, there are at most (k + 1) · n + n · k + 1 states. The state
transitions can be done in polynomial time because we only need to iterate over
all inequalities and inequations and over all entries in F . Since there are only
polynomially many states and every rule application inserts at most one element
into F , F has polynomially many entries. ��
Definition 27 (Alternating KBO Constraint). An alternating KBO con-
straint C consists of terms t, s1, . . . , sn ∈ T (Σ,X) and β ∈ T (Σ). We say that
C is satisfiable if there exists a substitution σ that is grounding for t such that
for all substitutions τ that are grounding for all sj we have

⎛

⎝
n∧

j=1

tσ �= sjτ

⎞

⎠ ∧ tσ < β.

94 Y. Briefs et al.

Proposition 28. Checking satisfiability for alternating KBO constraints is NP-
hard.

Proof. We reduce from SAT. Let N be a set of clauses and X1, . . . , Xk be the
variables occurring in N . We use a signature with a k-ary function f , two con-
stants a and b, variables x1, . . . , xk and y1, . . . , yk. Set t = f(x1, . . . , xk). Now for
every clause Cj ∈ N we introduce an inequality f(x1, . . . , xk) �= f(sj,1, . . . , sj,k)
where we set sj,i = b if Xi occurs positively in Cj , sj,i = a if Xi occurs nega-
tively in Cj and sj,i = yi if Xi does not occur in Cj . The idea is that xi = a
stands for Xi is set to � and xi = b stands for Xi is set to ⊥. ∀τ.xiσ �= yiτ is
obviously impossible to satisfy, so the inequality must be made true by setting
some positive variable to a or some negative variable to b.

To ensure that the xi are only mapped to a or b, we do the following: We first
introduce a new constant c and set β = c. Then we set w(f) = w(a) = w(b) = 1,
w(c) = k + 2 and c ≺ a ≺ b ≺ f . If all variables xi are mapped to a or b, we
have w(tσ) = k + 1, i.e., tσ < β. Any grounding where some xi is not mapped
to a or b results in tσ ≥ β.

Now there is a solution σ iff there is a satisfying valuation for N . ��
If a reasonable strategy is used, satisfiability of alternating KBO constraints

can be checked using the algorithm from Sect. 3. Any solution σ must be such
that tσ < β, so we only have to consider instances of the sjτ with sjτ < β.
What we can now do is to calculate for all sj all groundings τ with sjτ < β
and add the inequality t �= sjτ to the constraint. There are only finitely many
such groundings because we did not allow unary functions f with w(f) = 0.
This way, we obtain a simple right-ground KBO constraint, so we can apply
the algorithm. A more efficient possibility to do this is to add the groundings of
the sj implicitly, i.e., to change the condition of Increase (and the first case of
Backtrack and Fail) to whether there exists a matcher τ such that ljσ(�v) = rjτ .
Also, the condition for the next grounding for Increase changes: It is not that
we fix the inequality anymore, but that we change a variable that occurs on the
left side of the inequality.

Example 29. Consider the signature Σ = {f (2), g(1), a(0)}, where the superscript
numbers denote the function arities, together with the following alternating KBO
constraint C:

t = f(x1, x2) s1 = f(g(y1), y2)
β = f(f(a, a), a) s2 = f(a, a)

We set w(a) = w(g) = w(f) = 1 and a ≺ g ≺ f . The few smallest terms are

a, g(a), g(g(a)), f(a, a).

Note that for alternating KBO constraints, it does not suffice anymore to con-
sider the n + 1 smallest terms only since an inequality may rule out more than

KBO Constraint Solving Revisited 95

one term for a variable. However, as mentioned in Sect. 3, we calculate the small-
est terms as needed, so this is not a problem. For shorter notation, for F , we
omit groundings �u if there is a grounding �v ∈ F with �v <F �u. A possible run of
the algorithm looks as follows:

(ε; (a, a); ∅;C)

⇒Increase
KCS (x1; (g(a), a); ∅;C) s2, τ = {}

⇒Increase
KCS (x1x1; (g(g(a)), a); ∅;C) s1, τ = {y1 �→ a, y2 �→ a}

⇒Increase
KCS (x1x1x1; (f(a, a), a); ∅;C) s1, τ = {y1 �→ g(a), y2 �→ a}

⇒Backtrack
KCS (x1x1; (g(g(a)), a); {(f(a, a), a)};C) β

⇒Backtrack
KCS (x1; (g(a), a); {(g(g(a)), a)};C) s1

⇒Backtrack
KCS (ε; (a, a); {(g(a), a)};C) s1

⇒Increase
KCS (x2; (a, g(a)); {(g(a), a)};C) s2, τ = {}

5 Experiments

We implemented the algorithm of Sect. 3 and its extension to constraints with
right hand side variables, Definition 27, and tested it in the context of an
extended congruence closure (CC) algorithm with variables [6,8,15,16]. We
implemented a rather naive variant of [8] with the only goal to generate KBO
constraints in order to test our new algorithm on KBO constraints. In contrast
to [8] our algorithm considers a finite signature, as usual for first-order logic
problems. All experiments were carried out on a Debian Linux server equipped
with AMD EPYC 7702 64-Core CPUs running at 3.35GHz and an overall mem-
ory of 2TB. The result of all runs as well as all input files and binaries can be
found at https://nextcloud.mpi-klsb.mpg.de/index.php/s/BAwd99cxFpSJmSp.

As a first test case we considered all eligible UEQ problems from CASC-
J11 [17]. We consider equations and all inequalities for the congruence closure
algorithm. The equations generate the congruence and for the inequalities we
compute the congruence classes for the respective right and left side term of the
inequality. For each example, the KBO function weight was always set to one and
the precedence is generated with respect to the occurrence of symbols in the input
file in ascending order. For β we chose a fixed nesting depth of 4 and build for each
input file a nested term of exactly this depth using function symbols in the order
of occurrence in the input, starting with a non-constant function symbol. Out
of all eligible problems our CC algorithm terminated on 186 problems within
a time limit of 30 min. Please note that although our CC implementation is
rather naive, in contrast to the classical ground CC algorithm it does not need a
complete grounding; for the examples where our naive algorithm runs out of time
a complete grounding is not affordable. The below table shows some typical runs
on the UEQ domain. All timings are presented in hundredths of a second and

https://nextcloud.mpi-klsb.mpg.de/index.php/s/BAwd99cxFpSJmSp

96 Y. Briefs et al.

if they take less than one hundredth of a second we write zero. The below table
shows the problem name, the number of ground terms smaller than β indicating
the solution space for the constraint, the summed up time of all calls to the KBO
constraint solver during the CC run, the number of calls to the KBO constraint
solver, and the results of these calls. The three selected examples are typical:
most of the problems are satisfiable and the constraint solving algorithm needs
almost no time. Note that for the first example all 8014 calls to the constraint
solver needed in sum 3 hundreds of a second. The LAT143-1 is the example
showing the worst constraint solving performance, i.e., still less than a hundreth
of a second per call.

Problem < β Time KBO Constraint Solver #calls # true # false

GRP183-3 9969 3 8014 7946 68
LAT143-1 29720 8797 31033 29554 1479
GRP409-1 103565 0 6 6 0

For the SMT-LIB examples of the UF domain [1], we expanded let operators,
removed the typing, coded predicates as equations, did a CNF transformation
and then took the first literal of each clause as input for the CC algorithm.
Nesting depth was set to 2, the rest done as for the UEQ examples. Removing
types means that the number of smaller terms increases, i.e., the problems get
potentially more difficult for the constraint solver, in particular for unsatisfiable
constraints. The below table again shows some typical results. 1112 examples
could be performed by the CC algorithm inside 30min. The UF domain contains
larger examples compared to the UEQ domain, but the characteristics remain.
Constraint solving itself takes almost no time. Again all timings are presented
in hundredths of a second.

Problem < β Time KBO Constraint Solver #calls # true # false

00336 2120806 0 131 131 0
uf.926761 138397692 0 3882 1988 1894
uf.555113 254939 134 5120 3306 1814

Here uf.555113 is the worst example on constraint solving time with 1.34 s for
5120 calls. Although alternating KBO constraint solving is NP-hard, in practice
there are typically only a few inequalities meaning that out of the overall number
of terms smaller β, only a few need to be considered.

6 Discussion

We have studied a number of specific KBO constraint solving problems moti-
vated by the SCL calculus and established their complexity. Except for simple,

KBO Constraint Solving Revisited 97

single right-ground KBO constraints all studied problems are proven NP-hard.
We propose an algorithm that eventually runs for alternating KBO constraints
which include a quantifier alternation. The algorithm shows nice performance
on benchmark problems. Our next step is to turn our naive CC implementation
with variables into a robust algorithm.

Acknowledgments. We thank our reviewers for their constructive comments that
helped us improve the paper.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). https://www.smt-lib.org/

2. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the Bernays-Schoenfinkel
fragment over bounded difference constraints by simple clause learning over the-
ories. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol.
12597, pp. 511–533. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67067-2_23

3. Bromberger, M., Gehl, T., Leutgeb, L., Weidenbach, C.: A two-watched literal
scheme for first-order logic. In: Konev, B., Schon, C., Steen, A. (eds.) Proceedings
of the Workshop on Practical Aspects of Automated Reasoning Co-located with
the 11th International Joint Conference on Automated Reasoning (FLoC/IJCAR
2022), Haifa, Israel, 11–12 August 2022. CEUR Workshop Proceedings, vol. 3201.
CEUR-WS.org (2022)

4. Bromberger, M., Schwarz, S., Weidenbach, C.: Exploring partial models with SCL.
In: Piskac, R., Voronkov, A. (eds.) Proceedings of 24th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series in
Computing, vol. 94, pp. 48–72. EasyChair (2023). https://doi.org/10.29007/8br1

5. Bromberger, M., Schwarz, S., Weidenbach, C.: SCL(FOL) revisited (2023). https://
doi.org/10.48550/ARXIV.2302.05954. https://arxiv.org/abs/2302.05954

6. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27(4), 758–771 (1980)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Mathematical Sciences Series. Freeman, New York (1979)

8. Hurd, J.: Congruence classes with logic variables. Log. J. IGPL 9(1), 53–69 (2001)
9. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,

I. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
Press (1970)

10. Korovin, K., Voronkov, A.: A decision procedure for the existential theory of term
algebras with the Knuth-Bendix ordering. In: Proceedings Fifteenth Annual IEEE
Symposium on Logic in Computer Science (Cat. No. 99CB36332), pp. 291–302.
IEEE (2000)

11. Korovin, K., Voronkov, A.: Knuth-Bendix constraint solving is NP-complete. In:
Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp.
979–992. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_79

12. Korovin, K., Voronkov, A.: Orienting rewrite rules with the Knuth-Bendix order,
vol. 183, pp. 165–186. Elsevier (2003)

https://www.smt-lib.org/
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.29007/8br1
https://doi.org/10.48550/ARXIV.2302.05954
https://doi.org/10.48550/ARXIV.2302.05954
https://arxiv.org/abs/2302.05954
https://doi.org/10.1007/3-540-48224-5_79

98 Y. Briefs et al.

13. Leidinger, H., Weidenbach, C.: SCL(EQ): SCL for first-order logic with equality. In:
Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385, pp.
228–247. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10769-6_14

14. Löchner, B.: Advances in Equational Theorem Proving-Architecture, Algorithms,
and Redundancy Avoidance. Dissertation, Fachbereich Informatik, TU Kaiser-
slautern (2005)

15. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27(2), 356–364 (1980)

16. Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)
17. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101

(2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-031-10769-6_14
http://creativecommons.org/licenses/by/4.0/

A Critical Pair Criterion
for Level-Commutation of Conditional

Term Rewriting Systems

Ryota Haga, Yuki Kagaya, and Takahito Aoto(B)

Niigata University, Niigata, Japan
{r-haga,kagaya}@nue.ie.niigata-u.ac.jp, aoto@ie.niigata-u.ac.jp

Abstract. The rewrite relation of a conditional term rewriting system
(CTRS) can be divided into a hierarchy of rewrite relations of term
rewriting systems (TRSs) by the depth of the recursive use of rewrite
relation in conditions; a CTRS is said to be level-confluent if each of
these TRSs are confluent, and level-confluence implies confluence. We
introduce level-commutation of CTRSs that extends the notion of level-
confluence, in a way similar to extending confluence to commutation, and
give a critical pair criterion for level-commutation of oriented CTRSs
with extra variables (3-CTRSs). Our result generalizes a criterion for
commutation of TRSs of (Toyama, 1987), and properly extends a crite-
rion for level-confluence of orthogonal oriented 3-CTRSs (Suzuki et al.,
1995). We also present criteria for level-confluence and commutation of
join and semi-equational 3-CTRSs that may have overlaps.

Keywords: Level-commutation · Level-confluence · Commutation ·
Confluence · Critical pair · Conditional term rewriting systems

1 Introduction

Confluence, which guarantees unique results of computations, is an important
property of term rewriting systems (TRSs). Commutativity between two TRSs
is a natural generalization of confluence in the sense that self-commutativity
coincides with confluence. It also allows to infer confluence of TRSs in a modular
way—the union of two confluent TRSs is confluent if they commute.

Conditional term rewriting systems (CTRSs) are extensions of TRSs in which
each rewrite rule can be equipped with conditions, where these conditions are
supposed to be evaluated recursively using the underlying CTRS itself. Some
type of CTRSs is known as a model of functional (and logic) programs. The
underlying logic of TRSs is the equational logic, whereas the one of CTRSs is

The parts of this research were done while the first and second authors were students
at Niigata University. Partial results of the paper have been appeared in workshops
PPL 2020, PPL 2022 and IWC 2022.
c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 99–116, 2023.
https://doi.org/10.1007/978-3-031-43369-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_6&domain=pdf
http://orcid.org/0000-0003-0027-0759
https://doi.org/10.1007/978-3-031-43369-6_6

100 R. Haga et al.

called the quasi-equational logic, constituting also an important class of systems
for reasoning on a wider class of algebras.

From the computational point of view, the rewrite relation of a CTRS can be
divided into a hierarchy of rewrite relations of TRSs by the depth of the recursive
use of rewrite relation in conditions; a CTRS is said to be level-confluent if each
of these TRSs are confluent. Suzuki et al. showed a criterion for orthogonal (i.e.
left-linear non-overlapping) oriented CTRSs to be level-confluent [14]. Level-
confluence implies confluence, and their result can be thought as a generalization
of confluence of orthogonal TRSs. More crucially, since much fewer criterion
have been obtained for CTRSs comparing to TRSs, level-confluence can be seen
as an important approach to obtain confluence proofs of CTRSs. In contrast
to TRSs, where many extensions of the orthogonality criterion for left-linear
(possibly overlapping) TRSs to have confluence have been explored (e.g., [4,8,
11,16]), similar extensions for CTRSs are not known. Similarly, several criteria
for ensuring commutation for left-linear TRSs are known (e.g., [16,19]). Again,
similar criteria for left-linear CTRSs are not known. In this paper, we give a
criterion for a class of (possibly overlapping) left-linear oriented CTRSs, under
which we prove level-commutation of such CTRSs. Our result is a generalization
of the one given for TRSs in [16] and properly extends the result of [14] mentioned
above. We also present criteria for level-confluence and commutation of left-linear
join and semi-equational CTRSs that may have overlaps.

The rest of the paper is organized as follows. In the next section, we fix
some notions and notations used in this paper, and explain two results that give
starting points of our work. In Sect. 3, we present our main theorem on level-
commutation of oriented CTRSs and its proof in detail, and explain relations
to the previous results. We then give some results on join CTRSs and semi-
equational CTRSs in Sect. 4. Section 5 concludes.

2 Preliminaries

We basically follow standard notions and notations (e.g., [3,10]). Below, we
explain some key notions and fix notations that will be used in this paper, while
omitting most of definitions of standard notions and notations.

We consider a set F of function symbols. The set of variables is denoted by
V and the set of terms over F and V is by T(F ,V). We sometimes specify a set
C ⊆ F of constructors to give the set of constructor terms T(C,V), i.e. terms over
C and V. The set of variables in a term t is denoted by V(t). A term t is linear
if each variable occurs in t at most once; t is ground if no variable occurs in t.
The size of a term t is denoted by |t|. The set of positions in a term t is denoted
by Pos(t); the root position is written as ε. The symbol at a position p ∈ Pos(t)
in a term t is written as t(p). We put PosF (t) = {p ∈ Pos(t) | t(p) ∈ F}.

If t = C[u]p for a context C, we say u is a subterm of t (at a position
p ∈ Pos(t)). The subterm of t at a position p ∈ Pos(t) is written as t|p. For
terms t = C[u]p and s, the term C[s]p is denoted by t[s]p. We speak of subterm
occurrences when we consider subterms with their respective positions; see e.g.

A Critical Pair Criterion for Level-Commutation of CTRSs 101

[15] for a precise formalization of subterm occurrences. We will use capital letters
A,B, . . . for subterm occurrences. For simplicity, a subterm occurrence A in a
term is also treated as a term A (for example, we might write V(A)). Suppose
A,B are subterm occurrences in a term t. If t = C[A]p and t = C ′[B]q with p ≤ q
(p < q) we say that B is a (proper) subterm occurrence in a subterm occurrence
A and write B ⊆ A (B ⊂ A, respectively). Overlaps on subterm occurrences will
be used to give a notion of weight on which our induction proof works.

A term rewriting system (TRS, for short) R is a set of rewrite rules, where
each rewrite rule l → r satisfies the conditions l /∈ V and V(r) ⊆ V(l). Rewrite
rules are identified modulo renaming. A TRS R is left-linear if l is linear for each
l → r ∈ R. We write s →p

R t if s|p is the redex of this rewrite step; we also write
s

A→R t to indicate the redex occurrence A of this rewrite step. The relation
→R over terms is called the rewrite relation of R, and its reflexive transitive
closure is denoted by ∗→R. A reduction is a successive sequence of rewrite steps
t0 →R t1 →R · · · →R tn, where n is the length of this reduction. When no
confusion arises, a reduction s →R · · · →R t is written as s

∗→R t for brevity,
whose length is denoted by |s ∗→R t|. We have a parallel rewrite step s −→� R t if
s = C[A1, . . . , An], t = C[B1, . . . , Bn] (n ≥ 0) for some context C and subterm
occurrences Ai, Bi such that Ai →ε

R Bi for all i = 1, . . . , n; this rewrite step is
written as s

A1,...,An−→� R t to indicate the redex occurrences A1, . . . , An.
A relation → is confluent if ∗← ◦ ∗→ ⊆ ∗→ ◦ ∗←; A TRS R is confluent if so is

its rewrite relation →R. Relations → and � commute (or, are commutative) if
∗←◦ ∗� ⊆ ∗�◦ ∗←; TRSs R and S commute if so do their rewrite relations →R and
→S . Clearly, self-commutativity equals confluence, and from a sufficient criterion
for commutativity the one for confluence naturally arises.

Let l1 → r1 and l2 → r2 be rewrite rules so that their sets of variables
are renamed to be disjoint. If a non-variable subterm l2|p of l2 satisfies l2|pσ =
l1σ for some substitution σ, we say that l1 → r1 overlaps on l2 → r2 (at p),
provided that p
= ε for the case l1 → r1 and l2 → r2 are identical. Suppose
l1 → r1 overlaps on l2 → r2 at p and σ is an mgu of l2|p and l1. Then the pair
〈l2[r1]pσ, r2σ〉 is called a critical pair (obtained from that overlap); the pair is
called outer if p = ε and is called inner if p > ε. The set of critical pairs from
overlaps of rules of R is denoted by CP(R); the set of outer (inner) critical
pairs are denoted by CPout(R) (resp. CP in(R)). Let R,S be TRSs. The set of
critical pairs obtained from overlaps of l1 → r1 ∈ R on l2 → r2 ∈ S is denoted
by CP(R,S). The sets CPout(R,S) and CP in(R,S) are defined similarly. We
are now ready to state a sufficient criterion for commutativity of TRSs.

Proposition 1 ([16]). Let R and S be left-linear TRSs. If both of the following
conditions are satisfied, then R and S commute:

1. for any 〈p, q〉 ∈ CP(R,S), p −→� S ◦ ∗←R q, and
2. for any 〈q, p〉 ∈ CP in(S,R), q −→� R p holds.

The above criterion for commutativity arises a criterion for confluence: a
left-linear TRS R is confluent if (1) for any 〈p, q〉 ∈ CPout(R), p −→� R ◦ ∗←R q,

102 R. Haga et al.

and (2) for any 〈q, p〉 ∈ CP in(R), q −→� R p holds. Note here in the condition
(1), considering 〈p, q〉 ∈ CPout(R) is sufficient, instead of considering 〈p, q〉 ∈
CP(R), because of the presence of condition (2).

A (directed) equation is an ordered pair 〈u, v〉 of terms, written as e.g. u ≈ v.
A conditional rewrite rule has the form l → r ⇐ u1 ≈ v1, . . . , uk ≈ vk where
l /∈ V; here, u1 ≈ v1, . . . , uk ≈ vk is a sequence of (directed) equations, called
the conditional part of the rule. Often, we will use a meta-variable, say c, to
denote the conditional part of the rule. Let c = u1 ≈ v1, . . . , uk ≈ vk. Then,
for any given substitution σ, we put cσ = u1σ ≈ v1σ, . . . , ukσ ≈ vkσ. Also, we
write e.g. V(l, c) to denote the set of variables occurring in l and c. We often
also treat c as a set {u1 ≈ v1, . . . , uk ≈ vk} so as to write u ≈ v ∈ c, cσ ⊆ �,
etc., whose meaning should be apparent. The empty sequence is also written as
∅, and l → r ⇐ ∅ is abbreviated as l → r.

Conditional term rewriting system (CTRS, for short) is a set of conditional
rewrite rules. In the literature, CTRSs are categorized into several types of
CTRSs according the way of interpreting the conditions of the rules used in the
definition of their rewrite steps. A rewrite step of oriented CTRS R is defined via
the following TRSs Rn (n ∈ N), which are inductively given as follows: R0 = ∅,
Rn+1 = {lσ → rσ | l → r ⇐ c ∈ R, cσ ⊆ ∗→Rn

}. A rewrite step s →R t of
CTRS R is given as s →R t iff s →Rn

t for some n. Note that m ≤ n implies
→Rm

⊆ →Rn
. The smallest n such that s →Rn

t is called the level of the rewrite
step s →R t. We also use the notation →R<n

=
⋃

i<n →Ri
. We will also write

Rn � cσ to denote cσ ⊆ ∗→Rn
. Except Sect. 4, we will only consider oriented

CTRSs in this paper, and thus let us postpone to mention about join or semi-
equational CTRSs until Sect. 4. A CTRS R is level-confluent if TRSs Rn are
confluent for all n ≥ 0. One can naturally extend the notion of level-confluence,
in the similar way extending confluence to commutation.

Definition 1 (Level-commutation). CTRSs R and S are level-commutative
if for any m,n ≥ 0, ∗←Rm

◦ ∗→Sn
⊆ ∗→Sn

◦ ∗←Rm
.

Clearly, level-commutativity (level-confluence) implies commutativity (resp.
confluence), and self-level-commutativity implies level-confluence.

A conditional rewrite rule l → r ⇐ c has type 1 if V(r, c) ⊆ V(l), type 2 if
V(r) ⊆ V(l), type 3 if V(r) ⊆ V(l, c), and type 4 if “true”. A CTRS R has type
n if all rules have type n; CTRSs of type n are also referred to as n-CTRSs. We
will mainly deal with 3-CTRSs below. Variables occurring in r, c which is not
contained in V(l) are often called extra variables.

We now explain some notions necessary to give a sufficient criterion for level-
confluence [14]. A CTRS R is properly oriented if V(r)
⊆ V(l) implies V(ui) ⊆
V(l) ∪ ⋃i−1

j=1 V(vj) for all 1 ≤ i ≤ k, for any l → r ⇐ u1 ≈ v1, . . . , uk ≈ vk ∈ R.
A CTRS R is right-stable if, for all l → r ⇐ u1 ≈ v1, . . . , uk ≈ vk ∈ R, (1)
(V(l) ∪ (

⋃i−1
j=1 V(uj , vj)) ∪ V(ui)) ∩ V(vi) = ∅ for all 1 ≤ i ≤ k and (2) for any

1 ≤ i ≤ k, vi is either a linear constructor term or a ground Ru-normal form,
where the constructors are given by C = F \ {l(ε) | l → r ⇐ c ∈ R} and the
(extended) TRS Ru is given by Ru = {l → r | l → r ⇐ c ∈ R}. A CTRS R is

A Critical Pair Criterion for Level-Commutation of CTRSs 103

left-linear if l is linear for all l → r ⇐ c ∈ R. Let l1 → r1 ⇐ c1 and l2 → r2 ⇐ c2
be conditional rewrite rules so that their sets of variables are renamed to be
disjoint. We say l1 → r1 ⇐ c1 overlaps on l2 → r2 ⇐ c2 (at p) if a non-variable
subterm l2|p of l2 satisfies l2|pσ = l1σ for some substitution σ, provided that
p
= ε for the case l1 → r1 ⇐ c1 and l2 → r2 ⇐ c2 are identical. A CTRS
R is non-overlapping if there is no overlap between rules of R; A CTRS R is
orthogonal if it is left-linear and non-overlapping.

Proposition 2 ([14]). Let R be an orthogonal, properly oriented, right-stable
3-CTRS. Then, ∗←Rm

◦ ∗→Rn
⊆ ∗→Rn

◦ ∗←Rm
for any m,n ≥ 0. In particular, R

is level-confluent.

3 Level-Commutation of Oriented CTRSs

Proposition 1 only deals with TRSs but its scope is not limited to orthogonal
ones. On the other hand, Proposition 2 can deal with CTRSs (not only TRSs)
but limited to only orthogonal case. Also Proposition 2 only claims on (level-
)confluence, whereas Proposition 1 claims on commutativity. A natural question
is whether we can unify these two propositions and how—we will focus on this
question in the this section.

Our basic idea is to unify proofs of [16, Theorem 3.1] and [14, Theorem 4.6].
The basic scenario of the former proof is showing that ←−� R◦−→� S ⊆ −→� S◦ ∗←−� R.
In the latter, an extended parallel rewriting ↪−→� Rn

of −→� R was introduced and
they showed ←−↩� Rm

◦ ↪−→� Rn
⊆ ↪−→� Rn

◦ ←−↩� Rm
. Naturally, our first attempt

was to prove ←−↩� Rm
◦ ↪−→� Sn

⊆ ↪−→� Sn
◦ ∗←−↩� Rm

. Examining the details, however,
it turned out that this scenario does not work (induction does not work). Thus,
our first key ingredient is to modify our proof scenario as showing:

←−↩� Rm
◦ ↪−→� Sn

⊆ ↪−→� Sn
◦ ∗

↪−→� S<n
◦ ∗←−↩� Rm

(∗)

We now reason why this scenario is sound using an abstract setting.
Let (→n)n∈N be an N-indexed family of relations on a set X. We put →<n =

⋃
i<n →i. We say (→n)n∈N is up-simulated if ∗→<n ⊆ →n for any n ∈ N.

Lemma 1. Let (→n)n∈N, (�n)n∈N be up-simulated families of relations on a set
X. Suppose that1, for any m,n ∈ N, ←m ◦�n ⊆ �n ◦ ∗�<n ◦ ∗←m. Then, for any
m,n ∈ N, we have (1) ∗←m ◦ �n ⊆ �n ◦ ∗�<n ◦ ∗←m, (2) ∗←m ◦ �n ⊆ ∗�n ◦ ∗←m

and (3) ∗←m ◦ ∗
�n ⊆ ∗�n ◦ ∗←m.

Proof. Use induction. Use (1) to show (2), and then (2) to (3). ��

1 The criterion has some similarity with the decreasing diagrams; however, because
multiple →m-steps are allowed, it is not at all apparent (currently, to the authors)
whether the criterion can be obtained via the decreasing diagrams.

104 R. Haga et al.

Now let us adopt our abstract framework to CTRSs. Let R be a CTRS. The
notion of extended parallel rewriting [14] is given as follows: we write s ↪−→� Rn

t
if s = C[A1, . . . , Ap], t = C[B1, . . . , Bp] (p ≥ 0) for some context C and subterm
occurrences Ai, Bi such that either Ai →ε

Rn
Bi or Ai

∗→R<n
Bi for all i =

1, . . . , p. We put ↪−→� R =
⋃

n≥0 ↪−→� Rn
, which is called the extended parallel

rewrite step of R. We will also write s
A1,...,Ap

↪−→� R t to indicate subterm occurrences
A1, . . . , Ap.

Then, from the Lemma 1, it easily follows:

Lemma 2. Let R,S be CTRSs. Suppose ←−↩� Rm
◦ ↪−→� Sn

⊆ ↪−→� Sn
◦ ∗

↪−→� S<n
◦

∗←Rm
for any m,n ≥ 0. Then, for any m,n, we have

∗←−↩� Rm
◦ ∗

↪−→� Sn
⊆ ∗

↪−→� Sn
◦

∗←−↩� Rm
. Hence, for any m,n, we have ∗←Rm

◦ ∗→Sn
⊆ ∗→Sn

◦ ∗←Rm
.

Proof. Suppose t1
∗←Rm

t
∗→Sn

t2. As →Rk
⊆ ↪−→� Rk

for each k we have
t1

∗←−↩� Rm
t

∗
↪−→� Rn

t2 (and similarly for S). From the fact →Rm
⊆ →Rn

for
m < n, it immediately follows that (↪−→� n)n∈N is up-simulated (again, simi-
larly for S). Thus, it follows t1

∗
↪−→� Sn

t′
∗←−↩� Rm

t2 by using Lemma 1 and our
hypothesis. Because

∗
↪−→� Rk

⊆ ∗→Rk
for each k (and similarly for S), we obtain

t1
∗→Sn

t′ ∗←Rm
t2. ��

It is now concluded from this lemma that our proof scenario (∗) works to
obtain the level-confluence.

For our proof below, we need to use the induction hypothesis to claim a
more general statement as in the above. The following lemma is presented for
this purpose.

Lemma 3. Let R,S be CTRSs and k ∈ N. Suppose ←−↩� Rm
◦ ↪−→� Sn

⊆ ↪−→� Sn
◦

∗
↪−→� S<n

◦ ∗←Rm
for any m,n such that m + n < k. Then, for any m,n such

that m + n < k, we have (1)
∗←−↩� Rm

◦ ↪−→� Sn
⊆ ↪−→� Sn

◦ ∗
↪−→� S<n

◦ ∗←−↩� Rm
, (2)

∗←−↩� Rm
◦ ↪−→� Sn

⊆ ∗
↪−→� Sn

◦ ∗←−↩� Rm
and (3)

∗←−↩� Rm
◦ ∗

↪−→� Sn
⊆ ∗

↪−→� Sn
◦ ∗←−↩� Rm

.

Proof. Use an abstract version of the lemma, which can be proved in the way
similar to Lemma 1. ��

Our second key ingredient is the following alternative definition of conditional
critical pairs.

Definition 2 (Condition-separated CCP). Suppose l1 → r1 ⇐ c1 overlaps
on l2 → r2 ⇐ c2 at p and σ is an mgu of l2|p and l1. Then the quadruple
〈l2[r1]pσ, r2σ〉 ⇐ 〈c1σ, c2σ〉 is called a (condition-separated) conditional critical
pair (CCP, for short) (obtained from that overlap); when p = ε, the pair is
called outer and p > ε, the pair is called inner. The set of (outer, inner) critical
pairs obtained from overlaps of l1 → r1 ⇐ c1 ∈ R on l2 → r2 ⇐ c2 ∈ S is
denoted by CCP(R,S) (resp. CCPout(R,S), CCP in(R,S)). The set of (outer,
inner) critical pairs from overlaps of rules of R is denoted by CCP(R) (resp.
CCPout(R), CCP in(R)).

A Critical Pair Criterion for Level-Commutation of CTRSs 105

In most literature, we see that instead of distinguishing two sequences c1σ
and c2σ, the combined sequence of c1σ and c2σ is employed in the definition of
CCPs. But, in our case where CTRSs R and S may be different, this distinction
is important to state a precise condition of our theorem.

We now present one more preparation: the following lemma is used several
times as a part of the proof of our main theorem—when the lemma is used in the
proof of our main theorem, the assumption (†) of the lemma can be inferred from
the induction hypothesis (of the proof of the main theorem), using Lemma 3.

Lemma 4. Let R and S be 3-CTRSs and suppose that R is left-linear and right-
stable. Suppose that M = lσ, N = rσ, Rm−1 � cσ with l → r ⇐ c ∈ R. Assume

moreover that M
P1,...,Pp

↪−→� Sn
P and P1, . . . , Pp occurs in the substitution σ. Assume

that (†) ∗←−↩� Ri
◦ ∗

↪−→� Sj
⊆ ∗

↪−→� Sj
◦ ∗←−↩� Ri

for any i, j such that i + j < m + n.
Then, there exists Q such that N ↪−→� Sn

Q and P →Rm
Q.

Now we present our critical pair criterion for commutativity.

Theorem 1. Let R and S be left-linear, properly oriented, right-stable 3-
CTRSs. If the following conditions are satisfied, then R and S are level-
commutative:

1. for any 〈u, v〉 ⇐ 〈c, c′〉 ∈ CCP(R,S), m,n ≥ 1 and substitution ρ, if cρ ⊆
∗→Rm−1 and c′ρ ⊆ ∗→Sn−1 then uρ −→� Sn

◦ ∗→S<n
◦ ∗←Rm

vρ, and
2. for any 〈v, u〉 ⇐ 〈c′, c〉 ∈ CCP in(S,R), m,n ≥ 1 and substitution ρ, if cρ ⊆

∗→Rm−1 and c′ρ ⊆ ∗→Sn−1 then vρ −→� Rm
◦ ∗→R<m

uρ.

Proof. Let M
A1,...,Am̄

↪−→� Rm
N and M

B1,...,Bn̄
↪−→� Sn

P . We show N ↪−→� Sn
◦ ∗
↪−→� S<n

Q and
P

∗
↪−→� Rm

Q for some Q. For the rewrite steps used in the critical pairs conditions
above, note that −→� � ◦ ∗→<� = ↪−→� � ◦ ∗

↪−→� <� as well as ∗→� =
∗

↪−→� � for any �.
Let Γ and Δ be sets of subterm occurrences in the term M given as follows:

Γ = {Ai | ∃Bj . Ai ⊂ Bj} ∪ {Bi | ∃Aj . Bi ⊆ Aj}
Δ = {Ai | ∀Bj . Ai
⊂ Bj} ∪ {Bi | ∀Aj . Bi
⊆ Aj}

Thus, Γ consists of subterm occurrences Ai’s that is a proper subterm occurrence
of some Bj and subterm occurrences Bj ’s that is a subterm occurrence of some
Ai; Δ consists of subterm occurrences Ai’s and Bj ’s not contained in Γ . Clearly,
for any 1 ≤ i ≤ m̄, either one of Ai ∈ Γ or Ai ∈ Δ holds, and for any 1 ≤ j ≤ n̄,
either one of Bj ∈ Γ or Bj ∈ Δ holds. In the case Ai′ and Bj′ are the same
subterm occurrence, we put Ai′ to Δ and Bj′ to Γ .

Δ denotes the set of maximal redexes occurrences in the following sense.
Let Δ = {M1, . . . ,Mp̄}. Then we have M = C[M1, . . . ,Mp̄] for some context
C. Furthermore, we have N = C[N1, . . . , Np̄] and P = C[P1, . . . , Pp̄] for some
N1, . . . , Np̄, P1, . . . , Pp̄ such that Mi ↪−→� Rm

Ni, Mi ↪−→� Sn
Pi (i = 1, . . . , p̄). Thus,

it suffices to show for each Mi, there exists Qi such that Ni ↪−→� Sn
◦ ∗

↪−→� S<n
Qi

and Pi
∗

↪−→� Rm
Qi. On the other hand, Γ is used to count the size of overlaps and

106 R. Haga et al.

is used to give the induction weight. Let |Γ | = ∑
D∈Γ |D|. Our proof proceeds

on induction on lexicographic combination of 〈m + n, |Γ |〉.
The cases for m = 0 or n = 0 are easy, thus we consider the cases for

m > 0, n > 0. We distinguish two cases:

1. Case Mi /∈ {B1, . . . , Bn̄}. Note that Mi ∈ {A1, . . . , Am̄} and Mi ⊆ Bj for
no Bj . Let {B′

1, . . . , B
′
q̄} = {Bj | 1 ≤ j ≤ n̄, Bj ⊂ Mi}. Then we have

Mi = Ci[B′
1, . . . , B

′
q̄] and Pi = Ci[B̃′

1, . . . , B̃
′
q̄] so that Mi

Mi
↪−→� Rm

Ni and

Mi

B′
1,...,B′

q̄

↪−→� Sn
Pi. We distinguish the cases.

(a) Case Mi
∗→Rm−1 Ni. Since ∗→Rm−1 ⊆ ∗

↪−→� Rm−1 , we have Mi
∗

↪−→� Rm−1 Ni.
Thus, the desired Qi is obtained by induction hypothesis and Lemma 3.

(b) Case Mi
Mi→Rm

Ni. Then Mi = lθ, Ni = rθ and Rm−1 � cθ for some
l → r ⇐ c ∈ R and θ. If all redex occurrences B′

j in Mi are contained
in the substitution θ, then the desired Qi exists by Lemmas 3, 4 and
induction hypothesis. Suppose otherwise, i.e. there exists B′

j which is not
contained in θ. Let X = {B′

j | 1 ≤ j ≤ q̄, B′
j is not contained in θ } and

Y = {B′
j | 1 ≤ j ≤ q̄, B′

j is contained in θ }. For each B′
j ∈ X, either

B′
j

B′
j→Sn

B̃′
j or B′

j
∗→S<n

B̃′
j . We distinguish two cases.

i Case that there exists B′
j ∈ X such that B′

j

B′
j→Sn

B̃′
j . W.l.o.g. sup-

pose j = 1, i.e. B′
1 ∈ X and B′

1

B′
1→Sn

B̃′
1. Let Mi

B′
1→Sn

M̃i. Note also

here M̃i

B′
2,...,B′

q̄

↪−→� Sn
Pi. The proof of this case is illustrated in Fig. 1. Let

l′ → r′ ⇐ c′ ∈ S, B′
1 = l′θ′ and Sn−1 � c′θ′. Then, since B′

1 is not
contained in θ, l → r ⇐ c ∈ R and l′ → r′ ⇐ c′ ∈ S overlap. Fur-
thermore, as B′

1 ⊂ Mi, we have 〈v, u〉 ⇐ 〈c′, c〉 ∈ CCP in(S,R) and
there exists a substitution θ′′ such that M̃i = vθ′′ and Ni = uθ′′. By
our critical pair condition (2), we obtain M̃i ↪−→� Rm

Q̃i
∗

↪−→� R<m
Ni;

let M̃i
C1,...,Cr̄

↪−→� Rm
Q̃i. Let Γ ′ = {Ci | ∃B′

j(j
= 1). Ci ⊂ B′
j} ∪ {B′

i | i
=
1,∃Cj . B′

i ⊆ Cj}. Occurrences in Γ ′ are distinct, and for any B̃ ∈ Γ ′,
there exists B′

j (2 ≤ j ≤ q̄) such that B̃ ⊆ B′
j . Thus, |Γ ′| ≤ ∑q̄

j=2 |B′
j |

holds. Hence, we obtain |Γ ′| ≤ ∑q̄
j=2 |B′

j | <
∑q̄

j=1 |B′
j | ≤ |Γ |. Thus,

one can apply induction hypothesis to Q̃i
C1,...,Cr̄←−↩� Rm

M̃i

B′
2,...,B′

q̄

↪−→� Sn
Pi so

as to obtain Q̃′
i, P̃i such that Q̃i ↪−→� Sn

Q̃′
i

∗
↪−→� S<n

P̃i and Pi
∗

↪−→� Rm
P̃i.

Since we have Ni
∗←−↩� R<m

Q̃i ↪−→� Sn
Q̃′

i, by applying induction hypoth-
esis and Lemma 3, it follows that there exists Ñi such that Ni ↪−→� Sn

◦ ∗
↪−→� S<n

Ñi and Q̃′
i

∗
↪−→� R<m

Ñi. Then, by induction hypothesis and
Lemma 3, it follows that there exists Qi such that Ñi

∗
↪−→� <Sn

Qi and
P̃i

∗
↪−→� R<m

Qi.

ii Case that B′
j

∗→Sn−1 B̃′
j holds for any B′

j ∈ X. As Mi

B′
1,...,B′

q̄

↪−→� Sn
Pi

and B′
1, . . . , B

′
q̄ are parallel, we can first rewrite all B′

j ∈ Y (1 ≤

A Critical Pair Criterion for Level-Commutation of CTRSs 107

Mi M̃i Pi

Ni ◦

Q̃i P̃i

Ñi

Q̃i

Qi

Sn Sn

Rm Rm

R<mR<m

Sn S<n

Rm

R<m

CCP(2)

I.H.

I.H. & Lemma 3 I.H. & Lemma 3

B1

Mi

∗

∗

B2, . . . , Bq

∗ ∗

C1, . . . , Cr

∗

∗
Sn S<n

S<n

∗

Fig. 1. Case 1.(b).i

Mi M̃i Pi

Ni Q̃ Qi

Sn Sn−1

Rm Rm

Sn Sn−1

Rm

Lemma 4 I.H. & Lemma 3

B1 , . . . , Br

Mi ∗

∗

∗

Fig. 2. Case 1.(b).ii

j ≤ q̄). Namely, let Y = {B′′
1 , . . . , B′′

r̄ }, and we have Mi

B′′
1 ,...,B′′

r̄
↪−→� Sn

M̃i
∗→Sn−1 Pi. The proof of this case is illustrated in Fig. 2. Here, since

each B′′
j in contained in the substitution θ, one can use Lemma 4 to

obtain Q̃ such that Ni ↪−→� Sn
Q̃ and M̃i →Rm

Q̃. Now, since →Rm
⊆

↪−→� Rm
and ∗→Sn−1 ⊆ ∗

↪−→� Sn−1 , we have Q̃ ←−↩� Rm
M̃i

∗
↪−→� Sn−1 Pi.

Then, using induction hypothesis and Lemma 3, we can obtain Qi

such that Q̃
∗

↪−→� Sn−1 Qi, Pi
∗

↪−→� Rm
Qi. As a side remark, we mention

that our first key ingredient becomes necessary to solve this case.
2. Case Mi ∈ {B1, . . . , Bn̄}. Let {A′

1, . . . , A
′
q̄} = {Aj | 1 ≤ j ≤ n̄, A′

j ⊆ Mi}.

Then one can put Mi = Ci[A′
1, . . . , A

′
q̄], Ni = Ci[Ã′

1, . . . , Ã
′
q̄], Mi

A′
1,...,A′

q̄

↪−→� Rm
Ni

and Mi
Mi
↪−→� Sn

Pi. By definition, Mi
Mi
↪−→� Sn

Pi is either of the form Mi
∗→Sn−1 Pi

or Mi
Mi→Sn

Pi.

108 R. Haga et al.

Suppose Mi
∗→Sn−1 Pi. Then, we have Mi

∗
↪−→� Sn−1 Pi and thus the desired

Qi exists by induction hypothesis and Lemma 3.
Thus, it remains to consider the case Mi

Mi→Sn
Pi. Then there exists l′ → r′ ⇐

c′ ∈ S and θ′ such that Mi = l′θ′, Pi = r′θ′ and c′θ′ ⊆ ∗→Sn−1 . We distinguish
whether all redex occurrences A′

j in Mi are contained in θ′ or not. If all redex

occurrences A′
j in Mi are contained in θ′, then using →Sn

⊆ ↪−→� Sn
◦ ∗

↪−→� S<n

and ↪−→� Rm
⊆ ∗→Rm

, one obtains desired Qi by Lemma 4.
So, let us consider there exists A′

j which is not contained in θ′. Let X ′ =
{A′

j | 1 ≤ j ≤ q̄, A′
j is not contained in θ′} and Y ′ = {A′

j | 1 ≤ j ≤
q̄, A′

j is contained in θ′}. Then for each A′
j ∈ X ′, we have either A′

j

A′
j→Rm

Ã′
j ,

or A′
j

∗→R<m
Ã′

j . We distinguish two cases.

(a) Case that A′
j

A′
j→Rm

Ã′
j for some A′

j ∈ X ′. W.l.o.g. assume j = 1, i.e.

A′
1 ∈ X ′ and A′

1

A′
1→Rm

Ã′
1. Then there exists l → r ⇐ c ∈ R such that

A′
1 = lθ and cθ ⊆ ∗→Rm−1 . We further distinguish two cases: (α) the case

A′
1 = Mi and l → r ⇐ c ∈ R are l′ → r′ ⇐ c′ ∈ S are identical, and (β)

the case A′
1
= Mi or l → r ⇐ c ∈ R and l′ → r′ ⇐ c′ ∈ S are distinct.

We remark that a construction similar to the one in [14] will be used in
case of (α) and that our assumption that R and S are properly oriented
and right-stable will be used here.

i Case (α). Then we have Mi = A′
1

A′
1→Rm

Ã′
1 = Ni and Mi

Mi→Sn
Pi. By

lθ = Mi = lθ′, xθ = xθ′ for any x ∈ V(l). We also have Rm−1 � cθ
and Sn−1 � cθ′. Thus, if V(r) ⊆ V(l), then rθ = rθ′, and it suffices
to take rθ as Qi. Suppose otherwise, i.e. V(r) � V(l). Below, let
c = s1 ≈ t1, . . . , sj ≈ tj and ck = s1 ≈ t1, . . . , sk ≈ tk (1 ≤ k ≤ j).
We now show there are substitution ρk (k ∈ {0, . . . , j}) satisfying the
following properties (a)–(c) by induction.
(a) ρk = θ = θ′ [V(l)].
(b) dom(ρk) ⊆ V(l) ∪ V(ck).
(c) for any x ∈ V(l)∪V(ck), we have xθ′ ∗

↪−→� Rm−1xρk and xθ
∗

↪−→� Sn−1

xρk.
If k = 0 then take ρ0 = θ|V(l), and (a)–(c) follow. Suppose k > 0.
Since r contains an extra variable and R (or S) is properly oriented,
we have V(sk) ⊆ V(l) ∪ V(ck−1). Thus, by induction hypothesis on
(c), we have skθ

∗
↪−→� Sn−1 skρk−1 and skθ′ ∗

↪−→� Rm−1 skρk−1. Further-
more, we have skθ

∗→Rm−1 tkθ and skθ′ ∗→Sn−1 tkθ′ by Rm−1 � cθ

and Sn−1 � cθ′, respectively. Hence, skρk−1
∗←−↩� Sn−1 skθ

∗
↪−→� Rm−1 tkθ

and tkθ′ ∗←−↩� Sn−1 skθ′ ∗
↪−→� Rm−1 skρk−1. Then, by applying induction

hypothesis and Lemma 3, we obtain q′, r′ such that skρk−1
∗

↪−→� Rm−1

q′ ∗←−↩� Sn−1 tkθ and tkθ′ ∗
↪−→� Rm−1 r′ ∗←−↩� Sn−1 skρk−1. Thus, one obtains

r′ ∗←−↩� Sn−1 skρk−1
∗

↪−→� Rm−1 q′. Again, by applying induction hypoth-

A Critical Pair Criterion for Level-Commutation of CTRSs 109

esis and Lemma 3, we obtain s′ such that r′ ∗
↪−→� Rm−1 s′ ∗←−↩� Sn−1 q′.

Thus, we have tkθ
∗

↪−→� Sn−1 s′ and tkθ′ ∗
↪−→� Rm−1 s′.

We know that tk is either a ground Ru-normal form or a linear con-
structor term (w.r.t. R) by the right-stability of R, and that tk is
either a ground Su-normal form or a linear constructor term (w.r.t.
S) by the right-stability of R. Suppose tk is a ground Ru-normal
form or tk is a ground Su-normal form. Then, tkθ′ = tkθ = tk by
V(tk) = ∅, and thus, tk = s′ by tkθ′ ∗

↪−→� Rm−1 s′. Furthermore, as we
are assuming V(r) � V(l), we know V(si) ⊆ V(l) ∪ V(ci−1) from the
proper-orientedness of R (or S). Thus, V(l)∪V(ck) = V(l)∪V(ck−1).
Hence, ρk := ρk−1 satisfies (a)–(c). Suppose otherwise. Then tk is
linear and is a constructor term w.r.t. both R and S. Then, by
tkθ

∗
↪−→� Sn−1 s′, there exists a substitution ρ such that s′ = tkρ and

dom(ρ) ⊆ V(tk) such that for any x ∈ V(tk), xθ
∗

↪−→� Sn−1 xρ. Fur-
thermore, by tkθ′ ∗

↪−→� Rm−1 s′, there exists a substitution ρ′ such
that s′ = tkρ′ and dom(ρ′) ⊆ V(tk) such that for any x ∈ V(tk),
xθ′ ∗

↪−→� Rm−1 xρ′. Now, because tkρ = s′ = tkρ′, we know xρ = xρ′

for any x ∈ V(tk), and thus ρ = ρ′ from dom(ρ), dom(ρ′) ⊆ V(tk).
We also have V(tk) ∩ (V(l) ∪ V(ck−1)) = ∅ by the right-stability of R
(or S), and thus, dom(ρ) ∩ dom(ρk−1) = ∅. Hence, ρk := ρk−1 ∪ ρ is
a substitution, and ρk satisfies (a)–(c). This completes the induction
proof for existence of substitutions ρk satisfying (a)–(c) (1 ≤ k ≤ j).
Now consider the substitution ρj . Since R (and S) is a 3-CTRS, we
have V(r) ⊆ V(l)∪V(cj). Thus, by the condition (c), Ni = rθ

∗
↪−→� Sn−1

rρj and Pi = rθ′ ∗
↪−→� Rm−1 rρj hold. Thus, taking Qi := rρj , and we

have Ni
∗

↪−→� Sn−1 Qi and Pi
∗

↪−→� Rm−1 Qi.

ii Case (β). Let Mi
A′

1→Rm
M̃i

A′
2,...,A′

q̄

↪−→� Sn
Ni. The proof of this case is

illustrated in Fig. 3 (left). Because there exists an overlap between
l → r ⇐ c ∈ R and l′ → r′ ⇐ c′ ∈ S, there is substitution θ′′ and
a position p ∈ PosF (l′) such that Mi = l′θ′′ = l′θ′′[lθ′′]p = lθ′′[A′

1]p.
Then, M̃i = l′[r]pθ′′, Pi = r′θ′′, Rm−1 � cθ′′ and Sn−1 � c′θ′′. Then,
there exists an CCP 〈u, v〉 ⇐ 〈d, d′〉 ∈ CCP(R,S), where u = l′[r]pσ,
v = r′σ, d = cσ and d′ = c′σ for the mgu σ of l′|p and l. Then, as
(l′θ′′)p = lθ′′, we have θ′′ = ρ ◦ σ for some ρ. Thus, Pi = r′θ′′ =
(r′σ)ρ = vρ, M̃i = l′[r]pθ′′ = (l′[r]pσ)ρ = uρ, Rm−1 � dρ, and Sn−1 �
d′ρ. Hence, by our critical pair condition (2), uρ ↪−→� Sn

◦ ∗
↪−→� S<n

s

and vρ
∗

↪−→� Rm
s for some s, and thus, by taking P̃i := sρ, we have

M̃i ↪−→� Sn
P̃ ′

i

∗
↪−→� S<n

P̃i and Pi
∗

↪−→� Rm
P̃i for some P̃ ′

i .

Suppose M̃i
C1,...,Cr̄

↪−→� Sn
P̃ ′

i . Let Γ ′ = {A′
i | ∃Cj .A

′
i ⊂ Cj} ∪ {Ci |

∃A′
j .Ci ⊆ A′

j}. Occurrences in Γ ′ are distinct, and for any C̃ ∈ Γ ′,
there exists A′

j (2 ≤ j ≤ q̄) such that C̃ ⊆ A′
j . Hence, |Γ ′| ≤

110 R. Haga et al.

Mi Pi

M̃i P̃i P̃i

Ni ◦ Q̃i Qi

Sn

Sn S<n

RmRm

Rm Rm Rm

Sn S<n S<n

CCP(1)

I.H. & Lemma 3I.H.

Mi

A1 ∗

C1, . . . , Cr̄

A2, . . . , Aq̄ ∗ ∗

∗

∗

∗

Mi Pi

M̃i Q̃i

Ni ◦ Qi

Sn

Sn

RmRm

Rm−1
Rm

Sn S<n

Lemma 4

I.H. & Lemma 3

Mi

A1 , . . . , Ar̄

∗ ∗

∗

Fig. 3. Case 2.(a).ii (left) and Case 2.(b) (right)

∑q̄
j=2 |A′

j | <
∑q̄

j=1 |A′
j | ≤ |Γ |. Thus, one can apply induction hypoth-

esis to obtain Q̃i such that Ni ↪−→� Sn
◦ ∗

↪−→� S<n
Q̃i and P̃ ′

i

∗
↪−→� Rm

Q̃i.
By applying induction hypothesis and Lemma 3 once again, we know
that there exists Qi such that Q̃

∗
↪−→� S<n

Qi
∗←−↩� Rm

P̃i.

(b) Case that A′
j

∗→Rm−1 Ã′
j for any A′

j ∈ X ′. Since Mi

A′
1,...,A′

q̄

↪−→� Rm
Ni

and A′
1, . . . , A

′
q̄ are parallel, one can rewrite A′

j ∈ Y ′ first. That is,

Mi

A′′
1 ,...,A′′

r̄
↪−→� Rm

M̃i
∗→Rm−1 Ni where Y ′ = {A′′

1 , . . . , A′′
r̄}. The proof of

this case is illustrated in Fig. 3 (right). Then, as each A′′
j is contained in

θ′, by Lemma 4, there exists Q̃ such that M̃i →Sn
Q̃ and Pi ↪−→� Rm

Q̃.
Furthermore, as →Sn

⊆ ↪−→� Sn
and ∗→Rm−1 ⊆ ∗

↪−→� Rm−1 , one can apply
induction hypothesis and Lemma 3 to Ni

∗←Rm−1 M̃i →Sn
Q̃ to obtain

Qi such that Ni ↪−→� Sn
◦ ∗

↪−→� S<n
Qi and Q̃

∗
↪−→� Rm

Qi.

Finally, from Lemma 2 we conclude that R and S are level-commutative. ��
A level-confluence criterion is obtained by taking R = S. Note that one can

use CCPout instead of CCP in the first condition, contrast to the commutativity
criterion, as the second condition implies the part for CCP in(R) of it.

Corollary 1. Let R be a left-linear, properly oriented, right-stable 3-CTRS. If
the following conditions are satisfied, then R is level-confluent:

1. for any 〈u, v〉 ⇐ 〈c, c′〉 ∈ CCPout(R), m,n ≥ 1 and substitution ρ, if cρ ⊆
∗→Rm−1 and c′ρ ⊆ ∗→Rn−1 then uρ −→� Rn

◦ ∗→R<n
◦ ∗←Rm

vρ, and
2. for any 〈v, u〉 ⇐ 〈c′, c〉 ∈ CCP in(R), m,n ≥ 1 and substitution ρ, if cρ ⊆

∗→Rm−1 and c′ρ ⊆ ∗→Rn−1 then vρ −→� Rm
◦ ∗→R<m

uρ.

A Critical Pair Criterion for Level-Commutation of CTRSs 111

Example 1. Let R and S be the following CTRSs:

R =

⎧
⎨

⎩

p(x) → q(x)
r(x) → s(p(x))
s(x) → f(y) ⇐ p(x) ≈ y

⎫
⎬

⎭
S =

⎧
⎨

⎩

p(x) → r(x)
q(x) → s(p(x))
s(x) → f(y) ⇐ p(x) ≈ y

⎫
⎬

⎭

We have CCP(R,S) = {〈q(x), r(x)〉 ⇐ 〈∅, ∅〉} and CCP in(S,R) = ∅. Note that
the overlap of s(x) → f(y) ⇐ p(x) ≈ y ∈ R and s(x) → f(y) ⇐ p(x) ≈ y ∈ S
is not considered, as these rules are identical; the case 2.(a).i of the proof above
treats this case. Now, because we have q(x) →Sn

s(p(x)) and r(x) →Rm
s(p(x))

(n,m ≥ 1) the condition (1) of the Theorem 1 is satisfied. Other conditions of
the theorem are also satisfied. Thus, R and S are level-commutative. Similarly,
one can show R ∪ S is level-confluent.

Example 2. Take CTRSs R = R′ ∪ Rf and S = S ′ ∪ Rf such that

R′ =
{
p(x, y) → r(x, y) ⇐ x ≈ a
q(x, y) → p(x, y) ⇐ x ≈ a

}

S ′ =
{
p(x, y) → q(x, y) ⇐ y ≈ b
r(x, y) → p(x, y) ⇐ y ≈ b

}

and Rf = {f(0) → a, f(s(x)) → b ⇐ f(x) ≈ a, f(s(x)) → a ⇐ f(x) ≈ b}.
We have CCP(R,S) = { (a) : 〈r(x, y), q(x, y)〉 ⇐ 〈{x ≈ a}, {y ≈ b}〉, (b) :
〈a, b〉 ⇐ 〈{f(x) ≈ b}, {f(x) ≈ a}〉, (c) : 〈b, a〉 ⇐ 〈{f(x) ≈ a}, {f(x) ≈ b}〉}, and
CCP in(S,R) = ∅. For the CCP (a), let m,n ≥ 1 and ρ be any substitution, and
suppose that ρ(x) →Rm−1 a and ρ(y) →Sn−1 b. Then, we have r(ρ(x), ρ(y)) →Sn

p(ρ(x), ρ(y)) and q(ρ(x), ρ(y)) →Rm
p(ρ(x), ρ(y)). Also, note that there is no

term t such that t
∗→R b and t

∗→S a (or t
∗→R a and t

∗→S b). Thus, the
condition (1) of the Theorem 1 holds for CCPs (a)–(c). Other conditions of the
theorem are also satisfied. Thus, R and S are level-commutative. Similarly, one
can show R ∪ S is level-confluent.

Since TRSs can be regarded as CTRSs with no conditions and they are triv-
ially properly-oriented, right-stable, and of type 3, this theorem covers Propo-
sition 1. However, this does not mean our theorem broaden the scope of TRSs
that can be guaranteed to commute—because rewrite steps of TRSs are level
1 rewrite steps in CTRSs, our condition reduces to the one of Proposition 1 in
TRSs. Thus, when restricting to TRSs, Theorem 1 coincides Proposition 1.

On the other hand, Corollary 1 properly extends Proposition 2, as witnessed
by R ∪ S in Examples 1, 2.

4 Critical Pair Criteria for Join and Semi-Equational
CTRSs

In this section, we explore critical pair criteria for join and semi-equational
CTRSs, following our approach in the previous section.

First, let us fix additional notions and notations that will be used in this
section. A rewrite step of join CTRS R is defined via the following TRS Rn

112 R. Haga et al.

(n ∈ N), which are inductively given as follows: R0 = ∅, Rn+1 = {lσ → rσ | l →
r ⇐ c ∈ R, cσ ⊆ ∗→Rn

◦ ∗←Rn
}. For semi-equational CTRS R, we modify the

second clause as: Rn+1 = {lσ → rσ | l → r ⇐ c ∈ R, cσ ⊆ ∗↔Rn
}. Similarly to

the oriented case, a rewrite step s →R t of R is given as s →R t iff s →Rn
t for

some n, and the smallest n such that s →Rn
t is called the level of the rewrite

step s →R t. We write ↓Rn
(↓R) for the relation ∗→Rn

◦ ∗←Rn
(resp. ∗→R ◦ ∗←R).

In this section (except Subsect. 4.2), in order to distinguish three types of
CTRSs, we write Ro for an oriented CTRS, Rj for a join CTRS, and Rs for a
semi-equational CTRS. Similarly, notations Ro

n,Rj
n, . . . are employed. Notations

Ro
n � cσ (Rj

n � cσ, Rs
n � cσ) stands for cσ ⊆ ∗→Ro

n
(resp. cσ ⊆ ↓Rj

n
, cσ ⊆ ∗↔Rs

n
).

The following basic relations between rewrite relation on three types of
CTRSs on each level are essentially proved in [18, Lemmas 1 and 2].

Lemma 5. Let R be a CTRS. Then →Ro
n

⊆ →Rj
n

⊆ →Rs
n
for each n.

Notions of orthogonality, proper-orientedness and right-stability are syntax-
oriented, and their definitions remain same for other types of CTRSs. Note that
even under the conditions of proper-orientedness and right-stability, →Ro

n
=

→Rj
n

does not hold in general.

4.1 Level-Confluence of Join and Semi-Equational 3-CTRSs

In [14, Corollary 5.3], Proposition 2 is applied to show the corresponding class
of join CTRSs are level-confluent:

Proposition 3 ([14]). Let R be an orthogonal, properly oriented, right-stable
3-CTRS. Then Rj is level-confluent.

Given our Theorem 1, a natural question is whether a similar extension is
possible for our theorem. In this subsection, we give a partially positive answer
to this question—we generalize the result above to the level-confluence part
(Corollary 1) of our theorem, even though a similar extension does not work for
level-commutation. Indeed, we show that above proposition can be extended to a
more general setting of CTRSs where the orthogonality requirement is replaced
with level-confluence of Ro. Furthermore, the generalization is obtained not only
for join CTRSs but also for semi-equational CTRSs.

The next two lemmas are abstractions of the ones [14, Lemmas 5.1 and 5.2],
where the proofs remain almost the same.

Lemma 6. Let R be a properly oriented, right-stable 3-CTRS such that Ro is
level-confluent. Let l → r ⇐ s1 ≈ t1, . . . , sj ≈ tj ∈ R. If siσ ↓Ro

n−1
tiσ for any

1 ≤ i ≤ j then lσ ↓Ro
n

rσ.

Lemma 7. Let R be a properly oriented, right-stable 3-CTRS such that Ro is
level-confluent. If s →Rs

n
t then s ↓Ro

n
t.

Now we present the claimed result:

A Critical Pair Criterion for Level-Commutation of CTRSs 113

Theorem 2. Let R be a properly oriented, right-stable 3-CTRS. If Ro is level-
confluent then Rj and Rs are level-confluent.

Proof. Let R be a properly oriented, right-stable 3-CTRS such that Ro is level-
confluent. Suppose t1

∗←Rj
n

s
∗→Rj

n
t2 (t1

∗←Rs
n

s
∗→Rs

n
t2). Then t1

∗←Rs
n

s
∗→Rs

n

t2 by Lemma 5. Thus, by Lemma 7, t1
∗↔Ro

n
t2. Hence, t1 ↓Ro

n
t2 follows by

the level-confluence of Ro. Using again Lemma 5, this implies t1 ↓Rj
n

t2 (resp.
t1 ↓Rs

n
t2). ��

Thus, Corollary 1 can be applied to show the level-confluence of join and
semi-equational CTRSs. Note here that the conditions of Corollary 1 is stated
in terms of →o

R not in that of →j
R or →s

R.

4.2 Commutation of Semi-Equational 3-CTRSs

A most fundamental ingredient of the proof presented (inherited from [14]) is to
use induction on the level of rewrite relation. It seems, however, applying this
approach for join and semi-equational CTRSs contains fundamental difficulty.
Without the induction on the level, what can we do within the parallel-closed
approach? In this subsection, we will exhibit one alternative approach for semi-
equational CTRSs.

In [1], it is reported that left-linear parallel-closed semi-equational 1-CTRSs
are confluent. By examining its proof detail, we can extend it to commutativity
of 3-CTRSs as follows. Below, notation R � cσ (etc.) stands for cσ ⊆ ∗↔R.

Theorem 3. Let R,S be semi-equational left-linear 3-CTRSs. Suppose the fol-
lowing conditions are satisfied:

1. for any 〈u, v〉 ⇐ 〈c, c′〉 ∈ CCP(R,S) and any substitution ρ, if R � cσ and
S � c′σ, then uρ −→� S ◦ ∗←R vρ, and

2. for any 〈v, u〉 ⇐ 〈c′, c〉 ∈ CCP in(S,R) and any substitution ρ, if R � cρ and
S � c′ρ, then vρ −→� R uρ.

Furthermore, assume −→� S ⊆ ∗↔R, −→� R ⊆ ∗↔S and R ∩ S is a 2-CTRS. Then,
R and S commute.

We remark that conditions −→� S ⊆ ∗↔R and −→� R ⊆ ∗↔S are used to close
nested peaks, and that the condition that R ∩ S is a 2-CTRS is required to
resolve for peaks obtained by the same rule.

Example 3. Let R and S be the following left-linear semi-equational 3-CTRSs:

R = {q(x, y) → p(y, x), p(x, y) → q(x′, y′) ⇐ x ≈ x′, y ≈ y′}
S = {p(x, y) → q(y, x), q(x, y) → p(x′, y′) ⇐ x ≈ x′, y ≈ y′}

By induction on the level n, one can show →Sn
⊆ ∗→Rn

and →Rn
⊆ ∗→Sn

.
Thus, conditions −→� S ⊆ ∗↔R are −→� R ⊆ ∗↔S are satisfied. Clearly, R ∩ S = ∅
is a 2-CTRS. We have CCP(R,S) = {〈q(x′, y′), q(y, x)〉 ⇐ 〈{x ≈ x′, y ≈

114 R. Haga et al.

y′}, ∅〉, {〈p(y, x), p(x′, y′)〉 ⇐ 〈∅, {x ≈ x′, y ≈ y′}〉} and CCP in(S,R) =
∅. Clearly, ρ(x) ∗↔R ρ(x′) and ρ(y) ∗↔R ρ(y′) imply p(ρ(x′), ρ(y′)) →R
q(ρ(y), ρ(x)), and ρ(x) ∗↔S ρ(x′) and ρ(y) ∗↔S ρ(y′) imply q(ρ(x), ρ(y)) ←S
p(ρ(y), ρ(x)). Thus, all conditions of the Theorem 3 are satisfied. Thus, R and
S commute.

Note the conditions −→� S ⊆ ∗↔R and −→� R ⊆ ∗↔S of Theorem 3 imply
∗↔R = ∗↔S , i.e. R and S have the same underlying logic.

5 Conclusion

We have given a critical pair criterion for ensuring level-commutativity of left-
linear properly-oriented right-stable oriented 3-CTRSs. Our result generalizes a
sufficient criterion for commutativity of left-linear TRSs of Toyama [16]. It also
properly extends level-confluence of orthogonal properly-oriented right-stable
oriented 3-CTRSs of Suzuki et al. [14]. We then have showed this result can be
applied to obtain a criterion for level-confluence of left-linear properly-oriented
right-stable join and semi-equational 3-CTRSs, generalizing a result of [14]. We
have also explored a similar but different approach of Aoto and Toyama [1] to
obtain a criterion for the commutation of semi-equational 3-CTRSs.

Wirth [17] also gave a criterion of level-confluence for possibly non-orthogonal
CTRSs that generalizes a sufficient criterion for confluence of left-linear TRSs
of [16]. He adapted the approach of [16] for a framework of join CTRSs. It also
incorporates some ideas of [14] so as to give the notions of (weak-)quasi-normal
CTRSs, etc. A critical key difference with the usual conditional rewriting such
as employed in our paper, however, is that the validity of conditions needs to
be satisfied under a kind of constructor discipline. This restriction considerably
simplifies proof arguments dealing with conditional parts, paying the penalty
of going apart from the standard framework. On the other hand, despite these
sharp differences on the underlying frameworks of ours and [17], interestingly,
the critical pair criterion of Theorem 3 and Wirth’s critical pair criterion ([17,
Definition 28]) resemble very much.

Over various formalisms of rewriting, considerable efforts have been spent on
automating confluence checks in recent years. Yearly competition2 of confluence
tools started in 2012; the category of CTRS has been also introduced in 2014. In
recent competitions, confluence of oriented 3-CTRSs, which our main theorem
deal with, has been focused in the category of CTRS. Known confluence tools for
CTRSs include CONFident [6], ConCon [13], CO3 [9] and ACP [2]. We note here
that all these tools fail to show confluence of R∪S of Example 23. Among these
tools (at least) ConCon and ACP incorporate checking of confluence criterion of
[14]. We have been working on the automation of our results, but it is yet under

2 http://project-coco.uibk.ac.at/.
3 Experimented for CoCo 2022 participants ACP, CO3, CONFident and a CoCo 2020
participant ConCon, via CoCoWeb [7].

http://project-coco.uibk.ac.at/

A Critical Pair Criterion for Level-Commutation of CTRSs 115

development. Recent advances in confluence tools for CTRSs include automa-
tion of infeasibility checking [5]—we believe some approaches for automation of
infeasibility checking can be adapted for automation of our criterion.

Formalization by interactive theorem provers such as Isabelle/HOL, Coq,
PVS4, etc. have been of great interest in recent years. Formalization is also
indispensable for certification of results obtained by confluence tools. Regarding
for results of [14], a formalization in Isabelle/HOL has been reported by Ster-
nagel and Sternagel [12]. On the other hand, formalization of our results remains
completely as a future work.

Acknowledgements. Thanks are due to the anonymous reviewers (including those
for all previous versions of the paper) for valuable comments. This work is partially
supported by JSPS KAKENHI No. 21K11750.

References

1. Aoto, T., Toyama, Y.: Automated proofs of unique normal forms w.r.t. conversion
for term rewriting systems. In: Herzig, A., Popescu, A. (eds.) FroCoS 2019. LNCS
(LNAI), vol. 11715, pp. 330–347. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29007-8_19

2. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting sys-
tems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02348-4_7

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Gramlich, B.: Confluence without termination via parallel critical pairs. In: Kirch-
ner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 211–225. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61064-2_39

5. Gutiérrez, R., Lucas, S.: Automatically proving and disproving feasibility condi-
tions. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 416–435. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1_27

6. Gutiérrez, R., Lucas, S., Vítores, M.: Confluence of conditional rewriting in logic
form. In: Proceedings of 41st FSTTCS. LIPIcs, vol. 213, pp. 44:1–44:18. Schloss
Dagstuhl (2021)

7. Hirokawa, N., Nagele, J., Middeldorp, A.: Cops and CoCoWeb: infrastructure for
confluence tools. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018.
LNCS (LNAI), vol. 10900, pp. 346–353. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94205-6_23

8. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. J. ACM 27(4), 797–821 (1980)

9. Nishida, N., Kuroda, T., Yanagisawa, M., Gmeiner, K.: CO3: a COnverter for
proving COnfluence of COnditional TRSs (version 1.2). In: Proceedings of 4th IWC
(2015). https://www.trs.cm.is.nagoya-u.ac.jp/co3/papers/co3_2015_full.pdf

10. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002).
https://doi.org/10.1007/978-1-4757-3661-8

11. Okui, S.: Simultaneous critical pairs and Church-Rosser property. In: Nipkow, T.
(ed.) RTA 1998. LNCS, vol. 1379, pp. 2–16. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0052357

https://doi.org/10.1007/978-3-030-29007-8_19
https://doi.org/10.1007/978-3-030-29007-8_19
https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1007/3-540-61064-2_39
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1007/978-3-319-94205-6_23
https://www.trs.cm.is.nagoya-u.ac.jp/co3/papers/co3_2015_full.pdf
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/BFb0052357
https://doi.org/10.1007/BFb0052357

116 R. Haga et al.

12. Sternagel, C., Sternagel, T.: Level-confluence of 3-CTRSs in Isabelle/HOL. In:
Proceedings of 4th IWC, pp. 28–32 (2015)

13. Sternagel, T., Middeldorp, A.: Conditional confluence (system description). In:
Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 456–465. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08918-8_31

14. Suzuki, T., Middeldorp, A., Ida, T.: Level-confluence of conditional rewrite systems
with extra variables in right-hand sides. In: Hsiang, J. (ed.) RTA 1995. LNCS,
vol. 914, pp. 179–193. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
59200-8_56

15. Terese: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)
16. Toyama, Y.: Commutativity of term rewriting systems. In: Programming of Future

Generation Computer II, pp. 393–407. North-Holland, Amsterdam (1987)
17. Wirth, C.P.: Shallow confluence of conditional term rewriting systems. J. Symb.

Comput. 44, 60–98 (2009)
18. Yamada, T., Avenhaus, J., Loría-Sáenz, C., Middeldorp, A.: Logicality of condi-

tional rewrite systems. Theoret. Comput. Sci. 236, 209–232 (2000)
19. Yoshida, J., Aoto, T., Toyama, Y.: Automating confluence check of term rewriting

systems. Comput. Softw. 26(2), 76–92 (2009). in Japanese

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-08918-8_31
https://doi.org/10.1007/3-540-59200-8_56
https://doi.org/10.1007/3-540-59200-8_56
http://creativecommons.org/licenses/by/4.0/

Decidable Fragments

Logic of Communication Interpretation:
How to Not Get Lost in Translation

Giorgio Cignarale , Roman Kuznets , Hugo Rincon Galeana(B) ,
and Ulrich Schmid

TU Wien, Vienna, Austria
{giorgio.cignarale,roman.kuznets,hugo.galeana}tuwien.ac.at,

s@ecs.tuwien.ac.at

Abstract. Byzantine fault-tolerant distributed systems are designed to
provide resiliency despite arbitrary faults, i.e., even in the presence of
agents who do not follow the common protocol and/or despite compro-
mised communication. It is, therefore, common to focus on the perspec-
tive of correct agents, to the point that the epistemic state of byzantine
agents is completely ignored. Since this view relies on the assumption
that faulty agents may behave arbitrarily adversarially, it is overly con-
servative in many cases. In blockchain settings, for example, dishonest
players are usually not malicious, but rather selfish, and thus just fol-
low some “hidden” protocol that is different from the protocol of the
honest players. Similarly, in high-availability large-scale distributed sys-
tems, software updates cannot be globally instantaneous, but are rather
performed node-by-node. Consequently, updated and non-updated nodes
may simultaneously be involved in a protocol for solving a distributed
task like consensus or transaction commit. Clearly, the usual assumption
of common knowledge of the protocol is inappropriate in such a setting.
On the other hand, joint protocol execution and, sometimes, even basic
communication becomes problematic without this assumption: How are
agents supposed to interpret each other’s messages without knowing their
mutual communication protocols? We propose a novel epistemic modal-
ity creed for epistemic reasoning in heterogeneous distributed systems
with agents that are uncertain of the actual communication protocol
used by their peers. We show that the resulting logic is quite closely
related to modal logic S5, the standard logic of epistemic reasoning in
distributed systems. We demonstrate the utility of our approach by sev-
eral examples.

1 Introduction

A distributed system is a system with multiple processes, or agents, located
on different machines that communicate and coordinate actions, via message

G. Cignarale and R. Kuznets—Supported by the Austrian Science Fund (FWF)
projects ByzDEL (P33600).
H.R. Galeana—Supported by the Doctoral College Resilient Embedded Systems, which
is run jointly by the TU Wien’s Faculty of Informatics and the UAS Technikum Wien.

c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 119–136, 2023.
https://doi.org/10.1007/978-3-031-43369-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_7&domain=pdf
http://orcid.org/0000-0002-6779-4023
http://orcid.org/0000-0001-5894-8724
http://orcid.org/0000-0002-8152-1275
http://orcid.org/0000-0001-9831-8583
https://doi.org/10.1007/978-3-031-43369-6_7

120 G. Cignarale et al.

passing or shared memory, in order to accomplish some task [8,21]. This common
task is achieved by means of agent protocols instructing agents how to exchange
information and act. Designing distributed systems is difficult due to the inherent
uncertainty agents have about the global state of the system, caused, e.g., by
different computation speeds and message delays.

Knowledge [15] is a powerful conceptual way of reasoning about this uncer-
tainty [13,14]. Indeed, knowledge is at the core of the agents’ ability to act
according to the protocol: According to the Knowledge of Preconditions prin-
ciple [22], a protocol instruction to act based on a precondition ϕ can only be
followed if the agent knows ϕ to hold. While trivial for preconditions based on
the local state of the acting agent itself, this observation comes to the fore for
global preconditions, also involving other agents, as is common for coordination
problems such as consensus.

One of the standard ways of modeling agents’ knowledge is via the possible
world semantics that takes into account all the possible global states the agents
can be in and which of these possible worlds a particular agent can distinguish
based on its local information. In this view, agent i knows a proposition ϕ,
written Kiϕ, in a global state s iff this proposition holds in all global states s′

that are indistinguishable from s for i. The primary means of obtaining new
knowledge — and the only way of increasing knowledge about the local states
of other agents — in a distributed system is by means of communication.

Fault-tolerant systems add another layer of complexity, in particular, when
processes may not only stop operating or drop messages but can be (or become)
byzantine [19], i.e., may behave arbitrarily erroneously, in particular, can com-
municate in erratic, arbitrary, or deceptive manner. Malicious faulty agents may
have a “hidden agenda”, in which case, instead of following the original com-
monly known protocol, a faulty agent (or a group of faulty agents) can execute
actions (possibly in consort with each other) that jeopardize the original goals
of the system.

Although these hidden agendas are typically not transparent for correct
agents, some assumptions must be made to restrict the types and numbers of
protocol-defying actions and messages. Without such restrictions, provably cor-
rect solutions for a distributed task do not exist. These assumptions must usually
be commonly known by all agents, like the basic communication mechanism, the
protocol of all correct agents, the data encoding used in its messages, etc. In [7],
the whole corpus of these common assumptions is referred to as a priori knowl-
edge.1 For the possible world semantics, this translates into the assumption of
common knowledge of the model [3], which enables the agents to compute epis-
temic states of other agents, a task necessary for a typical coordination problem
like consensus [6].

Since correct agents generally cannot distinguish a simple malfunction from
malintent, erroneous messages, i.e., messages sent in contravention of the com-

1 The focus of [7] is on a priori assumptions that can be erroneous and may require
later updates, hence, the term a priori beliefs there. In this paper, we generally
assume these assumptions to be factive, hence, we use a priori knowledge instead.

Logic of Communication Interpretation: How to Not Get Lost in Translation 121

monly known joint protocol, are usually left uninterpreted. For instance, in the
epistemic modeling and analysis framework [11,16–18] for byzantine agents, mes-
sage ϕ received from agent i is interpreted by means of the hope modality

Hiϕ := correcti → Biϕ,

where Biϕ represents belief of agent i and is understood in the spirit of belief as
defeasible knowledge [24], where

Biϕ := Ki(correcti → ϕ).

This hope modality Hiϕ is equivalent to a disjunction

¬correcti ∨ (correcti ∧ Biϕ),

suggesting that a message ϕ from i is interpreted as the uncertainty between
agent i being faulty or the epistemic state of i confirming ϕ in case i is a correct
agent. Note that in the former case, the message carries no meaning whatsoever.
Indeed, the axiomatization of hope in [10] takes Hi⊥ to be the definition of faulty
agents because only a faulty agent can send contradictory messages. Given that
in normal modal logic Hi⊥ → Hiϕ holds for any ϕ, the consequence is that a
faulty agent can send any message independent of its epistemic state. In other
words, no conclusions about the epistemic state of a faulty agent can be drawn
from its messages, as reflected in the hope modality.

However, not all systems exhibit such a stark dichotomy between commonly
known and fully transparent us (correct processes) and the mysterious and unin-
terpretable them (faulty processes). Rational agents in blockchain settings [12],
for instance, do not necessarily have the same goal as the rest of the system.
Nevertheless, neither their actions nor their communication are arbitrary, not to
speak of adversarial. Consequently, game theoretic modeling, based on a model
of their beliefs and goals, can be applied for the analysis of such systems [2].

In this paper, we extend this finer-grained view to the epistemic modeling of
distributed systems and consider heterogeneous distributed systems, where dif-
ferent processes may run different protocols and where the assumption that all
protocols are commonly known is dropped. In such systems, we assume that pro-
cesses are partitioned into types (or roles, or classes) of agents, so that within
one type the protocols are commonly known to the agents of that type. While
such a strong assumption is not made for agents of different types, we do not
assume them to have zero knowledge of each other’s protocol either. In particu-
lar, we assume that each class is equipped with an interpretation function that
encodes the amount of knowledge agents have regarding the preconditions for
communication agents of a different type have.

Since having no preconditions for sending a message is an allowed instance,
this setting generalizes the byzantine setting described earlier, where there are
two types — correct and faulty agents — and only messages of correct agents
have a non-trivial interpretation. These interpretation functions are formalized

122 G. Cignarale et al.

by means of the new creed modality C
A\B
p ϕ introduced in this paper, which gen-

eralizes the hope modality for the byzantine case and represents the information
an agent of type A can infer upon receiving message ϕ from agent p of type B.

We illustrate the communication scenarios where this creed modality may be
useful by means of some examples:

Example 1 (“The Murders in the Rue Morgue”). This famous story by Edgar
Allan Poe describes a murder mystery. Several witnesses heard the murderer
(agent m) but nobody saw m. The problem in interpreting their testimony
is that they seem to contradict each other: for instance, a French witness f
thinks m spoke Italian and is certain m was not French, whereas a Dutch wit-
ness d thought m was French, etc. Importantly, none of the witnesses could
understand what was being said (f does not speak Italian, while d does not
speak French, etc.). The standard byzantine framework considers the possibil-
ity of a faulty agent sending different messages to different agents to confuse
them, but provides no means to describe one uncorrupted message being treated
so differently by correct agents. Standard epistemic methods either accept all
incoming information as being of equal value or make a priori preferential judge-
ments. However, in the story, Monsieur C. Auguste Dupin correctly surmises
that m spoke neither of the languages. Dupin neither dismisses witness accounts
completely as lies nor accepts them completely. Instead he chooses some of the
witness statements over others without prejudging them.

Example 2 (Knights and Knaves puzzles). There is a series of logical puzzles,
popularized by Smullyan [26], about an island, all inhabitants of which are either
knights who always tell the truth or knaves who always lie. One of the simplest
ones [26, Puzzle 28] is as follows:

There are only two people, p and q, each of whom is either a knight or a
knave. p makes the following statement: “At least one of us is a knave.”
What are p and q?

Our goal is to incorporate the uncertainty about the mode of communication
(knaves lie/knights tell the truth) into the logic. Fault-tolerant systems do not
provide a satisfactory model since there information from faulty agents is either
accepted (in case of benign faults) or ignored as completely unreliable (in case of
byzantine faults). Instead, enough information is collected from correct agents
(and they must constitute an overwhelming majority for most problems to be
solvable). By contrast, knights and knaves puzzles are typically solvable even if
all agents involved are knaves. The answer to the puzzle above, for instance, is
that p is a knight and q is a knave. We would like to derive this answer fully
within the logic.

Example 3 (Software Updates). In a highly available large scale distributed sys-
tem like an ATM network, it is impossible to simultaneously update the software
executed by the processes. Rather, processes are usually updated more or less
sequentially during normal operation of the system, at unpredictable times. As

Logic of Communication Interpretation: How to Not Get Lost in Translation 123

a consequence, the joint protocol executed in the system while a software update
is in progress might mix both old and new protocol instances. Existing solutions
like [1,25], which aim at updating complex protocols/software, typically provide
“consistent update” environments that prevent such mixing.

Thanks to our creed modality, however, mixed joint protocols could be
allowed, by explicitly considering those in the development of the new protocol
instance: Indeed, when implementing a bug fix or feature update, the developer
obviously knows the previous implementation. A message received at some pro-
cess p from some process q in the new implementation just needs to be interpreted
differently, depending on whether q runs an old or a new protocol instance. Note
that backward compatibility typically rules out incorporating a version number
into the messages of the (new) protocol here, in which case p would be uncertain
about the actual status of q, despite having received a message from it.

For light-weight low-level protocols, this approach might indeed constitute
an attractive alternative to complex consistent update mechanisms.

After introducing our framework, we explain in Sect. 6 how these examples
could be formalized.

Related Work. Our logical framework generalizes the hope modality [10] intro-
duced to reason about byzantine agents in distributed systems. We extend the
standard formulation by considering the byzantine case as a special agent-type.
Agent-types in the field of epistemic logic are formulated in [5], where names are
used as abstract roles for groups of agents, depending on their characteristics.
From the dynamic epistemic logic [9] perspective, a public announcement logic
with agent types is presented in [20], providing a dynamic framework to rea-
son about uncertainty of agent-types that is used to formalize the knights and
knaves puzzle. Due to the different motivations, while treating a closely related
problems set, [5] and [20] make different and at times incomparable choices
regarding the postulates underlying the systems. For instance, a precondition
for an announcement for an agent in [20] need not entail the agent knowing
this precondition, which contradicts the fundamental Knowledge of Precondi-
tions principle for distributed systems [22]. On the other hand, all agents in [20]
possess the same knowledge about each of the existing agent types, in particular,
all agents share one common interpretation of messages from a particular type,
an assumption in line with the rather centralized nature of updates in dynamic
epistemic logic but less sensible for distributed systems.

Paper Organization. In Sect. 2, we introduce the basic preliminary definitions
and lemmas for describing heterogeneous distributed system where agents are
grouped into types, each characterized by a different protocol. In Sect. 3, we
provide an epistemic logic for representing heterogeneous distributed settings
by introducing the creed modality and prove soundness and completeness in
Sect. 4. We derive the properties of creed in Sect. 5. Having done that, in Sect. 6
we show how to apply this framework to the motivating examples. Finally, some
conclusions are provided in Sect. 7.

124 G. Cignarale et al.

2 Heterogeneous Distributed Systems

In this paper, we focus on heterogeneous distributed systems where agents are of
different types characterized by different protocols. All agents are assumed to be
at most benign faulty,2 in the sense that they do not take actions not specified by
their protocol, cannot communicate wrong information, and have perfect recall.
At any time, however, agents may change their type, i.e., change their protocol.

These different protocols partition the set of processes into different types,
which are identified with the names of the protocols. The set of all existing
types is commonly known to all the agents. All agents of the same type, which
typically work towards the same goal, use the same protocol that is commonly
known to all agents of this type. What is not generally known to an agent is the
distribution of agents into types and the actual protocol of a type different from
its own. In other words, agent a generally does neither know the type nor the
protocol of agent b.

Communication in the system is governed by the protocols. Whereas all
protocols must use the same basic communication mechanism and a common
layering structure [23], i.e., (possibly non-synchronous) communication rounds,
agents of different types generally communicate according to different protocol
rules, data formats, encodings, etc. Communication actions are triggered by pre-
conditions that depend on the protocol of the agent’s type. Consequently, the
interpretation of each message depends on:

– the knowledge of the receiver about the type(s) the sender may belong to;
– the knowledge of the receiver about the communication protocol of this (these)

type(s).

More formally, we consider a finite set of processes Π = {p1, . . . , pn} that
communicate with each other by using a joint communication mechanism, such
as, e.g., shared memory objects or point-to-point messages. Each process exe-
cutes some protocol with a name (= type) taken from a commonly known set of
names A. However, no assumption is made about the types and the actual proto-
cols of distinct agents i and j being identical or mutually known. All protocols are
organized in a common, possibly non-synchronous communication round struc-
ture. We also require that the system has a common notion of time, represented
by a directed set T . Common choices for T are the set of natural number N,
or even the set of real numbers R. It should be noted that in Definitions 4–5,
we assume that concepts such as configuration and protocol match the standard
notions in distributed computing literature [4,21].

Definition 4 (Heterogeneous distributed system). We say that a tuple
〈Π,A,P, C, T 〉 is a heterogeneous distributed system iff

– Π = {p1, . . . , pn} is a finite set of processes;
– A = {A1, . . . , Ak} is a partition of Π into agent types;

2 Adding byzantine faults to the picture will be left for future research.

Logic of Communication Interpretation: How to Not Get Lost in Translation 125

– P = {P1, . . . ,Pk} is a collection of protocols that correspond to A, one protocol
per agent type;

– C is a communication medium; and
– T is a directed set representing global times.

The joint protocol of 〈Π,A,P, C, T 〉 is the protocol formed by the protocols of all
the agents.

In this setting, given multiple possibly non-cooperating teams of agents, we
need to re-define the notion of tasks and solvability. In particular, we generally
cannot impose restrictions on the output of processes in other partitions.

Definition 5 (Partial task). We say that a tuple 〈S, I,O,Δ〉 is a partial task
relative to S ⊆ Π iff I is a set of input configurations for Π; O is a set of output
configurations for S; and Δ is a validity correspondence that maps valid initial
configurations of the system to a subset of valid output configurations for S.

Definition 6 (Solvability). Let 〈Π,A,P, C, T 〉 be a heterogeneous distributed
system. We say that agents of type Ai ∈ A can solve a partial task T =
〈S, I,O,Δ〉 iff for any input configuration σ ∈ I, the execution of the joint
protocol of 〈Π,A,P, C, T 〉 leads to an output configuration ρ|S ∈ Δ(σ).

Note that traditional distributed systems with benign failures fall into the
particular case where A = {Π} and there is one unique protocol executed by
all processes. Similarly, distributed systems with send-restricted byzantine faults
(no false perceptions of received messages, but arbitrary message sending) could
be modeled as an instance with two types AB = {Correct,Faulty}, where all
agents of type Correct follow the intended protocol, whereas agents of type Faulty
can arbitrarily deviate from it.

3 Epistemic Logic for Heterogeneous Distributed
Systems

We consider a heterogeneous distributed system 〈Π,A,P, C, T 〉 according to Def-
inition 4, where processes are partitioned into different types according to their
protocol. Agents of the same type share a common protocol, which also includes
information on how to interpret messages from agents of various types. Recall
that we assume that each process knows its own protocol/type, and, therefore,
the protocol of all other agents of the same type, but not necessarily which agents
are of this type. In particular, an agent may be unsure whether another agent
belongs to its own type or not.

Agents interpret received messages by means of an interpretation function:

Definition 7 (Interpretation function). Let F be the set of well-defined
formulas used by agents to communicate. An interpretation function for type A ∈
A with respect to type E ∈ A messages is any function fAE : F → F.

126 G. Cignarale et al.

Intuitively, fAE(ϕ) corresponds to the knowledge that type A agents (or simply
A agents) have about the preconditions for E agents to send message ϕ. We
assume that function fAE , for every type E, is a priori known by every A agent,
as part of its protocol.

Example 8. Interpretation function fAE(ϕ) :=
 for all ϕ ∈ F corresponds
to the case when A agents have no knowledge about the communication pro-
tocol of E agents. For instance, byzantine agents who can send any message
at any time (send-unrestricted byzantine agents) can be captured by choosing
fCorrect,Faulty(ϕ) =
 for partition AE = {Correct,Faulty}. The minimal require-
ment that all correct agents tell the truth translates into fCorrect,Correct(ϕ) = ϕ.

Since we want to be able to express partition membership into our language
and formulas, we need to define partition membership atoms.

Definition 9 (Propositional variables and partition atoms). We con-
sider, for each process pi ∈ Π, a finite set Propi of propositional variables.
In addition, for each agent type A ∈ A, we consider the set ΠA := {Ap | p ∈ Π}
of partition atoms. The set of all atomic propositions is defined as

Prop :=
n⋃

i=1

Propi ∪
⋃

A∈A
ΠA.

Since A is a partition, every agent belongs to one and only one type. For
convenience, we denote the type of agent p by p̄. Furthermore, we will assume
that each agent knows its own type, i.e., Kp(p̄p).

Now that we have established the basics of our heterogeneous distributed
systems, we can proceed to define the language.

Definition 10 (Language of EHL). The language L of the epistemic hetero-
geneous logic extends the standard (multi-modal) epistemic language by a new
family of modalities called creed and is given by the grammar:

ϕ ::= r | ¬ϕ | (ϕ ∧ ϕ) | Kpϕ, (1)

where r ∈ Prop is an atomic proposition (i.e., propositional variable or partition
atom), p ∈ Π is an agent, and A,E ∈ A are agent types. Other boolean connec-
tives, as well as boolean constants
 and ⊥, are defined in the usual way. We
use the following derived modalities: K̂pϕ := ¬Kp¬ϕ and creed defined as

C
A\E
p ϕ := Ep → KpfAE(ϕ) (2)

for any agent p ∈ Π and agent types A,E ∈ A.

Creed C
A\E
p ϕ represents the amount of information an A agent can extract

from a message ϕ received from agent p under the assumption that p belongs
to type E of the partition. It is based on the a priori knowledge A agents pos-
sess of the preconditions for an E agent to send message ϕ, as encoded in the

Logic of Communication Interpretation: How to Not Get Lost in Translation 127

interpretation function fAE from Definition 7, which is external to the language.
This precondition already takes into account the Knowledge of Preconditions
principle [22], by assuming that the sender must know that the preconditions
hold. We use the standard Kripke model semantics with additional restrictions
for partition atoms:

Definition 11 (Semantics). Let 〈Π,A,P, C, T 〉 be a heterogeneous dis-
tributed system and {fAE | A,E ∈ A} be the collection of inter-
pretation functions for it. An (epistemic) Kripke frame F = (W,∼)
is a pair of a non-empty set W of worlds (or states) and a function
∼ : Π → P(W × W) that assigns to each agent p ∈ Π an equiva-
lence relation ∼p⊆ W × W on W . A Kripke model M = (W,∼, V)
is a triple where (W,∼) is an epistemic Kripke frame and V : W → P(Prop)
is a valuation function for atomic propositions. The truth relation |= between
Kripke models and formulas is defined as follows: M, s |= r iff r ∈ V (s) for
any r ∈ Prop; cases for the boolean connectives are standard; M, s |= Kpϕ iff
M, t |= ϕ for all t ∈ W such that s ∼p t. As usual, validity in a model, denoted
M |= ϕ, means M, s |= ϕ for all s ∈ W .

A Kripke model M = (W,∼, V) is called an EHL model iff the following two
conditions hold:

1. For any state s ∈ W and any agent p ∈ Π,
∣∣V (s) ∩ {Ap | A ∈ A}

∣∣ = 1, (3)

i.e., exactly one of partition atoms Ap involving agent p is true at state s.
2. For any agent p, any agent type A, and pair of states s and t,

s ∼p t =⇒
(
Ap ∈ V (s) ⇔ Ap ∈ V (t)

)
, (4)

i.e., p can distinguish worlds where it is of different types.

General validity, denoted |= ϕ, means M |= ϕ for all EHL models.

Example 12 For the interpretation functions from Example 8 for send-unrestrict-
ed byzantine agents, C

Correct\Faulty
p ϕ = Faultyp → Kp
. For epistemic models, it

is logically equivalent to
, meaning that no information can be gleaned from a
message under the assumption that it is sent by a fully byzantine agent without
perception flaws. At the same time, for truth-telling correct agents

C
Correct\Correct
p ϕ = Correctp → Kpϕ,

which closely matches the hope modality

Hpϕ = Correctp → Kp(Correctp → ϕ)

from [10]. Indeed, since we assume agents to know their own type, it is the case
that Correctp → KpCorrectp holds, making Hpϕ equivalent to C

Correct\Correct
p ϕ.

128 G. Cignarale et al.

Example 13 Apart from helping to understand messages, an interpretation func-
tion can be used to gain knowledge about the type of the sender. For instance,
if A agents know enough about the way E agents communicate to conclude that
a particular message ϕ can never be sent by an E agent, which corresponds to
fAE(ϕ) = ⊥, then C

A\E
q ϕ = Eq → Kq⊥. For epistemic models, such C

A\E
q ϕ is

logically equivalent to ¬Eq. In other words, having received ϕ from agent q, an
A agent p learns at least Kp¬Eq.

Remark 14 (Information from message passing). Let p, q ∈ Π be agents and
A be a partition of Π. The knowledge gained by agent p upon receiving a mes-
sage ϕ from agent q can be described by KpC

p
qϕ, where

C
p
qϕ :=

∧

E∈A
C

p̄\E
q ϕ (5)

In other words, knowing its own type, p considers all possible types for the
sender q and for each type considers the respective interpretation of the message;
the conjunction combined with the implications within creed make sure that the
appropriate type is chosen. Note that the presence of send-unrestricted agents
from Example 12 adds a conjunct to (5) that is equivalent to
. Hence, send-
unrestricted agents can be safely ignored in determining the message meaning.
By the same token, some conjuncts in (5) can rule out a particular type for
agent q as in Example 13. Finally, if p has already ruled out some type E, then
Kp¬Eq logically implies Kp(Eq → KqfAE(ϕ)) independent of the interpretation
function. In this case, the E-conjunct of (5) becomes redundant.

Example 15. In the system from Example 8 with send-unrestricted byzantine
agents, upon receiving message ϕ from agent q, agent p can ignore the possibility
of the sender being Faulty and conclude Correctq → Kqϕ, i.e., hope Hqϕ for the
case of factive beliefs, in full accordance with [10]. Note also that p may infer
Kqϕ from this message if p is sure that q is correct.

Now that we have established the basic definitions and semantics for the
logic, we will now provide an axiomatization that we prove sound and complete
in the next section.

Definition 16 (Logic EHL). Let 〈Π,A,P, C, T 〉 be a heterogeneous distributed
system and {fAE | A,E ∈ A} be the collection of interpretation functions for it.
Logic EHL is obtained by adding to the standard axiomatization of modal logic
of knowledge S5 the partition axioms P1–P3. The resulting axiom system is as
follows: for all p ∈ Π, all A ∈ A, and all E ∈ A such that E �= A,

Taut All propositional tautologies in the language of EHL;
k Kp(ϕ → ψ) → (Kpϕ → Kpψ); 4 Kpϕ → KpKpϕ;
t Kpϕ → ϕ; 5 ¬Kpϕ → Kp¬Kpϕ;

(MP) rule inferring ψ from ϕ → ψ and ϕ; (Nec) rule inferring Kpϕ from ϕ;

Logic of Communication Interpretation: How to Not Get Lost in Translation 129

P1
∨

A∈A
Ap; P2 Ap → ¬Ep; P3 Ap → KpAp. (6)

Partition axiom P1 states that each agent belongs to at least one of the types.
Partition axiom P2 postulates that each agent belongs to at most one of the
types. Together they imply that agent types partition the set of agent. Partition
axiom P3 expresses that every process knows its own type.

4 Soundness and Completeness of EHL

Since EHL is an extension of S5 with partition axioms governing the behavior
of partition atoms while EHL models are instances of epistemic models, the
soundness and completeness for EHL follows the standard proof for S5 (see,
e.g., [9]), where additionally it is necessary to establish that the partition axioms
are sound and that the canonical model satisfies the additional restrictions.

Theorem 17 (Soundness). Logic EHL is sound with respect to EHL models,
i.e., EHL � ϕ implies |= ϕ.

Proof. We only establish the validity of partition axioms. Axioms P1 and P2
hold due to condition (3). Similarly, P3 holds because of (4). ��

Completeness is proved by the standard canonical model construction, which
requires several definitions. We omit the proofs of the following lemmas if com-
pletely standard and only treat new cases otherwise.

Definition 18 (Maximal consistent sets). A set Γ ⊆ F of formulas is called
consistent iff EHL � ¬

∧
Γ0 for any finite subset Γ0 ⊆ Γ . A set Γ is called

maximal consistent iff Γ is consistent but no proper superset Δ � Γ is consistent.

Lemma 19 (Lindenbaum Lemma). Any consistent set Γ can be extended
to a maximal consistent set Δ ⊇ Γ .

Definition 20 (Canonical model). We define the canonical model MC =
(SC ,∼C , V C) is defined as follows:

– SC is the collection of all maximal consistent sets;
– Γ ∼p Δ iff {Kpϕ | Kpϕ ∈ Γ} = {Kpϕ | Kpϕ ∈ Δ};
– V C(Γ) := {r ∈ Prop | r ∈ Γ}.

Lemma 21 (Truth Lemma). For any ϕ ∈ F and any Γ ∈ SC ,

ϕ ∈ Γ ⇐⇒ MC , Γ |= ϕ

Lemma 22 (Correctness). The canonical model is an EHL model.

Proof. That SC �= ∅ and ∼p is an equivalence relation for each p ∈ Π is proved
the same way as for S5. It remains to show that (3) and (4) hold.

130 G. Cignarale et al.

(3) Consider any maximal consistent set Γ ∈ SC and any agent p ∈ Π. By the
standard properties of maximal consistent sets, all theorems of EHL belong
to each maximal consistent set, in particular,

(∨
A∈A Ap

)
∈ Γ because of

axiom P1. A disjunction belongs to a maximal consistent set iff one of the
disjuncts does. Hence, there exists at least one type A such that Ap ∈ Γ .
At the same time, for any other type E, we have (Ap → ¬Ep) ∈ Γ because
of axiom P2. Hence, Ep /∈ Γ because maximal consistent sets are consistent
and closed with respect to (MP). It follows that there is exactly one partition
atom of the form Ap in Γ . Hence, by the definition of V C ,

∣∣V C(Γ) ∩ {Ap | A ∈ A}
∣∣ = 1.

(4) Consider two maximal consistent sets Γ ∼p Δ. Let Ap ∈ Γ . By P3, also
KpAp ∈ Γ . Hence, KpAp ∈ Δ by the definition of ∼p. Finally, Ap ∈ Δ by
axiom t. We proved that Ap ∈ Γ implies Ap ∈ Δ. The inverse implication
is analogous. ��

Theorem 23 (Completeness). Logic EHL is complete with respect to EHL
models, i.e., EHL � ϕ whenever |= ϕ.

Proof. We prove the contrapositive. Assume EHL � ϕ. That means that {¬ϕ} is
consistent. By Lindenbaum Lemma 19, there exists a maximal consistent set Γ ⊇
{¬ϕ}. Hence, this Γ ∈ SC for the canonical model MC defined in Definition 20,
which is an EHL model by Lemma 22. By the Truth Lemma 21, it follows that
MC , Γ |= ¬ϕ. Since MC , Γ �|= ϕ for some EHL model, ϕ is not valid, i.e., �|= ϕ.��

5 Properties of Creed

In this section, we derive several useful properties of creed modalities.
The explicit assumption P3 that each agent knows which type it belongs to

implies a complete knowledge of own type, i.e., each agent a knows whether it
belongs to any type A:

Theorem 24. EHL � ¬Ap → Kp¬Ap for all p ∈ Π, A ∈ A, i.e., agents know
which type they do not belong to.

Proof. By P1, agent p must belong to one of the types. Hence, if not type A, it
must be one of the remaining types, i.e., ¬Ap →

∨
E �=A Ep. Therefore, we have

¬Ap →
∨

E �=A KpEp due to P3. Given that Ep → ¬Ap for each E �= A by P2,
also KpEp → Kp¬Ap for each E �= A by standard modal reasoning. Hence,
¬Ap → Kp¬Ap. ��

Corollary 25. EHL � KpAp ∨ Kp¬Ap for all p ∈ Π, A ∈ A

Proof. It follows directly from P3 and Theorem 24 by propositional reasoning.

The creed modality amounts to K45-belief:

Logic of Communication Interpretation: How to Not Get Lost in Translation 131

Theorem 26. Creed satisfies the normality, positive and negative introspection
axioms if applied to statements already translated by an interpretation function.
Formally, let �ϕ�AE stand for any formula ξ such that fAE(ξ) = ϕ. Then the
following formulas are derivable in EHL:

kC � C
A\E
p �ϕ → ψ�AE →

(
C

A\E
p �ϕ�AE → C

A\E
p �ψ�AE

)

4C � C
A\E
p �ϕ�AE → C

A\E
p

�
C

A\E
p �ϕ�AE

�

AE

5C � ¬C
A\E
p �ϕ�AE → C

A\E
p

�
¬C

A\E
p �ϕ�AE

�

AE

Proof. We start by deriving kC:

1. C
A\E
p �ϕ → ψ�AE = Ep → Kp(ϕ → ψ) definition of creed

2. Kp(ϕ → ψ) → (Kpϕ → Kpψ) axiom k

3. C
A\E
p �ϕ → ψ�AE →

(
Ep → (Kpϕ → Kpψ)

)
prop. reasoning from 1.,2.

4. C
A\E
p �ϕ�AE = Ep → Kpϕ definition of creed

5. C
A\E
p �ϕ → ψ�AE →

(
C
A\E
p �ϕ�AE → (Ep → Kpψ)

)
prop. reasoning from 3.,4.

6. Ep → Kpψ = C
A\E
p �ψ�AE definition of creed

7. C
A\E
p �ϕ → ψ�AE →

(
C

A\E
p �ϕ�AE → C

A\E
p �ψ�AE

)
rewriting of 5. using 6.

The following is a derivation of 4C:

1. C
A\E
p �ϕ�AE = Ep → Kpϕ definition of creed

2. Kpϕ → KpKpϕ axiom 4

3. C
A\E
p �ϕ�AE → (Ep → KpKpϕ) prop. reasoning from 1.,2.

4. Kpϕ → (Ep → Kpϕ) prop. tautology
5. KpKpϕ → Kp(Ep → Kpϕ) normal modal reasoning from 4.

6. C
A\E
p �ϕ�AE →

(
Ep → KpC

A\E
p �ϕ�AE

)
prop. reasoning from 3.,5. using 1.

7. Ep → KpC
A\E
p �ϕ�AE = C

A\E
p

�
C

A\E
p �ϕ�AE

�

AE
definition of creed

8. C
A\E
p �ϕ�AE → C

A\E
p

�
C

A\E
p �ϕ�AE

�

AE
rewriting of 6. using 7.

The following is a derivation of 5C:

1. ¬C
A\E
p �ϕ�AE ↔ Ep ∧ ¬Kpϕ prop. reasoning from the definition of creed

2. Ep → KpEp axiom P3
3. ¬Kpϕ → Kp¬Kpϕ axiom 5
4. ¬C

A\E
p �ϕ�AE → Kp(Ep ∧ ¬Kpϕ) normal modal reasoning from 1.–3.

5. ¬C
A\E
p �ϕ�AE → Kp¬C

A\E
p �ϕ�AE normal modal reasoning from 1.,4.

6. ¬C
A\E
p �ϕ�AE →

(
Ep → Kp¬C

A\E
p �ϕ�AE

)
prop. reasoning from 5.

7. ¬C
A\E
p �ϕ�AE → C

A\E
p

�
¬C

A\E
p �ϕ�AE

�

AE
rewriting of 6. ��

In addition, this creed belief is factive whenever the speaker type is correctly
identified (cf. a similar conditional factivity for hope in [10]):

132 G. Cignarale et al.

Theorem 27. t∗C : EHL � Ep →
(
C

A\E
p �ϕ�AE → ϕ

)
.

Proof. 1. � C
A\E
p �ϕ�AE = (Ep → Kpϕ) definition of creed

2. � Kpϕ → ϕ axiom t

3. � Ep →
(
C

A\E
p �ϕ�AE → ϕ

)
prop. reasoning from 1.,2. ��

On the other hand, misidentifying the speaker’s type may easily destroy
factivity. Let p /∈ E. Given that C

A\E
p �ϕ�AE → ϕ = (Ep → Kpϕ) → ϕ, we have

Ep → Kpϕ true simply because Ep is false. Accordingly, there is no reason why
ϕ must hold.

This provides a formal model of how a true statement can lead to false
beliefs due to misinterpretation. Moreover, as Theorem 26 shows, such false
beliefs cannot be detected by introspection.

6 Applications

6.1 Formalizing “The Murders in the Rue Morgue”

Example 1 describes a situation where honest witnesses provide contradictory
information that is, nevertheless, successfully filtered by Dupin. We show how
his reasoning can be formalized and explained using the creed modality. Dupin
reads all witness accounts from a paper. We assume no misinterpretation of what
the witnesses said. In addition, the paper mentions the exact type of each wit-
ness (French not speaking Italian, Dutch not speaking French, etc.), which again
is assumed to be factive. Hence, we use only one creed modality with the iden-
tity interpretation function per witness account read by Dupin. In other words,
Dupin reasons about the available information without the need to interpret it.
The crucial question is: Why does Dupin ignore some but not all of the infor-
mation provided by each witness? The answer becomes clear if we view each
witness account as one or several creed modalities regarding what this witness
heard from m. Ignoring slight variations in details, all witness statements can be
divided into two types: (a) m did not speak the language I speak; (b) m spoke
a language I do not speak. Dupin accepts statements (a) but ignores state-
ments (b). Even when statement (b) of a witness contradicts statement (a) of
another witness, Dupin accepts statements (a) from both witnesses. Here is how
these statements of, say, the French witness f ∈ F regarding the utterance ϕ
of m can be represented via the creed modality:

(a) C
F\F
m ϕ = Fm → KmfFF (ϕ) = Fm → Km⊥;

(b) C
F\I
m ϕ = Im → KmfFI(ϕ) = Im → Km
.

Indeed, for (a), since the interpreting function from French to French is mean-
ingful (in the simplest case, is the identity function), the fact that f could not
understand what m was saying in this case means that fFF (ϕ) = ⊥. On the

Logic of Communication Interpretation: How to Not Get Lost in Translation 133

other hand, for (b), since f does not know Italian, he has fFI(ψ) =
 for all ψ.
As discussed in Example 13, (a) yields ¬Fm. Similarly, (b) yields
 as per Exam-
ple 12. This rightfully leads Dupin to the conclusion ¬Fm, i.e., m /∈ F . In other
words, statements (b) are ignored because they are trivial, not because they are
false. One might say that, for f , a stronger precondition of m saying something
in Italian is m ∈ I. But using Im → KmIm in place of (b) would yield axiom
P3, still a logically trivial statement.

In the story, m was an orangutan (Ourang-Outang in Poe’s spelling), thus,
fulfilling m /∈ A for any language A discussed.

6.2 Solution to Knights and Knaves

Clearly the partition of the island from Example 2 involves two types: I for
knIghts and A for knAves. Let s be the reasoner and L be his type. The puzzle
postulates that fLI(ϕ) = ϕ and fLA(ϕ) = ¬ϕ for any formula ϕ. Accordingly,
the full information agent s receives from agent p’s statement that ϕ is

C
s
pϕ = C

L\I
p ϕ ∧ C

L\A
p ϕ = (Ip → Kpϕ) ∧ (Ap → Kp¬ϕ).

In the puzzle in question, p states that at least one of p and q is a knave, Ap∨Aq

in formulas. Hence, agent s learns

C
s
p(Ap ∨ Aq) =

(
Ip → Kp(Ap ∨ Aq)

)
∧

(
Ap → Kp¬(Ap ∨ Aq)

)
. (7)

Here is how to derive in EHL that p is a knight and q is a knave, i.e., Ip ∧ Aq:

1. Ap → Kp¬(Ap ∨ Aq) prop. reasoning from (7)
2. Kp¬(Ap ∨ Aq) → ¬Ap t and prop. reasoning
3. ¬Ap prop. reasoning since Ap → ¬Ap follows from 1. and 2.
4. ¬Ap → Ip P1 and prop. reasoning
5. Ip (MP) from 3. and 4.
6. Ip → Kp(Ap ∨ Aq) prop. reasoning from (7)
7. Ip → Ap ∨ Aq t and prop. reasoning from 6.
8. Ip → Aq prop. reasoning from 7. since Ip → ¬Ap by P2
9. Ip ∧ Aq prop. reasoning from 5. and 8.

Hence, EHL � C
s
p(Ap ∨ Aq) → Ip ∧ Aq.

6.3 Modelling of Software Updates

Consider an heterogeneous distributed system with two agent-types, U for the
updated agents running the most recent software and O for the agents running
the old protocol, which is designed with the possibility of future updates in
mind. Since the new protocols are designed by taking into account the existence
of processes running the old protocol, the interpretation functions can be built
asymmetrically. Each type interprets information from its own type directly:

134 G. Cignarale et al.

fUU (ϕ) = ϕ and fOO(ϕ) = ϕ. U agents can interpret messages from O agents
using backward compatibility fUO(ϕ) = g

(
fOO(ϕ)

)
, where g translates into the

updated system language.
The opposite is not always possible as O agents have no knowledge of the

new protocols. Accordingly, messages ϕ compatible with the old protocol will be
processed as before, i.e., using fOO(ϕ). But if ϕ is unknown to the old protocol,
i.e., fOO(ϕ) = ⊥, the creed under the assumption that sender s ∈ O would yield
C

O\O
s ϕ ↔ ¬Os. In this case, receiver r can conclude that the sender process s

does not conform to the old protocol. Since this error flagging disappears when r
is also updated, however, it may very well be the case that this does not violate
the fault resilience properties of the old protocol, in particular, when not too
many processes are updated simultaneously. In this case, r could be guaranteed
to always compute a correct result.

6.4 Comparison to Related Work

The interpretation functions in the knights and knaves puzzles depend on the
speaker only, which made it possible to formalize them in [20] by means of public
announcements. In the other two examples (Rue Morgue and software update),
there is an additional difficulty: even knowing the sender’s type, agents interpret
messages differently based on the varying levels of knowledge about the sender’s
protocol. This important degree of freedom of our method compared to [20] is
especially central to the software update example.

7 Conclusion and Future Work

This paper provides a sound and complete axiomatization for a logic for heteroge-
neous distributed systems that generalizes the logic of fault-tolerant distributed
systems and enables us to explicitly model the interpretation of messages sent by
agents that execute different protocols (identified by types). It revolves around
a (derived) new modality called creed, a generalization of the hope modality for
byzantine agents, that satisfies positive and negative introspection post message-
interpretation and enjoys factivity when the sender’s type is correctly identified.
We demonstrated the explanatory power of our approach by applying it to three
representative examples from areas ranging from detective reasoning to logic
puzzles to distributed systems. The current formalization assumes that agents
knowledge is factive even if this factivity does not affect how they communicated.
Relaxing this assumption and working with agents whose beliefs may be com-
promised, e.g., due to sensor errors or memory failures, is a natural next step.
Another natural extension is to allow for on-the-fly updates to the interpretation
functions based on received information.

Acknowledgments. The authors would like to thank Stephan Felber, Krisztina
Fruzsa, Rojo Randrianomentsoa, and Thomas Schlögl as well as the participants of
Dagstuhl Seminar 23272 “Epistemic and Topological Reasoning in Distributed Sys-
tems” for discussions and suggestions. We also thank the anonymous reviewers for
their useful comments.

Logic of Communication Interpretation: How to Not Get Lost in Translation 135

References

1. Ajmani, S., Liskov, B., Shrira, L.: Modular software upgrades for distributed sys-
tems. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 452–476. Springer,
Heidelberg (2006). https://doi.org/10.1007/11785477 26

2. Amoussou-Guenou, Y., Biais, B., Potop-Butucaru, M., Tucci-Piergiovanni, S.:
Rational vs byzantine players in consensus-based blockchains. In: AAMAS 2020:
Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems, pp. 43–51. IFAAMAS (2020). https://dl.acm.org/doi/abs/
10.5555/3398761.3398772

3. Artemov, S.: Observable models. In: Artemov, S., Nerode, A. (eds.) LFCS 2020.
LNCS, vol. 11972, pp. 12–26. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-36755-8 2

4. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd edn. Wiley, Hoboken (2004)

5. B́ılková, M., Christoff, Z., Roy, O.: Revisiting epistemic logic with names. In: Pro-
ceedings Eighteenth Conference on Theoretical Aspects of Rationality and Knowl-
edge: Beijing, China, June 25–27, 2021. Electronic Proceedings in Theoretical Com-
puter Science, vol. 335, pp. 39–54. Open Publishing Association (2021). https://
doi.org/10.4204/eptcs.335.4

6. Castañeda, A., Gonczarowski, Y.A., Moses, Y.: Unbeatable consensus. Distrib.
Comput. 35(2), 123–143 (2022). https://doi.org/10.1007/s00446-021-00417-3

7. Cignarale, G., Schmid, U., Tahko, T., Kuznets, R.: The role of a priori belief in
the design and analysis of fault-tolerant distributed systems. Mind. Mach. 33(2),
293–319 (2023). https://doi.org/10.1007/s11023-023-09631-3

8. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Con-
cepts and Design, 5th edn. Addison-Wesley, Boston (2011)

9. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, Synthese
Library, vol. 337. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-
5839-4

10. Fruzsa, K., Kuznets, R., van Ditmarsch, H.: A new hope. In: Fernández-Duque, D.,
Palmigiano, A., Pinchinat, S. (eds.) Advances in Modal Logic, vol. 14, pp. 349–370.
College Publications (2022)

11. Fruzsa, K., Kuznets, R., Schmid, U.: Fire! In: Proceedings Eighteenth Conference
on Theoretical Aspects of Rationality and Knowledge: Beijing, China, June 25–27,
2021. Electronic Proceedings in Theoretical Computer Science, vol. 335, pp. 139–
153. Open Publishing Association (2021). https://doi.org/10.4204/EPTCS.335.13

12. Groce, A., Katz, J., Thiruvengadam, A., Zikas, V.: Byzantine agreement with a
rational adversary. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012. LNCS, vol. 7392, pp. 561–572. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31585-5 50

13. Halpern, J.Y.: Using reasoning about knowledge to analyze distributed systems.
Ann. Rev. Comput. Sci. 2, 37–68 (1987). https://doi.org/10.1146/annurev.cs.02.
060187.000345

14. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (1990). https://doi.org/10.1145/79147.79161

15. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Cornell University Press, New York (1962)

16. Kuznets, R., Prosperi, L., Schmid, U., Fruzsa, K.: Causality and epistemic rea-
soning in byzantine multi-agent systems. In: Moss, L.S. (ed.) Proceedings Seven-
teenth Conference on Theoretical Aspects of Rationality and Knowledge: Toulouse,

https://doi.org/10.1007/11785477_26
https://dl.acm.org/doi/abs/10.5555/3398761.3398772
https://dl.acm.org/doi/abs/10.5555/3398761.3398772
https://doi.org/10.1007/978-3-030-36755-8_2
https://doi.org/10.1007/978-3-030-36755-8_2
https://doi.org/10.4204/eptcs.335.4
https://doi.org/10.4204/eptcs.335.4
https://doi.org/10.1007/s00446-021-00417-3
https://doi.org/10.1007/s11023-023-09631-3
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.4204/EPTCS.335.13
https://doi.org/10.1007/978-3-642-31585-5_50
https://doi.org/10.1007/978-3-642-31585-5_50
https://doi.org/10.1146/annurev.cs.02.060187.000345
https://doi.org/10.1146/annurev.cs.02.060187.000345
https://doi.org/10.1145/79147.79161

136 G. Cignarale et al.

France, 17–19 July 2019. Electronic Proceedings in Theoretical Computer Science,
vol. 297, pp. 293–312. Open Publishing Association (2019). https://doi.org/10.
4204/EPTCS.297.19

17. Kuznets, R., Prosperi, L., Schmid, U., Fruzsa, K.: Epistemic reasoning with
byzantine-faulty agents. In: Herzig, A., Popescu, A. (eds.) FroCoS 2019. LNCS
(LNAI), vol. 11715, pp. 259–276. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29007-8 15

18. Kuznets, R., Prosperi, L., Schmid, U., Fruzsa, K., Gréaux, L.: Knowledge in byzan-
tine message-passing systems I: framework and the causal cone. Technical report.
TUW-260549, TU Wien (2019). https://publik.tuwien.ac.at/files/publik 260549.
pdf

19. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176

20. Liu, F., Wang, Y.: Reasoning about agent types and the hardest logic puzzle ever.
Mind. Mach. 23(1), 123–161 (2013). https://doi.org/10.1007/s11023-012-9287-x

21. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
22. Moses, Y.: Relating knowledge and coordinated action: the knowledge of precon-

ditions principle. In: Ramanujam, R. (ed.) Proceedings Fifteenth Conference on
Theoretical Aspects of Rationality and Knowledge: Carnegie Mellon University,
Pittsburgh, USA, June 4–6, 2015. Electronic Proceedings in Theoretical Computer
Science, vol. 215, pp. 231–245. Open Publishing Association (2015). https://doi.
org/10.4204/EPTCS.215.17

23. Moses, Y., Rajsbaum, S.: A layered analysis of consensus. SIAM J. Comput. 31(4),
989–1021 (2002). https://doi.org/10.1137/S0097539799364006

24. Moses, Y., Shoham, Y.: Belief as defeasible knowledge. Artif. Intell. 64(2), 299–321
(1993). https://doi.org/10.1016/0004-3702(93)90107-M

25. Saur, K., Collard, J., Foster, N., Guha, A., Vanbever, L., Hicks, M.: Safe and flexible
controller upgrades for SDNs. In: Symposium on Software Defined Networking
(SDN) Research (SOSR 2016): March 14–15, 2016, in Santa Clara, CA. ACM
(2016). https://doi.org/10.1145/2890955.2890966

26. Smullyan, R.M.: What is the Name of this Book? The Riddle of Dracula and Other
Logical Puzzles. Prentice-Hall, Hoboken (1978)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.4204/EPTCS.297.19
https://doi.org/10.4204/EPTCS.297.19
https://doi.org/10.1007/978-3-030-29007-8_15
https://doi.org/10.1007/978-3-030-29007-8_15
https://publik.tuwien.ac.at/files/publik_260549.pdf
https://publik.tuwien.ac.at/files/publik_260549.pdf
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/s11023-012-9287-x
https://doi.org/10.4204/EPTCS.215.17
https://doi.org/10.4204/EPTCS.215.17
https://doi.org/10.1137/S0097539799364006
https://doi.org/10.1016/0004-3702(93)90107-M
https://doi.org/10.1145/2890955.2890966
http://creativecommons.org/licenses/by/4.0/

Symbolic Model Construction
for Saturated Constrained Horn Clauses

Martin Bromberger1 , Lorenz Leutgeb1,2(B) , and Christoph Weidenbach1

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

{mbromber,lorenz,weidenb}@mpi-inf.mpg.de
2 Graduate School of Computer Science, Saarland Informatics Campus,

Saarbrücken, Germany

Abstract. Clause sets saturated by hierarchic ordered resolution do
not offer a model representation that can be effectively queried, in
general. They only offer the guarantee of the existence of a model.
We present an effective symbolic model construction for saturated con-
strained Horn clauses. Constraints are in linear arithmetic, the first-order
part is restricted to a function-free language. The model is constructed
in finite time, and non-ground clauses can be effectively evaluated with
respect to the model. Furthermore, we prove that our model construction
produces the least model.

Keywords: Bernays-Schönfinkel Fragment · Linear Arithmetic · Horn
Clauses · Superposition · Model Construction

1 Introduction

Constrained Horn Clauses (CHCs) combine logical formulas with constraints
over various domains, e.g. linear real arithmetic, linear integer arithmetic, equali-
ties of uninterpreted functions [15]. This formalism has gained widespread atten-
tion in recent years due to its applications in a variety of fields, including program
analysis and verification: safety, liveness, and termination [17,38], complexity
and resource analysis [33], intermediate representation [22], and software test-
ing [35]. Technical controls, so called Supervisors, like an electronic engine control
unit, or a lane change assistant in a car [8,9] can be modelled, run, and proven
safe. Moreover, there exist many different approaches for reasoning in CHCs and
associated first-order logic fragments extended with theories [2,5,7,10,15,23–
25,28,29,34,37]. Thus, CHCs are a powerful tool for reasoning about complex
systems that involve logical constraints, and they have been used to solve a wide
range of problems.

A failed proof attempt of some conjecture or undesired run points to a bug.
In this case investigation of the cause of the unexpected result or behavior is
crucial. Building a model of the situation that can then be effectively queried
is an important means towards a repair. However, some algorithms for CHCs,
c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 137–155, 2023.
https://doi.org/10.1007/978-3-031-43369-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_8&domain=pdf
http://orcid.org/0000-0001-7256-2190
http://orcid.org/0000-0003-0391-3430
http://orcid.org/0000-0001-6002-0458
https://doi.org/10.1007/978-3-031-43369-6_8

138 M. Bromberger et al.

e.g. hierarchic superposition, which boils down to hierarchic ordered resolution
in the context of CHCs, do not return a model that can be effectively queried
if a proof attempt fails, in general. If so, queries are still restricted to ground
clauses [4].

The contribution of our paper can be seen as an extension for these saturation
based algorithms that produces models and not just saturated clause sets. In
fact, we show how to build symbolic models out of any saturated CHC clause
set over linear arithmetic. This fragment is equivalent to Horn clause sets of
linear arithmetic combined with the Bernays-Schönfinkel fragment. Recall that
although satisfiability in this fragment is undecidable [16,26], in general, for a
finitely saturated set we can construct such a representation in finite time.

Our models fulfill all important properties postulated in the literature for
automated model building in first-order logic [13,20]. First, they can be effec-
tively constructed, i.e., each model is represented by one linear arithmetic for-
mula of finite size for each of its predicates and it can be constructed in finite
time. Second, they are unique, i.e., the model representation specifies exactly
one interpretation; in our case the least model. Third, they can be effectively
queried, i.e., we provide decision procedures that evaluate whether an atom,
clause, or formula is entailed/satisfied by the model. Fourth, it is possible to test
the equivalence of two models. The approach we present does not exploit fea-
tures of linear arithmetic beyond equality, the existence of a well-founded order
for the theories’ universe, and decidability of the theory. The results may there-
fore be adapted to other constraint domains. Model representation that can
be effectively constructed and queried like ours are also called effective model
representations. Moreover, our method is the first effective model construction
approach for ordered resolution (or its extension to superposition) that is based
on saturation, goes beyond ground clauses, and includes theory constraints. In
the future, we plan to use this approach as the basis for a more general model
construction approach that also works on more expressive fragments of first-order
logic modulo theories.

Our model construction is inspired by the model construction operator used
in the proof for refutational completeness of hierarchic superposition [3,6,30].
The main difference is that the model construction operator from the refuta-
tional completeness proof is restricted to ground clauses and executed on the
potentially infinite ground instances of the saturated clause set (in addition
to an infinite axiomatization of the background theory as ground clauses). As a
result, the model construction operator from the refutational completeness proof
cannot effectively construct a model because iterating over a potentially infinite
set means it may diverge. Moreover, in contrast to our model construction, the
original model operator cannot effectively evaluate non-ground atoms, clauses,
or formulas. It is, however, sufficient, to show the existence of a model if the
clause set is saturated and does not contain the empty clause [3,6,30]. In our
version of the model construction operator, we managed to lift the restriction to
ground clause sets by restricting the input logic to the Horn Bernays-Schönfinkel
fragment instead of full first-order logic. This enables us to define a strict prop-
agation/production order for our non-ground clauses instead of just for ground
clauses. As a result, we can construct the model one clause at a time.

Symbolic Model Construction for Saturated Constrained Horn Clauses 139

The paper is organized as follows. In Sect. 2 we clarify notation and
preliminaries. The main contribution is presented in Sect. 3. At the end of
this section, we also explain how our models satisfy the postulates (see [13,
Section 5.1, p. 234]) by Fermüller and Leitsch for automated model building. We
conclude in Sect. 4. Proofs were elided in favor of explanations and examples.
An extended version, which includes proofs, can be found at [12].

2 Preliminaries and Notation

We briefly recall the basic logical formalisms and notations we build upon [9].
Our starting point is a standard first-order language with variables (denoted
x, y, z), predicates (denoted P,Q) of some fixed arity, and terms (denoted t, s).
An atom (denoted A) is an expression P (t1, . . . , tn) for a predicate P of arity
n = arity(P). When the terms t1, . . . , tn in P (t1, . . . , tn) are not relevant in some
context, we also write P (∗). A positive literal is an atom A and a negative literal
is a negated atom ¬A. We define comp(A) = ¬A, comp(¬A) = A, |A| = A
and |¬A| = A. Literals are usually denoted L,K. We sometimes write literals as
[¬]P (∗), meaning that the sign of the literal is arbitrary, often followed by a case
distinction. Formulas are defined in the usual way using quantifiers ∀, ∃ and the
boolean connectives (in order of decreasing binding strength) ¬, ∨, ∧, →, and
↔. The logic we consider does not feature a first-order equality predicate.

A clause (denoted C,D) is a universally closed disjunction of literals A1∨· · ·∨
An ∨¬B1 ∨· · ·∨¬Bm. We may equivalently write B1 ∧· · ·∧Bm → A1 ∨· · ·∨An.
A clause is Horn if it contains at most one positive literal, i.e. n ≤ 1. In Sect. 3,
all clauses considered are Horn clauses. If Y is a term, formula, or a set thereof,
vars(Y) denotes the set of all variables in Y , and Y is ground if vars(Y) = ∅.
Analogously, Π(Y) is the set of predicate symbols occurring in Y .

The Bernays-Schönfinkel Clause Fragment (BS) in first-order logic consists
of first-order clauses where all terms are either variables or constants. The
Horn Bernays-Schönfinkel Clause Fragment (HBS) is further restricted to Horn
clauses.

A substitution σ is a function from variables to terms with a finite domain
and codomain. We denote substitutions by σ, τ . The application of substitutions
is often written postfix, as in xσ, and is homomorphically extended to terms,
atoms, literals, clauses, and quantifier-free formulas. A substitution is ground if
its codomain is ground. Let Y denote some term, literal, clause, or clause set. A
substitution σ is a grounding for Y if Y σ is ground, and Y σ is a ground instance
of Y in this case. We denote by gnd(Y) the set of all ground instances of Y .
The most general unifier mgu(Z1, Z2) of two terms/atoms/literals Z1 and Z2 is
defined as usual, and we assume that it does not introduce fresh variables and
is idempotent.

2.1 Horn Bernays-Schönfinkel with Linear Arithmetic

The class HBS(LRA) is the extension of the Horn Bernays-Schönfinkel frag-
ment with linear real arithmetic (LRA). Analogously, the classes HBS(LQA) and

140 M. Bromberger et al.

HBS(LIA) are the extensions of the Horn Bernays-Schönfinkel fragment with lin-
ear rational arithmetic (LQA) and linear integer arithmetic (LIA), respectively.
The only difference between the three classes are the sort LA their variables and
terms range over and the universe U over which their interpretations range. As
the names already imply LA = LRA and U = R for HBS(LRA), LA = LQA and
U = Q for HBS(LQA), and LA = LIA and U = Z for HBS(LIA). The results
presented in this paper hold for all three classes and by HBS(LA) we denote
that we are talking about an arbitrary one of them.

Linear arithmetic terms are constructed from a set X of variables, the set of
constants c ∈ Q (if in HBS(LRA) or HBS(LQA)) or c ∈ Z (if in HBS(LIA)),
and binary function symbols + and − (written infix). Additionally, we allow
multiplication · if one of the factors is a constant. Multiplication only serves us
as syntactic sugar to abbreviate other arithmetic terms, e.g., x + x + x is abbre-
viated to 3 · x. Atoms in HBS(LA) are either first-order atoms (e.g., P (13, x))
or (linear) arithmetic atoms (e.g., x < 42). Arithmetic atoms are denoted by λ
and may use the predicates ≤, <,≈, ≈, >,≥, which are written infix and have
the expected fixed interpretation. We use ≈ instead of = to avoid confusion
between equality in LA and equality on the meta level. While we do not permit
quantifiers in the syntax of clauses, the notion of symbolic interpretations that
we will develop does require this, denoted as usual. By atoms(Y)/quants(Y) we
denote the linear arithmetic atoms/quantifiers in a formula or set of formulas Y .
First-order literals and related notation is defined as before. Arithmetic literals
coincide with arithmetic atoms, since the arithmetic predicates are closed under
negation, e.g., ¬(x ≥ 42) is equivalent to x < 42.

HBS(LA) clauses are defined as for HBS but using HBS(LA) atoms. We often
write clauses in the form Λ ‖ C where C is a clause solely built of free first-order
literals and Λ is a multiset of LA atoms called the constraint of the clause. A
clause of the form Λ ‖ C is therefore also called a constrained clause. Since the
interpretation of linear arithmetic relations is fixed, we set Π(Λ ‖ C) := Π(C).

The fragment we consider in Sect. 3 is restricted even further to abstracted
clauses: For any clause Λ ‖ C, all terms in C must be variables. Put differently,
we disallow any arithmetic function symbols, including numerical constants, in
C. Variable abstraction, e.g. rewriting x ≥ 3 ‖ P (x, 1) to x ≥ 3, y ≈ 1 ‖ P (x, y), is
always possible. Hence, the restriction to abstracted clauses is not a theoretical
limitation, but allows us to formulate our model construction operator in a more
concise way. We assume abstracted clauses for theory development, but we prefer
non-abstracted clauses in examples for readability, e.g., a unit clause P (3, 5) is
considered in the development of the theory as the clause x ≈ 3, y ≈ 5 ‖ P (x, y).

In contrast to other works, e.g. [11], we do not permit first-order constants,
and consequently also no variables that range over the induced Herbrand uni-
verse. All variables are arithmetic in the sense that they are interpreted by U .
Since we only allow equalities in the arithmetic constraint, it is possible to sim-
ulate variables over first-order constants, by e.g. numbering them, i.e. defining
a bijection between N and constant symbols. So this again not a theoretical
limitation.

Symbolic Model Construction for Saturated Constrained Horn Clauses 141

The semantics of Λ ‖ C is as follows:

Λ ‖ C iff
(∧

λ∈Λ

λ
) → C iff

(∨

λ∈Λ

¬λ
) ∨ C

For example, the clause x > 1∨y ≈ 5∨¬Q(x)∨R(x, y) is also written x ≤ 1, y ≈
5 ‖ ¬Q(x) ∨ R(x, y). The negation ¬(Λ ‖ C) of a constrained clause Λ ‖ C where
C = A1 ∨ · · · ∨ An ∨ ¬B1 ∨ · · · ∨ ¬Bm is thus equivalent to (

∧
λ∈Λ λ) ∧ ¬A1 ∧

· · · ∧ ¬An ∧ B1 ∧ · · · ∧ Bm. Note that since the neutral element of conjunction
is �, an empty constraint is thus valid, i.e. equivalent to true. In analogy to the
empty clause in settings without constraints, we write � to mean any and all
clauses Λ ‖ ⊥ where Λ is satisfiable, which are all unsatisfiable.

An assignment for a constraint Λ is a substitution (denoted β) that maps all
variables in vars(Λ) to values in U . An assignment is a solution for a constraint
Λ if all atoms λ ∈ (Λβ) evaluate to true. A constraint Λ is satisfiable if there
exists a solution for Λ. Otherwise it is unsatisfiable.

We assume pure input clause sets because otherwise satisfiability is unde-
cidable for impure HBS(LA) [21]. This means the only constants of our sort
LA are concrete rational numbers. Irrational numbers are not allowed by the
standard definition of the theory. Fractions are not allowed if LA = LIA. Sat-
isfiability of pure HBS(LA) clause sets is semi-decidable, e.g., using hierarchic
superposition [3] or SCL(T) [10]. Note that pure HBS(LA) clauses correspond
to constrained Horn clauses (CHCs) with LA as background theory.

All arithmetic predicates and functions are interpreted in the usual way
denoted by the interpretation ALA. An interpretation of HBS(LA) coincides with
ALA on arithmetic predicates and functions, and freely interprets non-arithmetic
predicates. For pure clause sets this is well-defined [3]. Logical satisfaction and
entailment is defined as usual, and uses similar notation as for HBS.

Example 1. The clause y ≥ 5, x′ ≈ x + 1 ‖ S0(x, y) → S1(x′, 0) is part of a
timed automaton with two clocks x and y modeled in HBS(LA). It represents a
transition from state S0 to state S1 that can be traversed only if clock y is at
least 5 and that resets y to 0 and increases x by 1.

2.2 Ordering Literals and Clauses

In order to define redundancy for constrained clauses, we need an order : Let ≺Π

be a total, well-founded, strict ordering on predicate symbols and let ≺U be a
total, well-founded, strict ordering on the universe U . (Note that ≺ cannot be
the standard ordering < because it is not well-founded for Z, Q, or R. In the case
of R, the existence of such an order is even dependent on whether we assume
the axiom of choice [18].) We extend these orders step by step. First, to atoms,
i.e., P (�a) ≺ Q(�b) if P ≺Π Q or P = Q, �a,�b ∈ U |�a|, and �a ≺lex

�b, where ≺lex is
the lexicographic extension of ≺U . Next, we extend the order to literals with a
strict precedence on the predicate and the polarity, i.e.,

P (�t) ≺ ¬P (�s) ≺ Q(�u) if P ≺ Q

142 M. Bromberger et al.

independent of the arguments of the literals. Then, take the multiset extension
to order clauses. To handle constrained clauses extend the relation such that
constraint literals (in our case arithmetic literals) are always smaller than first-
order literals. We conflate the notation of all extensions into the symbol ≺ and
define � as the reflexive closure of ≺. Note that ≺ is only total for ground
atoms/literals/clauses, which is sufficient for a hierarchic superposition order [6].

Definition 2 (≺-maximal Literal). A literal L is called ≺-maximal in a
clause C if there exists a grounding substitution σ for C, such that there is no
different L′ ∈ C for which Lσ ≺ L′σ. The literal L is called strictly ≺-maximal
if there is no different L′ ∈ C for which Lσ � L′σ.

Proposition 3. If ≺ is a predicate-based ordering, C is a Horn clause, C has a
positive literal L, and L is ≺-maximal in C, then L is strictly ≺-maximal in C.

Definition 4 (≺-maximal Predicate in Clause). A predicate symbol P is
called (strictly) ≺-maximal in a clause C if there is a literal [¬]P (∗) ∈ C that
is (strictly) ≺-maximal in C.

Definition 5. Let N be a set of clauses, ≺ a clause ordering, C a clause, and
P a predicate symbol. Then N≺C := {C ′ ∈ N | C ′ ≺ C} and N�P := {C ∈ N |
Q is ≺ -maximal in C and Q � P}.

2.3 Hierarchic Superposition, Redundancy and Saturation

For pure HBS(LA) most rules of the (hierarchic) superposition calculus become
obsolete or can be simplified. In fact, in the HBS(LA) case (hierarchic) super-
position boils down to (hierarchic) ordered resolution. For a full definition of
(hierarchic) superposition calculus in the context of linear arithmetic, consider
SUP(LA) [1]. Here, we will only define its simplified version in the form of the
hierarchic resolution rule.

Definition 6 (Hierarchic ≺-Resolution). Let ≺ be an order on literals and
Λ1 ‖ L1∨C1, Λ2 ‖ L2∨C2 be constrained clauses. The inference rule of hierarchic
≺-resolution is:

Λ1 ‖ L1 ∨ C1 Λ2 ‖ L2 ∨ C2 σ = mgu(L1, comp(L2))

(Λ1, Λ2 ‖ C1 ∨ C2)σ

where L1 is ≺-maximal in C1 and L2 is ≺-maximal in C2.

Note that in the resolution rule we do not enforce explicitly that the positive
literal is strictly maximal. This is possible because in the Horn case any positive
literal is strictly maximal if it is maximal in the clause.

For saturation, we need a termination condition that defines when the calcu-
lus under consideration cannot make any further progress. In the case of super-
position, this notion is that any new inferences are redundant.

Symbolic Model Construction for Saturated Constrained Horn Clauses 143

Definition 7 (Clause Redundancy). A ground clause Λ ‖ C ∈ N is redun-
dant with respect to a set N of ground clauses and order ≺ if N≺Λ ‖ C � Λ ‖ C.
A potentially non-ground clause Λ ‖ C ∈ N is redundant with respect to a poten-
tially non-ground clause set N and order ≺ if for all Λ′ ‖ C ′ ∈ gnd(Λ ‖ C) the
clause Λ′ ‖ C ′ is redundant with respect to gnd(N).

If a clause Λ ‖ C ∈ N is redundant with respect to a clause set N , then it can
be removed from N without changing its semantics. If Λ ‖ C is newly inferred,
then we also call it redundant if Λ ‖ C is already part of N . The same cannot be
said for clauses in N or all clauses in N would be redundant. Determining clause
redundancy is an undecidable problem [10,40]. However, there are special cases
of redundant clauses that can be easily checked, e.g., tautologies and subsumed
clauses. Redundancy also means that I � N≺Λ ‖ C implies I � Λ ‖ C if Λ ‖ C is
redundant w.r.t. N . We will exploit this fact in the model construction.

Definition 8 (Saturation). A set of clauses N is saturated up to redundancy
with respect to some set of inference rules, if application of any rules to clauses
in N yields a clause that is redundant with respect to N or is contained in N .

2.4 Interpretations

In our context, models are interpretations that satisfy (sets of) clauses. The
standard notion of an interpretation is fairly opaque and interprets a predicate
P as the potentially infinite set of ground arguments that satisfy P .

Definition 9 (Interpretation). Let P be a predicate symbol with arity(P) =
n. Then, P I denotes the subset of Un for which the interpretation I maps the
predicate symbol P to true.

Since our model construction approach manipulates interpretations directly,
we need a notion of interpretations that always has a finite representation and
for which it is possible to decide (in finite time) whether a clause is satisfied by
the interpretation. Therefore, we rely on the notion of symbolic interpretations:

Definition 10 (Symbolic Interpretation). Let x1, x2, . . . be an infinite
sequence of distinct variables, i.e. xi = xj for all 1 ≤ i < j. (We assume the same
sequence for all symbolic interpretations in order to prevent conflicts when we
later combine multiple symbolic interpretations into one.) A symbolic interpre-
tation S is a function that maps every predicate symbol P with arity(P) = n to
a formula denoted PS(�x) of finite size, constructed using the usual boolean con-
nectives over LA atoms, where the only free variables appear in �x = (x1, . . . , xn).
The interpretation IS corresponding to S is defined by P IS = {(�x)β | β � PS(�x)}
and maps the predicate symbol P to true for the subset of Un which corresponds
to the solutions of PS(�x).

Example 11. Let N be a clause set consisting of the clauses 0 ≤ x ≤ 2, 0 ≤ y ≤
2‖P (x, y) and xQ ≥ xP + 1, yQ ≥ yP + 1‖¬P (xP , yP) ∨ Q(xQ, yQ). An example

144 M. Bromberger et al.

of a symbolic interpretation S that satisfies N , would be the function that maps
P to PS(x1, x2) = 0 ≤ x1 ≤ 2 ∧ 0 ≤ x2 ≤ 2 and QS(x1, x2) = 1 ≤ x1 ∧ 1 ≤ x2.
It corresponds to the interpretation IS where P IS = {(a1, a2) ∈ U | 0 ≤ a1 ≤
2 ∧ 0 ≤ a2 ≤ 2} and QIS = {(a1, a2) ∈ U | 1 ≤ a1 ∧ 1 ≤ a2}.

The notion of symbolic interpretations is closely related to A-definable
models [7, Definition 7] and constrained atomic representations [13, Defini-
tion 5.1, pp. 236–237]. Each symbolic interpretation S(�x) is equivalent to a
constrained atomic representation that consists of one constraint atom [[P (�x) :
PS(�x)]] (written in the notation from [13]) for every predicate P . Note that in
this context the constraint is not just a quantifier-free conjunction of linear arith-
metic atoms, but a linear arithmetic formula potentially containing quantifiers
(although those can be eliminated with quantifier elimination techniques).

Due to the fact that each symbolic interpretation consists of a finite set of
formulas of finite size, symbolic interpretations can be considered as finite rep-
resentations. In contrast, the standard representation of an interpretation as a
potentially infinite set of ground atoms is not a finite representation. However,
this also means that there are some interpretations for which no corresponding
symbolic interpretation exists, for instance the set of prime numbers is a sat-
isfying interpretation for y ≈ 2 ‖ P (y), but not expressible as a symbolic inter-
pretation (in LA). As we will later see, at least any saturated set of HBS(LA)
clauses either is unsatisfiable or has a symbolic interpretation that satisfies it
(Theorem 29).

The top interpretation, denoted I�, is defined as P I� := Un for all predi-
cate symbols P with arity(P) = n and corresponds to the top symbolic inter-
pretation, denoted S�, defined as PS� := � for all predicate symbols P .
The bottom interpretation (or empty interpretation), denoted I⊥, and the bot-
tom symbolic interpretation (or empty symbolic interpretation), denoted S⊥,
are defined analogously. The interpretation of P under I ∪ J is defined as
P I∪J := P I ∪ PJ for every predicate P . In the symbolic case, S ∪ R is defined
as PS∪R(�x) := PS(�x) ∨ PR(�x) for every predicate P . We write I ⊆ J or I is
included in J (resp. I ⊂ J or I is strictly included in J) if P I ⊆ PJ (resp.
P I ⊂ PJ) for all predicate symbols P .

Definition 12 (Entailment of Literal). Let I be an interpretation. Given
a ground literal P (a1, . . . , an), where ai ∈ U , we write I � P (a1, . . . , an) if
(a1, . . . , an) ∈ P I . Conversely, we write I � P (a1, . . . , an) if (a1, . . . , an) ∈ P I .
For a non-ground literal L, we write I � L if for all grounding substitutions σ
for L, we have I � Lσ. Conversely, we write I � L, if there exists a grounding
substitution σ for L, such that I � Lσ.

We overload � for symbolic interpretations, i.e. we write S � L and mean
IS � L. The following function encodes a clause as an LA formula for evaluation
under a given symbolic interpretation.

Definition 13 (Clause Evaluation Function).Let Λ ‖ C be a constrained
clause where C = L1 ∨ · · · ∨ Lm, Li = [¬]Pi(yi,1, . . . , yi,ni

) and let S be a sym-
bolic interpretation. Then the clause evaluation function (Λ ‖ C

)S is defined as

Symbolic Model Construction for Saturated Constrained Horn Clauses 145

follows based on the definitions for σi and φi (for 1 ≤ i ≤ m):

σi := {xj �→ yi,j | 1 ≤ j ≤ ni} φi :=

{
PS

i Li is positive
¬PS

i Li is negative (otherwise)

(
Λ ‖ C

)S :=
(∧

λ∈Λ

λ
) → (m∨

i=1

φiσi

)

Note that the free variables of (Λ ‖ C)S are exactly the free variables of
(Λ ‖ C). Moreover, the substitutions σi are necessary in the above definition in
order to map the variables in the symbolic interpretation for the predicates PS

i

to the variables that appear as arguments in the literals Pi(y1,1, . . . , y1,ni
).

Proposition 14. Given a constrained clause Λ ‖ C with grounding β, we have

�
(
Λ ‖ C

)S
β if and only if S �

(
Λ ‖ C

)
β

As a corollary of the previous proposition, the entailment S � Λ ‖ C holds
if and only if the universal closure of the formula (Λ ‖ C)S is valid. This means
that for a symbolic interpretation S it is always computable whether a clause is
entailed by S because there are decision procedures for quantified LRA, LQA,
and LIA formulas of finite size.

We require two functions that manipulate LA-formulas directly to express
our model construction (cf. Definition 17), i.e. to map solutions for a clause
defined by a formula vars(φ) to one atom inside the clause. This requires from
us to project away all variables in φ that appear in the clause but not in the
atom.

Definition 15 (Projection). Let V be a set of variables and φ be an LA-
formula. The projection function π is defined as follows:

π(V, φ) := ∃x1 . . . ∃xn. φ where {x1, . . . , xn} = vars(φ) \ V

π(V, φ) is a standard projection function that binds a subset V of the variables
in the formula φ with existential quantifiers. Note that we also know that π(V, φ)
is equivalent to a quantifier-free LA formula just over the variables x1, . . . , xn

because there exist quantifier elimination algorithms for LRA, LQA, and LIA
[14,32].

A further function � is needed when we encounter literals of the form
P (x, x, . . .), i.e., where one variable is shared among two arguments. In this
case, we use � to express in our symbolic interpretation that the equivalent
argument positions must also be equivalent in our interpretation.

Definition 16 (Sharing). Let (y1, . . . , yn) and (x1, . . . , xn) be tuples of vari-
ables with the same length. The sharing function �, which encodes variable shar-
ing across different argument positions, is defined as follows:

�
(
(y1, . . . , yn), (x1, . . . , xn)

)
:=

∧

1≤ i < j ≤ n, yi = yj

xi ≈ xj

146 M. Bromberger et al.

2.5 Consequence and Least Model

The notion of a least model is common in logic programming. Horn logic pro-
grams admit a least model, which is the intersection of all models of the program
(see [31, § 6, p. 36]). In our context, the least model of a set of clauses N is the
intersection of all models of N . An alternative characterization of the least model
of N is through the least fixed point of the one-step consequence operator, which
we define as TN for the context of LA constraints analogously to [27, Section 4].
The one-step consequence operator TN takes a set of clauses N and an interpre-
tation I as input and returns an interpretation:

PTN (I) :=
{

(�y)β
∣
∣
∣
∣

Λ ‖ ¬P1(�y1) ∨ · · · ∨ ¬Pn(�yn) ∨ P (�y) ∈ N,
� Λβ, and I � Pi(�yi)β for 1 ≤ i ≤ n

}

The least fixed point of this operator exists by Tarski’s Fixed Point Theorem
[39]: Interpretations form a complete lattice under inclusion (supremum given
by union, infimum given by intersection), and TN is monotone.

3 Model Construction

In this section we address construction of models for HBS(LA). Throughout this
section, we consider a set of constrained Horn clauses N and an order ≺ to be
given. Our aim is to define an interpretation IN , such that

IN � N if N is saturated and � ∈ N

Towards that goal, we define the operator δ(S, Λ ‖ C ′∨P (�y)). It takes a symbolic
interpretation S, and a Horn clause with maximal literal P (�y). It results in a
symbolic interpretation that accounts for Λ ‖ C ′ ∨ P (�y).

Definition 17 (Production Operator).Let Λ ‖ C be a constrained Horn
clause, where C = C ′ ∨ P (�y), P (�y) � C ′, and C ′ = ¬P1(y1,1, . . . , y1,n1) ∨ · · · ∨
¬Pm(ym,1, . . . , ym,nm

). Let S be a symbolic interpretation, where the free vari-
ables of PS are �x and the free variables of PS

i are �xi (for 1 ≤ i ≤ m). Note that
n = |�y| = |�x| = arity(P).

The production operator δ(S, Λ ‖ C) results in a new symbolic interpretation

P δ(S,Λ ‖ C)(�x) :=
(
π
({y1, . . . , yn},

∧

λ∈Λ

λ ∧
m∧

i=1

(PS
i)σi

))
σ ∧ �

(
�y, �x

)

Qδ(S,Λ ‖ C)(�z) := ⊥ for all Q = P where |�z| = arity(Q)

where, to map variables from literal arguments to the variables appearing in the
symbolic interpretation S and back, we have the substitutions

σ := {y′ �→ xj | y′ ∈ {y1, . . . , yn} and j is the smallest index s.t. yj = y′}
σi := {xi,j �→ yi,j | 1 ≤ j ≤ ni} for 1 ≤ i ≤ m

Symbolic Model Construction for Saturated Constrained Horn Clauses 147

The goal of the operator δ(S, Λ ‖ C) is to define an extension of the symbolic
interpretation S such that S∪δ(S, Λ ‖ C) satisfies Λ ‖ C. Note that δ only extends
the interpretation over the strictly maximal predicate P . Moreover, due to our
predicate order, it only needs to consider the interpretation S for predicates
Q with Q ≺ P . δ also satisfies the following two symmetrical properties: On
the one hand, every grounding τ of Λ ‖ C ′ ∨ P (�y) that is not yet satisfied by S
must correspond to solution β of P δ(S,Λ ‖ C′∨P (�y)) that satisfies P (�y)τ . On the
other hand, every solution β of P δ(S,Λ ‖ C′∨P (�y)) must correspond to a grounding
of Λ ‖ C ′ ∨ P (�y) that is not yet satisfied by S. The first property is needed so
S ∪ δ(S, Λ ‖ C ′ ∨ P (�y)) satisfies Λ ‖ C ′ ∨ P (�y). The second property is needed so
we do not accidentally extend our interpretation by any solutions not needed to
satisfy Λ ‖ C ′ ∨ P (�y).

Note that in the above statements β and τ are generally not the same because
the variables �x used to define PS are not necessarily the same as the variables
appearing in the clause Λ ‖ C and literal P (�y). There are three reasons for this
that are handled by three different methods in our model construction:

1. The variables in S and Λ ‖ C simply do not match, e.g. in PS := x1 ≈ 0 and
Λ ‖ C := y1 > 0 ‖ P (y1). This is handled by the substitution σ in δ that maps
all variables in P (�y) to their appropriate variables in PS , e.g. in the previous
example σ = {y1 �→ x1} and P δ(S,Λ ‖ C) = (y1 > 0)σ = x1 > 0.

2. Not all variables in Λ ‖ C also appear in P (�y), e.g. in PS := x1 ≈ 0 and
Λ ‖ C := x1 ≈ y1 + 1 ∧ y1 ≈ 0 ‖ P (x1). This is handled in δ by the projection
operator π (Definition 15) that binds all variables that appear in Λ ‖ C but not
in P (�y), e.g. in the previous example P δ(S,Λ ‖ C) := π({y1}, x1 ≈ y1+1∧y1 ≈
0), where π({y1}, x1 ≈ y1 + 1 ∧ y1 ≈ 0) = ∃y1. x1 ≈ y1 + 1 ∧ y1 ≈ 0, which is
equivalent to x1 ≈ 1.

3. Some variables might occur in multiple argument positions, e.g. in Λ ‖ C :=
�‖P (y1, y1). This case is covered in δ by the sharing function � (c.f. Def-
inition 16) that expresses which variables in P δ(S,Λ ‖ C) must map to the
same value. Continuing the example, �((y1, y1), (x1, x2)) = x1 ≈ x2 and
P δ(S,Λ ‖ C)(x1, x2) = �((y1, y1), (x1, x2)).

The parts of P δ(S,Λ ‖ C) that we have not yet discussed are based on the
fact that any constrained Horn clause Λ ‖ C ′ ∨ P (�y) can also be written as an
implication of the form φ → P (�y), where φ := Λ ∧ P1(y1,1, . . . , y1,n1) ∧ · · · ∧
Pm(ym,1, . . . , ym,nm

) and S � Λ ‖ C ′τ if and only if S � φτ . This means the
groundings τ of Λ ‖ C ′ not satisfied by S are also the groundings of φ satisfied
by S. It is straightforward to express these groundings with a conjunctive formula
based on Λ and the PS

i . The only challenge is the reverse problem from before,
i.e. mapping the variables of PS

i to the variables in the literals Pi(y1,1, . . . , y1,ni
).

This mapping is done in δ by the substitution σi.
Now, based on the production operator δ for one clause, we can use an

inductive definition over the order ≺ to define an interpretation SN for all clauses
in N . We distinguish the following auxiliary symbolic interpretations: S≺P which
captures progress up to but excluding the predicate P , ΔP which captures how
P should be interpreted considering S≺P , and S�P which captures progress

148 M. Bromberger et al.

up to and including the predicate P . The symbolic interpretation Δ
Λ ‖ C
P is the

extension of S≺P w.r.t. the single clause Λ ‖ C.

Definition 18 (Model Construction). Let N be a finite set of constrained
Horn clauses. We define symbolic interpretations S≺P , S�P and ΔP for all
predicates P ∈ Π(N) by mutual induction over ≺:

S�P := S≺P ∪ ΔP S≺P :=
⋃

Q≺P

ΔQ ΔP :=
⋃

Λ ‖ C′∨P (∗)∈N

Δ
Λ ‖ C′∨P (∗)
P

Δ
Λ ‖ C
P :=

{
δ(S≺P , Λ ‖ C) if P (�y) maximal in C, and S≺P � Λ ‖ C

S⊥ otherwise

Finally, based on the above inductive definition of S≺P for every predicate
symbol P ∈ Π(N), we arrive at an overall interpretation for N .

Definition 19 (Candidate Interpretation). The candidate interpretation
for N (w.r.t ≺), denoted IN , is the interpretation associated with the symbolic
interpretation SN =

⋃
P∈Π(N) ΔP where P ranges over all predicate symbols

occurring in N .

Note that SN = S�P where P is ≺-maximal in Π(N). Obviously, we intend
that SN � N if N is saturated (Theorem 29). Otherwise, i.e. SN � N , we can
use our construction to find a non-redundant inference (Corollary 30). Consider
the following two examples, demonstrating how δ sits at the core of the afore-
mentioned inductive definitions of symbolic interpretations.

Example 20 (Dependent Interpretation).Assume P ≺ Q and consider the follow-
ing set of clauses:

N :=
{

0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 2 ‖ P (y1, y2) (C1),
y3 ≥ y1 + 1, y4 ≥ y2 + 1 ‖ P (y1, y2) → Q(y3, y4) (C2)

}

Maximal literals are underlined. Since the maximal literals of C1 and C2 are
both positive, ordered resolution cannot be applied. The set is saturated. Since
P is the ≺-smallest predicate we have S≺P = S⊥. Applying the δ operator yields
the following interpretation for P :

PS�P = P δ(S≺P ,C1)(x1, x2) = 0 ≤ x1 ≤ 2 ∧ 0 ≤ x2 ≤ 2

Then, Q is interpreted relative to P . Consider the clause C2: For all solutions
of its constraint y3 ≥ y1 + 1, y4 ≥ y2 + 1 our model must also satisfy its logical
part P (y1, y2) → Q(y3, y4). The intuition that Q depends on P arises from the
implication in the logical part. Whenever the constraint of C2 and P (y1, y2)
are satisfied, Q(y3, y4) must be satisfied. These are exactly the points defined
through δ(S≺Q, C2), based on S≺Q = S�P = δ(S≺P , C1):

Qδ(S≺Q,C2)(x1, x2) = ∃z1, z2. x1 ≥ z1 + 1 ∧ x2 ≥ z2 + 1 ∧ 0 ≤ z1 ≤ 2 ∧ 0 ≤ z2 ≤ 2

= x1 ≥ 1 ∧ x2 ≥ 1

Symbolic Model Construction for Saturated Constrained Horn Clauses 149

Whenever the conjuncts 0 ≤ y1 ≤ 2 and 0 ≤ y2 ≤ 2 are satisfied, the premise of
the implication is true, thus there must be a solution to the interpretation of Q,
additionally abiding the constraint of the clause. Since Q is ≺-maximal in N , we
arrive at SN = S�Q = S�P ∪ δ(S≺Q, C2) = δ(S⊥, C1) ∪ δ(S�P , C2). See Fig. 1a
for a visual representation of SN .

Example 21 (Unsaturated Clause Set).Assume P ≺ Q and consider the following
set of clauses:

N :=
{

y1 < 0 ‖ P (y1) (C1), y1 < 1 ‖ Q(y1) (C3),
y1 > 0 ‖ P (y1) (C2), y1 ≤ 0 ‖ Q(y1) → P (y1) (C4)

}

Maximal literals are underlined. Note that a resolution inference is possible, since
the maximal literals of C3 and C4 have opposite polarity, use the same predicate
symbol, and are trivially unifiable. Thus, in this example we consider the effect
of applying our model construction to a clause set that is not saturated. Since
P is ≺-minimal, we start with the following steps:

S≺P = S⊥ P δ(S≺P ,C1)(x1) = x1 < 0

P δ(S≺P ,C2)(x1) = x1 > 0 PS�P (x1) = x1 < 0 ∨ x1 > 0

Next, we obtain the following results for Q:

S≺Q = S�P Qδ(S≺Q,C3)(x1) = x1 < 1

Qδ(S≺Q,C4)(x1) = ⊥ QS�Q(x1) = x1 < 1 ∨ ⊥ = x1 < 1

See Fig. 1b for a visual representation of SN = S�Q. Note that SN � C4, since
we have SN � Q(0) but SN � P (0). Thus, by using the constructed model, we
can pinpoint clauses that contradict that N is saturated. Applying resolution to
C3 and C4 leads to the clause y1 ≤ 0 ‖ P (y1) labelled C5. If we then add C5 to
N , we instead get PS�P (x1) = x1 < 0 ∨ x1 > 0 ∨ x1 ≤ 0 = �.

In the following, we clarify some properties of the construction. We provide
an upper bound for the number of LA atoms and quantifiers in the symbolic
model for LRA and LQA. Although we do not state it explicitly, the estimate
for LIA works in a similar way, but due to the higher complexity of LIA quantifier
elimination, the size of the symbolic model grows triple exponentially [36].

Proposition 22. If N is a finite set of LRA/LQA constrained Horn clauses,
and S ′

N the result of applying quantifier elimination to SN then, for every pred-
icate symbol P ∈ Π(N), the number of LA atoms in PS′

N is in O(m2·qp−1 ·
n2·qp−1 · (l + a2)qp

) where n is the max. number of clauses with the same max.
predicate, m is the max. number of non-arithmetic literals in a clause, l is the
max. number of arithmetic literals in a clause, a is the max. arity of any pred-
icate, p = |Π(N)|, q is the max. difference of variables in any clause and its
positive maximal literal.

150 M. Bromberger et al.

Fig. 1. Visual representation of the models resulting from Examples 20 and 21.

Corollary 23 (Effective Construction). If N is a finite set of constrained
Horn clauses then for every predicate P ∈ Π(N), PSN is a linear arithmetic
formula of finite size, and can be computed in a finite number of steps.

We show that all points in P I
N are necessary and justified in some sense,

that IN is indeed a model of N , and that IN is also the least model of N if N
is saturated. The notion of whether a clause is productive captures whether it
contributes something to the symbolic interpretation.

Definition 24 (Productive Clause). Let P be a predicate symbol with
arity(P) = n. We say that Λ ‖ C produces P (a1, . . . , an) if (a1, . . . , an) ∈
PΔ

Λ ‖ C
P .

Next, we want to formally express that every element of the resulting inter-
pretation is justified. Firstly, we express that the operator δ will produce points
such that every clause is satisfied whenever necessary, i.e. whenever the maximal
literal of the clause is P (∗) and the maximal literal not satisfied by S≺P .

Proposition 25. Let ΛC ‖ C where C = C ′ ∨ P (�y) and C ′ ≺ P (�y). Let τ be a
grounding substitution for ΛC ‖ C. If S≺P � (ΛC ‖ C)τ , then � ΛCτ and S�P �
P (�y)τ , thus S�P � (ΛC ‖ C)τ .

Secondly, we express that for every point in P I
N , it is justified in the sense

that there is a clause that produced the point, i.e. this clause would otherwise
not be satisfied by the resulting interpretation.

Proposition 26. If S�P � P (�a), then there exists a clause ΛC ‖ C where C =
C ′ ∨ P (�y) and C ′ ≺ P (�y), and there exists a grounding τ for ΛC ‖ C, such that
P (�a) = P (�y)τ and S≺P � (ΛC ‖ C)τ .

Also, observe that once the maximal predicate P of a given clause is inter-
preted by S�P , the interpretation of the clause does not change for S�Q where
Q � P .

Symbolic Model Construction for Saturated Constrained Horn Clauses 151

Corollary 27. Let P ≺ Q � R, and P be maximal in clause C. If S�P � ΛC ‖ C
or S≺Q � ΛC ‖ C, then S≺R � ΛC ‖ C and S�R � ΛC ‖ C.

As a result, we know that the full model satisfies N , i.e., IN � N if every
clause is satisfied at the point of the construction, where the interpretation of
its maximal predicate P stays fixed.

Proposition 28. For every clause ΛC ‖ C ∈ N with maximal predicate P , if
S�P � ΛC ‖ C, then IN � N .

With the above propositions (and some auxiliary properties that can be found
in [12]) we show that indeed IN � N if N is saturated and does not contain the
empty clause.

Theorem 29. Let ≺ be a clause ordering and N be a set of constrained Horn
clauses. If (1.) N is saturated w.r.t. ≺-resolution, and (2.) � ∈ N , then IN � N .

For clauses with positive maximal literal, the fact that they are satisfied
by IN follows from Proposition 25. For clauses with maximal literal ¬P (∗), we
prove this theorem by contradiction: If there is a minimal clause ΛC ‖ C such
that SN � ΛC ‖ C. We can then exploit Proposition 26 to find the smallest
clause ΛD ‖ D that produced the respective instance P (�a). Applying hierarchic
≺-resolution to ΛC ‖ C and ΛD ‖ D then yields a non-redundant clause. This
idea then leads to the following theorem.

Corollary 30. Let ≺ be a clause ordering and N be a set of constrained Horn
clauses. If (1.) IN � N , and (2.)� ∈ N , then there exist two clauses ΛC ‖ C,
ΛD ‖ D ∈ N such that: (1.) ΛC ‖ C is the smallest clause not satisfied by IN ,
i.e. there exists a grounding τ such that IN � (ΛC ‖ C)τ , but there does not
exist a clause ΛC′ ‖ C ′ ∈ N with grounding τ ′, such that IN � (ΛC′ ‖ C ′)τ ′

and (ΛC′ ‖ C ′)τ ′ ≺ (ΛC ‖ C)τ , (2.)¬P (�a) is the maximal literal of (ΛC ‖ C)τ ,
(3.)ΛD ‖ D is the minimal clause that produces P (�a), (4.)≺-resolution is appli-
cable to ΛC ‖ C and ΛD ‖ D, and (5.)the resolvent of ΛC ‖ C and ΛD ‖ D is not
redundant w.r.t. N .

Additionally, we show that IN is the least model of N , establishing a connec-
tion between our approach and the literature on constrained Horn clauses (see
[27, Section 4] and [15, Section 2.4.1]) and logic programming (see [31, § 6, p. 37]).

Theorem 31. IN is the least model of N .

Fermüller and Leitsch define four postulates (see [19] as cited in [13,
Section 5.1, p. 234]) regarding automated model building. In the following, we
instantiate the postulates for our setting. By S(N) we denote the set of all sym-
bolic interpretations of the set of constrained Horn clauses N . We argue how our
approach satisfies all postulates, one by one:

Uniqueness. Each element of S(N) specifies a single interpretation of N .
We have shown (cf. Theorem 31) that IN , the model represented by SN , is
the least model of N , which is unique.

152 M. Bromberger et al.

Atom Test. There exists a fast procedure to evaluate arbitrary ground atoms
over Π(N) in the interpretation defined by a S in S(N).
This is a special case of clause evaluation (cf. Proposition 14): A ground atom
P (�t) is true in S if and only if � PS(�x){xi �→ ti | 1 ≤ i ≤ |�x| = |�t|}. Fulfillment
of this property thus hinges on the meaning of “fast”. We consider methods
for evaluating formulas of LA against points to be fast.

Formula Evaluation. There exists an algorithm deciding the truth values of
arbitrary formulas in interpretations defined by S ∈ S(N).
Proposition 14 states that evaluating a constrained clause Λ ‖ C is achieved
by evaluating the universal closure of (Λ ‖ C)S , which is decided by quantifier
elimination algorithms for LRA, LQA, and LIA [14,32]. For sets of clauses,
evaluate each clause individually and combine the results conjunctively.

Equivalence Test. There exists an algorithm which decides whether two repre-
sentations S1 and S2 in S(N) describe the same interpretation.
S1 and S2 describe the same interpretation if and only if for each predicate
P ∈ Π(N) of arity n, we have ∀x1 . . . ∀xn. PS1(�x) ↔ PS2(�x).

4 Conclusion

We have presented the first model construction approach to Horn clauses with
linear arithmetic constraints based on hierarchic ordered resolution, (cf. Defini-
tion 19). The linear arithmetic constraints may range over the reals, rationals, or
integers. The computed model is the canonical least model of the saturated Horn
clause set (cf. Theorem 31). Clauses can be effectively evaluated with respect to
the model (cf. Proposition 14). This offers a way to explore the properties of a
saturated clause set, e.g., if the set represents a failed refutation attempt.

Future Work. It is straightforward to see that any symbolic LQA model is
also a symbolic LRA model. (This holds due to convexity of conjunctions of
ground LQA atoms.) So even if the axiom of choice is not assumed, there is
an alternative way to obtain a model for a HBS(LRA) clause set: Simply treat
it as an HBS(LQA) clause set, saturate it and construct its model based on
HBS(LQA).

In this work, we restrict ourselves to only one sort LA per set of clauses. An
extension to a many-sorted setup, e.g. including first-order variables with sort
F is possible. This can even be simulated, by encoding first-order constants as
concrete natural numbers via a bijection to N, since N ⊂ U . By not placing any
arithmetic constraints on the variables used for the encoding, it can be read off
and mapped back from the resulting model.

One obvious challenge is relaxation of the restriction to Horn clauses. With
respect to ordered resolution saturation there is typically no difference in the
sense that if a Horn fragment can always be finitely saturated, so can the non-
Horn fragment be. However, our proposed ordering for the model construction at
the granularity of predicate symbols will not suffice in this general case, and the
key to overcome this challenge seems to be the appropriate treatment of clauses

Symbolic Model Construction for Saturated Constrained Horn Clauses 153

with maximal literals of the same predicate. Backtracking on the selection of
literals might also be sufficient.

The approach we presented does not exploit features of linear arithmetic
beyond equality and the existence of a well-founded order for the underlying
universe U . The results may therefore be adapted to other constraint domains
such as non-linear arithmetic.

Acknowledgements. We thank our reviewers for their constructive comments.

References

1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol.
5749, pp. 84–99. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
04222-5 5

2. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as
a decision procedure for the monadic class with equality. In: Gottlob, G., Leitsch,
A., Mundici, D. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0022557

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. AAECC 5, 193–212 (1994). https://doi.org/10.1007/
BF01190829

4. Basin, D.A., Ganzinger, H.: Automated complexity analysis based on ordered res-
olution. JACM 48(1), 70–109 (2001). https://doi.org/10.1145/363647.363681

5. Baumgartner, P., Fuchs, A., Tinelli, C.: (LIA) - model evolution with linear integer
arithmetic constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008.
LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-89439-1 19

6. Baumgartner, P., Waldmann, U.: Hierarchic superposition revisited. In: Lutz, C.,
Sattler, U., Tinelli, C., Turhan, A.-Y., Wolter, F. (eds.) Description Logic, Theory
Combination, and All That. LNCS, vol. 11560, pp. 15–56. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-22102-7 2

7. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

8. Bromberger, M., et al.: A sorted datalog hammer for supervisor verification con-
ditions modulo simple linear arithmetic. In: TACAS 2022. LNCS, vol. 13243, pp.
480–501. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 27

9. Bromberger, M., Dragoste, I., Faqeh, R., Fetzer, C., Krötzsch, M., Weidenbach,
C.: A datalog hammer for supervisor verification conditions modulo simple linear
arithmetic. In: Konev, B., Reger, G. (eds.) FroCoS 2021. LNCS (LNAI), vol. 12941,
pp. 3–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86205-3 1

https://doi.org/10.1007/978-3-642-04222-5_5
https://doi.org/10.1007/978-3-642-04222-5_5
https://doi.org/10.1007/BFb0022557
https://doi.org/10.1007/BF01190829
https://doi.org/10.1007/BF01190829
https://doi.org/10.1145/363647.363681
https://doi.org/10.1007/978-3-540-89439-1_19
https://doi.org/10.1007/978-3-540-89439-1_19
https://doi.org/10.1007/978-3-030-22102-7_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-030-99524-9_27
https://doi.org/10.1007/978-3-030-86205-3_1

154 M. Bromberger et al.

10. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the Bernays-Schoenfinkel
fragment over bounded difference constraints by simple clause learning over the-
ories. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol.
12597, pp. 511–533. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67067-2 23

11. Bromberger, M., Leutgeb, L., Weidenbach, C.: An efficient subsumption test
pipeline for BS(LRA) clauses. In: Blanchette, J., Kovács, L., Pattinson, D. (eds.)
IJCAR 2022. LNCS, vol. 13385, pp. 147–168. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-10769-6 10

12. Bromberger, M., Leutgeb, L., Weidenbach, C.: Symbolic model construction for
saturated constrained horn clauses. arXiv (2023). https://doi.org/10.48550/arXiv.
2305.05064

13. Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building, APLS, vol. 31.
Springer, Dordrecht (2004). https://doi.org/10.1007/978-1-4020-2653-9

14. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell.
7, 91–99 (1972)

15. De Angelis, E., Fioravanti, F., Gallagher, J.P., Hermenegildo, M.V., Pettorossi,
A., Proietti, M.: Analysis and transformation of constrained horn clauses for
program verification. TPLP 22(6), 974–1042 (2022). https://doi.org/10.1017/
S1471068421000211

16. Downey, P.J.: Undecidability of presburger arithmetic with a single monadic pred-
icate letter. Center for Research in Computer Technology, Harvard University,
Technical report (1972)

17. Fedyukovich, G., Zhang, Y., Gupta, A.: Syntax-guided termination analysis. In:
Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 124–143.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 7

18. Feferman, S.: Some applications of the notions of forcing and generic sets. Funda-
menta Mathematicae. 56(3), 325–345 (1964). http://eudml.org/doc/213821

19. Fermüller, C.G., Leitsch, A.: Hyperresolution and automated model building.
LOGCOM 6(2), 173–203 (1996). https://doi.org/10.1093/logcom/6.2.173

20. Fermüller, C.G., Leitsch, A.: Decision procedures and model building in equational
clause logic. IGPL 6(1), 17–41 (1998). https://doi.org/10.1093/jigpal/6.1.17

21. Fiori, A., Weidenbach, C.: SCL with theory constraints. arXiv (2020). http://arxiv.
org/abs/2003.04627

22. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Horn clauses
as an intermediate representation for program analysis and transformation. TPLP
15(4–5), 526–542 (2015). https://doi.org/10.1017/S1471068415000204

23. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded
fragment with equality. In: 14th LICS, 1999, pp. 295–303. IEEE Computer Society
(1999). https://doi.org/10.1109/LICS.1999.782624

24. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI, pp. 405–416. ACM (2012). https://doi.
org/10.1145/2254064.2254112

25. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

26. Horbach, M., Voigt, M., Weidenbach, C.: The universal fragment of presburger
arithmetic with unary uninterpreted predicates is undecidable. arXiv (2017).
http://arxiv.org/abs/1703.01212

27. Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. JLP 19(20), 503–
581 (1994). https://doi.org/10.1016/0743-1066(94)90033-7

https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.1007/978-3-031-10769-6_10
https://doi.org/10.1007/978-3-031-10769-6_10
https://doi.org/10.48550/arXiv.2305.05064
https://doi.org/10.48550/arXiv.2305.05064
https://doi.org/10.1007/978-1-4020-2653-9
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1007/978-3-319-96145-3_7
http://eudml.org/doc/213821
https://doi.org/10.1093/logcom/6.2.173
https://doi.org/10.1093/jigpal/6.1.17
http://arxiv.org/abs/2003.04627
http://arxiv.org/abs/2003.04627
https://doi.org/10.1017/S1471068415000204
https://doi.org/10.1109/LICS.1999.782624
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-642-31612-8_13
http://arxiv.org/abs/1703.01212
https://doi.org/10.1016/0743-1066(94)90033-7

Symbolic Model Construction for Saturated Constrained Horn Clauses 155

28. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

29. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calcu-
lus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-8 19

30. Kruglov, E.: Superposition modulo theory. Ph.D. thesis, Saarland University
(2013). http://scidok.sulb.uni-saarland.de/volltexte/2013/5559/

31. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Cham (1987).
https://doi.org/10.1007/978-3-642-83189-8

32. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.
36(5), 450–462 (1993). https://doi.org/10.1093/comjnl/36.5.450

33. López-Garćıa, P., Darmawan, L., Klemen, M., Liqat, U., Bueno, F., Hermenegildo,
M.V.: Interval-based resource usage verification by translation into horn clauses
and an application to energy consumption. TPLP 18(2), 167–223 (2018). https://
doi.org/10.1017/S1471068418000042

34. McMillan, K.L.: Lazy annotation revisited. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 243–259. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9 16

35. Mesnard, F., Payet, É., Vidal, G.: Concolic testing in CLP. TPLP 20(5), 671–686
(2020). https://doi.org/10.1017/S1471068420000216

36. Oppen, D.C.: A 2ˆ2ˆ2 P̂N upper bound on the complexity of Presburger arithmetic.
JCSS 16(3), 323–332 (1978). https://doi.org/10.1016/0022-0000(78)90021-1

37. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 20

38. Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for java bytecode based
on path-length. TOPLAS 32(3), 8:1-8:70 (2010). https://doi.org/10.1145/1709093.
1709095

39. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955). https://doi.org/10.2140/pjm.1955.5.285

40. Weidenbach, C.: Automated reasoning building blocks. In: Meyer, R., Platzer,
A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 172–188.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6 12

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-540-74915-8_19
http://scidok.sulb.uni-saarland.de/volltexte/2013/5559/
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1093/comjnl/36.5.450
https://doi.org/10.1017/S1471068418000042
https://doi.org/10.1017/S1471068418000042
https://doi.org/10.1007/978-3-319-08867-9_16
https://doi.org/10.1007/978-3-319-08867-9_16
https://doi.org/10.1017/S1471068420000216
https://doi.org/10.1016/0022-0000(78)90021-1
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1145/1709093.1709095
https://doi.org/10.1145/1709093.1709095
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1007/978-3-319-23506-6_12
http://creativecommons.org/licenses/by/4.0/

Frameworks

Combining Finite Combination Properties:
Finite Models and Busy Beavers

Guilherme V. Toledo1(B) , Yoni Zohar1 , and Clark Barrett2

1 Bar-Ilan University, Ramat Gan, Israel
guivtoledo@gmail.com

2 Stanford University, Stanford, USA

Abstract. This work is a part of an ongoing effort to understand the relationships
between properties used in theory combination. We here focus on including two
properties that are related to shiny theories: the finite model property and stable
finiteness. For any combination of properties, we consider the question of whether
there exists a theory that exhibits it. When there is, we provide an example with
the simplest possible signature. One particular class of interest includes theories
with the finite model property that are not finitely witnessable. To construct such
theories, we utilize the Busy Beaver function.

Keywords: satisfiability modulo theories · theory combination · theory
politeness · theory shininess

1 Introduction

The story of this paper begins with [7], where it was shown that the theory of algebraic
datatypes, useful for modeling data structures like lists and trees, can be combined with
any other theory, using the polite combination method [6]. This combination method
offers a way to combine decisions procedures of two theories into a decision procedure
for the combined theory, with different assumptions than those of the earlier Nelson-
Oppen approach [4]. In particular, it was proven that the theory admits a technical prop-
erty concerning cardinalities of models, called strong politeness [2]. It was noted in [7]
that proving strong politeness for this theory seemed much harder than proving polite-
ness, a similar but simpler property. Therefore, the proof was split into three steps:
(i) a class of theories was identified in which politeness and strong politeness coincide;
(ii) the theory of algebraic datatypes was shown to be in this class; and (iii) this theory
was proven to be polite. This proof technique raised the following question: does polite-
ness imply strong politeness? An affirmative answer to this question would simplify
strong politeness proofs that follow such steps, as only the last step would be needed.
Unfortunately, the answer to this question was shown in [8] to be negative, in its most
general form. However, an affirmative answer was given for theories over one-sorted
empty signatures, where politeness and strong politeness do coincide.

Seeing that relationships between model-theoretic properties of theories (like polite-
ness and strong politeness) are non-trivial, and can have a big impact on proofs in the

c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 159–175, 2023.
https://doi.org/10.1007/978-3-031-43369-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_9&domain=pdf
http://orcid.org/0000-0002-6539-398X
http://orcid.org/0000-0002-2972-6695
http://orcid.org/0000-0002-9522-3084
https://doi.org/10.1007/978-3-031-43369-6_9

160 G. V. Toledo et al.

field of theory combination, we have recently initiated a more general research plan:
to systematically determine the relationships between model-theoretic properties that
relate to theory combination. An analysis of such properties can, for example, simplify
proofs, in cases where a property follows from a combination of other properties.

In the first stage of this plan [10], we studied the relationships between all properties
that relate to either polite or Nelson-Oppen combination, namely: stable infiniteness,
smoothness, finite witnessability, strong finite witnessability, and convexity. The first
two properties relate to the ability to enlarge cardinalities of models, while the next two
require a computable witness function that restricts the models of a formula based on its
variables. The last property relies on the ability to deduce an equality from a disjunction
of equalities. The result of [10] was a comprehensive table: nearly every combination
of these properties (e.g., theories that are smooth and stably infinite but do not admit
the other properties) was either proved to be infeasible, or an example for it was given.

In this paper we continue with this plan by adding two properties: the finite model
property and stable finiteness, both related to shiny theories [9]. The former requires
finite models for satisfiable formulas, and the latter enforces bounds on them.

Of course, the theories from [10] can be reused. For these, one only needs to deter-
mine if they admit the finite model property and/or stable finiteness. The results and
examples from [10] are, however, not enough. Given that the number of considered
combinations is doubled with the addition of each property, new theories need to be
introduced in order to exemplify the new possibilities, and new impossible combina-
tions can be found. Hence, in this paper we provide several impossibility results for the
aforementioned properties, as well as examples of theories for possible combinations.
The overall result is a new table which extends that of [10] with two new columns
corresponding to the finite model property and stable finiteness.1

The most interesting combinations that we study are theories that admit the finite
model property but not finite witnessability. While both properties deal with finite mod-
els, the latter has a computable element to it, namely the witness function. In separat-
ing these properties, we found it useful to define theories that are based on the Busy
Beaver function, a well known function from computability theory, that is not only
non-computable, but also grows eventually faster than any computable function.

Outline: Sect. 2 reviews many-sorted logics and theory combination properties.
Section 3 identifies combinations that are contradictory; Sect. 4 constructs the extended
table of combinations, and describes the newly introduced theories. Section 5 gives final
remarks and future directions this work can take. The proofs for the results in this paper
may be found in an appendix to a preprint version of this work, available as [11].

2 Preliminary Notions

2.1 Many-Sorted Logic

A many-sorted signature Σ is a triple (SΣ ,FΣ ,PΣ) where: SΣ is a countable set of
sorts; FΣ is a countable set of function symbols; and PΣ is a countable set of predicate

1 While we use several results from [10], we do not assume here any familiarity with that paper.
All required results are mentioned here explicitly.

Combining Finite Combination Properties: Finite Models and Busy Beavers 161

symbols containing, for each σ ∈ SΣ , an equality=σ . When σ is clear from the context,
we write =. Every function symbol has an arity of the form σ1 × · · · × σn → σ, and
every predicate symbol one of the form σ1 × · · · × σn, where σ1, . . . , σn, σ ∈ SΣ ;
equalities =σ have arity σ × σ.

A signature that has no functions and only the equalities as predicates is called
empty. Many-sorted signaturesΣ where SΣ has only one element are called one-sorted.

For any sort in SΣ we assume a countably infinite set of variables, and distinct sorts
have disjoint sets of variables; we then define first-order terms, formulas, and literals in
the usual way. The set of free variables of sort σ in a formula ϕ is denoted by varsσ(ϕ),
while vars(ϕ) will denote

⋃
σ∈SΣ

varsσ(ϕ).
Σ-Structures A are defined as usual, by interpreting sorts (denoted by σA), func-

tions (fA) and predicate symbols (PA), with the restrictions that equality symbols are
interpreted as identities. A Σ-interpretation A is an extension of a Σ-structure A with
interpretations to variables. If A is the underlying Σ-structure of a Σ-interpretation A,
we say that A is an interpretation on A. For simplicity, and because the use of struc-
tures is sparse in this paper, we will usually denote both structures and interpretations
by using the same font, A, B and so on. αA is the value taken by a Σ-term α in a
Σ-interpretation A, and if Γ is a set of terms, we simply write ΓA for {αA : α ∈ Γ}.

We write A � ϕ if the Σ-interpretation A satisfies the Σ-formula ϕ; ϕ is then said
to be satisfiable if it is satisfied by some interpretation A. The formulas found in Fig. 1
will be useful in the sequel. A Σ-interpretation A: satisfies ψσ

≥n iff |σA| ≥ n; satisfies
ψσ

≤n iff |σA| ≤ n; and satisfies ψσ
=n iff |σA| = n. For simplicity, when dealing with

one-sorted signatures, we may drop the sort σ from the cardinality formulas.

Fig. 1. Cardinality Formulas. −→x stands for x1, . . . , xn, all variables of sort σ.

A Σ-theory T is a class of all Σ-interpretations (called T -interpretations) that sat-
isfy some set Ax(T) of closed formulas called the axiomatization of T ; the structures
underlying these interpretations will be called the models of T .

A formula is T -satisfiable if it is satisfied by some T -interpretation and, analo-
gously, a set of formulas is T -satisfiable if there is a T -interpretation that satisfies all of
them simultaneously. Two formulas are T -equivalent when a T -interpretation satisfies
the first iff it satisfies the second. We write |=T ϕ, and say that ϕ is T -valid if A � ϕ
for all T -interpretations A.

2.2 Theory Combination Properties

Let Σ be a signature, T a Σ-theory and S ⊆ SΣ . We define several properties T may
have with respect to S.

162 G. V. Toledo et al.

Convexity, Stable Infiniteness, and Smoothness T is convex with respect to S if for
any conjunction of Σ-literals φ and any finite set of variables {u1, v1, . . . , un, vn} of
sorts in S with |=T φ →

∨n
i=1 ui = vi, one has |=T φ → ui = vi for some i. T

is stably infinite with respect to S if for every T -satisfiable quantifier-free Σ-formula
there is a T -interpretation A satisfying it such that |σA| is infinite for each σ ∈ S. T
is smooth with respect to S if for every quantifier-free formula, T -interpretation A that
satisfies it, and function κ from S to the class of cardinals such that κ(σ) ≥ |σA| for
each σ ∈ S, there is a T -interpretation B that satisfies it with |σB| = κ(σ) for each
σ ∈ S.

(Strong) Finite witnessability For finite sets of variables Vσ of sort σ for each σ ∈ S,
and equivalence relations Eσ on Vσ, the arrangement on V =

⋃
σ∈S Vσ induced by

E =
⋃

σ∈S Eσ , denoted by δV or δE
V , is the formula δV =

∧
σ∈S

[∧
xEσy(x = y) ∧

∧
xEσy ¬(x = y)

]
, where Eσ denotes the complement of the equivalence relation Eσ .

T is finitely witnessable with respect to S when there exists a computable function
wit, called a witness, from the quantifier-free Σ-formulas to themselves that satisfies,
for every φ: (i) φ and ∃−→w . wit(φ) are T -equivalent, for −→w = vars(wit(φ)) \ vars(φ);
and (ii) if wit(φ) is T -satisfiable, there exists a T -interpretation A satisfying wit(φ)
such that σA = varsσ(wit(φ))A for each σ ∈ S.

Strong finite witnessability is defined similarly to finite witnessability, replacing (ii)
by: (ii)′ given a finite set of variables V and an arrangement δV on V , if wit(φ) ∧ δV

is T -satisfiable, there exists a T -interpretation A that satisfies wit(φ) ∧ δV with σA =
varsσ(wit(φ) ∧ δV

)A
for all σ ∈ S. If T is smooth and (strongly) finitely witnessable

with respect to S, then it is (strongly) polite with respect to S.
Finite Model Property and Stable Finiteness T has the finite model property with
respect to S if for every quantifier-free T -satisfiable Σ-formula, there exists a T -
interpretation A that satisfies it with |σA| finite for each σ ∈ S. T is stably finite with
respect to S if, for every quantifier-free Σ-formula and T -interpretation A that satisfies
it, there exists a T -interpretation B that satisfies it with: |σB| finite for each σ ∈ S; and
|σB| ≤ |σA| for each σ ∈ S. Clearly, stable finiteness implies the finite model property:

Theorem 1. If T is stably finite w.r.t. S, then it has the finite model property w.r.t. S.

We shall write SI for stably infinite; SM for smooth; FW (SW) for (strong) finitely
witnessable; CV for convex; FM for the finite model property; and SF for stably finite.

3 Relationships Between Model-Theoretic Properties

In this section we study the connections between finiteness properties related to the-
ory combination: the finite model property, stable finiteness, finite witnessability, and
strong finite witnessability. We show how these properties are related to one another. In
Sect. 3.1, we provide general results that hold for all signatures. Then, in Sect. 3.2, we
focus on empty signatures, in which we are able to find more connections.

3.1 General Signatures

Finite witnessability, as well as its strong variant, were introduced in the context of
polite theory combination. In contrast, the study of shiny theories utilizes the notions of

Combining Finite Combination Properties: Finite Models and Busy Beavers 163

the finite model property, as well as stable finiteness. It was shown in [1] that for the-
ories with a decidable quantifier-free satisfiability problem, shiny theories and strongly
polite theories are one and the same. This already showed some connections between
the aforementioned finiteness properties. However, that analysis also relied on smooth-
ness, the decidability of the quantifier-free satisfiability problem of the studied theories,
as well as the computability of the mincard function, the function that computes the
minimal sizes of domains in models of a given formula in these theories.

Here we focus purely on the finiteness properties, and show that even without any
other assumptions, they are closely related. Considering finite witnessability and the
finite model property, notice that any witness ensures that some formulas always have
finite models. Using the equivalence of the existential closure of such formulas to the
formulas that are given to the witness, one gets the following result, according to which
finite witnessability implies the finite model property.

Theorem 2. Any Σ-theory T finitely witnessable with respect to S ⊆ SΣ also has the
finite model property with respect to S.

Strong finite witnessability is a stronger property than finite witnessability, obtained
by requiring finite models in the presence of arrangements. This requirement allows one
to conclude stable finiteness for it, as the finer control on cardinalities that is required
for stable finiteness can be achieved with the aid of arrangements. The following result
is proved in Lemma 3.6 of [1], although under the assumption that the theory is smooth,
something that is not actually used in their proof.

Theorem 3. Any Σ-theory T strongly finitely witnessable with respect to S ⊆ SΣ is
also stably finite with respect to S.

Clearly, stable finiteness implies the finite model property (Theorem 1). The con-
verse does not generally hold, as we will see in Sect. 4. However, when these properties
are considered with respect to a single sort, they actually coincide:

Theorem 4. If a Σ-theory T has the finite model property with respect to a set of sorts
S with |S| = 1, then T is also stably finite with respect to S.

Theorems 2 and 3 are visualized in the Venn diagram of Fig. 2, where, for exam-
ple, theories that are strongly finitely witnessable are clearly inside the intersection of
finitely witnessable theories and stably finite theories.

When only one sort is considered, the picture is much simpler, and is described in
Fig. 3. There, the finite model property and stable finiteness populate the same region,
as ensured by Theorem 4. Notice that the results depicted in Fig. 3 hold for one-sorted
and many-sorted signatures. The key thing is that the properties are all w.r.t. one of the
sorts.

3.2 Empty Signatures

Figures 2 and 3 show a complete picture of the relationships between the properties
studied in this section, for arbitrary signatures. However, when this generality is relaxed,

164 G. V. Toledo et al.

SW FWSF

FM

Fig. 2. Finiteness properties: general case.

SW

FW

FM & SF

Fig. 3. Finiteness properties w.r.t. one sort.

several other connections appear. For this section, we require that the signatures are
empty, and that they have a finite set of sorts. We further require that the properties in
question hold for the entire set of sorts, not for any subset of it.

Table 1 defines the 5 signatures that will be used in the examples found in Sect. 4,
and that will also appear in some of the results shown below: the empty signatures Σ1,
Σ2 and Σ3, with sets of sorts {σ}, {σ, σ2} and {σ, σ2, σ3}, respectively; and the signa-
tures Σs and Σ2

s with one function s of arity σ → σ, and sets of sorts {σ} and {σ, σ2},
respectively. Notice these are the simplest possible signatures when we order those by
establishing: first, that the signature with fewer sorts is simpler; and second, that if two
signatures have the same number of sorts, the one with fewer function symbols is sim-
pler. We are free not to consider predicates, as they are at least as expressive as functions
themselves; furthermore, we do not consider the problem of defining which of two sig-
natures with the same numbers of sorts and function symbols is simpler, choosing rather
to add only functions from a sort to itself.

Table 1. Signatures that will be used throughout the paper.

Signature Sorts Function Symbols

Σ1 {σ} ∅
Σ2 {σ, σ2} ∅
Σ3 {σ, σ2, σ3} ∅
Σs {σ} {s : σ → σ}
Σ2

s {σ, σ2} {s : σ → σ}

First, in such a setting, we have that the finite model property implies finite witness-
ability, in the presence of smoothness.

Theorem 5. If Σ is an empty signature with a finite set of sorts SΣ , and the Σ-theory
T has the finite model property and is smooth with respect to SΣ , then T is also finitely
witnessable with respect to SΣ .

Next, we show that stable finiteness and smoothness together, imply strong finite
witnessability.

Combining Finite Combination Properties: Finite Models and Busy Beavers 165

SM

FW (SW)

FM (SF)

Fig. 4. Interplay between SM, FW (SW) and FM (SF) w.r.t. SΣ in an empty signature.

Theorem 6. IfΣ is an empty signature with a finite set of sorts SΣ , and theΣ-theory T
is stably finite and smooth with respect to SΣ , then T is also strongly finitely witnessable
with respect to SΣ .

While Theorem 2 and Theorem 3 establish certain unconditional relations between
finite witnessability and the finite model property, and strong finite witnessability and
stable finiteness, the converses shown to hold in Theorem 5 and Theorem 6 demand
smoothness and that the properties hold with respect to the entire set of sorts. In that
case, the situation can be represented by the diagram found in Fig. 4, showing clearly
that a smooth theory that also has the finite model property (respectively, is stably
finite), cannot not be finitely witnessable (strongly finitely witnessable).

Lastly, regarding the empty signaturesΣ1,Σ2 andΣ3, the following theorem shows
that Σ3 is sometimes necessary.

Theorem 7. There are no Σ1 or Σ2-theories T that are, simultaneously, neither stably
infinite nor stably finite, but are convex and have the finite model property, with respect
to the entire set of their sorts.

Hence, to exhibit such theories, one has to consider three-sorted theories.

4 A Taxonomy of Examples

In [10], we have created a table, in which for every possible combinations of properties
from { SI, SM, FW, SW, CV } we either gave an example of a theory in this combi-
nation, or proved a theorem that shows there is no such example, with the exception of
theories that are stably infinite and strongly finitely witnessable but not smooth. Such
theories, referred to in [10] as Unicorn Theories (due to our conjecture that they do not
exist) were left for future work, and are still left for future work, as the focus of the
current paper is the integration of finiteness properties, namely FM and SF to the table.

And indeed, the goal of this section is to add two columns to the table from [10]:
one for the finite model property and one for stable finiteness. The extended table is
Table 2. We do not assume familiarity with [10], and describe the entire resulting table
(though focusing on the new results).

166 G. V. Toledo et al.

Table 2. Summary of all possible combinations of theory properties. Red cells represent impos-
sible combinations. In lines 26 and 34, n > 1; in lines 29, 30 and 35, m > 1, n > 1 and
|m − n| > 1.

Empty Non-empty

SI SM FW SW CV FM SF One-sorted Many-sorted One-sorted Many-sorted No

T

T

T

T
T T T T≥n (T≥n)2 (T≥n)s ((T≥n)2)s 1

F T T [10] (T≥n)∨ ((T≥n)2)∨ 2

F

T T
T Theorem 6 Tf (Tf)s 3

F Theorem 4 T2,3 Theorem 4 (T2,3)s 4

F T
T T s

f (T s
f)2 5

F
[10]

Theorem 4 (T2,3)∨ 6

F F

T
T

T T s
ς T =

ς 7

F
Theorem 5

Theorem 4 T 2
ς 8

F F T∞ (T∞)2 (T∞)s ((T∞)2)s 9

F
T

T T ∨
ς (T ∨

ς)2 10

F Theorem 4 T =
ς∨ 11

F F

[10]

(T∞)∨ ((T∞)2)∨ 12

F

T

T
T T T 13

F T T
Unicorn

14

F

T T
T T ∞

even (T ∞
even)2 (T ∞

even)s ((T ∞
even)2)s 15

F Theorem 4 T ∞ Theorem 4 (T ∞)s 16

F T
T (T ∞

even)∨ ((T ∞
even)2)∨ 17

F
[10]

Theorem 4 (T ∞)∨ 18

F F

T
T

T Tς (Tς)2 (Tς)s ((Tς)2)s 19

F Theorem 4 T ∞
ς Theorem 4 (T ∞

ς)s 20

F F Tn,∞ (Tn,∞)2 (Tn,∞)s ((Tn,∞)2)s 21

F
T

T (Tς)∨ ((Tς)2)∨ 22

F Theorem 4 (T ∞
ς)∨ 23

F F

[10]

(Tn,∞)∨ ((Tn,∞)2)∨ 24

F F

T

T
T T T T≤1 (T≤1)2 (T≤1)s ((T≤1)2)s 25

F T T T≤n (T≤n)2 (T≤n)s ((T≤n)2)s 26

F

T T
T [10] T odd

1 T �=
odd (T odd

1)s 27

F Theorem 4 T 3
2,3 Theorem 4 T ∞

�= 28

F T
T T〈m,n〉 (T〈m,n〉)2 (T〈m,n〉)s ((T〈m,n〉)2)s 29

F Theorem 4 T ∞
m,n Theorem 4 (T ∞

m,n)s 30

F F

T
T

T T ς
1 T �=

ς,1 (T ς
1)

2 31

F T ∞,3
ς Theorem 4 T ∞

ς �= 32

F F T ∞
1 T �=

1,∞ (T ∞
1)s 33

F
T

T T ς
n T �=

ς (T ς
n)s 34

F T ς
m,n Theorem 4 (T ς

m,n)s 35

F F

[10]

T ∞
2 T �=

2,∞ (T ∞
2)s 36

This section is structured as follows: In Sect. 4.1 we describe the structure of
Table 2. In Sects. 4.2 to 4.4 we provide details about the axiomatizations of theories
that populate it. Finally, in Sect. 4.5, we reuse operators from [10], prove that they pre-
serve the finite model property and stable finiteness, and show how they are used in
order to generate more theories for Table 2.

Combining Finite Combination Properties: Finite Models and Busy Beavers 167

4.1 The Table

The columns left to the vertical double-line of Table 2 correspond to possible combi-
nations of properties. In them, T means that the property holds, while F means that
it does not. The first 5 columns correspond to properties already studied in [10], and
the next two columns correspond to FM and SF. The columns right to the vertical
double-line correspond to possible signatures: empty or non-empty, and one-sorted or
many-sorted. White cells correspond to cases where a theory with the combination of
properties induced by the row exists in a signature that is induced by the column. In such
a case, the name of the theory is written. The theories themselves are defined in Figs. 5,
7 and 8, axiomatically. Shaded correspond to the cases where there is no such theory. In
such a case, the theorem that excludes this possibility is written. If that theorem is from
[10], we simply write [10].

Example 1. Line 1 of Table 2 corresponds to theories that admit all studied properties.
We see that there is such a theory in each of the studied types of signatures (e.g., for
the empty one-sorted signature, the theory T≥n exhibits all properties). In contrast, line
3 corresponds to theories that admit all properties but strong finite witnessability. We
see that such theories exist in non-empty signatures, but not in empty signatures. This
is thanks to Theorem 6.

Section 3, as well as results from [10], make some potential rows of Table 2 com-
pletely shaded. To allow this table to fit a single page, we chose to erase such rows.
For example, by Theorem 1, there are no theories that are stably finite but do not have
the finite model property, in any signature. Thus, no rows that represent such theories
appear in the table.

In the remainder of this section, we describe the various theories that populate the
cells of the table. Fortunately, all theories from [10] can be reused to exhibit also the new
properties SF and FM, or their negations. These are described in Sect. 4.2. However,
the theories from [10] alone are not enough. Hence we introduce several new theories
in Sects. 4.3 and 4.4. Some of them are relatively simple, and are described in Sect. 4.3.
Most of them, however, are more complex, and rely on the Busy Beaver function from
theoretical computer science. We discuss these theories in Sect. 4.4.

4.2 Theories from [10]

For completeness, we include in Fig. 5 the axiomatizations of all theories from [10]
that are used in Table 2 (Fig. 6 includes the definitions of formulas that are abbrevi-
ated in Fig. 5, such as ψ=

≥n from the definition of Tf). For lack of space, however,
we refrain from elaborating on these theories, and refer the reader to their detailed
description in [10]. For the theories of Fig. 5, whether they admit the properties from
{SI,SM,FW,SW,CV} or not was already established in [10]. For each of them, here,
we also check and prove whether they admit the new properties FM and SF.

168 G. V. Toledo et al.

Name Sig. Axiomatization

T≥n Σ1 {ψ≥n}
T ∞
even Σ1 {¬ψ=2k+1 : k ∈ N}
T∞ Σ1 {ψ≥k : k ∈ N}

Tn,∞ Σ1 {ψ=n ∨ ψ≥k : k ∈ N}
T≤n Σ1 {ψ≤n}
Tm,n Σ1 {ψ=m ∨ ψ=n}

Name Sig. Axiomatization

T2,3 Σ2 {(ψσ
=2 ∧ ψσ2

≥k) ∨ (ψσ
≥3 ∧ ψσ2

≥3) : k ∈ N}
T ∞
2 Σ2 {ψσ

=2} ∪ {ψσ2
≥k : k ∈ N}

T odd
1 Σ2 {ψσ

=1} ∪ {¬ψσ2
=2k : k ∈ N}

T ∞
1 Σ2 {ψσ

=1} ∪ {ψσ2
≥k : k ∈ N}

Name Sig. Axiomatization

Tf Σs {[ψ=
≥f1(k)

∧ ψ=
≥f0(k)

] ∨ k
i=1[ψ

=
=f1(i)

∧ ψ=
=f0(i)

] : k ∈ N \ {0}}
T s

f Σs Ax(Tf) ∪ {ψ∨}
T =
2,∞ Σs {[ψ=2 ∧ ∀ x. p(x)] ∨ [ψ≥k ∧ ∀ x. ¬p(x)] : k ∈ N}

T =
odd Σs {ψ=1 ∨ [¬ψ=2k ∧ ∀ x. ¬p(x)] : k ∈ N}

T =
1,∞ Σs {ψ=1 ∨ [ψ≥k ∧ ∀ x. ¬p(x)] : k ∈ N}

Fig. 5. Theories for Table 2 that were studied in [10]; p(x) stands for s(x) = x. In Tf , f is any
non-computable function from the positive integers to {0, 1}, such that for every k ≥ 0, f maps
half of the numbers between 1 and 2k to 1, and the other half to 0. In [10], such a function was
proven to exist.

ψ=

≥n = ∃ −→x .

n

i=1

p(xi)∧ δn ψ=

=n = ∃ −→x . [
n

i=1

p(xi)∧ δn ∧ ∀ x. [p(x) →
n

i=1

x = xi]]

ψ=

≥n = ∃ −→x .
n

i=1

¬p(xi)∧δn ψ=

=n = ∃ −→x .[
n

i=1

¬p(xi)∧δn∧∀ x.[¬p(x) →
n

i=1

x = xi]]

ψ∨ = ∀ x. (s(s(x)) = x) ∨ (s(s(x)) = s(x))

Fig. 6. Formulas for Σs-theories. −→x stands for x1, . . . , xn. δn stands for
∧

1≤i<j≤n ¬(xi = xj),
and p(x) stands for s(x) = x.

For example, for each n, T≥n consists of all Σ1-structures that have at least n ele-
ments. This theory was shown in [10] to be strongly finitely witnessable, and so by
Theorem 3 it is also stably finite. Then, by Theorem 1, it also admits the finite model
property.

It is worth mentioning that T2,3 was first introduced in [1], in the context of shiny
theories, where it was shown to have the finite model property, while not being stably
finite. An alternative proof of this fact goes as follows: it was proven in [8] that T2,3

is: (i) finitely witnessable; (ii) not strongly finitely witnessable; and (iii) smooth. By

Combining Finite Combination Properties: Finite Models and Busy Beavers 169

Name Signature Axiomatization

T ∞ Σ2 {(ψσ
=1 ∧ ψσ2

≥k) ∨ diagσ,σ2(k + 2) : k ∈ N}
T ∞

m,n Σ2 {ψσ
=max{m,n} ∨ (ψσ

=min{m,n} ∧ ψσ2
≥k) : k ∈ N}

T ∞
= Σ2

s {(ψσ
=1 ∧ ψσ2

≥k) ∨ (diagσ,σ2(k + 2) ∧ ∀ x. ¬p(x) : k ∈ N}
T 3
2,3 Σ3 {ψσ3

=1} ∪ {(ψσ
=2 ∧ ψσ2

≥k) ∨ (ψσ
≥3 ∧ ψσ2

≥3) : k ∈ N}

Fig. 7. Simple theories for Table 2. diagσ,σ2(k + 2), for any k ∈ N, stands for the formula
(ψσ

≥k+2 ∧ ψσ2
≥k+2) ∨ ∨k+2

i=2 (ψ
σ
=i ∧ ψσ2

=i), and p(x) stands for s(x) = x.

Theorem 2 and (i), it also has the finite model property. But since it is over an empty
signature, by (ii), (iii) and Theorem 6, we have that it cannot be stably finite.

4.3 New Theories: The Simple Cases

While the theories from Fig. 5 suffice to populate many cells of Table 2, they are not
enough. Hence we describe new theories, not taken from [10]. The simplest theories
that we have added can be found in Fig. 7, and are described below.

T ∞ is a theory with three distinct groups of models: its first group consists of mod-
els A that have |σA| = 1 and σA

2 infinite; its second group, of models A where both
σA and σA

2 are infinite; and its third group, of models A where |σA| = |σA
2 | is any

value k ≥ 2. In its axiomatization, one finds the formula diagσ,σ2(k + 2), equal to
(ψσ

≥k+2 ∧ ψσ2
≥k+2)∨

∨k+2
i=2 (ψ

σ
=i ∧ ψσ2

=i) for k ∈ N: that formula characterizes the mod-
els A of T ∞ that lie in the diagonal, that is, where |σA| = |σA

2 | (and this value is
greater than 1), or both are infinite.

T ∞
m,n is a theory that depends on two distinct positive integers m and n, and without

loss of generality let us suppose m > n, when the theory has two types of models A:
in the first, |σA| equals m, while σA

2 can be anything; in the second, |σA| equals n, and
then σA

2 must be infinite.
The models A of the Σ2

s -theory T ∞
�= have either: |σA| = 1, |σA

2 | ≥ ω and sA the
identity function; both σA and σA

2 infinite, and sA with no fixed points; or |σA| = |σA
2 |

equal to any number in N \ {0, 1}, and again sA with no fixed points.
Finally, T 3

2,3 is made up of just the models A of T2,3 (see Fig. 5) with an extra
domain associated to the new sort σ3 such that |σA

3 | = 1.

4.4 New Theories: The Busy Beaver

So far we have seen that the theories from [10], together with a small set of simple
new theories, can already get us quite far in filling Table 2. However, for several com-

170 G. V. Toledo et al.

Name Signature Axiomatization

Tς Σ1 {ψ≥ς(k+2) ∨ k+2
i=2 ψ=ς(i) : k ∈ N}

T ∞
ς Σ2 {(ψσ

=1 ∧ ψσ2
≥k) ∨ diagσ,σ2

ς (k + 2) : k ∈ N}
T ς

n Σ2 {ψσ
=n} ∪ {ψσ2

≥ς(k+2) ∨ k+2
i=2 ψσ2

=ς(i) : k ∈ N}
T ς

m,n Σ2 {(ψσ
n ∧ ψσ2

≥k) ∨ (ψσ
m ∧ ψσ2

≥ς(k+2)) ∨ k+2
i=2 (ψ

σ
m ∧ ψσ2

=ς(i)) : k ∈ N}
T s

ς Σs {(ψ≥k+1 ∧ ψ=
≥ς−1(k+1)) ∨ k+1

i=1 (ψ=i ∧ ψ=
=ς−1(i)) : k ∈ N}

T =
ς Σs {(ψ=2 ∧ ∀ x. ¬p(x)) ∨ ((ψ≥ς(k+2) ∨ k+2

i=2 ψ=ς(i)) ∧ ∀ x. p(x)) : k ∈ N}
T =

ς,1 Σs {ψ=1 ∨ ((ψ≥ς(k+2) ∨ k+2
i=2 ψ=ς(i)) ∧ ∀ x. ¬p(x)) : k ∈ N}

T ∨
ς Σs {ψ∨} ∪ {(ψ≥k+1 ∧ ψ=

≥ς−1(k+1)) ∨ k+1
i=1 (ψ=i ∧ ψ=

=ς−1(i)) : k ∈ N}
T =

ς Σ2
s {ψ=

≥k+2 → ψσ2
≥ς(k+2) : k ∈ N}

T 2
ς Σ2

s {(ψσ
=1 ∧ ψσ2

≥k) ∨ (ψ=
≥k+2 → ψσ2

≥ς(k+2)) : k ∈ N}
T =

ς∨ Σ2
s {ψ∨} ∪ {(ψσ

=1 ∧ ψσ2
≥k) ∨ (ψ=

≥k+2 → ψσ2
≥ς(k+2)) : k ∈ N}

T ∞
ς= Σ2

s {(ψσ
=1 ∧ ψσ2

≥k) ∨ (diagσ,σ2
ς (k + 2) ∧ ∀ x. ¬p(x)) : k ∈ N}

T ∞,3
ς Σ3 {ψσ3

=1} ∪ {(ψσ
=1 ∧ ψσ2

≥k) ∨ diagσ,σ2
ς (k + 2) : k ∈ N}

Fig. 8. Busy Beaver Theories for Table 2. diagσ,σ2
ς (k + 2) stands, for each k ∈ N, for

(ψσ
≥ς(k+2) ∧ ψσ2

≥ς(k+2)) ∨ ∨k+2
i=2 (ψ

σ
=ς(i) ∧ ψσ2

=ς(i)), and p(x) for s(x) = x; in T ς
m,n, we assume

w.l.g. m ≥ n.

binations, it seems that more complex theories are needed. For this purpose, we utilize
the well-known Busy Beaver function, and define various theories based on it. In this
section, we describe these theories. First, in Sect. 4.4.1, we review the Busy Beaver
function, and explain why it is useful in our context. Then, in Sects. 4.4.2 to 4.4.6, we
describe the theories that make use of it, separated according to their signatures.

4.4.1 On the Busy Beaver Function The Busy Beaver function, here denoted ς , is
an old acquaintance of theoretical computer scientists: essentially, given any n ∈ N,
ς(n) is the maximum number of 1’s a Turing machine with at most n states can write to
it’s tape when it halts, if the tape is initialized to be all 0’s. Somewhat confusingly, any
Turing machine that achieves that number is also called a Busy Beaver.

It is possible to prove that ς(n) ∈ N for any n ∈ N (see [5]), and so we may write
ς : N → N; furthermore, ς is increasing. But the very desirable property of ς is that it is
not only increasing, but actually very rapidly increasing.

More formally, Radó proved, in the seminal paper [5], that ς grows asymptotically
faster than any computable function (being, therefore, non-computable). That is, for
every computable function f : N → N, there exists N ∈ N such that ς(n) > f(n) for
all n ≥ N . Despite that, the Busy Beaver starts somewhat slowly: ς(0) = 0, ς(1) = 1,
ς(2) = 4, ς(3) = 6 and ς(4) = 13; the exact value of ς(5) (and actually ς(n) for any
n ≥ 5) is not known, but is at least 4098 [3].

Combining Finite Combination Properties: Finite Models and Busy Beavers 171

The fact that ς grows eventually faster than any computable function is a great prop-
erty to have when constructing theories that admit the finite model property, while not
being finitely witnessable. Roughly speaking, if the cardinalities of models of a the-
ory are related to ς , this guarantees that it has models of sufficiently large finite size,
while not being finitely witnessable since its models grow too fast: by carefully choos-
ing formulas φn that hold only in the ”n-th model” of the theory (when ordered by
cardinality), the number of variables of wit(φn) offers an upper bound to ς(n) and is
therefore not computable, leading to a contradiction with the fact that wit is supposed to
be computable. Notice that, despite the dependency of our theories on the Busy Beaver,
the function is not actually part of their signatures.

Now we present the theories that are based on ς . These theories are axiomatized in
Fig. 8.

4.4.2 A Σ1-Theory The most basic Busy Beaver theory is Tς . This is the Σ1-theory
whose models have cardinality ς(k), for some k ≥ 2, or are infinite: that is, Tς has
models with 4 elements, 6, 13 and so on. This theory forms the basis to all other theories
of this section, that are designed to admit various properties from Table 2.

By itself, Tς has the finite model property while not being (strongly) finitely wit-
nessable. It was in fact constructed precisely to exhibit this. As it turns out, it is also
not smooth, but does satisfy all other properties. To populate other rows in the table that
correspond to theories with other combinations of properties, more theories are needed,
with richer signatures.

4.4.3 Σ2-Theories To fill the rows that correspond to other combinations, we intro-
duce several Σ2 theories.

The Σ2-theory T ∞
ς is more complex. It has, essentially, three classes of models:

the first is made up of structures A where |σA| = 1 and σA
2 is infinite; the second, of

structures where both σA and σA
2 are infinite; and the third, of structures where |σA| =

|σA
2 | is a finite value that equals ς(k), for some k ≥ 2. The formula diagσ,σ2

ς (k + 2),
for k ≥ 2, in the axiomatization equals (ψσ

≥ς(k+2)∧ψσ2
≥ς(k+2))∨

∨k+2
i=2 (ψ

σ
=ς(i)∧ψσ2

=ς(i))
and is similar to diagσ,σ2(k + 2) from T ∞, characterizing the models A where either
|σA| = |σA

2 | = ς(k + 2), or both σA and σA
2 are infinite.

For each n > 0, T ς
n has as interpretations those A with |σA| = n, and |σA

2 |either
infinite or equal to ς(k), for some k ≥ 2 (so (|σA|, |σA

2 |) may equal (n, 4), (n, 6),
(n, 13) and so on).

T ς
m,n is a Σ2-theory that can be seen as some sort of combination of T ∞

m,n and
T ς

n , dependent on two distinct positive integers m and n. Consider the case where the
former is the greater of the two (the other cases are similar). In this case, we may divide
its interpretations A into three classes: those with |σA| = n and σA

2 infinite; those with
|σA| = m and σA

2 infinite; and those with |σA| = m and |σA
2 | equal to some ς(k), for

k ≥ 2.

4.4.4 Σs-Theories For some lines of Table 2, e.g. line 7, empty signatures are not
enough for presenting examples. Hence we also introduce Σs-theories.

We start with T s
ς , which is, arguably, the most confusing theory we here define:

we are forced to appeal not only to the special cardinality formulas found in Fig. 6, but

172 G. V. Toledo et al.

also to the function ς−1, which is a left inverse of ς . More formally, ς−1 : N → N

is the only function such that ς−1(k) = min{l : ς(l + 1) > k}: so ς−1(0) = 0,
ς−1(1) = ς−1(2) = ς−1(3) = 1, ς−1(4) = ς−1(5) = 2, ς−1(6) = · · · = ς−1(12) = 3,
ς−1(13) = · · · = ς−1(4097) = 4, and further values of ς−1 are currently unknown.
From the definition of ς−1, we have that ς(ς−1(k)) ≤ k and ς−1(ς(k)) = k. ς−1

is not computable given that, since ς−1(k) = min{l : ς(l + 1) > k} by definition,
ς−1(k+1)
= ς−1(k) iff k+1 is a value of ς: so, an algorithm to compute the values of
ς could be obtained by simply computing the values of ς−1 and checking where there
is a change.

T s
ς is then the Σs-theory with models A with any cardinality k + 1 ≥ 1, such that

sA(a) = a holds for precisely ς−1(k + 1) elements of A, and so sA(a)
= a holds
for k + 1 − ς−1(k + 1) elements, being the function k �→ k + 1 − ς−1(k + 1) itself
non-decreasing, given that ς−1(k + 1) can equal either ς−1(k) or ς−1(k) + 1.

Example 2. We mention some T s
ς -structures as examples: a structure A with |σA| = 1

and sA the identity; a structure B with |σB| = 2 and sA a constant function; a struc-
ture C with |σC | = 3 (say σC = {a, b, c}) and sC the identity for only one of these
elements (e.g., sC can be a constant function, but now there are further possibilities
such as sC(a) = sC(b) = a and sC(c) = b); and a structure D with |σD| = 4
(say σD = {a, b, c, d}) and sD the identity for only two of these elements (e.g.,
sD(a) = sD(b) = sD(c) = a and sD(d) = d);

Next, we continue to describe other Σs theories.
T �=

ς has essentially two classes of models A: those with |σA| = 2 and sA never
the identity; and those with |σA| equal to ς(k) or infinite, for some k ≥ 2, and sA the
identity.

T �=
ς,1 is very similar to T �=

ς : the difference lies on where s will be the identity: while

in T �=
ς the function s is the identity for all interpretations A with |σA| > 2, s in T �=

ς,1 is

the identity only for the interpretations A with |σA| = 1. So, in T �=
ς,1, we have a model

A with |σA| = 1 and sA the identity, and then models A with |σA| = ς(k) for some
k ≥ 2 or infinite, and sA(a) anything but a.

TheΣs-theory T ∨
ς is then just T s

ς , satisfying in addition the formula ψ∨ (see Fig. 6).
It has models A of any finite cardinality k + 1, as long as ς−1(k +1) of these elements
a satisfy sA(a) = a, or infinite cardinalities, as long as the number of elements a satis-
fying sA(a) = a is infinite; additionally, sA(sA(a)) must always equal either sA(a) or
a itself.

4.4.5 Σ2
s -Theories Now for theories in a many-sorted non-empty signature.

The Σ2
s -theory T =

ς appears simple, but is actually quite tricky: starting by the easy
case, if σA has infinitely many elements a satisfying sA(a) = a, σA

2 is also infinite.
If, however, the number of elements a ∈ σA satisfying sA(a) = a is finite (notice
that, even if this is the case, σA may still be infinite) and equal to some k + 2, then
σA
2 has at least ς(k + 2) elements. So, to give a better example, suppose σA has 2

elements satisfying sA(a) = a: then σA
2 has at least ς(2) = 4 elements, but may have

any cardinality up to, and including, infinite ones; notice that in this example σA may
be infinite as well, as long as only two of the elements satisfy sA(a) = a.

Combining Finite Combination Properties: Finite Models and Busy Beavers 173

T 2
ς is the same as T =

ς , but with extra models A where |σA| = 1 and |σA
2 | ≥ ω (of

course, then we have that sA is the identity).
T =

ς∨ is then the same as T 2
ς , with the added validity of the formula ψ∨; So the models

of T =
ς∨ are just models of T 2

ς satisfying that sA(sA(a)) equals either sA(a) or a itself.
T ∞

ς �= is just the Σ2-theory T ∞
ς with the added function s such that, if |σA| = 1, sA

is the identity; and if |σA| > 1, sA(a) is anything but a.

4.4.6 A Σ3-Theory Finally, T ∞,3
ς is obtained by adding a sort with a single element

to theΣ2-theory T ∞
ς , similarly to the definition of T 3

2,3, that was based on theΣ2-theory
T2,3 (see Sect. 4.3).

4.5 Theory Operators

There are two types of theories in Table 2: The first consists of base theories, such as
T≥n, that are axiomatized in Figs. 5, 7 and 8. The second is obtained from the first,
by applying several operators on theories. For example, the theories (T≥n)2, (T≥n)s,
((T≥n)2)s, are all obtained from the base theory T≥n. So far we have only described
the theories of the first type. In this section we explain the theories of the second type.

The operators that are used in Table 2 were defined in [10], in order to be able
to systematically generate examples in various signatures. For example, if T is a Σ1-
theory, then (T)2 is a Σ2-theory with the same axiomatization as T , that is, the second
sort is completely free and is not axiomatized in any way. For completeness sake, we
include the definitions of these operators here:

Definition 1 (Theory Operators from [10])

1. If T is a Σ1-theory, then (T)2 is the Σ2-theory axiomatized by Ax(T).
2. Let Σn be an empty signature with sorts S = {σ1, . . . , σn}, and let T be a Σn-

theory. The signature Σn
s has sorts S and a single unary function symbol s of arity

σ1 → σ1, and (T)s is the Σn
s -theory axiomatized by Ax(T) ∪ {∀x. [s(x) = x]},

where x is a variable of sort σ1.
3. Let T be a theory over an empty signature with sorts S = {σ1, . . . , σn}. Then (T)∨

is the Σn
s -theory axiomatized by Ax(T) ∪ {ψ∨} (see Fig. 6).

It was proven in [10] that these operators preserve the properties SI, SM, FW, SW,
CV, and the lack of them. Here we prove that the same holds for FM and SF as well.

Theorem 8. Let T be a Σ1-theory. Then: T is FM, or SF, w.r.t. {σ} if and only if (T)2

is, respectively, FM, or SF w.r.t. {σ, σ2}.

Theorem 9. If T is a theory over an empty signature Σn with sorts S = {σ1, . . . , σn},
then: T is FM, or SF, w.r.t. S if and only if (T)s is, respectively, FM, or SF, w.r.t. S.

Theorem 10. If T is a theory over an empty signature Σn with sorts S =
{σ1, . . . , σn}, then: T is FM, or SF, w.r.t. S if and only if (T)∨ is, respectively, FM,
or SF, w.r.t. S.

174 G. V. Toledo et al.

Thus, in various cases, theories need not be invented from scratch, but can be gen-
erated from other theories. For example, the theory T≥n exhibits all studied properties,
but is defined in a one-sorted signature. Using the operators, we obtain variants of this
theory in all signature types, namely (T≥n)2 for empty many-sorted signatures, (T≥n)s
for non-empty one-sorted signatures, and ((T≥n)2)s for non-empty many-sorted signa-
tures. The properties of the theories generated using these operators are guaranteed by
Theorems 8 and 9, as well as the corresponding results from [10].

In two cases of theories defined using the Busy Beaver function, T ∨
ς and T =

ς∨, we
cannot obtain them by relying on Theorem 10 from, respectively, T s

ς and T =
ς , since the

signatures of the latter theories are not empty. Curiously, adding ψ∨ to their axiomati-
zations still has the desirable outcome, but we prove this separately, without relying on
Theorem 10. Extending Theorem 10 to non-empty signatures is left for future work.

The number of combinations of properties that we consider, together with the pos-
sible types of the signatures, adds up to 29 = 512. Our negative results from Sect. 3
guarantee that only ∼15% of the actual table can be filled with examples. The remain-
ing ∼85% are either shaded or are excluded from the table for space considerations. As
for the examples that can be given, notice that there are in total an astonishing number
of 78 theories in our table. But, thanks to the theory operators of Definition 1, only 33
of them (∼42%) had to be concretely axiomatized in Figs. 5, 7 and 8. The remaining 45
theories were defined using the operators.

5 Conclusion

We examined, in addition to all properties considered in [10], the finite model prop-
erty, and stable finiteness. Interesting restrictions for the combinations involving these
properties were established. We also found interesting theories to fill in our table of
combinations, most prominently those involving the Busy Beaver function as well as
its inverse.

One possible direction this research could take is reasonably clear: considering the
computability of the mincard function, what will, most probably, double the number
of theories to be taken into consideration. Further interesting properties that could be
considered include the decidability of the theory’s axiomatization, or even its finiteness,
and the satisfiability problem of the theory with respect to quantifier-free formulas.

Second, some of the negative results in [10] and in the present paper only hold with
respect to the entire set of sorts SΣ . We plan to study if they hold also with respect to
proper subsets of sorts, and if they do not, to provide counterexamples to those gener-
alizations.

Acknowledgments. (1Funded in part by NSF-BSF grant numbers 2110397 (NSF) and 2020704
(BSF) and ISF grant number 619/21.)

References

1. Casal, F., Rasga, J.: Many-sorted equivalence of shiny and strongly polite theories. J. Autom.
Reason. 60(2), 221–236 (2018)

Combining Finite Combination Properties: Finite Models and Busy Beavers 175

2. Jovanović, D., Barrett, C.: Polite theories revisited. Technical report TR2010-922, Depart-
ment of Computer Science, New York University, January 2010

3. Marxen, H., Buntrock, J.: Attacking the busy beaver 5. Bull. EATCS 40, 247–251 (1990)
4. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans.

Program. Lang. Syst. 1(2), 245–257 (1979)
5. Radó, T.: On non-computable functions. The Bell Syst. Techn. J. 41(3), 877–884 (1962)
6. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably infinite

theories using many-sorted logic. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol.
3717, pp. 48–64. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306 3

7. Sheng, Y., Zohar, Y., Ringeissen, C., Lange, J., Fontaine, P., Barrett, C.W.: Polite combina-
tion of algebraic datatypes. J. Autom. Reason. 66(3), 331–355 (2022)

8. Sheng, Y., Zohar, Y., Ringeissen, C., Reynolds, A., Barrett, C., Tinelli, C.: Politeness and
stable infiniteness: stronger together. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS
(LNAI), vol. 12699, pp. 148–165. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-79876-5 9

9. Tinelli, C., Zarba, C.: Combining decision procedures for theories in sorted logics. Technical
report 04–01, Department of Computer Science, The University of Iowa, February 2004

10. Toledo, G.V., Zohar, Y., Barrett, C.: Combining combination properties: an analysis of stable
infiniteness, convexity, and politeness. Accepted to CADE 2023 (2023). https://arxiv.org/abs/
2305.02384

11. Toledo, G.V., Zohar, Y., Barrett, C.: Finite models and busy beavers, Combining finite com-
bination properties (2023)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/11559306_3
https://doi.org/10.1007/978-3-030-79876-5_9
https://doi.org/10.1007/978-3-030-79876-5_9
https://arxiv.org/abs/2305.02384
https://arxiv.org/abs/2305.02384
http://creativecommons.org/licenses/by/4.0/

Formal Reasoning Using Distributed
Assertions

Farah Al Wardani , Kaustuv Chaudhuri(B) , and Dale Miller

Inria Saclay and LIX, Institut Polytechnique Paris, Palaiseau, France
{farah.al-wardani,kaustuv.chaudhuri,dale.miller}@inria.fr

Abstract. When a proof system checks a formal proof, we can say that
its kernel asserts that the formula is a theorem in a particular logic.
We describe a general framework in which such assertions can be made
globally available so that any other proof assistant willing to trust the
assertion’s creator can use that assertion without rechecking any associ-
ated formal proof. This framework, called DAMF, is heterogeneous and
allows each participant to decide which tools and operators they are will-
ing to trust in order to accept external assertions. This framework can
also be integrated into existing proof systems by making minor changes
to the input and output subsystems of the prover. DAMF achieves a high
level of distributivity using such off-the-shelf technologies as IPFS, IPLD,
and public key cryptography. We illustrate the framework by describing
an implemented tool for validating and publishing assertion objects and
a modified version of the Abella theorem prover that can use and publish
such assertions.

1 Introduction

In order to communicate a result from one formal reasoning system to another, a
common technique is to transfer a formal proof certificate from the source system
to the target system. This technique is usually required when the target system
is autarkic,1 wherein the system only trusts its own components, of which a par-
ticularly trusted component is an implementation of a proof checking kernel. To
transfer a formal proof to an autarkic target system, either (a) the proof has to
be translated from the source system, or (b) the verifier for the proof must be
re-implemented as a certified procedure in the target system [6,25]. Both kinds
of transferal are complicated for a variety of reasons: (1) The source and tar-
get system may not be syntactically, semantically, or foundationally compatible.
(2) The source-proof language can have complex operational semantics that is
cumbersome to encode in the target system. (Note that no universal standard
has yet emerged for encoding the formal semantics of arbitrary proof languages;
cf. Sect. 5.) (3) As systems change and mature, older versions of proof certifi-
cates can become stale and unmaintained. (4) Perhaps most importantly, many

1 In [12], the adjective autarkic was applied to computational components of a proof
checker but not to an entire proof checker.

c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 176–194, 2023.
https://doi.org/10.1007/978-3-031-43369-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_10&domain=pdf
http://orcid.org/0000-0003-1520-7090
http://orcid.org/0000-0003-2938-547X
http://orcid.org/0000-0003-0274-4954
https://doi.org/10.1007/978-3-031-43369-6_10

Formal Reasoning Using Distributed Assertions 177

popular reasoning systems do not produce proof certificates at all. Prominent
examples of that latter are SMT solvers that are not certifying when memory
size and execution time are critical [32] and the specification tool Twelf [42]
when using non-certifying procedures (e.g., totality checking).

Formal reasoning systems that are non-autarkic have an additional way to
interact with external provers that addresses many of the above issues. In such
systems, a host system is designed to build proof obligations that are then dis-
patched to external systems to solve. While these external systems may produce
proofs, the host system usually does not check the proofs and instead trusts
the executions of the external systems. This system architecture is most com-
monly used in program verification tools such as Dafny [28], Why3 [24], and
TLAPS [16]. One issue not addressed with this enlarged view of trust is that the
external dependencies tend to have unclear descriptions, especially from a third-
party perspective. To illustrate, Dafny may declare that it trusts “Z3 v.4.12.1”,
but what does this mean? Is this external dependency to be interpreted by name,
in which case any tool called “Z3 v.4.12.1” can be used, or is it precisely identi-
fied by, e.g., (a cryptographic hash of) the source code (or better, an executable
binary) of a particular tool called “Z3 v.4.12.1”? Even with a precise identifica-
tion, an external executable dependency may not be practical to incorporate. For
example, the HOL Light system [27] re-checks its entire standard library every
time it is started, taking on the order of minutes. If a development involves many
calls to an external HOL Light-based solver, how are the calls to be orchestrated?

In addition to these two bases of trust—autarkic based on proof certificates,
and non-autarkic based on executions of external tools—there is at least one
other basis of trust in any heterogeneous development: the agents that write
and assemble the developments and execute the formal tools as required (check-
ers, solvers, etc.). An example of an agent is a user, although one individual
user can have many agent profiles (see Sect. 3.2). Entities such as a trustwor-
thy central database can also correspond to an agent. Trusted agents have been
largely neglected in the formal reasoning world, but they are common in other
high reliability settings, such as security. Nevertheless, agents are at least implic-
itly present in any formal development: to claim that a result has been formally
achieved is tantamount to saying that some trustworthy agent (e.g., peer review-
ers) has correctly and successfully executed a specific collection of formal tools
to convince themselves of that formal result. Furthermore, if one agent A trusts
another B, there is no need for A to re-check B’s proof scripts and re-execute
any tools that B used to construct the result.

In this paper, we propose a framework where a distributed collection of agents
can exchange formal results (called assertions), where the results have an unim-
peachable provenance, and where each agent is in full control of their trust
parameters. This Distributed Assertion Management Framework (DAMF) is:

– Decentralized : a global notion of truth is not imposed on every participant
by means of a privileged logic, language, system, or software. This linguistic
independence makes DAMF different from formalisms such as the evidential
tool bus [20,38] that have been proposed for integrating external reasoning

178 F. Al Wardani et al.

agents into a unified formal system. Participants in DAMF are free to com-
bine assertions from different sources if they believe the combination to be
meaningful. Any participant can retrieve and use any assertion they under-
stand, and this external import will be explicitly marked as a dependency if
they choose to publish assertions they build with such external imports.

– Reliable: assertions have an irrefutable provenance, i.e., the fact that an agent
has published an assertion is locally verifiable and independent of any other
aspect of DAMF. Assertions, therefore, need to be immutably and eternally
available, even in the presence of intermittent infrastructure and nefarious
users or tools.

– Composable: assertions are not rigidly constrained by their history ; new log-
ical artifacts such as theories, libraries, proof outlines, etc. can be crafted by
reorganizing existing assertions based on their declared dependencies.

– Egalitarian: the barrier to entry is low for participants who want to produce
or consume such assertions.

– Status Quo Compatible: existing work already done with current mainstream
systems is readily incorporated as assertions without needing to modify any
existing system.

Concretely, DAMF provides JSON-based representations of a small num-
ber of concepts such as formulas, assertions, dependencies, etc. without any up-
front commitment to a formal syntax or any particular semantics. These objects
are then added to a global store in terms of the InterPlanetary File System
(IPFS) [13] using linked data in the InterPlanetary Linked Data (IPLD) format.
An object in IPFS/IPLD is denoted by a canonical content identifier (cid), a
cryptographic hash of its content. Knowing the cid is sufficient to retrieve the
object by any participant of the IPFS network. Furthermore, the cids are the
only externally visible names in DAMF, and links between objects are made
using these cids by IPLD. Features specific to a particular language or system,
such as constants, variables, definitions, and notations, are kept localized to par-
ticular formula objects. Assertions are built using (the cids of) formula objects
and signed by their creator agents using public key cryptography. IPFS is used to
distribute DAMF objects transparently using various technologies whose precise
details are irrelevant to this paper.

This paper is accompanied by two concrete implementations that illustrate
DAMF. First, we provide a tool called Dispatch that can be used by users and
systems to both produce and consume DAMF assertions. Dispatch is not a privi-
leged tool in DAMF: users and systems can interact directly with DAMF objects
in IPFS if they so choose. Dispatch is simply one interface to the DAMF global
store, making the integration of producers and consumers minimally demanding.
It does tasks such as schematically validating the concrete JSON objects added
to or retrieved from the global store. Dispatch also helps to analyze and modify
the trust parameters for (compositions of) assertions.

Second, we implement a version of the Abella interactive theorem prover [10]
that can produce and consume assertions in DAMF, mediated by Dispatch. As
an example of its use, we show how Abella can use a lemma that was stated

Formal Reasoning Using Distributed Assertions 179

and proved using the automated linear arithmetic reasoning tactics of Coq (v.
8.16.1); this lemma is manually translated from the Coq to the Abella language,
with an explicit dependency on its Coq development, and added to the global
store by the present authors. A user can accept this heterogeneous development
as long as they trust Coq, Abella, and our translation of the Coq lemma to Abella.
Moreover, this assertion, which contains explicit links to the externally sourced
DAMF imports, can be published back to DAMF for use by others.

Since dependencies are explicitly tracked in DAMF assertions, any user can
analyze various aspects of how it was composed of other assertions. Such analysis
can form the basis of various kinds of investigations: for example, if a formula is
found to be a non-theorem, an investigator can explore the compositions of the
DAMF assertions that yield that formula in order to find the agents whose trust
parameters may need to be modified. The Dispatch tool mentioned above comes
with a command called lookup that explores combinations of known assertions
that ultimately yield a desired result; for each such composition, the analysis
extracts the collection of agents (and tools) that could be trusted in order to
accept that composition.

In the next section, we describe the abstract design of DAMF and its underly-
ing logic of assertions which form the basis of the abovementioned investigations.
Section 3 describes our concrete implementation of DAMF, Sect. 4 discusses some
of the design choices in DAMF, and Sect. 5 discusses some related work. The spe-
cific software tools (Dispatch and Abella-DAMF) accompanying this paper are
fully documented at https://distributed-assertions.github.io/.

2 Design of DAMF

2.1 Languages, Contexts, and Formulas

To transfer a theorem from a source proof system to a target proof system, we
must be able to transfer the statement of the theorem, which we represent as a
formula object in DAMF. To be as general as possible, we represent the content
of such a formula as a string, i.e., in a format suitable as an input to a parser of
the source proof system. In order to determine that the input is well-formed, the
source proof system may need further information about the features—symbols,
predicates, functions, types, notations, hints, etc.—used in the formula. Such
additional information is the context of the formula, which we represent as a
document fragment in the language of the source proof system.

For example, take the following theorem written in Coq 8.16.1:

1 Definition lincomb (n j k : nat) := exists x y, n = x * j + y * k.

2 Theorem ex_coq : forall n:nat, 8 <= n -> lincomb n 3 5.

The formula corresponding to the theorem ex_coq is the literal string “forall
n:nat, · · · lincomb n 3 5”. The symbols 8, <=, etc. are part of the standard
prelude of this language, and the symbol lincomb is defined in line 1, so a sufficient
context necessary for Coq 8.16.1 to parse and type-check the theorem statement
is the text of line 1, which is also written in the Coq 8.16.1 language.

https://distributed-assertions.github.io/

180 F. Al Wardani et al.

Abstractly, a formula object in DAMF is a triple (L,Σ, F) where L denotes
a language, Σ denotes a context, and F denotes a formula, all of which may
conceptually be thought of as strings. We will use the schematic variable N
to range over such formula objects. The language L is a canonical identifier
(specifically, the cid of a DAMF language object) which may optionally represent
information about a suitable loader for the language that will make sense of the
strings Σ and F ; DAMF compares languages just by their identifiers. Moreover,
L is interpreted as defining all the globally available features; for instance, the
symbol nat is part of the standard prelude of this version of Coq and should
therefore be understood as being defined in the language Coq 8.16.1. The context
Σ introduces any user-defined features such as the definition lincomb above that
is not part of Coq’s standard prelude.

Note that DAMF formula objects are considered to be closed, i.e., every
symbol used in the formula is defined in the language or the context. From
the perspective of DAMF, a formula object is an atomic entity. Additionally,
DAMF does not need to be aware of any reasoning principles of the language
or context components. For instance, no mechanism in DAMF would allow the
substitution of a declared symbol in the context with a concrete definition. The
purpose of differentiating a formula object into three parts is purely pragmatic:
the language part will in most cases be a well known object used by many agents,
and the context part may potentially be shared between multiple assertions.
DAMF consumers may be able to use this sharing of information to consolidate
tasks such as context-processing.

2.2 Sequents and Assertions

A sequent in DAMF is abstractly of the form N1, . . . , Nk � N0 where each of
the Ni is a DAMF formula object defined in the previous subsection. We will
use the schematic variable Γ to range over ordered lists of formula objects, and
S to range over sequents. In a sequent Γ � N , we say that N is the conclusion
and Γ are the dependencies. Such sequent objects may be produced whenever
a formal proof has been checked in a proof checker: the conclusion represents
the statement of the theorem, and the dependencies are external lemmas that
were used during that proof. As an example, suppose the Coq 8.16.1 theorem in
Sect. 2.1 has a proof that appeals to the lemma lem : forall m n, m <= n -> S m

<= n \/ m = n. The sequent that is produced is conceptually of the form lem �
ex_coq, though concretely we would have to build DAMF formula objects by
packaging the language and contexts.

An agent is a globally unique name. We use the schematic variable K to
range over agents. We define a simple multi-sorted first-order logic where agents
and sequents are primitive sorts and where the infix predicate says is the sole
predicate; the atomic formula K says S, where K is an agent and S a sequent,
is an assertion. The says predicate is implemented in DAMF using public-key
cryptography. In a DAMF-aware proof system, when an appeal is made—say as
part of the proof of some other theorem—to an assertion K says (N1, . . . , Nk �
N0), the appeal is interpreted as follows:

Formal Reasoning Using Distributed Assertions 181

– The agent K is treated as trusted ; if the agent cannot be trusted for some
reason, such as if K occurs in a deny list, then the assertion is unusable.

– The conclusion of the assertion, N0, contains the formula representing the
lemma that is being appealed to. Note, in particular, that the dependencies
N1, . . . , Nk are not relevant to appealing to this assertion as an external
dependency. These dependencies will be used in reasoning about compositions
in DAMF, as described in Sect. 2.4.

2.3 Adapters

Because every formula object packages the formula together with its context and
language identifier, every formula object is independent of every other formula
object. Thus, in a sequent N1 � N0, there is no requirement that the conclusion
N0 and the dependency N1 be in the same language or have a common context.
When working within a single autarkic system (e.g., a proof checker using a single
logic), the sequents that are generated for every theorem will probably place the
conclusion and dependencies in the same language and context; however, in the
wider non-autarkic world, we can use multilingual sequents as first class entities
that are documented and tracked the same way as any other kind of sequent.

An important class of multilingual sequents comes from adapters. In order
for a theorem written in the Coq 8.16.1 language to be used by a different
system with a different language, say Abella 2.0.9, we will need to transform
the formula objects in the former language to those in the latter language. This
kind of translation is an example of a language adapter, which falls into the
general class of adapters, and which creates a sequent by translating between
languages or modifying the logical context by standard logical operations such
as weakening (adding extra symbols), instantiation (replacing a symbol by a
term), or unfolding (replacing a defined symbol by its definition).

As an example, the Coq 8.16.1 example above can be translated to the
Abella 2.0.9 language as follows, where the function symbols + and * are
replaced by relations in Abella.2

1 Import "nats". % some natural numbers library

2 Define lincomb : nat -> nat -> nat -> prop by

3 lincomb N J K := exists X Y U V,

4 times X J U /\ times Y K V /\ plus U V N.

5 Theorem ex_ab : forall n, nat n -> le 8 n -> lincomb n 3 5.

Lines 1–4 determine the context Σex_ab for the formula ex_ab on line 5.
The sequent that represents this translation therefore has the form

(
Coq 8.16.1, Σex_coq, ex_coq

) � (Abella 2.0.9, Σex_ab, ex_ab).

Suppose agent K1 signs this translation and that agent K2 signs the sequent
� (

Coq 8.16.1, Σex_coq, ex_coq
)
. As long as K1 and K2 are trusted by the user

of Abella 2.0.9, then the formula object (Abella 2.0.9, Σex_ab, ex_ab) can also
be treated as a theorem by that user thanks to composition, discussed next.
2 This encoding of functions using relations is the usual one: see [17] for details.

182 F. Al Wardani et al.

2.4 Composing Assertions, Trust

Assertions will be composed by means of a single rule of inference that imple-
ments a cut-like rule for sequents, Compose.

K says (Γ1 � M) K says (M,Γ2 � N)
K says (Γ1, Γ2 � N) Compose

The effect of this rule means that the says predicate does not correspond one-
to-one with cryptographic signatures. The conclusion of the Compose rule may,
in particular, not be a sequent that has been explicitly signed by the agent
K even if both premises are. Rather, the rule states that whenever K can be
said to reliably claim, either by a cryptographic signature or by a Compose-
derivation tree, that both Γ1 � M and M,Γ2 � N , then K must also reliably
claim Γ1, Γ2 � N .

There are many variations to access control logic in the literature. For exam-
ple, some such logics use inference rules such as:

Γ � N
K says (Γ � N)

or
K says (Γ � N)

K says (K says (Γ � N))
.

Such rules are neither syntactically well-formed nor desirable for our purposes.
We use here a very weak access control logic (see [1] for a survey of such logics).
Instead, checking the validity of a given derivation using Compose is compu-
tationally trivial: each instance of it must eliminate exactly the leftmost depen-
dency in the second premise, which is a DAMF formula object that is compared
by cid.

Observe that the agent K does not participate in a meaningful way in a
derivation that is built with the Compose rule. Thus, for a given end sequent
of the form K says (� N), a Compose derivation can be seen as a proof outline
for the desired theorem N , with the leaves of the derivation being the assertions
that need to be sourced from an assertion database (such as the DAMF global
store). We say that an assertion (K says S) is published if it can be retrieved
from such a database. The inference system is then enlarged with the following
rule that can be used to complete the open leaves of the Compose derivation
using assertions made by different agents.

(K1 says S) is published
K2 says S

Trust [K1 �→ K2]

This rule is parameterized by a pair of agents, K1 and K2, and is understood
to be applicable only when K1 is in the user-specified allow list of K2 (i.e., K1

speaks for K2, which we write as [K1 �→ K2]).
We do not assume that agents have any additional closure properties beyond

Compose and Trust. For example, suppose NA, NA→B , and NB are the for-
mula objects that correspond to the formulas A, A → B, and B respectively in

Formal Reasoning Using Distributed Assertions 183

some language. We do not assume that the following rule is admissible:

K says (Γ � NA→B) K says (Γ � NA)
K says (Γ � NB)

mp.

That is, we do not assume that the formulas asserted by agent K are closed under
modus ponens. Similarly, we do not assume that what agents assert are closed
by substitution or instantiation of any symbols that are defined in the contexts
of the formula objects. While a particular agent may not be closed under modus
ponens, substitution, or instantiation, it is possible to employ other agents that
can look for opportunities to apply such inference rules on the results of trusted
agents. In particular, if we want the query engine to be able to use the mp rule,
then the engine must construct an agent Kmp whose sole function is to generate
assertions such as Kmp says (NA→B , NA � NB) that correspond to applications
of the mp rule. Of course, Kmp will need to be in the allow list for any agent
wanting to use this agent.

2.5 Producing Assertions, Formal Reasoning Tools

Conceptually, an agent constructs a DAMF sequent as a consequence of running
formal reasoning tools such as proof checkers or theorem provers. DAMF includes
tool objects, which are unconstrained JSON objects that can be used to describe
such tools. A tool object does not necessarily describe an implemented tool; it
might describe a part of it, or an abstract description of the logical system in
which the sequent is asserted in, for instance. Like with languages in Sect. 2.1,
we compare tools for equality by means of the cids of these tool objects. It is
also possible for an agent to build a DAMF sequent manually, without running
any tool. The agent may do this for a number of reasons: e.g., the assertion may
be a conjecture (i.e., a proof may be provided at some other time but is currently
missing) or a manually produced adapter.

A DAMF production is a sequent that is annotated with a mode that
describes how the sequent was produced; this mode can be the cid of a tool
object mentioned above, or it can be null expressing an unproven sequent. We
use the schematic variable T for modes, and write a production of the sequent
Γ � N with mode T as Γ �T N . Published DAMF assertions will be of the form
K says (Γ �T N), and we modify the Trust rule to the following:

(K1 says (Γ �T N)) is published
K2 says (Γ � N)

Trust [K1/T �→ K2]

where the side condition [K1/T �→ K2] means that K2 allows K1’s assertions
in mode T . It may be tempting to think of K1/T as an agent by itself, but, as
we shall see in Sect. 3.1, agents are implemented in DAMF using keypairs, so if
K1/T1 and K1/T2 were separate agents then there would be no verifiable way to
link them both to K1. This use of modes makes it possible, for example, to trust
an agent K using any version of Coq while not trusting K when using other
proof systems.

184 F. Al Wardani et al.

2.6 Logical Consistency of Heterogeneous Combinations

DAMF imposes no constraints on the composition of assertions, which can at
first glance appear to be risky. For example, suppose the assertions come from
incompatible logics, say an assertion in classical logic during the proof of an intu-
itionistic theorem. Without exceptional care, the result of a Compose will only
be classically, not intuitionistically, true. Similar problems exist if the imported
assertion requires additional axioms that are incompatible with the user’s setting
(e.g. extensionality or UIP in the setting of univalence).

This issue highlights the fact that DAMF does not guarantee logical compat-
ibility of assertions; rather, DAMF is more accurately seen as a record of com-
positions that have been made. To trust an agent’s assertion is just to say that
we trust that the agent indeed had good reasons (such as a proof) to make that
assertion, not that the assertion may be arbitrarily composed. Moreover, DAMF
assertions are intended to be read as hypothetical statements from dependencies
to conclusions (where “hypothetical” is understood in the informal language of
discourse rather than as a formal implication or entailment). If the dependencies
cannot be met, the assertion is useless. To illustrate, if an agent K wants to
use an assertion Γ � M in their proof of N , the assertion they will publish is
K says (M � N), which is acceptable in isolation; if M is incompatible with the
logic of N , then the assertion K says (M � N) is vacuous.

3 Implementation: Information, Processes, and Tools

3.1 The Structures of the Global Store

A crucial design criterion of DAMF is that the assertions and their constituent
objects are a globally shared commodity, existing independently of the tools
that produce or consume them. To this end, DAMF requires well-defined basic
structures that producers would produce and consumers would expect and know
how to address.

The use of a content-addressing scheme is an essential part of seeing these
structures as global. Each structure is identified and addressed by a unique
global identifier in a common namespace in an independently verifiable and
trusted way: the identifier is derived from the content itself and every alteration
of the content produces a new identifier; at the DAMF level, the content is
the name/address, and comparing two objects structurally at the DAMF level is
reduced to comparing their cids as strings. One way to handle differences in cids
between different forms of conceptually the same DAMF object is by curation
and normalization of such structures at the level of producers or potentially
other DAMF actors.

The structures we may want to specify in DAMF are built by composing sev-
eral elements; for instance, a sequent contains formula structures, which them-
selves contain context structures. In DAMF, we make the design choice to treat
all such structures as first class objects stored in a distributed network through

Formal Reasoning Using Distributed Assertions 185

IPFS, and use the linked data representation of IPLD to represent an object as
being composed of other objects.

The core DAMF structures we define are context, formula, sequent, produc-
tion, and assertion. Concretely, these structures are represented as JSON objects
with a varying format property which has the type of the structure as its value.
These structures are described as follows (full definitions in [4, Appendix A]):

– Context : contains a language field, which is an IPLD link to a language object,
described in Sect. 2.1, and a content field containing the body of the context.

– Formula: contains a language field, a content field for a string representation
of the formula in the language, and a context field that is an IPLD link to a
context object, as described in Sect. 2.1.

– Sequent : a dependencies field mapped to a list of IPLD links to formula
objects, and a conclusion field as an IPLD link to a formula object.

– Production: pairs a sequent object with a mode field denoting a mode of pro-
duction of a sequent as described in Sect. 2.5.

– Assertion: a claim field mapped to an IPLD link to a production (currently
considered the main claim type in DAMF), an agent field mapped to a public
key, and a signature field containing the result of signing the cid of the value
of the claim field.

Given these schemata, the aspects of tracking and trusting become natural: a
formula present as a dependency in some assertion could be matched with the
same formula present as the conclusion of a different assertion.

It is also useful to annotate these core DAMF objects with additional meta-
data such as external names, proof objects, timestamps, etc. In DAMF, we have
chosen to give the core objects a cid independent of the metadata; instead, for
every core object, we define an annotated object that is composed of a link to
the core object and a link to any additional metadata. DAMF follows the design
principle that objects are to be considered equal at the DAMF level if they have
the same cid: the content of the objects is not examined, and no IPLD-links
are followed for such comparisons. Generally speaking, therefore, DAMF core
objects will not link to annotated objects, since the annotations will factor into
the cids and force disequality when undesired, such as when building composi-
tions (Sect. 2.4). The sole exception to this rule of thumb are assertion objects
which can use annotated production objects as their claims. Note that every
assertion object will be globally unique when produced: it will have a different
cid each time its claim is signed, even if signed by the same agent, because
cryptographic signatures always include a nonce.

Another layer of structures that can aggregate global object references are
collections. We currently define one generic collection format in our implemen-
tation: many other non-generic collection formats can easily be considered.

3.2 Processes in DAMF, and Dispatch as an Intermediary Tool

The two obvious processes in DAMF are the production and consumption of
DAMF objects. In a production process, DAMF objects are constructed starting

186 F. Al Wardani et al.

from local information, published, and then stored across the distributed net-
work. The consumption process is in the opposite direction: locally consumable
information are constructed from DAMF objects. The important point is that
these DAMF objects are common and well-understood (as DAMF formats) for
all consumers, and each consumer decides what to consume and how to consume
it. For example, a consumer might only choose to read formulas that are of some
specific language, and then decide how to process their internal structures based
on its own criteria. Other than these two, other processes will be done on the
published DAMF objects that will incorporate their combination, curation, and
analysis. The process we consider first in our implementation is lookup which will
be discussed further below. Individual producers and consumers, such as theo-
rem provers, can choose to implement some or several of these DAMF processes.
However, many aspects of dealing with linked data and IPFS will be common to
such tools, so we describe an intermediary tool called Dispatch that simplifies the
interactions between these producers and consumers and the DAMF global store.
Of course, Dispatch would be considered part of the trusted code base, along with
IPFS and any utilities used to manipulate JSON data and cryptographic signa-
tures. If this is problematic, Dispatch can be completely foregone in preference
to native implementations.

The Dispatch tool is distributed as an executable dispatch with three subcom-
mands: publish, get, and lookup. The dispatch publish command operates on
one of a collection of standard input formats that contains local information cor-
responding to DAMF types. After syntactically validating this input, the publish

command will construct and publish the global objects. Dispatch can also option-
ally interact with a specific storage service in order to make that object widely
discoverable in the IPFS network. As an example, consider the following input
for an assertion object, where newly created formulas and contexts are placed in
the same file and are referred by local names such as plus_comm, and previously
existing objects are referred by their cids using the damf: flag, such as the first
value of “dependencies” (line 10) which refers to a formula object cid, as well as
“language” and “mode” values which refer to existing language and tool objects
respectively.

1 { "format": "assertion",

2 "agent": "localAgent",

3 "claim": {

4 "format": "annotated-production",

5 "annotation": . . .,
6 "production": {

7 "mode": "damf:bafyreihnx2. . .",
8 "sequent": {

9 "conclusion": "plus_comm",

10 "dependencies": ["damf:bafyreihw6g. . .", "plus_succ"] } } },

11 "formulas": {

12 "plus_comm": {

13 "language": "damf:bafyreidyts. . .",
14 "content": ": forall M N K, nat K -> . . .",

Formal Reasoning Using Distributed Assertions 187

15 "context": ["plus"] },

16 "plus_succ": {

17 "language": "damf:bafyreidyts.",
18 "content": ": forall M N K, . . .",
19 "context": ["plus"] } },

20 "contexts": {

21 "plus": {

22 "language": "damf:bafyreidyts.",
23 "content": [

24 "Kind nat type.", "Type z nat.", "Type s nat -> nat.",

25 "Define plus : nat -> nat -> prop by"] } } }

This example is based on an output from our Abella-DAMF prover described
below. A prover using Dispatch tool only needs to be able to produce and con-
sume JSON objects with this structure, without needing to interface with IPFS
directly. The value of “agent” (line 2) refers to an agent profile in Dispatch; each
profile maps a user-readable name to a cryptographic key-pair, created separately
using the dispatch create-agent command.

The dispatch get command takes a cid as an argument, fetches the IPLD dag

(the full JSON object) referenced by it from the global store, validates the types
of all constituent IPLD linked objects, verifies any signatures, and finally outputs
a JSON object that is similar in structure to that accepted by dispatch publish.
The consumer will have access to all the necessary DAMF objects referenced by
the root cid without needing to interact with the global store or structurally
validating any objects. The only difference between the output of dispatch get

and the input of dispatch publish is that the local names that appeared in the
input will be replaced by cids (i.e., global names) in the output. Input and
output formats corresponding to other global types are described further at the
site mentioned in the introduction.3

The dispatch lookup command, as mentioned earlier, is the starting process
that we consider in our implementation regarding the combination and analysis
of DAMF assertions. Given a formula cid and a collection of assertion cids,
the output of this command is a list of potential sets of (agent, mode/tool)
pairs that correspond to combinations of assertions that would yield the target
formula. Any remaining unmatched dependency is also outputted along with
the (agent, mode/tool) pairs. In our current implementation, Dispatch exhaus-
tively generates all possible ways of constructing the target formula. A direct
improvement is to change this aspect of the tool to allow for a more interactive
and incremental exploration of such dependencies. In addition, filtering through
allow-lists would reduce the number of assertion combinations generated by this
command.

3.3 Edge Systems Example: Abella

We have implemented a DAMF-aware branch of Abella [10] as an example of a
system that interacts with assertions in DAMF with the help of Dispatch as a
3 https://distributed-assertions.github.io/.

https://distributed-assertions.github.io/

188 F. Al Wardani et al.

mediator. Abella was originally designed to test a particular approach to meta-
theoretic reasoning using a new, proof-theoretically motivated mechanism for
reasoning directly with bound variables (in particular, the ∇-quantifier [30] and
a treatment of equality based on equivariant higher-order unification [26]). While
the current implementation of Abella has succeeded with those meta-theoretic
tasks [22,41], the prover has not grown much beyond that domain. Indeed, Abella
has some (mis)features that make it a good test case for DAMF: (1) it has no
awareness of the file system and it is easy to replace the backing store from
local files to objects stored in IPFS; (2) it has a feature-poor proof language
with nearly no support for proof automation and hence an underdeveloped for-
mal mathematical libraries; and (3) it uses relational specifications as opposed
to the more common functional programming specifications. Furthermore, the
area of meta-theory that Abella treats declaratively is also an area many con-
ventional proof systems do not deal well, in part, because of the need to encode
and manipulate bindings [9,23]. Such conventional systems might be willing to
delegate such meta-theoretic reasoning to Abella.

Ordinary Abella developments (in .thm files) support a kind of import mecha-
nism which loads in marshaled results from a different run of Abella. We extend
import with a new kind of statement: Import “damf:bafyr. . .” that refers to a
collection of DAMF assertions (i.e., a DAMF collection object whose elements
are assertions). Dispatch is used to fetch all the referenced objects from IPFS as
explained in the previous subsection.

To appeal to an assertion, the elements of the context of the conclusion of
the assertion are merged using their internal names with the ambient context of
Abella where the assertion is appealed to. An Abella declaration in the context
is mergeable if it has both the same internal name and an identical (up to λ-
equivalence) definition; thus, type and term constants are merged if they have the
same kinds or types (respectively), and (co-)definitions are merged if they have
the same definitional clauses. This is done to keep the implementation simple
and mostly unchanged from the standard (non-DAMF) Abella, which also only
allows an Import declaration when the imported objects can be merged.

When the proof of a theorem is completed in Abella, a sequent object is
constructed with the dependencies being all the DAMF lemmas appealed to in
the proof, and the conclusion being the statement of the theorem (the formula)
in the context of all its necessary declarations, computed using a dependency
analysis. We use only the necessary declarations to allow such DAMF sequents
to have the widest possible uses, since a DAMF assertion can only be used in
Abella if the entire context of the conclusion can be merged.

A full example of an Abella development that makes use of imported asser-
tions from Abella, Coq, and λProlog can be found in [4, Appendix B]. In this
example, Coq and λProlog are not modified at all, and Abella is only minimally
modified to use Dispatch to interact with DAMF assertions. The total amount of
modifications to Abella to interface with Dispatch amounts to about 100 lines of
code, most of which deals with (un)marshalling JSON. We expect that making
tools DAMF-aware would require negligible effort.

Formal Reasoning Using Distributed Assertions 189

4 Discussion: Design Choices and Alternatives

4.1 The Role of Formal Proofs

Autarkic theorem provers often exploit the existence of proofs for several rea-
sons. Obviously, the ability to check a fully detailed proof object in their own
kernel, following the De Bruijn criterion [11], is central. But proofs can also be
used for various other roles. For example, they sometimes contain constructive
content that can be extracted as executable programs, and they can be used
as guides during the development and maintenance of other proofs. Given their
central role in many proof assistants, a great deal of effort has gone into the
formalization, manipulation, and transformation of formal proof objects; see, for
example, MMT [35], Logipedia [21], and foundational proof certificates [18]. As
a concrete matter, proof objects can be included in the annotations of annotated
productions in the global store of DAMF. Sequents are linked in productions by
their cids, so it is possible for the same sequent to have multiple proof objects
contributed by different agents in separate assertions.

4.2 Potential Benefits to Mainstream Systems

The fact that proof objects are not central to DAMF and the example presented
in Sect. 3.3 might lead the reader to believe that the only beneficiaries of DAMF
are new systems that want to leverage existing developments in mainstream
systems. This belief is not necessarily true for two reasons. First, there are certain
logical systems and formalization styles that are inordinately complicated or
impossible to do in mainstream systems. Good examples are nominal sets [34],
λ-tree syntax (a.k.a. higher-order abstract syntax) [2,23], generic judgments [30],
and nominal abstraction [26]. It is conceivable that a mainstream prover can
use DAMF to import a formalization such as the proof of soundness of Howe’s
method done in the setting of higher-order abstract syntax and contextual modal
type theory [31], which is at present not available in a mainstream proof system
such as Coq or Agda.

A second benefit to mainstream systems is to enable more trustworthy refac-
toring of their existing implementations. For example, modern autarkic provers
routinely recheck large collections of proofs, often after every invocation of a new
instance of the proof checker and certainly after every change in the version of
the prover. As a result of needing to recheck such proofs, there is a tendency
for implementers of proof checkers to optimize such kernels to be more efficient.
However, such optimizations can add greater complexity to a kernel, making
errors in the kernel more likely to occur. With DAMF, once a trustworthy but
slow kernel—e.g., a certified implementation of a kernel [39]—checks a proof,
it rarely needs to be rechecked. This can even lower the pressure for kernel
implementations to chase performance with increasing, error-prone complexity.
Furthermore, the immutable nature of IPFS objects makes DAMF assertions
resistant to malicious subversion of the proper execution of a tool – see, for
example, the discussion in [5] concerning attacks on Coq’s .vo object files

190 F. Al Wardani et al.

4.3 Other Use Cases

While it is common to view tools that perform pure computations (such as func-
tional program execution or proof search a la λProlog) as producing assertions
without proofs, there are various well-known reasoning systems that have been
used a lot without being either certified or certifying: for example, Twelf [33].
DAMF would enable Twelf-based assertions to be exported to agents willing to
trust its type and totality checkers.

The relationship of DAMF to the following topics is discussed in greater detail
in the technical report [3]: libraries as curation on top of the DAMF model of
global objects; attacks in the adversarial environment of the web; and possible
uses of this framework in settings (such as journalism) where the lack of formal
proof means increasing the need to explicitly track trust.

5 Related Work

The semantic web [14,15] was proposed to enrich the web with aspects of trust
and would rely on concepts and technologies such as cryptography, taxonomies,
ontologies, and inference rules. While the semantic web and DAMF both use
cryptographic signatures and low-level web-based technologies, DAMF differs
from the semantic web by focusing on objects rather than documents and using
richer notions of logic and compositional reasoning.

Dedukti [8] is a dependently typed λ-calculus augmented with rewriting.
Dedukti can be used to produce adapters (Sect. 2.3): in particular, proofs in
a source system can be transformed to Dedukti proofs and then transformed
back into formal proofs in a different system. For example, the Logipedia docu-
mentation mentions that “some proofs expressed in some Dedukti theories can
be translated to other proof systems, such as HOL Light, HOL 4, Isabelle/HOL,
Coq, Matita, Lean, PVS, . . .” [29]. As a by-product, Dedukti can be used to build
correctness-preserving translations of assertions for DAMF.

TPTP [40] provides a number of standards for the concrete syntax of first-
order and higher-order logic along with tools for parsing and printing files that
adhere to such standards. Deploying those tools for the production of the kind
of multilingual adapters that we have described in Sect. 2.3 is a natural next
step for tool development within DAMF.

The recognition that distributing some aspects of proof environments goes
back to at least the systems described by Sacerdoti Coen, et al. [7,19]. In such
systems, integration was meant to work between “near-peer” systems: that is,
between systems that are both based on rich logics such as higher-order logic
or on typed λ-calculi based on the Curry-Howard correspondence. A prereq-
uisite for successful integration in such systems is the ability to connect the
semantics of formulas, types, universes, proofs, etc. The wide spread use of such
integration approaches has been delayed since it has only been in recent years
that efforts, such as Dedukti [8] and MMT [36,37], are making it possible to
form the necessary deep and sophisticated ties between the semantics of these
objects arising from different implementations. In contrast, DAMF allows the

Formal Reasoning Using Distributed Assertions 191

composition of different assertions without an a priori assumption that there
is a formal semantics that relates them. Of course, correctness is a concern in
many (most) situations: in those cases, Dedukti and MMT encodings can be used
to translate assertions between two provers with precise correctness assurances.
Often, however, the integration is of a more asymmetric kind. For example, when
integrating a system that only performs integer operations or reasons only with
integer inequalities (operations that are available in SMT systems) with a system
based on higher-order logic, producing adapters based on sophisticated encod-
ings might be completely unnecessary. The DAMF system similarly allows such
integration.

6 Conclusion

We have described a Distributed Assertion Management Framework (DAMF)
designed to share assertions between agents while tracking dependencies with
canonical content ids (cids). This framework endows assertions with reliable
provenance using public key cryptography and distributes them globally using
the IPFS network. We have given an example of using DAMF to import a Coq
lemma into Abella. The biggest challenge for future work is to adapt existing
work on language translation and proof translation (in, e.g., Dedukti) to create
or derive adapters automatically. Another important matter for future considera-
tion is whether to persist compositions (i.e., Compose-derivations, cf. Sect. 2.4)
to DAMF, which can serve as hints for post hoc investigations.

References

1. Abadi, M.: Variations in access control logic. In: van der Meyden, R., van der Torre,
L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 96–109. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70525-3 9

2. Abel, A., et al.: POPLMark reloaded: mechanizing proofs by logical relations. J.
Funct. Program. 29, e19 (2019). https://doi.org/10.1017/S0956796819000170

3. Al Wardani, F., Chaudhuri, K., Miller, D.: Distributing and trusting proof checking:
a preliminary report. Technical report, Inria Saclay (2022). https://hal.inria.fr/hal-
03909741

4. Al Wardani, F., Chaudhuri, K., Miller, D.: Formal reasoning using distributed
assertions. Technical report. HAL-04167922, Inria (2023). https://inria.hal.science/
hal-04167922

5. ANSSI, F.N.C.A.: Requirements on the use of Coq in the context of common
criteria evaluations. URL (2021). v1.1

6. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud, J.-
P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25379-9 12

7. Asperti, A., Padovani, L., Coen, C.S., Guidi, F., Schena, I.: Mathematical knowl-
edge management in HELM. Ann. Math. Artif. Intell. 38(1–3), 27–46 (2003)

8. Assaf, A., et al.: Dedukti: a logical framework based on the λΠ-calculus modulo
theory (2016). http://www.lsv.ens-cachan.fr/dowek/Publi/expressing.pdf

https://doi.org/10.1007/978-3-540-70525-3_9
https://doi.org/10.1017/S0956796819000170
https://hal.inria.fr/hal-03909741
https://hal.inria.fr/hal-03909741
https://inria.hal.science/hal-04167922
https://inria.hal.science/hal-04167922
https://www.ssi.gouv.fr/uploads/2014/11/anssi-requirements-on-the-use-of-coq-in-the-context-of-common-criteria-evaluations-v1.1-en.pdfURL
https://doi.org/10.1007/978-3-642-25379-9_12
http://www.lsv.ens-cachan.fr/dowek/Publi/expressing.pdf

192 F. Al Wardani et al.

9. Aydemir, B.E., et al.: Mechanized metatheory for the masses: the PoplMark
challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp.
50–65. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868 4

10. Baelde, D., Chaudhuri, K., Gacek, A., Miller, D., Nadathur, G., Tiu, A., Wang, Y.:
Abella: a system for reasoning about relational specifications. J. Formaliz. Reason.
7(2), 1–89 (2014). https://doi.org/10.6092/issn.1972-5787/4650

11. Barendregt, H., Wiedijk, F.: The challenge of computer mathematics. Trans. A R.
Soc. 363(1835), 2351–2375 (2005)

12. Barendregt, H., Barendsen, E.: Autarkic computations in formal proofs. J. Autom.
Reason. 28(3), 321–336 (2002). https://doi.org/10.1023/A:1015761529444

13. Benet, J.: IPFS-content addressed, versioned, P2P file system (2014). https://doi.
org/10.48550/arxiv.1407.3561

14. Berners-Lee, T.: Semantic Web road map. Technical report, W3C Design Issues
(1998). http://www.w3.org/DesignIssues/Semantic.html

15. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
Magazine (May 2001)

16. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: The TLA + proof system:
building a heterogeneous verification platform. In: Cavalcanti, A., Deharbe, D.,
Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, p. 44. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14808-8 3

17. Chaudhuri, K., Gérard, U., Miller, D.: Computation-as-deduction in Abella: work
in progress. In: 13th international Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice. Oxford, United Kingdom, July 2018. https://hal.
inria.fr/hal-01806154

18. Chihani, Z., Miller, D., Renaud, F.: A semantic framework for proof evidence. J.
Autom. Reason. 59(3), 287–330 (2016). https://doi.org/10.1007/s10817-016-9380-
6

19. Coen, C.S.: Mathematical libraries as proof assistant environments. In: Asperti,
A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 332–346.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27818-4 24

20. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the evidential
tool bus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 275–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 18

21. Dowek, G., Thiré, F.: Logipedia: a multi-system encyclopedia of formal proofs.
http://www.lsv.fr/dowek/Publi/logipedia.pdf (2019)

22. Felty, A.P., Momigliano, A., Pientka, B.: The next 700 challenge problems for
reasoning with higher-order abstract syntax representations. J. Autom. Reason.
55(4), 307–372 (2015). https://doi.org/10.1007/s10817-015-9327-3

23. Felty, A.P., Momigliano, A., Pientka, B.: Benchmarks for reasoning with syntax
trees containing binders and contexts of assumptions. Math. Struct. Comput. Sci.
28, 1507–1540 (2017). https://doi.org/10.1017/S0960129517000093

24. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

25. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness +
automation + soundness: towards combining SMT solvers and interactive proof
assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 167–181. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 11

26. Gacek, A., Miller, D., Nadathur, G.: Nominal abstraction. Inf. Comput. 209(1),
48–73 (2011). https://doi.org/10.1016/j.ic.2010.09.004

https://doi.org/10.1007/11541868_4
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.1023/A:1015761529444
https://doi.org/10.48550/arxiv.1407.3561
https://doi.org/10.48550/arxiv.1407.3561
http://www.w3.org/DesignIssues/Semantic.html
https://doi.org/10.1007/978-3-642-14808-8_3
https://hal.inria.fr/hal-01806154
https://hal.inria.fr/hal-01806154
https://doi.org/10.1007/s10817-016-9380-6
https://doi.org/10.1007/s10817-016-9380-6
https://doi.org/10.1007/978-3-540-27818-4_24
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-642-35873-9_18
http://www.lsv.fr/dowek/Publi/logipedia.pdf
https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.1017/S0960129517000093
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/11691372_11
https://doi.org/10.1016/j.ic.2010.09.004

Formal Reasoning Using Distributed Assertions 193

27. Harrison, J.: The HOL Light tutorial (2017). https://www.cl.cam.ac.uk/jrh13/hol-
light/tutorial.pdf

28. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–
370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4 20

29. Logipedia in a nutshell (2022). http://logipedia.inria.fr/about/about.php
30. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. Comput.

Log. 6(4), 749–783 (2005). https://doi.org/10.1145/1094622.1094628
31. Momigliano, A., Pientka, B., Thibodeau, D.: A case study in programming coinduc-

tive proofs: Howe’s method. Math. Struct. Comput. Sci. 29(8), 1309–1343 (2019).
https://doi.org/10.1017/S0960129518000415

32. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: Rudnicki, P., Sut-
cliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings of the Combined
KEAPPA - IWIL Workshops. CEUR Workshop Proceedings, vol. 418, pp. 123–132.
CEUR-WS.org (2008). http://ceur-ws.org/Vol-418/paper10.pdf

33. Pfenning, F., Schürmann, C.: System description: Twelf — a meta-logical frame-
work for deductive systems. In: CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 14

34. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput.
186(2), 165–193 (2003)

35. Rabe, F.: The future of logic: foundation-independence. Log. Univers. 10(1), 1–20
(2016)

36. Rabe, F.: How to identify, translate and combine logics? J. Log. Comput. 27(6),
1753–1798 (2017)

37. Rabe, F.: The MMT Language and System (2022). https://uniformal.github.io/
38. Rushby, J.: An evidential tool bus. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005.

LNCS, vol. 3785, pp. 36–36. Springer, Heidelberg (2005). https://doi.org/10.1007/
11576280 3

39. Sozeau, M., et al.: The MetaCoq Project. J. Autom. Reason. 64(5), 947–999
(2020). https://doi.org/10.1007/s10817-019-09540-0

40. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF
and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009). https://doi.org/
10.1007/s10817-009-9143-8

41. Tiu, A.: On the role of names in reasoning about λ-tree syntax specifications. In:
Abel, A., Urban, C. (eds.) International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP 2008), pp. 32–46 (2008)

42. The Twelf project (2016). http://twelf.org/

https://www.cl.cam.ac.uk/jrh13/hol-light/tutorial.pdf
https://www.cl.cam.ac.uk/jrh13/hol-light/tutorial.pdf
https://doi.org/10.1007/978-3-642-17511-4_20
http://logipedia.inria.fr/about/about.php
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1017/S0960129518000415
http://ceur-ws.org/Vol-418/paper10.pdf
https://doi.org/10.1007/3-540-48660-7_14
https://uniformal.github.io/
https://doi.org/10.1007/11576280_3
https://doi.org/10.1007/11576280_3
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-009-9143-8
https://doi.org/10.1007/s10817-009-9143-8
http://twelf.org/

194 F. Al Wardani et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

An Abstract CNF-to-d-DNNF Compiler
Based on Chronological CDCL

Sibylle Möhle(B)

Max Planck Institute for Informatics, Saarland Informatics Campus E1 4,
66123 Saarbrücken, Germany
smoehle@mpi-inf.mpg.de

Abstract. We present Abstract CNF2dDNNF, a calculus describing
an approach for compiling a formula in conjunctive normal form (CNF)
into deterministic negation normal form (d-DNNF). It combines com-
ponent-based reasoning with a model enumeration approach based on
conflict-driven clause learning (CDCL) with chronological backtracking.
Its properties, such as soundness and termination, carry over to imple-
mentations which can be modeled by it. We provide a correctness proof
and a detailed example. The main conceptual differences to currently
available tools targeting d-DNNF compilation are discussed and future
research directions presented. The aim of this work is to lay the theo-
retical foundation for a novel method for d-DNNF compilation. To the
best of our knowledge, our approach is the first knowledge compilation
method using CDCL with chronological backtracking.

Keywords: Knowledge compilation · d-DNNF · Chronological CDCL

1 Introduction

In real-world applications, constraints may be modeled in conjunctive normal
form (CNF), but many tasks relevant in AI and reasoning, such as checks for
consistency, validity, clausal entailment, and implicants, can not be executed effi-
ciently on them [9]. Tackling these and other computationally expensive prob-
lems is the aim of the knowledge compilation paradigm [13]. The idea is to
translate a formula into a language in which the task of interest can be executed
efficiently [22]. The knowledge compilation map [22] contains an in-depth dis-
cussion of such languages and their properties, and other (families of) languages
have been introduced since its publication [21,25,29]. The focus in this work is
on the language deterministic decomposable negation normal form (d-DNNF)
[19]. It has been applied in planning [2,39], Bayesian reasoning [15], diagnosis
[3,43], and machine learning [28] as well as in functional E-MAJSAT [40], to men-
tion a few, and was also studied from a theoretical perspective [7,8,10]. Several
d-DNNF compilers are available [20,30,37,48], as well as a d-DNNF reasoner1.

1 http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html.
c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 195–213, 2023.
https://doi.org/10.1007/978-3-031-43369-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_11&domain=pdf
http://orcid.org/0000-0001-7883-7749
http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
https://doi.org/10.1007/978-3-031-43369-6_11

196 S. Möhle

Translating a formula from CNF to d-DNNF requires to process the search
space exhaustively. The number of variable assignments which need to be checked
is exponential in the number of variables occurring in the formula and testing
them one by one is out of question from a computational complexity point of
view. However, if the formula can be partitioned into subformulae defined over
pairwise disjoint sets of variables, these subformulae can be processed indepen-
dently and the results combined [4]. This may reduce the amount of work per
computation significantly. Consider F = (a ∨ b) ∧ (c ∨ d) defined over the set of
variables V = {a, b, c, d}. Its search space consists of 24 = 16 variable assign-
ments. The formula F can be partitioned into F1 = (a∨b) and F2 = (c∨d) defined
over the sets of variables V1 = {a, b} and V2 = {c, d}, respectively, and such that
F = F1 ∧ F2. Due to V1 ∩ V2 = ∅, d-DNNF representations of F1 and F2 can
be computed independently and conjoined obtaining a d-DNNF representation
of F . Moreover, in each computation we only need to check 22 = 4 assignments.
The subformulae F1 and F2 are called components due to the original moti-
vation originating in graph theory, and the partitioning process is referred to
as decomposition or component analysis. This approach, also called component-
based reasoning, is realized in various exact #SAT solvers [1,4,11,12,41,42,47],
and its success suggests that formulae stemming from real-world applications
decompose well enough to generate a substantial amount of work saving.

The formula F in our example satisfies decomposability [22], i.e., for each
conjunction, the conjuncts are defined over pairwise disjoint sets of variables.
We call such a formula decomposable. Negations occur only in front of literals,
hence it is in decomposable negation normal form (DNNF) [17,18]. A formula
in which for each disjunction its disjuncts are pairwise logically contradictory
satisfies determinism [22], i.e., for each disjunction C1 ∨ . . . ∨ Cn it holds that
Ci ∧ Cj ≡ ⊥ for i, j ∈ {1, . . . , n} and i 	= j. A deterministic DNNF formula is
said to be in d-DNNF. Determinism is also met by the language disjoint sum of
products (DSOP), which is a disjunction of pairwise contradictory conjunctions
of literals, and which is relevant in circuit design [5]. In a previous work [34],
we introduced an approach for translating a CNF formula into DSOP based on
CDCL with chronological backtracking. The motivation for using chronological
backtracking is twofold. First, it has shown not to significantly harm solver
performance [33,38]. Second, pairwise disjoint models are detected without the
need for blocking clauses commonly used in model enumeration based on CDCL
with non-chronological backtracking. Blocking clauses rule out already found
models, but they also slow down the solver, and avoiding their usage in model
enumeration by means of CDCL with chronological backtracking has empirically
shown to be effective [46]. Enhancing our former approach [34] by component-
based reasoning enables us to compute a d-DNNF representation of a CNF
formula. Reconsider our previous example, and suppose we obtained dsop(F1) =
a∨ (¬a∧b) and dsop(F2) = c∨ (¬c∧d). Now F ≡ F1 ∧F2, hence F ≡ dsop(F1)∧
dsop(F2) = (a ∨ (¬a ∧ b)) ∧ (c ∨ (¬c ∧ d)), which is in d-DNNF.

Our Contributions. We present Abstract CNF2dDNNF, ACD for short,
a declarative formal framework describing the compilation of CNF into d-DNNF

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 197

and a proof of its correctness. This abstract presentation allows for a thorough
understanding of our method at a conceptual level and of its correctness. If
our framework is sound, every implementation which can be modeled by it is
sound as well. This comprises optimizations and implementation details, such as
caches. ACD combines component-based reasoning and CNF-to-DSOP compi-
lation based on conflict-driven clause learning (CDCL) with chronological back-
tracking. Disjunctions with pairwise contradictory disjuncts are introduced by
decisions and subsequently flipping their value upon backtracking, while con-
junctions whose conjuncts share no variable are introduced by unit propagation
and decomposition. For the sake of simplicity, in our calculus formulae are par-
titioned into two subformulae. However, lifting it to an arbitrary number of
subcomponents is straightforward, and a corresponding generalization is pre-
sented.

2 Preliminaries

Let V be a set of propositional variables defined over the set of Boolean constants
⊥ (false) and
 (true) denoted by B = {⊥,
}. A literal is either a variable
v ∈ V or its negation ¬v. We refer to the variable of a literal � by var(�) and
extend this notation to sets and sequences of literals and formulae. We consider
formulae in conjunctive normal form (CNF) which are conjunctions of clauses
which are disjunctions of literals. A formula in disjoint sum of products (DSOP)
is a disjunction of pairwise contradictory cubes, which are conjunctions of literals.
Our target language is deterministic decomposable negation normal form (d-
DNNF), whose formulae are built of literals, conjunctions sharing no variables,
and disjunctions whose disjuncts are pairwise contradictory. We might interpret
formulae as sets of clauses and cubes and clauses and cubes as sets of literals
by writing C ∈ F and � ∈ C to refer to a clause C in a formula F and a literal
� contained in a clause or cube C, respectively. The empty CNF formula and
the empty cube are denoted by
 and the empty DSOP formula and the empty
clause by ⊥.

A total variable assignment is a mapping σ : V �→ B, and a trail I = �1 . . . �n

is a non-contradictory sequence of literals which might also be interpreted as a
(possibly partial) assignment, such that I(�) =
 iff � ∈ I. Similarly, I(C) and
I(F) are defined. We might interpret a trail I as a set of literals and write � ∈ I
to refer to the literal � on I. The empty trail is denoted by ε and the set of
variables of the literals on I by var(I). Trails and literals can be concatenated,
written I J and I �, given var(I)∩var(J) = ∅ and var(I)∩var(�) = ∅. The position
of � on the trail I is denoted by τ(I, �). The decision literals on I are annotated
by a superscript, e.g., �d, denoting open “left” branches in the sense of the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [23,24]. Flipping the value of a
decision literal can be seen as closing the corresponding left branch and starting
a “right” branch, where the decision literal �d becomes a flipped literal ¬�.

The residual of F under I, written F |I , is obtained by assigning the vari-
ables in F their truth value and by propagating truth values through Boolean

198 S. Möhle

connectives. The notion of residual is extended to clauses and literals. A unit
clause is a clause {�} containing one single literal �. By units(F) (units(F |I)) we
denote the set of unit literals in F (F |I). Similarly, decs(I) denotes the set of
decision literals on I. By writing � ∈ decs(I) (� ∈ units(F), � ∈ units(F |I)), we
refer to a decision literal � on I (unit literal in F , F |I). A trail I falsifies F , if
I(F) ≡ ⊥, i.e., F |I = ⊥. It satisfies F , I |= F , if I(F) ≡
, i.e., F |I =
, and
is then called a model of F . If var(I) = V , I is a total model, otherwise it is a
partial model.

The trail is partitioned into decision levels, starting with a decision literal and
extending until the literal preceding the next decision. The decision level function
δ : V �→ N∪{∞} returns the decision level of a variable v ∈ V . If v is unassigned,
δ(v) = ∞, and δ is updated whenever a variable is assigned or unassigned,
e.g., δ[v �→ d] if v is assigned to decision level d. We define δ(�) = δ(var(�)),
δ(C) = max{δ(�) | � ∈ C} for C 	= ⊥ and δ(I) = max{δ(�) | � ∈ I} for I 	= ε
extending this notation to sets of literals. Finally, we define δ(⊥) = δ(ε) = ∞.
By writing δ[I �→ ∞], all literals on the trail I are unassigned. The decision level
function is left-associative, i.e., δ[I �→ ∞][� �→ d] expresses that first all literals
on I are unassigned and then literal � is assigned to decision level d.

Unlike in CDCL with non-chronological backtracking [36,44,45], in chrono-
logical CDCL [33,38] literals may not be ordered on the trail in ascending order
with respect to their decision level. We write I�n (I<n, I=n) for the subsequence
of I containing all literals � with δ(�) ≤ n (δ(�) < n, δ(�) = n). The pending
search space of I is given by the assignments not yet tested [34], i.e., I and
its open right branches R(I), and is defined as O(I) = I ∨ R(I),where R(I) =∨

�∈decs(I) R=δ(�)(I) and R=δ(�)(I) = ¬� ∧ I<δ(�) for � ∈ decs(I). As an example,
for I = abd cdedf , O(I) = (a ∧ b ∧ c ∧ d ∧ e ∧ f)∨ (¬b ∧ a)∨ (¬e ∧ a ∧ b ∧ c ∧ d).
Similarly, the pending models of F are the satisfying assignments of F not yet
detected and which are given by F ∧ O(I).

3 Chronological CDCL for CNF-to-d-DNNF Compilation

In static component analysis the component structure is computed once, typ-
ically as a preprocessing step, and not altered during the further execution.
In contrast, in our approach the component structure is computed iteratively
adopting dynamic component analysis. Algorithm1 provides a general schema
in pseudo-code. It is formulated recursively, capturing the recursive nature of
dynamic component analysis. Lines 1–7 and 11 describe model enumeration
based on chronological CDCL [34], while lines 8–10 capture component anal-
ysis.

Now assume unit propagation has been carried out until completion, no con-
flict has occurred and there are still unassigned variables (line 8). If F |I can be
decomposed into two formulae G and H, we call CNF2dDNNF recursively on G
and H, conjoin the outcomes of these computations with I and add the result to
M (line 9). If I contains no decisions, the search space has been explored exhaus-
tively, otherwise chronological backtracking occurs (lines 10). The working of our
approach is shown by an example.

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 199

Algorithm 1: CNF2dDNNF(F ,V , I,M)
input : CNF F , V = var(F), I = ε, M = ⊥
output: d-DNNF M ≡ F

1 Loop
2 I ← PropagateUnits()
3 if conflict occurs then
4 if conflict level = 0 then return M else AnalyzeConflict()
5 else if I(F) = � then
6 M ← M ∨ I
7 if there are no decisions on I then return M else BacktrackChrono()
8 else if F |I can be decomposed into G and H then
9 M ← M ∨ I ∧CNF2dDNNF(G,var(G), ε,⊥)∧CNF2dDNNF(H,var(H), ε,⊥)

10 if there are no decisions on I then return M else BacktrackChrono()
11 else Decide

Example 1. Let V = {a, b, c, d, e, f, g, h} be a set of propositional variables and
F = (a) ∧ (¬a ∨ ¬b ∨ c ∨ d) ∧ (¬a ∨ ¬b ∨ e ∨ f) ∧ (b ∨ ¬c ∨ e) ∧ (b ∨ d ∨ f) ∧
(g ∨ h) be a formula defined over V . The execution is depicted as a tree in
Fig. 1. For the sake of readability, we show only the formula on which a rule is
executed, represented by a box annotated with its component level. Black arrows
correspond to “downward” rule applications, while violet (gray) arrows represent
“upwards” rule applications and are annotated with the formula returned by the
computation of a component. Ignore the rule names for now, they are intended to
clarify the working of our calculus which is presented in Sect. 4. We see that, first,
a is propagated, denoted by the black vertical arrow annotated with a and the
name of the applied rule (Unit). The residual of F under a is F |a = (¬b∨c∨d)∧
(¬b∨e∨f)∧(b∨¬c∨e)∧(b∨d∨f)∧(g∨h) (not shown). It contains no unit clause
but can be decomposed into (¬b∨c∨d)∧(¬b∨e∨f)∧(b∨¬c∨e)∧(b∨d∨f) and
(g∨h). Two new (sub)components are created (by applying rule Decompose) with
component level 01 and 02, respectively, represented by the shadowed boxes.

Since (g∨h) can not be decomposed further, model enumeration with chrono-
logical CDCL is executed on it (not shown) by deciding g (rule Decide) satisfying
(g ∨ h), followed by backtracking chronologically (BackTrue), which amounts to
negating the value of the most recent decision g, and propagating h (Unit). The
processing of (g∨h) terminates with g∨¬g∧h (CompTrue, not shown). But before
this result can be used further, the subcomponent at component level 01 needs to
be processed. Its formula is G = (¬b∨c∨d)∧(¬b∨e∨f)∧(b∨¬c∨e)∧(b∨d∨f). It
neither contains a unit nor can it be decomposed, hence we take a decision, let’s
say, bd. Now G|b = (c∨d)∧(e∨f), which is decomposed into two components with
one clause each and component level 011 and 012, respectively (Decompose).
These formulae can not be decomposed further, and they are processed inde-
pendently, similarly to (g ∨ h). Before G was decomposed, a decision was taken,
and we backtrack combining the results of its subcomponents (ComposeBack).
We have G|¬b = (¬c ∨ e)∧ (d ∨ f) resulting in two components with component

200 S. Möhle

Fig. 1. Component structure of F created by ACD.

levels 011 and 012, respectively. They are processed and their results combined,
after which the results of the subcomponents of the root component are con-
joined with a. There is no decision on the trail, and the process terminates with
M = (a)∧ (¬a∨¬b∨ c∨ d)∧ (¬a∨¬b∨ e∨ f)∧ (b∨¬c∨ e)∧ (b∨ d∨ f)∧ (g ∨h)
(ComposeEnd). Notice that although component levels can occur multiple times
throughout the computation, they are unique at any point in time.

4 Calculus

Due to its recursive nature, combining the results computed for subcompo-
nents in CNF2dDNNF is straightforward. For its formalization, however, a non-
recursive approach turned out to be better suited. Consequently, a method is
needed for matching subcomponents and their parent. For this purpose, a compo-
nent level is associated with each component. It is defined as a string of numbers
in N as follows. Suppose a component C is assigned level “d” and assume its for-
mula is decomposed into two subformulae. The corresponding subcomponents
CG and CH are assigned component levels “d ·1” and “d ·2”, respectively, with “·”
denoting string composition. Accordingly, the component level of their parent C is
given by the substring consisting of all but the last element of their level, i.e., “d”.2
The root component holds the input formula, it has no parent and its component
level is zero. A component is closed if no rule can be applied to it, and decomposed
if either at least one of its subcomponents is not closed or both its subcomponents
are closed, but their results are not yet combined. Components which are neither
closed nor decomposed are open.3 Closed components may be discarded as soon

2 From now on, we omit the quotes for the sake of readability.
3 The differentiation between open and decomposed components is purely technical

and needed for the termination proof in Sect. 5.

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 201

as their results are combined, and the computation stops as soon as the root
component is closed. With these remarks, we are ready to present our calculus.

We describe our algorithm in terms of a state transition system Abstract
CNF2dDNNF, ACD for short, over a set of global states S, a transition rela-
tion � ⊆ S × S and an initial global state S0. A global state is a set of compo-
nents. A component C is described as a seven-tuple (F, V, d, e, I, M, δ)s, where
s denotes its component state. It is c if C is closed, f if F is decomposed, and
o if C is open. The first two elements F and V refer to a formula and its set
of variables, respectively. The third element d denotes the component level of
C. If d 	= 0, then d ∈ {d′ · 1, d′ · 2}, where d′ is the component level of the par-
ent component of C, as explained above. In this manner, the component level
keeps track of the decomposition structure of F and is used to match parent
components and their subcomponents. The number of subcomponents of C is
given by e, while I and δ refer to a trail ranging over variables in V and a
decision level function with domain V , respectively. Finally, M is a formula in
d-DNNF representing the models of F found so far. A component is initialized
by (F, V, d, 0, ε, ⊥, ∞)o and closed after its computation has terminated, i.e.,
(F, V, d, 0, I, M, δ)c. Notice that in these cases e = 0. The initial global state
S0 = {C0} consists of the root component C0 = (F, V, 0, 0, ε, ⊥, ∞)o with F
and V denoting the input formula and V = var(F), while the final global state
is given by Sn = {(F, V, 0, 0, I, M, δ)c} where M ≡ F is in d-DNNF. The
transition relation � is defined as the union of transition relations �R, where R
is either Unit, Decide, BackTrue, BackFalse, CompTrue, CompFalse, Decompose,
ComposeBack or ComposeEnd. Our calculus contains three types of rules, which
can abstractly be described as follows:

α : S�{C} �R S�C′; β : S�{C} �R S�{C′, C1, C2}; γ : S�{C, C1, C2} �R S�{C′}.

In this description, S refers to the subset of the current global state consisting
of all components which are not touched by rule R, with � denoting the disjoint
set union, e.g., in α, C, C′ 	∈ S. An α rule affects a component C turning it into
C′. The rules Unit, Decide, BackTrue, BackFalse, CompTrue, and CompFalse are
α rules. A β rule modifies C obtaining C′ and creates two new components C1

and C2. Rule Decompose is the only β rule. Finally, a γ rule removes the two
components C1 and C2 from the global state and modifies their parent C. Rules
ComposeBack and ComposeEnd are γ rules. The rules are listed in Fig. 2.

Model Computation. Rules Unit, Decide, BackTrue, BackFalse, CompTrue, and
CompFalse execute model enumeration with chronological CDCL [34] and are
applicable exclusively to open components. Unit literals are assigned the decision
level of their reason, which might be lower than the current decision level (rule
Unit). Decisions can be taken only if the processed formula is not decomposable
(Decide). Backtracking occurs chronologically, i.e., to the second highest decision
level on the trail, after finding a model (BackTrue) and to the decision level
preceding the conflict level after conflict analysis (BackFalse), respectively. In
the latter case, the propagated literal is assigned the lowest level at which the
learned clause becomes unit and to which a SAT solver implementing CDCL with

202 S. Möhle

Fig. 2. ACD transition rules.

non-chronological backtracking would backtrack to. Since the literals might not
be ordered on the trail in ascending order with respect to their decision level, a
non-contiguous part of it is discarded. Finally, a component is closed if its trail
contains no decisions and either satisfies its formula (CompTrue) or a conflict
occurs at decision level zero, i.e., the conflicting clause has decision level zero
(CompFalse). In the former case, the newly found model is recorded.

Component Analysis. Rules Decompose, ComposeBack, and ComposeEnd cap-
ture the decomposition of a formula and the combination of the models of its
subformulae and thus affect multiple components.

Decompose. The state of the parent component C with formula F is o (open). The
trail I neither satisfies nor falsifies F , and F |I contains no unit clause but can

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 203

be partitioned into two formulae G and H defined over disjoint sets of variables.
Subcomponents for G and H are created, the number of subcomponents of C is
set to two and its state is changed to f (decomposed). Notice that C can only
be processed further after its subcomponents are closed.

ComposeBack. The state of the component C with formula F is f (decomposed).
Its subcomponents CG and CH with formulae G and H, respectively, have state
c (closed). Furthermore, N ≡ G and O ≡ H, hence F |I ≡ I ∧ N ∧ O, which is
added to M . This corresponds to enumerating multiple models of F in one step.
This can easily be seen by applying the distributive laws to I ∧ N ∧ O which
gives us a DSOP formula whose disjuncts are satisfying assignments of F |I . The
search space has not yet been processed exhaustively (δ(I) > 0), backtracking
to the second highest decision level occurs, and the state of C is changed back
to o (open). Finally, CG and CH are removed from the global state. If I can not
be extended to a model of F , we have N = ⊥ or O = ⊥, and I ∧ N ∧ O = ⊥.
Otherwise, I ∧ N ∧ O 	= ⊥. Both cases are captured by rule ComposeBack.

ComposeEnd. The state of the parent component C with formula F is f (decom-
posed). Its subcomponents CG and CH with formulae G and H, respectively, are
closed. Furthermore, N ≡ G and O ≡ H, hence F |I ≡ I ∧N ∧O, which is added
to M . The search space has been processed exhaustively (decs(I) = ∅), and the
state of C is set to c (closed). Finally, CG and CH are removed from the global
state. As in rule ComposeBack, either I ∧ N ∧ O = ⊥ or I ∧ N ∧ O 	= ⊥.

Example 2. Reconsider Example 1 with variables V = {a, b, c, d, e, f, g, h} and
F = (a)∧(¬a∨¬b∨c∨d)∧(¬a∨¬b∨e∨f)∧(b∨¬c∨e)∧(b∨d∨f)∧(g∨h) defined
over V . The execution trace of ACD is shown in Fig. 3. Unaffected components
are depicted in gray, and model enumeration by means of chronological CDCL
is shown only once in full detail. The execution starts with the root component
CF containing F . In step (1), the unit literal a is propagated, upon which F |a is
decomposed into (g∨h) and G creating components C(g∨h) and CG shown in (2).
Steps (3) to (6) capture model enumeration by chronological CDCL of (g∨h), i.e.,
the computation of a DSOP representation of (g∨h), after which C(g∨h) is closed.
Next, the formula G is processed by deciding b in step (7), decomposing G|b into
(c ∨ d) and (e ∨ f) and creating components C(c∨d) and C(e∨f), respectively, in
step (8). The processing of C(c∨d) and C(e∨f) occurs analogously to steps (3) to
(6) resulting in the state shown in (9). The results are conjoined with b, which is
the trail of CG and under which G|b was decomposed. Since b is a decision, it is
flipped in (10) to explore its right branch ¬b. The formula G|¬b is decomposed
into (¬c ∨ e) and (d ∨ f) and components C(¬c∨e) and C(d∨f) are created, as in
(11). Their processing, which is not shown, results in the state depicted in (12),
and the results are conjoined with the trail of CG. Since its trail contains no
decision, CG is closed, see (13). The global state now contains the root compo-
nent and its two subcomponents, which are closed, hence the rule ComposeEnd is
executed, and the computation terminates with the closed root component and
M = a∧(g∨¬g∧h)∧(b∧(c∨¬c∧d)∧(e∨¬e∧f)∨¬b∧(c∧e∨¬c)∧(d∨¬d∧f),
where M ≡ F , and which is shown in (14).

204 S. Möhle

Fig. 3. Execution trace of ACD for Example 1.

5 Proofs

For proving correctness, we first show that our calculus is sound by identifying
invariants which need to hold in a sound global state and show that they still hold
after the execution of any rule. Then we prove that for any closed component it
holds that M ≡ F and that ACD can not get stuck and terminates in a correct
state. Showing termination concludes our proof.

Definition 1 (Sound Global State). A global state S is sound if for all its
components C = (F, V, d, e, I, M, δ)s the following invariants hold:

(1) ∀k, � ∈ decs(I) . τ(I, k) < τ(I, �) =⇒ δ(k) < δ(�)
(2) δ(decs(I)) = {1, . . . , δ(I)}
(3) ∀n ∈ N . F ∧ ¬M ∧ decs�n(I) |= I�n, provided C is open or decomposed

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 205

(4) M ∨ O(I) is a d-DNNF, provided C is open or decomposed
(5) M ∨ F ∧ O(I) ≡ F
(6) e > 0 iff (A) e = 2, (B) C is decomposed, (C) S contains components CG =

(G, var(G), d · 1, eg, JG, N, δG)s, CH = (H, var(H), d · 2, eH , JH , O, δH)s,
such that F |I = G ∧ H and var(G) ∩ var(H) = ∅

(7) If e = 2 and S contains components CG = (G, var(G), d · 1, 0, JG, N, δG)c

and CH = (H, var(H), d · 2, 0, JH , O, δH)c, then F |I ≡ I ∧ N ∧ O
(8) If C is closed, then decs(I) = ∅

Invariants (1) - (5) correspond to the ones in our previous work [34]. They say
that decisions are ordered in ascending order with respect to their decision level
and that every decision level contains a decision literal. They further ensure that
literals propagated after backtracking upon finding a model are indeed implied,
that no model is enumerated multiple times and that all models are found.
Invariant (3) is only useful for open or decomposed components, since I remains
unaltered when a component is closed. Invariant (4) only holds for closed com-
ponents if I(F) = ⊥. Invariants (6) and (7) are concerned with the properties
of a parent component and its subcomponents (for the case c = 2), such as the
definition of the component level. Since, given a trail I, F |I is decomposed into
formulae G and H, we also have that F |I ≡ N ∧ O, where N ≡ G and O ≡ H.
Finally, Inv. (8) says that the trail of a closed component contains no decision.

Lemma 1 (Soundness of the Initial Global State). The initial global state
S0 = {(F, V, 0, 0, ε, ⊥, ∞)o} is sound.

Proof. Due to I = ε and e = 0 and since the (root) component is open, all
invariants in Definition 1 are trivially met.

Theorem 1 (Soundness of ACD Rules). The rules of ACD preserve
soundness, i.e., they transform a sound global state into another sound global
state.

Proof. The proof is carried out by induction over the rule applications. We
assume that prior to the application of a rule the invariants in Definition 1
are met and show that they also hold in the target state. The (parent) com-
ponent in the original state is denoted by C = (F, V, d, e, I, M, δ)s and in the
target state by C′ = (F, V, d′, e′, I ′, M ′, δ′)s

′
. Its subcomponents, if there are

any, are written CG = (G, var(G), d · 1, eG, J, N, δG)s, CH = (H, var(H), d ·
2, eH , K, O, δH)s. Unit, Decide, BackTrue, and BackFalse: Apart from the addi-
tional elements V , d, e and the component state s, the rules are defined as in the
former calculus [34]. The arguments given in the proof there apply here as well,
and after applying rules Unit, Decide, BackTrue, or BackFalse, Inv. (1) - (5) hold.
Notice that in the proof of Inv. (4), it suffices to replace “DSOP” by “d-DNNF”,
since the relevant property here is determinism. Since e′ = 0, Inv. (6) and (7) do
not apply. An open state is mapped to an open state, hence Inv. (8) holds.

CompTrue and CompFalse: Invariants (1) and (2) hold, since I remains unaffected.
Since C′ is closed, Inv. (3) and (4) are met. The proof that Inv. (5) holds is carried

206 S. Möhle

out similarly to the proof of Proposition 1 in our previous work [34] for rules
EndTrue and EndFalse, respectively. Since e′ = 0 and I ′ = I, Inv. (6) - (8) hold.

Decompose: The parent component C remains unaltered except for e′ = 2 and
for its state, which becomes f . Both its subcomponents CG and CH are open, and
we have JG = JH = ε and eG = eH = 0. Therefore, Inv. (1) - (5) hold. Invariant
(6) is satisfied by the definition of rule Decompose. Since C′ is decomposed and
CG and CH are open by definition, Inv. (7) and (8) hold as well.

ComposeBack: It suffices to show that the validity of the invariants for C′ is
preserved, since CG and CH do not occur in the target state. The most recent
decision literal is flipped, similar to rule BackTrue. The same argument to the
one given there applies, and Inv. (1) and (2) are satisfied. We need to show
that F ∧ ¬(M ∨ (I ∧ N ∧ O)) ∧ decs�n(P K �) |= (P K �)�n holds for all n. The
decision levels of the literals in P K do not change, except for the one of �, which
is decremented from e+1 to e. The literal � also stops from being a decision literal.
Since δ(P K �) = e, we can assume n ≤ e. Furthermore, F∧¬(M ∨ (I ∧ N ∧ O))∧
decs�n(P K �)) ≡ (¬I∧(F ∧¬M∧decs�n(I)))∨(F ∧¬M∧¬(N ∧ O)∧decs�n(I)),
since � is not a decision literal in P K � and I�e = P K and thus I�n = (P K)�n

by definition. By applying the induction hypothesis, we get ¬I ∧ F ∧ ¬M ∧
decs�n(P K �) |= (P K)�n, and hence F ∧¬(M ∨ (I ∧ N ∧ O))∧decs�n(P K �) |=
(P K)�n. We still need to show that F ∧¬(M ∨ (I ∧ N ∧ O))∧decs�e(P K �) |= �,
as δ(�) = e in P K � after applying ComposeBack and thus � disappears from the
proof obligation for n < e. Notice that F ∧ ¬D |= I using again the induction
hypothesis for n = e + 1. This gives us F ∧ ¬decs�e(P K) ∧ ¬� |= I and thus
F ∧ ¬decs�e(P K) ∧ ¬I |= � by conditional contraposition, and Inv. (3) holds.

For proving that Inv. (4) holds, we consider two cases: (A) I ∧ N ∧ O 	= ⊥,
i.e., there exists an extension of I which satisfies F , and (B) I ∧N ∧O = ⊥, i.e.,
all extensions of I falsify F . For both cases, we know that I ∨O(I) is a d-DNNF.

(A) We need to show that M ∨ (I ∧ N ∧ O) ∨ O(P K �) is a d-DNNF. Due
to δ(I) = e + 1, we have O(I) = I ∨ R�e+1(I) = I ∨ R�e(I) ∨ R=e+1(I). The
pending search space of P K � is given by O(P K �) = P K � ∨ R�e(P K �). But
P K = I�e and P K � = I�e � = R=e+1(I), since ¬� ∈ decs(I) and δ(¬�) = e+1.
Furthermore, R�e(P K �) = R�e(P K), since � 	∈ decs(P K �) and δ(�) = e, hence
R�e(P K �) = R�e(I). We have O(P K �) = R=e+1(I)∨R�e(I), hence O(P K �)∨
I = O(I) and (M ∨ I) ∨ O(P K �) = M ∨ O(I), which is a DSOP and hence a
d-DNNF. Now I, N , and O are defined over pairwise disjoint sets of variables
by construction, i.e., I ∧N ∧O is decomposable, and M ∨ (I ∧N ∧O)∨O(P K �)
is a d-DNNF.

(B) We need to show that M ∨ O(P K �) is a d-DNNF. As just shown,
O(P K �) ∨ I = O(I). Now M ∨ O(P K �) = M ∨ R�e+1(I). Recalling that
R�e+1(I) is equal to O(I) without I and M ∨O(I) is a d-DNNF by the premise,
M ∨ O(P K �) is a d-DNNF as well. Therefore, Inv. (4) holds.

For the proof of the validity of Inv. (5), given M ∨ F ∧ O(I) ≡ F , the same
two cases are relevant: (A) I ∧ N ∧ O 	= ⊥ and (B) I ∧ N ∧ O = ⊥.

(A) We have to show that M ∨ (I ∧ N ∧ O) ∨ (F ∧ O(P K �)) ≡ F . From
O(P K �) ∨ I = O(I) we get M ∨ (F ∧ O(I)) = M ∨ (F ∧ (O(P K �)) ∨ I) =

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 207

M∨(F∧O(P K �))∨(F∧I) ≡ F . But F∧I ≡ I∧N∧O. Therefore M∨(F∧O(I)) ≡
M ∨ (F ∧ O(P K �)) ∨ (I ∧ N ∧ O) = M ∨ (I ∧ N ∧ O) ∨ (F ∧ O(P K �)) ≡ F .

(B) We must show that M ∨ (F ∧ O(P K �)) ≡ F . Similarly to (A) we have
M ∨ (F ∧ O(I)) ≡ M ∨ (F ∧ O(P K �)) ∨ (F ∧ I) ≡ M ∨ (F ∧ O(P K �)) ≡ F ,
due to F ∧ I ≡ F . Therefore, Inv. (5) holds after applying rule ComposeBack.
We have e′ = 0, and C′ is open, hence Inv. (6) - (8) trivially hold.

ComposeEnd: It suffices to show that after applying rule ComposeBack the invari-
ants are met by C′, since its subcomponent states CG and CH do not occur in
the target state anymore. Due to I ′ = I and decs(I) = ∅ and since C′ is closed,
Inv. (1) - (4) trivially hold.

For proving that invariant (5) holds after applying rule ComposeEnd, i.e., that
M ∨ (I ∧N ∧O)∨ (F ∧O(I)) ≡ F , the same two cases need to be distinguished:
(A) I ∧ N ∧ O 	= ⊥ and (B) I ∧ N ∧ O = ⊥.

(A) From decs(I) = ∅, we get O(I) = I and F ∧O(I) = F ∧ I. Recalling that
F ∧I ≡ I ∧N ∧O, we obtain M ∨(I ∧N ∧O)∨(F ∧O(I)) ≡ M ∨(F ∧O(I)) ≡ F
by the premise.

(B) We have M ∨ (I ∧ N ∧ O) ∨ (F ∧ O(I)) = M ∨ (F ∧ O(I)) ≡ F by the
premise, and Inv. (5) holds after executing rule ComposeEnd. Invariants (6) - (8)
trivially hold, due to e′ = 0 and I ′ = I and hence decs(I ′) = ∅.

Corollary 1 (Soundness of ACD Run). ACD starting with an initial global
state is sound.

Proof. The initial state is sound by Lemma 1, and all rule applications lead to
a sound state according to Theorem 1.

Lemma 2 (Correctness of Closed Component State). For any closed
component (F, V, d, 0, I, M, δ)c it holds that M ≡ F .

Proof. Follows from Theorem 1, proof of Inv. (5) for rules CompTrue, CompFalse,
and ComposeEnd, which are the only rules closing a component.

Theorem 2 (Correctness of Final Global State). In the final global state
Sn = {(F, V, d, 0, I, M, δ)c} of ACD, M ≡ F holds.

Proof. Correctness of the closed root component follows from Lemma 2. We need
to show that the final global state contains exactly the closed root component.
The initial global state consists of the open root component. Additional compo-
nents are created exclusively by rule Decompose, and a parent component state
can only be closed by rule ComposeEnd, which also removes its subcomponents
from the global state. Hence the root component can only be closed if it has no
subcomponents. But since the initial global state contains exclusively the root
component, the final global state contains only the closed root component.

Theorem 3 (Progress). ACD always makes progress.

208 S. Möhle

Fig. 4. Rule applications lead to smaller global states.

Proof. The proof is conducted by induction over the rules. We show that as
long as the root component is not closed, a rule is applicable. For the case
S � {C}, where C = (F, V, d, 0, I, M, δ)o has no subcomponents, the proof
is identical to the one showing progress in our previous work [34] replacing
EndTrue with CompTrue and EndFalse with CompFalse, and by checking whether
the preconditions for rule Decompose are met if rule Unit is not applicable and
before taking a decision. Now let the global state be given by S � {C} where
C = (F, V, d, 2, I, M, δ)f is decomposed. Due to Inv. (6), S contains CG =
(G, var(G), d · 1, eG, JG, N, δG)s and CH = (H, var(H), d · 2, eH , JH , O, δH)s

such that F |I = G ∧ H and var(G)∩ var(H) = ∅. Assume s = c for both CG and
CH . If decs(I) = ∅, rule ComposeEnd is applicable. Otherwise, similarly to rule
BackTrue, we can show that all preconditions of rule ComposeBack are met. If
instead s ∈ {f, o} for at least one of CG and CH , the non-closed component(s) are
processed further, and as soon as both CG and CH are closed, rule ComposeEnd
or ComposeBack can be applied. This proves that ACD always makes progress.

Theorem 4 (Termination). ACD always terminates.

Proof. We need to show that no infinite sequence of rule applications can happen.
To this end, we define a strict, well-founded ordering �ACD on the global states
and show that S �R T implies S �ACD T for all S, T ∈ S and rules R in ACD.
Global states are sets of components, and �ACD is the multiset extension of a
component ordering �c= (�cl,�tr,�cs), where �cl, �tr, and �cs are orderings on
component levels, trails, and component states, respectively. We want to compare
trails defined over the same set of variables V , and to this end we represent them

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 209

Fig. 5. Generalized transition rules.

as lists over {0, 1, 2}. A trail I = �1 . . . �k defined over V , where k ≤ |V |, is
represented as [l1, . . . , lk, 2, . . . , 2], where li = 0 if �i is a propagation literal and
li = 1 if �i is a decision literal. The last |V | − m positions with value 2 represent
the unassigned variables. Trails defined over the same variable set are encoded
into lists of the same length. This representation induces a lexicographic order
>lex on trails, and we define �tr as the restriction of >lex to {[l1, . . . , l|V |] | li ∈
{0, 1, 2} for 1 ≤ i ≤ |V |}, i.e., we have t1 �tr t2 if t1 >lex t2. The ordering �tr is
well-founded, its minimal element is [0, . . . , 0]. The component state takes values
in {o, f, c}, and we define �cs as >lex, i.e., s1 �cs s2 if s1 >lex s2. The minimal
element of �cs is c, hence �cs is well-founded. Given two component levels d1 and
d2, we define d1 �cl d2 if length(d1) < length(d2). This may seem counterintuitive
but is needed to ensure that the execution of rule Decompose results in a smaller
state, since both the component state and the trail of the new subcomponents
are of higher order than those of their parent. To see that �cs is well-founded,
recall that we consider finite variable sets. Their size provides an upper limit on
the length of the component level representation and a minimal element of �cs.

Now we define the component ordering �c= (�cl,�tr,�cs). Let two compo-
nents be C1 = (d1, t1, s1) and C2 = (d2, t2, s2). We have C1 �c C2 if C1 	= C2 and
d1 �cl d2 or d1 = d2 and either t1 �tr t2 or t1 = t2 and s1 �cs s2. Clearly �c is
well-founded, since �tr, �cs, and �cl are well-founded. For two global states S and
T , we have S �ACD T if S 	= T and for each component C such that C is larger
in T than in S with respect to �c, S contains a component C′ that is larger in S
than in T . Since �c is well-founded, also �ACD is well-founded. Figure 4 shows
that each rule application leads to a smaller global state, concluding our proof.

6 Generalization

The generalized rules are listed in Fig. 5. In our generalized framework, we have
F |I =

∧n
i=1 Gi, and var(Gi) ∩ var(Gj) = ∅ for i, j ∈ {1, . . . , n} and i 	= j (rule

DecomposeG). Similarly to their equivalents in ACD, rules ComposeBackG and
ComposeEndG are applicable if all subcomponents are closed.

210 S. Möhle

7 Discussion

We have presented Abstract CNF2dDNNF, or ACD for short, a formal
framework for compiling a formula in CNF into d-DNNF combining CDCL-
based model enumeration with chronological backtracking [34] and dynamic
component analysis [4]. Conflict-driven clause learning enables our framework to
escape regions without solution early, and chronological backtracking prevents
multiple model enumeration without the need for remembering already found
models using blocking clauses, which slow down unit propagation. However, the
absence of blocking clauses also prevents the use of restarts. If exclusively the
rules Unit, Decide, BackTrue, BackFalse, CompTrue, and CompFalse are used, a
DSOP representation of F is computed. Unit propagation is prioritized due to
its potential to reduce the number of decisions and thus of right branches to be
explored. Favoring decompositions over decisions may also shrink a larger part
of the search space. Our framework lays the theoretical foundation for practical
All-SAT and #SAT solving based on chronological CDCL. Any implementation
which can be modeled by ACD exhibits its properties, in particular its correct-
ness, which has been established in a formal proof.

Comparison with Available Tools. There exist other knowledge compilers
addressing d-DNNFs. We want to mention c2d [20], Dsharp [37], and D4 [30],
which also execute an exhaustive search and conflict analysis. However, our app-
roach differs conceptually from these tools in several ways. The most prominent
ones are the use of CDCL with chronological backtracking [33,38] instead of
CDCL with non-chronological backtracking and the way the d-DNNF is cre-
ated. Our method generates DSOP representations of formulae which can not
be decomposed further by an exhaustive (partial) model enumeration and then
combines the result, while the tools mentioned above generate the d-DNNF by
recording the execution trace as a graph [26,27]. As ACD, both D4 and Dsharp
adopt a dynamic decomposition strategy, while c2d constructs a decomposition
tree which it then uses for for component analysis.

Future Research Directions. We plan to implement a proof of concept of
our calculus in order to compare the size of the returned d-DNNF with the ones
obtained by c2d, D4, and Dsharp. For dynamic component analysis, one could
follow the algorithm implemented in COMPSAT [6], while dual reasoning [32]
and logical entailment [35] enable the detection of short partial models. This
is particularly interesting in tasks where the length of the d-DNNF is crucial.
Dual reasoning has shown to be almost competitive on CNFs if the search space
is small, we therefore expect that component analysis boosts its performance.
The major challenge posed by the second approach lies in an efficient imple-
mentation of the oracle calls required by the entailment checks. It would be
interesting to investigate the impact of dynamic component analysis on a recent
implementation [46] of model enumeration by chronological CDCL [34]. Cache
structures, being an inherent part of modern knowledge compilers and #SAT
solvers [11,16,19,20,30,31,37,41,42,47,49] due to their positive impact on solver
efficiency [1], should be added to any implementation of our framework. Finally,

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 211

an important research topic is that of optimizing the encoding of a formula
making best use of component analysis [14]. Related to this question is whether
formulae stemming from practical applications are decomposable in general.

Acknowledgements. My thanks go to Armin Biere for a fruitful discussion when I
got stuck in a first, very raw version of the proof, and to Martin Bromberger for his
input enhancing it.

References

1. Bacchus, F., Dalmao, S., Pitassi, T.: DPLL with caching: a new algorithm for
#SAT and Bayesian inference. Electron. Colloquium Comput. Complex. TR03-
003 (2003)

2. Barrett, A.: From hybrid systems to universal plans via domain compilation. In:
ICAPS, pp. 44–51. AAAI (2004)

3. Barrett, A.: Model compilation for real-time planning and diagnosis with feedback.
In: IJCAI, pp. 1195–1200. Professional Book Center (2005)

4. Bayardo Jr., R., Pehoushek, J.: Counting models using connected components. In:
AAAI/IAAI, pp. 157–162. AAAI Press/The MIT Press (2000)

5. Bernasconi, A., Ciriani, V., Luccio, F., Pagli, L.: Compact DSOP and partial DSOP
forms. Theory Comput. Syst. 53(4), 583–608 (2013)

6. Biere, A., Sinz, C.: Decomposing SAT problems into connected components. J.
Satisf. Boolean Model. Comput. 2(1–4), 201–208 (2006)

7. Bollig, B., Buttkus, M.: On limitations of structured (deterministic) DNNFs. The-
ory Comput. Syst. 64(5), 799–825 (2020)

8. Bollig, B., Farenholtz, M.: On the relation between structured d-DNNFs and SDDs.
Theory Comput. Syst. 65(2), 274–295 (2021)

9. Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: On compiling CNFs into struc-
tured deterministic DNNFs. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS,
vol. 9340, pp. 199–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24318-4_15

10. Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: Knowledge compilation meets com-
munication complexity. In: IJCAI, pp. 1008–1014. IJCAI/AAAI Press (2016)

11. Burchard, J., Schubert, T., Becker, B.: Laissez-faire caching for parallel #SAT
solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 46–61.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_5

12. Burchard, J., Schubert, T., Becker, B.: Distributed parallel #SAT solving. In:
CLUSTER, pp. 326–335. IEEE Computer Society (2016)

13. Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Commun. 10(3–
4), 137–150 (1997)

14. Chavira, M., Darwiche, A.: Encoding CNFs to empower component analysis. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 61–74. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814948_9

15. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian networks for
exact inference. Int. J. Approx. Reason. 42(1–2), 4–20 (2006)

16. Chu, G., Harwood, A., Stuckey, P.J.: Cache conscious data structures for Boolean
satisfiability solvers. J. Satisf. Boolean Model. Comput. 6(1–3), 99–120 (2009)

17. Darwiche, A.: Compiling knowledge into decomposable negation normal form. In:
IJCAI, pp. 284–289. Morgan Kaufmann (1999)

https://doi.org/10.1007/978-3-319-24318-4_15
https://doi.org/10.1007/978-3-319-24318-4_15
https://doi.org/10.1007/978-3-319-24318-4_5
https://doi.org/10.1007/11814948_9

212 S. Möhle

18. Darwiche, A.: Decomposable negation normal norm. J. ACM 48(4), 608–647 (2001)
19. Darwiche, A.: On the tractable counting of theory models and its application to

truth maintenance and belief revision. J. Appl. Non Class. Logics 11(1–2), 11–34
(2001)

20. Darwiche, A.: New advances in compiling CNF into decomposable negation normal
form. In: ECAI, pp. 328–332. IOS Press (2004)

21. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: IJCAI, pp. 819–826. IJCAI/AAAI (2011)

22. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

23. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

24. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

25. Fargier, H., Mengin, J.: A knowledge compilation map for conditional preference
statements-based languages. In: AAMAS, pp. 492–500. ACM (2021)

26. Huang, J., Darwiche, A.: DPLL with a trace: From SAT to knowledge compilation.
In: IJCAI, pp. 156–162. Professional Book Center (2005)

27. Huang, J., Darwiche, A.: The language of search. J. Artif. Intell. Res. 29, 191–219
(2007)

28. Huang, X., Izza, Y., Ignatiev, A., Cooper, M.C., Asher, N., Marques-Silva, J.:
Tractable explanations for d-DNNF classifiers. In: AAAI, pp. 5719–5728. AAAI
Press (2022)

29. Koriche, F., Lagniez, J., Marquis, P., Thomas, S.: Knowledge compilation for model
counting: affine decision trees. In: IJCAI, pp. 947–953. IJCAI/AAAI (2013)

30. Lagniez, J., Marquis, P.: An improved Decision-DNNF compiler. In: IJCAI, pp.
667–673. ijcai.org (2017)

31. Lagniez, J., Marquis, P., Szczepanski, N.: DMC: a distributed model counter. In:
IJCAI, pp. 1331–1338. ijcai.org (2018)

32. Möhle, S., Biere, A.: Dualizing projected model counting. In: ICTAI, pp. 702–709.
IEEE (2018)

33. Möhle, S., Biere, A.: Backing backtracking. In: Janota, M., Lynce, I. (eds.) SAT
2019. LNCS, vol. 11628, pp. 250–266. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24258-9_18

34. Möhle, S., Biere, A.: Combining conflict-driven clause learning and chronological
backtracking for propositional model counting. In: GCAI. EPiC Series in Comput-
ing, vol. 65, pp. 113–126. EasyChair (2019)

35. Möhle, S., Sebastiani, R., Biere, A.: Four flavors of entailment. In: Pulina, L., Seidl,
M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 62–71. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-51825-7_5

36. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535. ACM (2001)

37. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: fast d-DNNF compila-
tion with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) AI 2012. LNCS (LNAI),
vol. 7310, pp. 356–361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30353-1_36

38. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8_7

https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-030-51825-7_5
https://doi.org/10.1007/978-3-030-51825-7_5
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-319-94144-8_7

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 213

39. Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans by
counting models on compiled d-DNNF representations. In: ICAPS, pp. 141–150.
AAAI (2005)

40. Pipatsrisawat, K., Darwiche, A.: A new d-DNNF-based bound computation algo-
rithm for functional E-MAJSAT. In: IJCAI, pp. 590–595 (2009)

41. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: SAT (2004)

42. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: a scalable probabilistic exact
model counter. In: IJCAI, pp. 1169–1176. ijcai.org (2019)

43. Siddiqi, S.A., Huang, J.: Probabilistic sequential diagnosis by compilation. In:
ISAIM (2008)

44. Marques-Silva, J.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfi-
ability. In: ICCAD, pp. 220–227. IEEE Computer Society/ACM (1996)

45. Marques-Silva, J.M., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

46. Spallitta, G., Sebastiani, R., Biere, A.: Enumerating disjoint partial models without
blocking clauses. CoRR abs/2306.00461 (2023)

47. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_38

48. de Uña, D., Gange, G., Schachte, P., Stuckey, P.J.: Compiling CP subproblems to
MDDs and d-DNNFs. Constraints An Int. J. 24(1), 56–93 (2019)

49. Zhang, L., Malik, S.: Cache performance of SAT solvers: a case study for efficient
implementation of algorithms. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003.
LNCS, vol. 2919, pp. 287–298. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24605-3_22

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11814948_38
https://doi.org/10.1007/978-3-540-24605-3_22
https://doi.org/10.1007/978-3-540-24605-3_22
http://creativecommons.org/licenses/by/4.0/

Higher-Order Theorem Proving

Hammering Floating-Point Arithmetic

Olle Torstensson1 and Tjark Weber2(B)

1 Linköping University, Linköping, Sweden
olle.torstensson@liu.se

2 Uppsala University, Uppsala, Sweden

tjark.weber@it.uu.se

Abstract. Sledgehammer, a component of the interactive proof assis-
tant Isabelle/HOL, aims to increase proof automation by automatically
discharging proof goals with the help of external provers. Among these
provers are a group of satisfiability modulo theories (SMT) solvers with
support for the SMT-LIB input language. Despite existing formalizations
of IEEE floating-point arithmetic in both Isabelle/HOL and SMT-LIB,
Sledgehammer employs an abstract translation of floating-point types
and constants, depriving the SMT solvers of the opportunity to make
use of their dedicated decision procedures for floating-point arithmetic.

We show that, by extending Sledgehammer’s translation from the lan-
guage of Isabelle/HOL into SMT-LIB with an interpretation of floating-
point types and constants, floating-point reasoning in SMT solvers can be
made available to Isabelle/HOL. Our main contribution is a description
and implementation of such an extension. An evaluation of the extended
translation shows a significant increase of Sledgehammer’s success rate
on proof goals involving floating-point arithmetic.

1 Introduction

Interactive theorem proving is one of the more flexible and powerful formal veri-
fication techniques available. However, finding a proof outline with intermediate
proof steps just simple enough for a proof assistant to be able to discharge
automatically may require a considerable amount of time and effort, even from
a seasoned user. As an example, the seL4 micro-kernel, the product of about
two person-years and 9000 lines of code, took a total of about 20 person-years
and 200,000 lines of proof development to formally verify [29]. For this reason,
increasing proof automation in interactive proof assistants is crucial to further
broaden their applicability.

As a way of tackling this issue, many interactive proof assistants have the
ability to transfer the proof burden of some of the intermediate steps onto auto-
mated reasoning systems with automatic proof methods better suited for the
task. This approach has proven to be quite successful in bringing the number
of required user interactions down for many types of problems, thus increasing
productivity.

Among these proof assistants, we find Isabelle/HOL [34] and its powerful
proof-delegation tool Sledgehammer [36], which acts as an interface between
c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 217–235, 2023.
https://doi.org/10.1007/978-3-031-43369-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_12&domain=pdf
http://orcid.org/0000-0001-7117-5594
http://orcid.org/0000-0001-8967-6987
https://doi.org/10.1007/978-3-031-43369-6_12

218 O. Torstensson and T. Weber

Isabelle/HOL and a number of external provers. In addition to traditional
(resolution-based) first-order automated theorem provers (ATPs) such as E [40],
SPASS [45] and Vampire [38] and the higher-order ATP Zipperposition [9], these
external provers include satisfiability modulo theories (SMT) solvers such as
CVC4 [7], veriT [15] and Z3 [31]. SMT solvers are highly specialized for reason-
ing within certain logical theories (e.g., integers, real numbers, and bit vectors),
and often implement decision procedures more efficient than those found in the
automatic proof methods of Isabelle/HOL.

Whether an external prover succeeds in solving a delegated proof obligation
depends, among other factors, on how the proof obligation is encoded in the lan-
guage of the prover. SMT solvers support the SMT-LIB input language [6], which
offers both uninterpreted (free) type and function symbols that are declared by
the user, as well as theory-specific interpreted types and operations that have a
fixed semantics. Dedicated inference rules and decision procedures for specific the-
ories that are available in SMT solvers are typically employed only when the types
and operations that appear in the delegated proof obligation are interpreted. An
abstract translation that leaves types and operations uninterpreted will deprive
external solvers of the opportunity to make use of their dedicated decision proce-
dures for specific background theories, and will instead have to rely on a sufficient
set of facts being passed to the solver along with the proof obligation.

One of the more recent additions to the growing set of theories supported by
major SMT solvers is that of floating-point arithmetic [16]. A formalization of
IEEE floating-point arithmetic in Isabelle/HOL has been available in the Archive
of Formal Proofs for nearly a decade [46]. However, Sledgehammer has not yet
caught up to this development; its SMT component does not implement an
interpretation of floating-point types and operations. Our aim is to provide such
an interpretation, with the purpose of increasing the success rate for floating-
point proof obligations delegated to SMT solvers, and thereby to increase the
degree of automation in the interactive proof process.

As an example, let us consider the commutativity of floating-point addition.
SMT solvers that support floating-point arithmetic typically have no trouble
proving that x + y = y + x when they can assume that x and y denote floating-
point numbers, and that + denotes IEEE floating-point addition (i.e., when + is
translated as fp.add). However, if this formula is translated in an uninterpreted
fashion, the problem becomes much harder: it now requires to show commuta-
tivity of a user-declared function over a user-declared type. Whether the SMT
solver will succeed in this case depends on many factors, including which addi-
tional facts (definitions and lemmas) are passed along from the interactive proof
assistant together with the proof obligation itself.

Contributions. We define a formal model of floating-point arithmetic in Isabelle/
HOL that implements the SMT-LIB floating-point theory (Sect. 3).

We then extend the SMT solver integration in Isabelle/HOL by adding
support for floating-point arithmetic, i.e., by treating floating-point types and
operations as interpreted in the translation from the language of Isabelle/HOL
to the SMT-LIB input format. In addition to describing this extension in

Hammering Floating-Point Arithmetic 219

detail (Sect. 4), we provide an implementation (in the Archive of Formal
Proofs [46]) that supports Sledgehammer. To the best of our knowledge, this
makes Isabelle/HOL the first interactive proof assistant to employ an inter-
preted translation for floating-point arithmetic in its integration of automated
theorem provers.

An evaluation (Sect. 5), performed on a representative set of floating-point
proof obligations from interactive proof, confirms the expectation that our trans-
lation extension significantly increases Sledgehammer’s success rate on proof
goals involving floating-point arithmetic, albeit at the cost of lower success rates
for proof reconstruction—at this stage, our integration typically requires the
external SMT solvers to be trusted as oracles.

2 Background

In this section, we cover additional background information regarding Sledge-
hammer and floating-point arithmetic.

2.1 The Sledgehammer Proof Process

When trying to prove a conjecture in Isabelle, a user may, via a simple call to
Sledgehammer, pass along the proof obligation to several external provers, which
will then work on the problem in parallel. The statement to be proven is used
by a relevance filter [30] to select additional facts (axioms and previously proven
statements) that may help in finding a proof. All of these statements are then
translated and compiled into a file in the input format of the external prover (in
the case of SMT solvers, an SMT-LIB input file), as illustrated in Fig. 1.

After working on the problem, the external prover (if it does not time out)
returns to Isabelle with its findings. At this point, if a prover reported the con-
jecture to be true, the user can either choose to view the prover as an oracle and
accept the conjecture as a theorem (the dashed path in Fig. 1), or make Isabelle
try to automatically reconstruct the proof internally, based on the additional
facts sent with the conjecture and any proof details the prover may provide.
Theorems that are only proved externally are marked with an oracle tag, meant
to convey a certain amount of skepticism—reconstructed proofs are generally
preferred, as they remove the consideration of possible bugs in the external
prover, or in the translation between formats.

In Sledgehammer’s translation module, types and constants are generally
declared with a unique (freshly generated) identifier that has no inherent mean-
ing to the external prover. A few Isabelle theories (e.g., those for integer arith-
metic, real arithmetic, and bit vectors) define types and constants that are
treated as interpreted by the translation into SMT-LIB [11], in which case they
are mapped directly to their counterpart in the target logic—thereby allowing
the SMT solvers to use their built-in decision procedures designed specifically to
reason within the theories in question.

220 O. Torstensson and T. Weber

Fig. 1. A conjecture’s journey to become a theorem via Sledgehammer

2.2 IEEE 754 Binary Floating-Point Arithmetic

The most common way to approximate the real numbers to a suitable finite set
of numbers in modern hardware is via floating-points. Simulating real arith-
metic using floating-points is not a straightforward task; the definitions of
arithmetic operations are not always obvious, and should ideally not vary
between implementations. To this end, the IEEE developed the technical stan-
dard IEEE 754 [26], aiming to provide clear specifications and recommendations
on all aspects of floating-point arithmetic. To meet the needs of different appli-
cations, the standard specifies several floating-point formats, each defining a
unique set of numbers.

A binary floating-point format is characterized by its exponent width w ∈
N, and its precision p ∈ N. A binary floating-point number, x, may then be
represented in this format by a triple (s, e, f) of bit vectors of length 1, w, and
p − 1, respectively, such that (for finite x)

x =

⎧
⎪⎨

⎪⎩

(−1)s · 21−bias(w) · (0 +
f

2p−1
) if e = 0

(−1)s · 2e−bias(w) · (1 +
f

2p−1
) otherwise,

(1)

where bias(w) = 2w−1 − 1. The standard also specifies two signed infinities, +∞
and −∞, denoting values that are too great in magnitude for the format. These
are represented by the triples (0, 1 . . . 1, 0 . . . 0) and (1, 1 . . . 1, 0 . . . 0), respec-
tively. Together, the sign s, the (biased) exponent e, and the fraction f con-
stitute a unique representation of any finite or infinite floating-point number;
in particular, the two numbers +0, represented by (0, 0 . . . 0, 0 . . . 0), and −0,
represented by (1, 0 . . . 0, 0 . . . 0), are considered distinct. To represent the result

Hammering Floating-Point Arithmetic 221

of invalid operations, such as 0/0, the standard defines a special Not-a-Number
(NaN) value, represented via any triple (s, 1 . . . 1, f) such that f �= 0 . . . 0.1

Additionally, IEEE 754 specifies various arithmetic operations on floating-
point numbers. Conceptually, floating-point arithmetic is carried out by convert-
ing floating-point numbers to more precise values, performing the corresponding
arithmetic operation, and converting the result back to the original floating-point
format, in an emulation of a rounded infinitely precise calculation. In an envi-
ronment like Isabelle/HOL, where theories of real arithmetic are available, the
task of carrying out calculations with infinite precision falls upon these, whereas
the floating-point operations handle the rounding and special cases (e.g., an
argument being NaN or infinite). IEEE 754 specifies precisely how this handling
should be performed.

3 An Implementation of SMT-LIB Floating-Point
Arithmetic in Isabelle/HOL

Formalizations of floating-point arithmetic are readily available for many proof
assistants. For Isabelle/HOL, a formalization originally developed by Lei Yu is
available from the Archive of Formal Proofs [46]. This defines a (polymorphic)
type of floating-point numbers, whose instances correspond to IEEE floating-
point formats with specific width and precision, and various arithmetic opera-
tions over this type.

However, although both are based on the IEEE standard, there are impor-
tant semantic differences between this model and the SMT-LIB floating-point
theory [16]. These differences would have rendered a direct interpretation of Lei
Yu’s model in the SMT-LIB floating-point theory unsound.

First, the SMT-LIB theory offers five rounding modes. The mode round-
NearestTiesToAway (which is optional according to IEEE 754) was not available
in the Isabelle/HOL model. Therefore, the enumerated type of rounding modes
in Isabelle/HOL did not correspond to the RoundingMode sort in SMT-LIB. We
have resolved this difference by adding support for roundNearestTiesToAway
to Lei Yu’s model. Although rounding is pervasive in IEEE—it is performed by
most arithmetic operations—it is factored out into only two functions in the
Isabelle/HOL model (round and intround), so that this was a relatively minor,
local change.

Second, the formalization by Lei Yu emphasizes the bit representation of
floating-point values (corresponding to specification level 4 in IEEE 754), while
the SMT-LIB floating-point theory takes a more abstract view (corresponding
to specification level 2 in IEEE 754). Specifically, in Lei Yu’s formalization,
each floating-point format contains multiple NaN values (with different bit rep-
resentations), while the corresponding floating-point format in SMT-LIB only

1 The IEEE 754 standard defines a quiet and a signalling NaN. This distinction is not
present in the SMT-LIB floating-point theory, which is based on a higher level of
abstraction.

222 O. Torstensson and T. Weber

contains a single (abstract) NaN value. To resolve this fundamental difference,
we have constructed a new model of floating-point arithmetic in Isabelle/HOL.
Our starting point is a quotient construction over the type (’e,’f) float of
floating-point numbers offered by Lei Yu’s model. We first define an equivalence
relation is nan equivalent on this type that relates all NaN values:
definition is nan equivalent :: (’e,’f) float ⇒ (’e,’f) float ⇒ bool
where is nan equivalent a b ≡ a = b ∨ (is nan a ∧ is nan b)

We then define a new type (’e,’f) floatSingleNaN that contains the equiva-
lence classes of (’e,’f) float with respect to the relation is nan equivalent:

quotient type (overloaded) (’e,’f) floatSingleNaN =
(’e,’f) float / is nan equivalent

The resulting type (’e,’f) floatSingleNaN contains a single (abstract) NaN
value. The (type) arguments ’e and ’f indicate the bit width of the exponent
and fraction, respectively. A similar construction, but limited to the double-
precision (64-bit) format, was used in [8] to facilitate OCaml code generation
for floating-point numbers. Flocq [14], a Coq library of floating-point arithmetic,
defines a type with similar semantics inductively, rather than using a quotient
construction.

Most floating-point operations can then be lifted [25] in a straightforward
manner from (’e,’f) float to (’e,’f) floatSingleNaN. We have addition-
ally defined various operations that are supported in SMT-LIB but that were not
available in Lei Yu’s model, such as conversion functions between floating-point
numbers and bit vectors. Our model now covers all operations that are available
in the SMT-LIB floating-point theory.

Some (rather subtle) semantic differences between our model and the SMT-
LIB floating-point theory remain. In SMT-LIB, the result of certain opera-
tions, such as converting NaN or infinities to a real number, is unspecified.
Isabelle/HOL does not support partial specifications; therefore, the result of
these operations is defined2 in our model. Technically, the Isabelle/HOL model
is an implementation of the SMT-LIB specification. This does not affect the
soundness of interpreting the model in SMT-LIB: any theorem provable under
SMT-LIB semantics also holds for the Isabelle/HOL model.

An error in the remainder function float rem as defined in Isabelle/HOL
was discovered during implementation and has been patched: the remainder of
a finite floating-point value x and ±∞ shall be x [26, §5.3.1].

4 Interpreting Isabelle/HOL Floating-Point Arithmetic
in SMT-LIB

This section describes an interpreted translation of floating-point types and oper-
ations from Isabelle/HOL to SMT-LIB. Our translation extends a preexisting
general translation [11] targeting SMT solvers that is part of Sledgehammer,
which treats floating-point arithmetic as uninterpreted. It supports the formal

2 For instance, in terms of a special constant called undefined.

Hammering Floating-Point Arithmetic 223

model of IEEE floating-point arithmetic in Isabelle/HOL that was described in
the previous section. We aim to be comprehensive but restrict attention to those
floating-point concepts that are defined in both Isabelle/HOL and SMT-LIB.

4.1 SMT-LIB Logic

The first task of our translation module is to select an SMT-LIB logic within
which the SMT solver is to reason when deciding the satisfiability of the formula.
For performance reasons, it is generally a good idea to select a logic that is as
specific as allowed by the contents and structure of the formula. However, FP, the
logic for floating-point arithmetic, is too restrictive for many of Isabelle’s proof
obligations, which may freely combine floating-point operations with other types
and constants. When translated, these will require support for symbols that are
either free (uninterpreted) or defined in other SMT-LIB theories.

Sledgehammer’s SMT integration relies on callback functions to analyze the
proof obligation and determine the problem’s logic. However, only one of these
functions may select a logic. In the absence of a framework allowing for a more
modular approach (e.g., incrementally generalizing the logic as little as necessary,
based on the types and constants that appear in the proof obligation), we need
to select a logic that covers all operations that appear in the proof obligation. To
achieve this, whenever a supported floating-point type is detected in the formula
to be translated, our callback function returns the (pseudo-)logic ALL. Available
since version 2.5 of the SMT-LIB standard, this provides a convenient way to
select the most general logic that the respective SMT solver supports.

4.2 Types

Both Isabelle/HOL and SMT-LIB define binary floating-point formats of arbi-
trary width of the exponent and fraction fields. In Isabelle/HOL, (m,n) float-
SingleNaN is the type of floating-point numbers with an exponent field of width m
and a fraction field of width n (and thus with precision n+1). In SMT-LIB,
the hidden bit of the significand (the bit preceding the fraction) is included in
the format specification, making (FloatingPoint m n+1) the corresponding
sort. The SMT-LIB sorts are only defined for formats with m > 1 and n > 0,
whereas m and n are merely required to be positive in Isabelle/HOL. Thus, any
type (1,n) floatSingleNaN lacks a corresponding sort in SMT-LIB, and is left
uninterpreted by the translation.

In Isabelle/HOL, all floating-point formats (m,n) floatSingleNaN are
instances of a polymorphic type (’e,’f) floatSingleNaN. Here, ’e and ’f
are type variables that may be instantiated with concrete (type) arguments, or
left uninstantiated to express generic properties that hold for all floating-point
formats. Due to the current lack of support for polymorphism in SMT-LIB,
(m,n) floatSingleNaN is interpreted only when m and n are (type) arguments
encoding fixed numeric values; polymorphic types are left uninterpreted.

In addition to the types for floating-point formats, Isabelle/HOL defines an
enumerated type roundmode for the rounding modes used by the arithmetic

224 O. Torstensson and T. Weber

operations. SMT-LIB provides a corresponding type; roundmode is interpreted
as RoundingMode in SMT-LIB.

4.3 Constants

For the sake of brevity, we focus here on some of the more interesting aspects
of the translation of constants. (In HOL, constants are not limited to arity 0,
but may have a function type.) An exhaustive enumeration of the mapping is
provided in Table 1.

Polymorphism. The issue regarding polymorphism, described in the previous
section, affects the translation of constants as well. A constant can only be inter-
preted if its type is not polymorphic. Since Isabelle’s automatic type inference
assigns constants the most general type possible with respect to the context,
variables and constants with a floating-point type will in many cases need to be
attached with explicit type constraints in order to trigger the interpretation.

Direct Correspondence. For many floating-point related constants in Isabelle,
there is a direct semantic-preserving mapping to a function in SMT-LIB. Among
these we find, e.g., the rounding modes and comparison operations together
with many arithmetic operations and classification predicates. The translation
of these does not involve much more than simply replacing their name with the
corresponding identifier in SMT-LIB.

Format Parameter Extraction. A few SMT-LIB functions targeted by our trans-
lation are technically elements of an infinite family of functions generated by
an index over all floating-point formats. This holds, e.g., for the conversion
operation from reals to floating-points, and for the (nullary) functions denot-
ing the special floating-point values ±0, ±∞ and NaN. Their behavior depends
on the result sort, which is not necessarily derivable from context and must
be indicated explicitly in SMT-LIB. In these cases, we extract the type argu-
ments of the (result) type of the constant to be translated, and add them
explicitly as arguments to the corresponding function symbol in SMT-LIB.
For instance, the Isabelle/HOL function round of type roundmode ⇒ real ⇒
(’e,’f) floatSingleNaN, which converts a real number into a floating-point
number (rounding as necessary), is interpreted as (to fp m n+1) whenever its
result type is of the form (m,n) floatSingleNaN, where m and n encode fixed
numeric values.

Term Translation. Isabelle/HOL supports the definition of advanced concepts on
top of the types and constants that are provided by the model of floating-point
arithmetic. Our translation does not interpret such derived concepts directly.
Instead, these can be handled by unfolding their definitions in Isabelle when
desired, or by relying on Sledgehammer’s relevance filter, which can make their
definitions and other relevant facts available to external provers automatically.

Hammering Floating-Point Arithmetic 225

Table 1. Types and constants in Isabelle/HOL covered by the translation, together
with sorts and functions in SMT-LIB. m > 1 and n > 0 indicate the floating-point
format. Square brackets denote syntactic sugar, which is also interpreted.

Isabelle/HOL SMT-LIB

Floating-point type (m,n) floatSingleNaN (FloatingPoint m n+1)

Rounding mode type roundmode RoundingMode

Bit-vector type m word (BitVec m)

Rounding mode roundNearestTiesToEven RNE

Rounding mode roundNearestTiesToAway RNA

Rounding mode roundTowardPositive RTP

Rounding mode roundTowardNegative RTN

Rounding mode roundTowardZero RTZ

Value construction fp fp

Positive infinity plus infinity [∞] (+oo m n+1)

Negative infinity minus infinity (-oo m n+1)

Positive zero zero class.zero [0] (+zero m n+1)

Negative zero minus zero (-zero m n+1)

Not-a-number NaN (NaN m n+1)

Absolute value abs class.abs [� �] fp.abs

Negation uminus class.uminus [-] fp.neg

Addition fadd fp.add

Subtraction fsub fp.sub

Multiplication fmul fp.mul

Division fdiv fp.div

Fused multiply-add fmul add fp.fma

Square root fsqrt fp.sqrt

Remainder float rem fp.rem

Integral rounding fintrnd fp.roundToIntegral

Less or equal fle fp.leq

Less than flt fp.lt

Greater or equal fge fp.geq

Greater than fgt fp.gt

IEEE equality feq fp.eq

Normal? is normal fp.isNormal

Subnormal? is subnormal fp.isSubnormal

Zero? is zero fp.isZero

Infinity? is infinity fp.isInfinite

NaN? is nan fp.isNaN

Negative? is negative fp.isNegative

Positive? is positive fp.isPositive

To real valof fp.to real

To unsigned word unsigned word of float fp.to ubv

To signed word signed word of float fp.to sbv

From IEEE word float of IEEE754 word (to fp m n+1)

From real round (to fp m n+1)

From float float of float (to fp m n+1)

From signed word float of signed word (to fp m n+1)

From unsigned word float of unsigned word (to fp unsigned m n+1)

226 O. Torstensson and T. Weber

5 Evaluation

To investigate the difference in the performance of Sledgehammer brought on
by the interpreted translation, and to get a clear overview of the comparative
performance of the SMT solvers, we conducted an experimental evaluation on
a set of proof obligations that involve floating-point operations. Freely available
Isabelle formalizations of floating-point properties are scarce; only a few proper-
ties are included with the formal IEEE model in the Archive of Formal Proofs.
We complemented these with our own formalizations of floating-point properties
taken from the IEEE 754 standard and the Handbook of Floating-point Arith-
metic [32], resulting in a set of 124 formulas. The formulas in the evaluation set
exhibit difficulties ranging from nearly trivial to levels on par with Sterbenz’s
lemma [42].

All formulas in the evaluation set are polymorphic over a single floating-
point type (’e,’f) floatSingleNaN. This type was instantiated to different
fixed-size floating-point formats: half (16-bit), single (32-bit), double (64-bit),
and quadruple (128-bit) precision formats, as specified by IEEE 754. The inter-
preted translation was evaluated on each of these fixed-size formats. For com-
parison, the abstract (uninterpreted) translation that was previously employed
by Sledgehammer was additionally evaluated on the original (polymorphic) eval-
uation set. This gives rise to nine different models—technically, Isabelle theories
with different type annotations—for measuring Sledgehammer’s performance on
the evaluation set, defined for x ∈ {(5,10), (8,23), (11,52), (15,112)} as:

– Ix : interpretation is enabled and all floating-points are of type
x floatSingleNaN.

– Ux : interpretation is disabled and all floating-points are of type
x floatSingleNaN.

– Upoly: interpretation is disabled and all floating-points are of polymorphic
type (’e,’f) floatSingleNaN.

We used the Mirabelle [17] tool with default settings—including a 30 s time
limit per formula—to apply Sledgehammer to each proof obligation. The default
external provers invoked by Sledgehammer in Isabelle2022 are the ATPs E (ver-
sion 2.6-1), SPASS (version 3.8ds-2), Vampire (version 4.6) and Zipperposition
(version 2.1-1), along with the SMT solvers CVC4 (version 1.8), veriT (ver-
sion 2021.06.2-rmx), and Z3 (version 4.4.0 4.4.1). Since the floating-point solver
in this version of Z3 suffers from a soundness bug, we evaluated Z3 version 4.12.2
instead. We did not evaluate newer versions of the other solvers, such as cvc5 [3],
as they are not yet integrated with Isabelle.

Out of the three SMT solvers, only CVC4 and Z3 support the floating-
point theory of SMT-LIB. For each of the nine models, we evaluated four dif-
ferent prover configurations: CVC4 only, Z3 only, CVC4+Z3, and Sledgeham-
mer’s default prover configuration, which includes all of the ATPs and SMT
solvers listed above. For the Ix models, where interpretation is enabled, the
default prover configuration uses both interpreted and uninterpreted translations

Hammering Floating-Point Arithmetic 227

(depending on the prover). For CVC4, we enabled its experimental floating-point
solver (option --fp-exp) to obtain support for floating-point formats beyond
single and double precision.

Sledgehammer’s relevance filter had access to a large collection of theorems
from the Isabelle/HOL library, including the definitions of all types and oper-
ations, and (for later formulas in the evaluation set) to all formulas that were
evaluated earlier. This mimics realistic use in interactive proof, where users can
rely on proven statements and employ them as lemmas in subsequent proofs. To
avoid later runs being affected by earlier runs, the status of the machine learning
selection of facts (stored in the Isabelle configuration file mash state) was reset
before each Mirabelle run.

The experiments were conducted under Debian GNU/Linux 6.1.0-10-amd64,
running on an i9-9980HK CPU at 2.4 GHz with 16 processor threads and 32 GB
of main memory.

5.1 Results

Table 2 shows Sledgehammer’s success rates for the four different prover con-
figurations when run on the evaluation set in the models described above. For
convenience, the four fixed formats are abbreviated by their total bit length (16,
32, 64, and 128, respectively) in the model name. Sledgehammer succeeds when
at least one of the external provers reports that it found a proof within the time
limit of 30 s.

Table 2. Sledgehammer’s success rates for the four prover configurations on proof
goals from the evaluation set, by model.

U16 I16 U32 I32 U64 I64 U128 I128 Upoly

CVC4 41% 94% 57% 91% 35% 90% 58% 89% 54%

Z3 39% 86% 56% 85% 35% 84% 56% 77% 58%

CVC4+Z3 41% 95% 58% 91% 36% 90% 58% 89% 57%

Default (all) 41% 94% 60% 91% 37% 91% 60% 88% 56%

In this case, Sledgehammer attempts to reconstruct the external proof in
Isabelle using a collection of automated proof methods (as discussed in Sect. 2.1).
The success rates for this process, again as a percentage of the total number (124)
of proof obligations, are shown in Table 3.

For each floating-point format (and also for the polymorphic model), the
largest success rate across prover configurations, with or without interpretation
enabled, is indicated in boldface.

228 O. Torstensson and T. Weber

Table 3. Success rates of proof reconstruction for the four prover configurations on
proof goals from the evaluation set, by model.

U16 I16 U32 I32 U64 I64 U128 I128 Upoly

CVC4 41% 5% 55% 5% 35% 5% 54% 5% 54%

Z3 39% 4% 54% 4% 35% 4% 53% 4% 58%

CVC4+Z3 41% 5% 55% 5% 36% 5% 56% 5% 57%

Default (all) 40% 7% 58% 7% 37% 7% 57% 7% 54%

5.2 Discussion

Based on the results of our evaluation, we put forward the following observations:

1. An interpreted translation increases Sledgehammer’s success rate for all
prover configurations and fixed-size floating point formats. With an uninter-
preted translation, success rates vary between 35% and 58%. This increases to
between 77% and 95% with an interpreted translation. Across the board, the
interpreted translation performs significantly better than the uninterpreted
translation.

2. The increase in Sledgehammer’s success rate is most pronounced for the half
(16-bit) and double (64-bit) precision formats. The uninterpreted translation
performs worse for these two formats (with success rates of 35% to 41%)
than for single and quadruple precision. In contrast, the interpreted transla-
tion consistently yields high success rates (of 89% to 95% in the best solver
configuration) regardless of the format’s precision.

3. Sledgehammer’s success rate on the polymorphic model is generally compara-
ble to, and in some cases better than, its success rate for fixed-size formats with
an uninterpreted translation. When the external provers cannot take advan-
tage of their decision procedures for fixed-size floating-point arithmetic, rea-
soning about fixed-size properties is no easier for them than reasoning about
polymorphic properties. (Indeed, depending on the additional facts chosen by
Sledgehammer’s relevance filter, it may well be harder.) This changes when
interpretation is enabled.

4. CVC4 outperforms Z3 on most models. This is true both with and without
interpretation enabled. The only exception is the polymorphic model, where
Z3 performs slightly better than CVC4. Using all available provers typically
results in (only) slightly higher success rates than using CVC4 alone, but can
also lead to slightly lower success rates (mainly because of non-determinism
in Sledgehammer’s behavior).

5. With interpretation disabled, proof reconstruction success rates are often close
to Sledgehammer’s success rates. In other words, proof reconstruction in the
uninterpreted models succeeds on the vast majority of proofs found by exter-
nal provers. This is a testament to the power of Isabelle’s built-in proof meth-
ods (in particular, metis), which provide strong automation for first-order
reasoning.

Hammering Floating-Point Arithmetic 229

6. Interpretation leads to (much) lower proof reconstruction rates for all prover
configurations and fixed-size floating point formats. Although interpretation
allows external provers to find more proofs, these proofs are rarely successfully
reconstructed in Isabelle. This is to be expected: Isabelle currently does not
offer built-in automated proof procedures for floating-point reasoning that
could be used to reconstruct such proofs.

Many formulas from the evaluation set were previously proven with 10–20 lines of
interactively developed Isabelle proof script, and can now (after interpretation)
be proven completely automatically by CVC4 or Z3. The interpreted translation
can save significant amounts of human labor in formal proof developments that
involve floating-point arithmetic. However, due to the lower proof reconstruction
rate, interpretation of floating-point arithmetic is currently primarily of interest
to users who are willing to accept CVC4 and Z3 as oracles (cf. Sect. 2.1).

6 Related Work

The practice of employing automatic provers as back-ends in interactive theorem
provers is not unique to Isabelle. Generic proof-delegation tools similar to Sledge-
hammer have also been developed for other proof assistants, e.g., MizAR [43]
for Mizar [2], and HOL(y)Hammer [27] for HOL Light [22] and HOL4 [41].
There are also proof-delegation tools aimed specifically toward SMT solvers,
e.g., Smtlink [37] for ACL2 [28] and SMTCoq [1] for Coq [10].

Single integrations of SMT solvers have perhaps been more common than
these larger-scale tools. The interactive theorem prover PVS [35] is tightly con-
nected with the SMT solver Yices [18] (and its predecessor ICS), which has been
available as a decision procedure for a long time. An oracle integration of Yices in
Isabelle by Erkök and Matthews [20] makes use of its dedicated decision proce-
dures, but refrains from translating into SMT-LIB, and instead targets the native
input format of Yices due to its expressiveness. Weber [44] proposes a similar
oracle integration of Yices into HOL4, but extends it with support for additional
SMT solvers via the SMT-LIB format. This integration has since been supple-
mented with proof reconstruction and become part of HOL(y)Hammer [13].

The work presented here is based on the original integration of SMT solvers
in Isabelle’s Sledgehammer by Blanchette et al. [11]. It is dependent on vari-
ous aspects of their translation into SMT-LIB, including the interpretation of
bit-vector types and constants. In this sense, it also bears resemblance to how
SMTCoq was recently extended with dedicated support for the theory of bit
vectors [19].

Formalizations of IEEE 754 floating-point arithmetic are readily available in
interactive proof assistants, e.g., in HOL Light [23], ACL2 [39], and Coq [14], and
have been used extensively to verify floating-point related properties. However,
to the best of our knowledge, no integration of SMT solvers in interactive proof
assistants takes advantage of the dedicated decision procedures for floating-point
arithmetic available in the former.

230 O. Torstensson and T. Weber

Superficially, the work perhaps most similar to ours is a Why3 [12] formal-
ization of floating-point arithmetic and its mapping to the SMT-LIB floating-
point theory [21]. Why3, however, is not a prover itself, but a stand-alone proof-
delegation tool relying completely on external provers. Thus greater automation
in interactive proof assistants is not a shared objective.

7 Conclusions

In the years since its introduction in Isabelle, Sledgehammer has seen a number
of improvements. In varying degree, they have each gradually brought us closer to
the ultimate goal of powerful proof automation in interactive proof assistants.
By defining a formal model of floating-point arithmetic in Isabelle/HOL that
implements SMT-LIB semantics, and by enhancing the translation from Isabelle
to SMT-LIB with an interpretation of floating-point types and constants, we
have taken another step in this direction. Sledgehammer enjoys a significant
increase in success rates (before proof reconstruction) for proof obligations that
involve floating-point arithmetic.

Many proof obligations that were previously out of reach for any automated
prover can now be solved automatically. For users who are willing to trust the
external SMT solvers, enhancing Sledgehammer’s translation with a floating-
point interpretation increases proof automation and reduces the manual effort
required to construct proofs in this important application domain.

Our translation does not require formulas to be fully interpretable in the
SMT-LIB floating-point theory. The SMT solvers are instructed to reason in a
more general logic, where interpreted and uninterpreted sorts and functions can
be combined freely.

There are two notable limitations, which we propose to address through
future work. First, the interpretation of floating-point arithmetic is restricted
to fixed-size formats. In many situations, this is not a severe limitation—fixed-
size reasoning is sufficient, for instance, when one wants to verify a specific
hardware architecture, or a software implementation that uses a specific floating-
point type such as binary64. However, floating-point properties that hold for
all formats are most naturally stated polymorphically in Isabelle/HOL. Such
properties cannot be interpreted in the floating-point theory of SMT-LIB, which
(in its current version 2.6) lacks support for polymorphism: although it offers a
type (FloatingPoint m n) for any sufficiently large m and n, it does not offer
a polymorphic type (FloatingPoint m n) where m and n are variables that
may be instantiated.

Supporting polymorphism in SMT solvers is no small feat. Fortunately, there
is ongoing work to obtain a tighter integration of automatic provers, including
SMT solvers, with proof assistants. One of the means by which to achieve this is
via support for higher-order logic in these provers [5]. Most likely, SMT-LIB 3—
the next major update to SMT-LIB—will facilitate these changes by supporting
polymorphism [4]. When such support becomes available in SMT solvers that
support floating-point arithmetic, an interpreted translation can be employed

Hammering Floating-Point Arithmetic 231

also for polymorphic floating-point properties. There has already been work on
supporting parametric bit-vector formulas in SMT solvers by encoding them as
formulas over non-linear integer arithmetic, uninterpreted functions, and uni-
versal quantifiers (the UFNIA logic in SMT-LIB) [33]. This approach could in
principle be extended to floating-point numbers.

Second, interpretation of floating-point arithmetic allows SMT solvers to find
more proofs, but reduces proof reconstruction rates in Isabelle. There is a mis-
match between the reasoning capabilities of SMT solvers that support floating-
point arithmetic and Isabelle’s built-in automated proof procedures, which are
used to reconstruct proofs. The latter currently do not offer dedicated support
for floating-point reasoning, but need to rely on explicit lemmas to reason about
concepts for which the SMT solver, when interpretation is enabled, can employ
specialized decision procedures. Users may opt to bypass proof reconstruction
and use external SMT solvers as oracles; however, this reduces trust in the result-
ing theorems, as errors in the SMT solver, in the translation from Isabelle/HOL
to SMT-LIB, or in the Isabelle/HOL model of floating-point arithmetic could
lead to unsound results. The approach preferred by the interactive theorem prov-
ing community is that of a skeptic [24]—external proofs should be reconstructed
internally. If successful, this approach combines the speed of the SMT solver
with the reliability of the proof assistant.

Efficient reconstruction of proofs has previously been achieved for other SMT-
LIB logics [11], and is likely possible also for floating-point reasoning, through
improving on the proof information provided by SMT solvers and translating
theory-specific inferences. An automated proof procedure for floating-point arith-
metic implemented on top of Isabelle’s inference kernel would both facilitate
the reconstruction of external proofs and increase the built-in automation for
floating-point reasoning available in Isabelle/HOL. The implementation of such
a proof procedure will require substantial work, but the evaluation results in
this paper—in particular, the difference between Tables 2 and 3—clearly indi-
cate that the effort would not be wasted.

Acknowledgments. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

References

1. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to coq through proof witnesses. In: Jouannaud, J.-
P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25379-9 12

2. Bancerek, G., et al.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette, J.,
Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp.
261–279. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8 17

3. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 24

https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24

232 O. Torstensson and T. Weber

4. Barbosa, H., Blanchette, J.C., Cruanes, S., Ouraoui, D.E., Fontaine, P.: Language
and proofs for higher-order SMT (work in progress). In: Dubois, C., Paleo, B.W.
(eds.) Fifth Workshop on Proof eXchange for Theorem Proving - PxTP 2017. Elec-
tronic Proceedings in Theoretical Computer Science, vol. 262, pp. 15–22 (2017).
https://doi.org/10.4204/EPTCS.262.3

5. Barbosa, H., Reynolds, A., El Ouraoui, D., Tinelli, C., Barrett, C.: Extending SMT
solvers to higher-order logic. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI),
vol. 11716, pp. 35–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29436-6 3

6. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017). https://
www.smt-lib.org/

7. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

8. Basin, D., et al.: A formally verified, optimized monitor for metric first-order
dynamic logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 432–453. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51074-9 25

9. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirovic, P.: Superposition for higher-
order logic. J. Autom. Reason. 67(1), 10 (2023). https://doi.org/10.1007/s10817-
022-09649-9

10. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

11. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT
solvers. J. Autom. Reason. 51(1), 109–128 (2013). https://doi.org/10.1007/s10817-
013-9278-5

12. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64 (2011)

13. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14052-5 14

14. Boldo, S., Melquiond, G.: Some formal tools for computer arithmetic: Flocq and
Gappa. In: 28th IEEE Symposium on Computer Arithmetic, ARITH 2021, Lyngby,
Denmark, 14–16 June 2021, pp. 111–114. IEEE (2021). https://doi.org/10.1109/
ARITH51176.2021.00031

15. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS
(LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02959-2 12

16. Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable formal semantics
for IEEE-754 floating-point arithmetic. In: 22nd IEEE Symposium on Computer
Arithmetic - ARITH 2015, pp. 160–167. IEEE (2015). https://doi.org/10.1109/
ARITH.2015.26

https://doi.org/10.4204/EPTCS.262.3
https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1007/978-3-030-29436-6_3
https://www.smt-lib.org/
https://www.smt-lib.org/
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/s10817-022-09649-9
https://doi.org/10.1007/s10817-022-09649-9
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1109/ARITH51176.2021.00031
https://doi.org/10.1109/ARITH51176.2021.00031
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1109/ARITH.2015.26
https://doi.org/10.1109/ARITH.2015.26

Hammering Floating-Point Arithmetic 233

17. Desharnais, M., Vukmirovic, P., Blanchette, J., Wenzel, M.: Seventeen provers
under the hammer. In: Andronick, J., de Moura, L. (eds.) 13th International Con-
ference on Interactive Theorem Proving, ITP 2022, 7–10 August 2022, Haifa, Israel.
LIPIcs, vol. 237, pp. 8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022). https://doi.org/10.4230/LIPIcs.ITP.2022.8

18. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

19. Ekici, B., Katz, G., Keller, C., Mebsout, A., Reynolds, A.J., Tinelli, C.: Extending
SMTCoq, a certified checker for SMT (extended abstract). In: Blanchette, J.C.,
Kaliszyk, C. (eds.) First International Workshop on Hammers for Type Theories
- HaTT@IJCAR 2016. Electronic Proceedings in Theoretical Computer Science,
vol. 210, pp. 21–29 (2016). https://doi.org/10.4204/EPTCS.210.5

20. Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In:
Rushby, J., Shankar, N. (eds.) AFM 2008: Third Workshop on Automated Formal
Methods, pp. 3–13 (2008)

21. Fumex, C., Marché, C., Moy, Y.: Automated verification of floating-point compu-
tations in Ada programs. Research Report RR-9060, Inria Saclay Ile de France
(2017). https://hal.inria.fr/hal-01511183

22. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

23. Harrison, J.: Floating-point verification using theorem proving. In: Bernardo, M.,
Cimatti, A. (eds.) SFM 2006. LNCS, vol. 3965, pp. 211–242. Springer, Heidelberg
(2006). https://doi.org/10.1007/11757283 8

24. Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and Maple. J.
Autom. Reason. 21(3), 279–294 (1998). https://doi.org/10.1023/A:1006023127567

25. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
131–146. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 9

26. IEEE standard for floating-point arithmetic. IEEE STD 754-2019 (Revision
of IEEE 754-2008), pp. 1–84 (2019). https://doi.org/10.1109/IEEESTD.2019.
8766229

27. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL Light. Math.
Comput. Sci. 9(1), 5–22 (2014). https://doi.org/10.1007/s11786-014-0182-0

28. Kaufmann, M., Moore, J.S.: An industrial strength theorem prover for a logic based
on Common Lisp. IEEE Trans. Software Eng. 23(4), 203–213 (1997). https://doi.
org/10.1109/32.588534

29. Klein, G., et al.: seL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010). https://doi.org/10.1145/1743546.1743574

30. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-
olution problems. J. Appl. Log. 7(1), 41–57 (2009). https://doi.org/10.1016/j.jal.
2007.07.004

31. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

32. Muller, J.M., et al.: Handbook of Floating-Point Arithmetic. Birkhäuser (2010).
https://doi.org/10.1007/978-0-8176-4705-6

https://doi.org/10.4230/LIPIcs.ITP.2022.8
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.4204/EPTCS.210.5
https://hal.inria.fr/hal-01511183
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/11757283_8
https://doi.org/10.1023/A:1006023127567
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1007/s11786-014-0182-0
https://doi.org/10.1109/32.588534
https://doi.org/10.1109/32.588534
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1016/j.jal.2007.07.004
https://doi.org/10.1016/j.jal.2007.07.004
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-0-8176-4705-6

234 O. Torstensson and T. Weber

33. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.:
Towards satisfiability modulo parametric bit-vectors. J. Autom. Reason. 65(7),
1001–1025 (2021). https://doi.org/10.1007/s10817-021-09598-9. http://www.cs.
stanford.edu/barrett/pubs/NPR+21c.pdf

34. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

35. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

36. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In: Sutcliffe,
G., Schulz, S., Ternovska, E. (eds.) The 8th International Workshop on the Imple-
mentation of Logics - IWIL 2010. EPiC Series in Computing, vol. 2, pp. 1–11.
EasyChair (2010). https://easychair.org/publications/paper/wV

37. Peng, Y., Greenstreet, M.R.: Extending ACL2 with SMT solvers. In: Kaufmann,
M., Rager, D.L. (eds.) Thirteenth International Workshop on the ACL2 Theorem
Prover and Its Applications - ACL2 2015. Electronic Proceedings in Theoretical
Computer Science, vol. 192, pp. 61–77 (2015). https://doi.org/10.4204/EPTCS.
192.6

38. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE.
AI Commun. 15(2–3), 91–110 (2002). http://content.iospress.com/articles/ai-
communications/aic259

39. Russinoff, D.M.: A mechanically checked proof of IEEE compliance of the float-
ing point multiplication, division and square root algorithms of the AMD-K7
processor. LMS J. Comput. Math. 1, 148–200 (1998). https://doi.org/10.1112/
S1461157000000176

40. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6 29

41. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

42. Sterbenz, P.H.: Floating-Point Computation. Prentice-Hall, Hoboken (1974)
43. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar

formalizations. J. Autom. Reason. 50(2), 229–241 (2013). https://doi.org/10.1007/
s10817-012-9269-y

44. Weber, T.: SMT solvers: new oracles for the HOL theorem prover. Int. J. Softw.
Tools Technol. Transfer 13(5), 419–429 (2011)

45. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 1965–
2013. Elsevier and MIT Press (2001). https://doi.org/10.1016/b978-044450813-3/
50029-1

46. Yu, L.: A formal model of IEEE floating point arithmetic. Archive of Formal Proofs
(2013). http://isa-afp.org/entries/IEEE Floating Point.html. Formal proof devel-
opment

https://doi.org/10.1007/s10817-021-09598-9
http://www.cs.stanford.edu/ barrett/pubs/NPR+21c.pdf
http://www.cs.stanford.edu/ barrett/pubs/NPR+21c.pdf
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-55602-8_217
https://easychair.org/publications/paper/wV
https://doi.org/10.4204/EPTCS.192.6
https://doi.org/10.4204/EPTCS.192.6
http://content.iospress.com/articles/ai-communications/aic259
http://content.iospress.com/articles/ai-communications/aic259
https://doi.org/10.1112/S1461157000000176
https://doi.org/10.1112/S1461157000000176
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/s10817-012-9269-y
https://doi.org/10.1007/s10817-012-9269-y
https://doi.org/10.1016/b978-044450813-3/50029-1
https://doi.org/10.1016/b978-044450813-3/50029-1
http://isa-afp.org/entries/IEEE_Floating_Point.html

Hammering Floating-Point Arithmetic 235

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Learning Proof Transformations and Its
Applications in Interactive Theorem

Proving

Liao Zhang1,2(B) , Lasse Blaauwbroek3 , Cezary Kaliszyk1,4 ,
and Josef Urban2

1 University of Innsbruck, Innsbruck, Austria
zhangliao714@gmail.com

2 Czech Technical University in Prague, Prague, Czech Republic
3 Institut des Hautes Etudes Scientifiques Paris, Paris, France

4 International Neurodegenerative Disorders Research Center,
Prague, Czech Republic

Abstract. Interactive theorem provers are today increasingly used to
certify mathematical theories. To formally prove a theorem, reasoning
procedures called tactics are invoked successively on the proof states
starting with the initial theorem statement, transforming them into sub-
sequent intermediate goals, and ultimately discharging all proof obliga-
tions. In this work, we develop and experimentally evaluate approaches
that predict the most likely tactics that will achieve particular desired
transformations of proof states. First, we design several characterizations
to efficiently capture the semantics of the proof transformations. Then
we use them to create large datasets on which we train state-of-the-art
random forests and language models. The trained models are evaluated
experimentally, and we show that our best model is able to guess the right
tactic for a given proof transformation in 74% of the cases. Finally, we
use the trained methods in two applications: proof shortening and tactic
suggesting. To the best of our knowledge, this is the first time that tac-
tic synthesis is trained on proof transformations and assists interactive
theorem proving in these ways.

Keywords: Interactive theorem proving · Machine learning · Neural
networks

1 Introduction

Interactive theorem provers (ITPs) [15] are sophisticated systems used for con-
structing machine-verified proofs. Various proof assistants, such as HOL4 [31],
HOL Light [14], Lean [23], Isabelle/HOL [24], and Mizar [3], are used by formal-
izers. Coq [33] is one of the most popular proof assistant systems. Coq formalizers
invoke reasoning procedures called tactics that transform proof states into sim-
pler proof states, eventually discharging all proof obligations and thus proving
the initial proof state.
c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 236–254, 2023.
https://doi.org/10.1007/978-3-031-43369-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_13&domain=pdf
http://orcid.org/0000-0002-4574-8843
http://orcid.org/0000-0003-2910-8069
http://orcid.org/0000-0002-8273-6059
http://orcid.org/0000-0002-1384-1613
https://doi.org/10.1007/978-3-031-43369-6_13

Learning Proof Transformations and Its Applications in ITP 237

Theorem rev_length : ∀ l : list nat, length (rev l) = length l.
Proof.

intros l. induction l as [| n l’ IHl’].
- reflexivity.
- simpl. rewrite → app_length. simpl. rewrite → IHl’.

rewrite add_comm. reflexivity.
Qed.

Fig. 1. A formal Coq proof, showing the equality property of the lengths of a list and
its reverse

To give a simple example, we show a Coq proof of the equality of the lengths of
a list and its reverse (Fig. 1). To complete the proof, one can perform induction
on the list l (with the help of the tactic induction l as [| n l’ IHl’]),
splitting the proof state into a case where l is empty and a case where l is
nonempty. In the first case, the goal reduces to length (rev []) = length
[], which is easily discharged using simple computation. In the second case, we
obtain the induction hypothesis IHl’ that states length (rev l’) = length
l’ and need to prove that the equation still holds when the original list has a
natural number n prepended to it. After some simplification, we transform the
length of the concatenation of two lists into the summation of their individual
lengths. Then, with the help of the induction hypothesis, we simplify the goal.
Finally, we rewrite the goal by the commutative property of addition and obtain
a simple equation to prove.

A Coq proof state consists of a list of hypotheses and a goal that needs
to be proven. Given a proof state before the tactic application, the tactic may
either transform the before state to several after states or finish the proof. The
semantic of a tactic is captured by the (usually infinite) set of proof state trans-
formations that can potentially be generated by that tactic. In this work, we
approximate that infinite set with a finite dataset of transformations that occur
in real proofs written by Coq users. We then use machine learning models to
gain an understanding of tactics using their approximated semantics.

As an example, Fig. 2 presents the before and after states of the tactic
rewrite add_comm at its position in Fig. 1. In this particular case, the hypothe-
ses remain unchanged, but in the goal, the two sides of the addition are swapped.

Fig. 2. The before and after states of rewrite add_comm in Fig. 1, with hypotheses
above the dashed line and the required goal below it.

238 L. Zhang et al.

In this paper, we consider the machine learning task of predicting a tactic
capable of generating a given proof state transformation and investigate the
applications of this task. Formally, given a before state ps and n after states
{ps′}1..n, we attempt to predict a tactic t that transforms ps to {ps′′}1..n such
that ps′

i is equal to ps′′
i modulo α-equivalence for every i.

1.1 Motivation

Tactic prediction methods have so far relied solely on before states, typically
to guide automated tactical proof search in systems like Tactician [6]. We are
interested in synthesizing tactics based both on the before and after states for a
number of reasons.

First, there are multiple interesting applications of this task. For example,
formalizers may want to arrive at a particular proof state, given a particular
initial proof state. Or, given particular before and after states that were gener-
ated with a sequence of tactics, we may want to find a single tactic capturing
the transformation, thus shortening and simplifying the proof, and teaching the
formalizer how to use the available tactics.

Second, our work is the first step to designing a novel human-like proof
search strategy. When mathematicians write pencil-and-pen proofs, they often
first imagine some intermediate goals and then sequentially fill in the gaps. This
provides another motivation: our trained predictors can recommend the tactics
that will bridge the gaps between such intermediate human-designed proof goals.

Third, the task can be of particular importance for the ITPs which support
constructing proofs in a declarative proof style, such as Isabelle, Mizar, and
Lean. In declarative-style proofs often the after states are specified by the user
manually. A large formal library, Mizar Mathematical Library [2], is developed
in a declarative style. The Isabelle Archive of Formal Proofs (one of the most
developed libraries today) is also predominantly written in a declarative style.
Our approach can be directly applied to predict tactics able to fill the gap
between two subsequent declarative statements.

Finally, the learned tactic embeddings could be used to perform MuZero-
style [30] reinforcement learning, which means obtaining the after states by com-
bining the embeddings of the before states and of the tactics without actually
running the ITP. This could be particularly useful when some tactic applications
require large computational resources.

1.2 Contributions

The main contributions of our paper can be summarized as follows.

1. To our best knowledge, we are the first to predict tactics based on the trans-
formation they make between before and after states.

2. In Sect. 2, to capture the semantics of tactics, we design three characteriza-
tions: feature difference, anti-unification, and tree difference.

Learning Proof Transformations and Its Applications in ITP 239

3. In Sect. 4, we conduct experiments to verify the strengths of our characteri-
zations with a random forests classifier and the GPT-2 language model.

4. In Sect. 5, we propose and evaluate two applications of the task, namely tactic
suggestion and proof shortening.

Besides the above-mentioned contributions, Sect. 3 introduces the preliminaries
of the learning technology used in this paper. We discuss two related research
fields in Sect. 6. The conclusions and future work are presented in Sect. 7.

2 Proof State Characterizations

To train the machine learning models, we need to provide characterizations of
the before and after states. Apart from directly using the unprocessed textual
representation of proof states, we design three characterizations: feature differ-
ence, anti-unification, and tree difference.

2.1 Feature Difference

To characterize the proof states, we start with the features used by [42]. In that
work, the features were used to apply machine learning to predict tactics for
proof states. For example, GOAL-$l’ and HYPS-Coq.Lists.List.rev-$l’ are
two features extracted from the before state in Fig. 2. The prefixes GOAL and
HYPS denote whether a feature belongs to the goal or the hypotheses. The sym-
bol $l’ denotes a node that occurs in the abstract syntax tree (AST) of the
proof state. The prefix $ means that l’ denotes a named variable. We sub-
sequently consider the nodes connected in the AST. For example, the feature
Coq.Lists.List.rev-$l’ means that the identifier of the reversion operation
of a list and the list l’ are connected in the AST.

For the current work, we additionally consider feature difference. From the
before state ps and after states {ps′}1..n, we extract features f and {f ′}1..n,
respectively using the procedure discussed above. We define f ′ as the union of
{f ′}1..n. By set difference, we compute the disappeared features f − f ′ and the
appearing features f ′ − f . The disappeared features and appearing features are
together used as feature difference characterization of the tactic.

2.2 Anti-unification

Anti-unification, first proposed by Plotkin [27] and Reynolds [29], aims to cal-
culate generalizations of the given objects. Since Coq is based on the Calculus
of Inductive Constructions (CIC) [25], an appropriate anti-unification algorithm
for Coq should be higher-order. However, higher-order anti-unification is unde-
cidable [26]. Therefore, we first convert Coq terms to first-order terms so that
we can execute a decidable and efficient first-order anti-unification algorithm.

To encode Coq terms into first-order logic, we transform them recursively
following the AST. First-order applications and constants are encoded directly,

240 L. Zhang et al.

State

Hyps

n

nat

l’

list

nat

IHl’

=

length

rev

l’

length

l’

Goal

=

+

Var0 Var1 S

length

l’

Fig. 3. The least general generalization of the before and after states in Fig. 2

other applications use the apply functor app and all other cases use special
first-order functions (e.g., a dependent product is encoded as a first-order func-
tion prod). The goal of the before state in Fig. 2 will be converted to the first-
order term = (+(length(l′), S(O)), S(length(l′))). The non-leaves =, +, length, S
denote function symbols. The leaves l′ and O denote constants.

Terms in first-order anti-unification are defined as t ::= x | a | f(t1, ..., tn)
where x is a variable, a is a constant, f is an n-ary function symbol, and t is
a term. In this paper, letters s, t, u denote terms, letters f, g, h denote function
symbols, letters a, b denote constants, and letters x, y denote variables. Substi-
tutions map variables to terms and are usually written in the form of sets. We
can represent a substitution σ as a set {x �→ σ(x) | x �= σ(x)} where σ(x)
is the term mapped by x. The application of a substitution σ to a term t is
represented as tσ. If t is a variable, then tσ = σ(t). If t = f(t1, ..., tn), then
tσ = f(t1σ, ..., tnσ). A term u is called a generalization of a term t if there exists
a substitution σ such that uσ = t. For instance, the term f(g(x), y) is a gener-
alization of the term f(g(a), h(a, b)). The substitution σ is {x �→ a, y �→ h(a, b)}
such that f(g(x), y)σ = f(g(a), h(a, b)).

Anti-unification aims to obtain the least general generalization (lgg) of two
terms s and t. A term u is called a generalization of s and t if there exist
substitutions σ1 and σ2 such that uσ1 = s ∧ uσ2 = t. A generalization u′ of s
and t is called the lgg if, for any generalization u of s and t, there is a substitution
σ, such that u′σ = u. Assuming φ is a bijective function from a pair of terms to
a variable, given two terms s and t, the anti-unification algorithm AU calculates
the lgg using the two rules below.
– AU(s, t) = f(AU(s1, t1), ..., AU(sn, tn)) if s = f(s1, ..., sn), t = f(t1, ..., tn)
– AU(s, t) = φ(s, t) if the preceding rule does not match.

Figure 3 presents the lgg of the before and after states considered in Fig. 2.
Compared to the before state, most of the nodes in the lgg remain the same.

Learning Proof Transformations and Its Applications in ITP 241

The differences stay in the left side of the equality in the goal: length l’ is
substituted with Var0, and the natural number 1 is substituted with Var1. We
need to apply the substitutions {var0 �→ length l′, var1 �→ 1} and {var0 �→
1, var1 �→ length l′} to the lgg to obtain the before and after states, respectively.

We compute the lggs of the goals and the hypotheses separately. We can
directly anti-unify the goals of the before and after states. However, the num-
ber of hypotheses may be changed by the tactic application. For instance, the
tactic intros introduces new hypotheses, while the tactic clear H removes the
hypothesis H. Suppose we are anti-unifying the hypotheses hyps(h1, ..., hn) and
hyps(h1, ..., hn, hn+1). The first rule of anti-unification immediately fails, and
the second rule will generate a variable that corresponds to all hypotheses in the
before state and all hypotheses in the after states. Therefore, anti-unifying all
hypotheses together prevents us from developing a compact characterization. To
calculate the lggs of hypotheses, we first match the hypotheses with the same
names. Then, we compute an lgg on each pair. We refer to the hypotheses that
are only in the before state and only in the after state as respectively deleted
hypotheses and inserted hypotheses. Different from the pairwise hypotheses, we
do not perform anti-unification on the deleted hypotheses and inserted hypothe-
ses, and they remain unchanged.

We choose anti-unification because it can generate a more compact repre-
sentation compared with directly utilizing the before and after states. Consider
Fig. 2, we need a Coq string of the before state and another Coq string of the
after state to characterize the transformation. Notice that many parts of the
before state are unchanged after the tactic application. It is redundant to repre-
sent these unchanged parts twice in both the before and after states. However,
anti-unification enables us to use a single lgg and the substitutions to character-
ize the transformation. The unchanged parts of the before and after states are
shared in the lgg. Moreover, previous research has demonstrated that features
based on generalization are very helpful for theorem proving [19].

2.3 Tree Difference

In addition to anti-unification, we propose a characterization based on a tree
difference algorithm [21]. Compared to anti-unification, tree difference is better
at generalizing the differences between the before and after states. Tree differ-
ence extends the standard Unix diff [16] algorithm by the capability to compute
the differences according to the tree structures. Since proof states have tree
structures, such tree differences can be used to characterize the transformations.

Take the before and after states in Fig. 2 for demonstration. First, for the
hypotheses that are the same in the before and after states, we keep them
unchanged. Therefore, the hypotheses n, l’, and IHl’ remain the same.

The next step is to extract common subtrees from the original trees (except
for the unchanged hypotheses) to obtain more compact characterizations. We
focus on the ASTs of Coq terms. Assuming there is an oracle to judge whether
the current subtree is a common subtree, we traverse a tree from the root. The
calculation of the oracle is explained in the original paper [21]. If the current

242 L. Zhang et al.

subtree is a common subtree and not a leaf node, we substitute it with a hole.
We do not substitute leaves with holes because, in practice, the substitutions of
leaves lead to many unexpected holes. The same common subtrees should always
be substituted with the same hole. The results of applying the substitutions to
the before and after states are called the deletion context and the insertion
context, respectively. After the substitutions, the deletion and insertion contexts
are shown in Fig. 4.

Afterward, we calculate the greatest common prefix (gcp) of the deletion and
insertion contexts and obtain a patch. According to the original algorithm, if the
two trees have the same non-hole node, we keep the node unchanged and execute
the algorithm on their children. Otherwise, we denote them as a change.

Fig. 4. The deletion and insertion contexts of the before and after states in Fig. 2.
Hole0, Hole1, and Hole2 denote length l’, 1, and S(length l’), respectively.

Fig. 5. The patch of the before and after states in Fig. 2

Learning Proof Transformations and Its Applications in ITP 243

Similar to anti-unification, due to the deletion, insertion, and reordering
of the hypotheses, we need to adjust the gcp algorithm for proof states. We
match hypotheses by their names and obtain the deleted hypotheses, inserted
hypotheses, and matched hypotheses as in Sect. 2.2. We only calculate gcps
on the matched hypotheses. The deleted hypotheses and inserted hypotheses
are represented as a change. Executing gcp on proof states returns a patch in
the format of state(hyps_patch, goal_patch) where hyps_patch is constructed
by hyps(h1, ..., hn, change(del_hyps, ins_hyps)). Each hi is the patch of two
matched hypotheses. Figure 5 depicts the patch of the before and after states in
Fig. 2.

Fig. 6. The result of applying the closure function to the patch in Fig. 5

Subsequently, we need to calculate the closure of a patch. The intention
is to confirm that every change is closed: the left and right sides contain the
same holes. Notice that the patch in Fig. 5 contains two unclosed changes,
Change(Hole0, Hole1) and Change(Hole1, Hole0). The closure function will
go to the subtree, whose root is the parent node of the unclosed change. Then,
restore the subtree with the deletion and insertion contexts before we exe-
cute gcp on them. The procedure repeats until all changes are closed. Since
the gcp function on proof states also returns a patch in a tree structure, we
can run the closure function on it. If any patch of matched hypotheses hi or
change(del_hyps, ins_hyps) are not closed, we restore the hyps_patch with
the original deletion and insertion contexts of the hypotheses. Then, if the
goal_patch or the deletion and insertion contexts of the hypotheses are not
closed, we restore the patch of the proof states with the entire deletion and
insertion contexts of the two proof states. Figure 6 depicts the patch after the
execution of the closure function.

244 L. Zhang et al.

The final step is to replace the identical changes with their origin term. The
original algorithm may cause identical changes, such as Change(Hole2, Hole2)
in Fig. 6. Since we want a compact characterization, they are not necessary.

Tree difference is better at generalizing the differences compared to anti-
unification. Take the example in Fig. 2 for instance. The lgg in Fig. 3 merely
shows that the proof state changes in the position of the variables. The substitu-
tions may be different if we execute rewrite add_comm on different proof states.
However, in the patch generated by the tree difference in Fig. 6, the changes are
generalized because we substitute common subterms with holes and will be the
same even if we execute rewrite add_comm on different proof states.

2.4 Input Formats

During training, the language model receives the string
<Characterization> Tactic: <Tactic> as input. <Characterization> has
four variations:

– Before:<Before State>
– Before:<Before State> After:[<After State>]
– Anti:[<Substs> <Delete_hyps> <Insert_hyps> <Lgg>]
– TreeDiff:[<Patch> <Hole>]

A proof state is represented as a sequent <Hyps> |- <Goal>. The plain texts
(like Tactic:) serve as prompts, while the placeholders (such as <Before State>
and <Tactic>) are substituted according to the proof context. [] denotes a list.
During prediction, the language model receives <Characterization> Tactic:
as input and outputs the predicted tactics.

Random forests are fed discrete features as input. For feature difference,
the disappeared features and appearing features are distinguished from each
other (appearing features and disappeared features as introduced in Sect. 2.1).
To utilize anti-unification, we convert the lgg and the terms in the substitution
that should be used to obtain the before and after states to features in three
disjoint spaces. For anti-unification, we also distinguish the features of deleted
hypotheses and inserted hypotheses from other ones. For tree difference, we
distinguish the gcp of the proof states, the origin and the destination of changes,
and the common subterms into four spaces.

3 Learning Models

We consider two machine learning models for the task. The models will be com-
pared experimentally in the next section.

The first model is a random forest classifier [7]. Random forests are based
on decision trees. In decision trees, leaves represent labels (tactics in our case),
and internal nodes correspond to features. A rule is a path from the root to
a non-leaf. It represents the conjunction of all features on the path. A rule is
determined by maximizing the information gain of examples. For instance, if we

Learning Proof Transformations and Its Applications in ITP 245

have examples with labels {b, b, b, a, a}, we want to generate a rule that passes
all examples with the label a to its left child and all examples with the label b
to its right child. A forest makes predictions by voting based on a large number
of decision trees. Random forests contain several sub-forests. Each sub-forest
is built on a random subset of the entire dataset. We choose a random forest
implementation that has previously been used to predict tactics for Coq [42].

The other used machine learning technique is the pre-trained language model
GPT-2 [28]. GPT-2 is based on neural networks, which consist of many artificial
neurons to learn from training data. The self-attention [35] technique is inten-
sively applied in GPT-2 to differentially weigh every part of the input data.
As a language model, GPT-2 predicts the probability distribution of the next
word given a sequence of words as the input. GPT-2 is a pre-trained language
model. The concept of pre-training imitates the learning process of humans.
When humans encounter a new task, humans do not need to learn it from
scratch. They will transfer and reuse their old knowledge to learn to solve it.
Similarly, GPT-2 is pre-trained on a large natural language dataset BooksCor-
pus [43]. Afterward, GPT-2 can reuse the knowledge of natural language learned
from pre-training to solve new tasks. To be adapted to a new task, we need to
fine-tune GPT-2 on a relatively small dataset and slightly modify the weights
learned from pre-training. We decide on GPT-2 because pre-trained language
models have recently demonstrated outstanding achievements in natural lan-
guage process (NLP) [8] and formal mathematics [34,39].

4 Experiments

We perform the experiments on the dataset extracted from the Coq standard
library. The dataset consists of 158, 494 states extracted from 11, 372 lemmas.
We randomly split the dataset into three subsets for training, validation, and
testing in an 80-10-10% ratio. First, we use 100 trees by default and opti-
mize the Gini Impurity [22]. Gini Impurity is a metric of the information gain.
After the optimization, we set the Gini Impurity to its best value, try various
numbers of trees and obtain the optimized number of trees. Finally, the best
combination of Gini Impurity and the number of trees is determined for each
characterization. The experiments with GPT-2 are based on the Hugging Face
library [38]. In particular, we employ the smallest GPT-2. The hyper-parameters
are: eta = 3e − 4, num_beams = 3, batch_size = 32. During training, we apply
a linear schedule with the first 20% training steps for warm-up. The remain-
ing parameters are left as their default values. At most 50 tokens are predicted
for a single tactic. We truncate the input on the left side if it is longer than
the maximal length limitation of GPT-2 (1024 tokens). Language models have
length limitations for efficiency. The attention mechanism used by them causes
a quadratic usage of memory as the length of tokens scales. Every model is
trained for 25 epochs on an NVIDIA V100 GPU, and the snapshot with the
highest accuracy on the validation dataset is selected for testing.

Table 1 depicts the results of our experiments. The accuracies of the combina-
tions of before states with after states are significantly better than only relying

246 L. Zhang et al.

Table 1. Results on the test dataset, showing how often the prediction makes the same
transformation as the tactic in the library. The transformations are considered modulo
α-equivalence.

random forests GPT-2
before 43.23% 46.84%
before after 52.17% 67.45%
feature difference 59.34% –
anti-unification 58.59% 71.74%
tree difference 58.98% 73.83%

on the before states in both random forests and GPT-2. Thus, we conclude
that taking after states into consideration is very helpful to learn the seman-
tics of tactics. The accuracies of GPT-2 are significantly higher than random
forests, which confirms that the pre-trained language model is a more advanced
machine learning technique compared to random forests. For random forests,
all of the feature difference, anti-unification, and tree difference perform better
than the unprocessed before and after states. This indicates that our character-
izations can extract more precise features for random forests. We do not apply
GPT-2 to feature differences, as it relies on natural language. In principle, it
would be possible to give it feature differences directly as input, but as there
are very few similarities between features and natural language it would be a
serious disadvantage to the model. The knowledge grasped by pretraining is dif-
ficult to be used to understand features. Although feature difference is a little
better than anti-unification and tree difference, their results are quite similar.
The probable explanation is that random forests are not good at learning from
sophisticated features. Random forests cannot learn meaningful knowledge from
all three characterizations and almost only learn to make correct predictions for
the simple tactics. Similarly, with GPT-2, anti-unification and tree difference
provide more accurate predictions than the unprocessed before and after states.
We suppose the explanation is that we are able to appropriately shorten the
length of the input and also keep important information about the proof trans-
formation. Appropriately shortening the input length is beneficial for GPT-2
because it has a maximal limitation on the number of input tokens. Table 2
compares the percentages of the inputs that are longer than the maximal length
limitation. The statistics show that our implementation significantly reduces the
probability that the input is over the maximal length limitation. Tree difference
can provide more accurate predictions compared to anti-unification with both
random forests and GPT-2. This may be attributed to that the generalization
made by tree difference is easier to learn by machine learning models.

Learning Proof Transformations and Its Applications in ITP 247

Table 2. The ratios of how many inputs exceed the maximal length limitation

before before after anti-unification tree difference
ratio 2.07% 7.96% 4.07% 3.90%

5 Applications

In this section, we propose two promising applications of the task. We only
evaluate the most accurate of the methods proposed in the previous Sect. 4
(GPT-2) on the two tasks.

The first, more direct application, is making tactic suggestions. Given a before
state, it is common for an ITP user to have an intuition of the intermediate proof
states that are necessary to complete the proof. However, sometimes the user
cannot guess the appropriate tactic needed to make the transformations. Using
our model with the before state and the imagined intermediate states, the user
can get a complete proposed proof as output. Hence, our model will predict the
likely tactics to perform the transformations.

The other application is shortening existing Coq proofs. Specifically, for the
transformation ps0 ⇒t0 ps1 ⇒t1 ps2... ⇒tn psn+1, where ps is a proof state and
t is a tactic, we want to predict a tactic t′ such that ps0 ⇒t′ ps′ where ps′ and
psn+1 are equal under α-equivalence. Thus, we can replace the tactic sequence
with a single tactic and decrease the length of the Coq proof. A restriction for this
task is that because we are only interested in exploring shorter paths between
proof states, psn+1 should not be a finishing state.

Table 3. The first five tactics suggested by each characterization. The tactics displayed
in bold result in the desired after states.

before before after anti-unification tree difference
1 trivial rewrite <- minus_n_O rewrite <- minus_n_O rewrite sub_0_r
2 simpl rewrite sub_0_r rewrite Nat.sub_0_r rewrite Nat.sub_0_r
3 rewrite <- minus_n_O rewrite<− minus_n_0 simpl simpl
4 rewrite<− plus_n_O simpl rewrite sub_0_r rewrite<− sub_0_r
5 auto rewrite<− sub_0_r rewrite<− plus_n_O apply sub_0_r

5.1 Tactic Suggestion

We view the experiments in Sect. 4 as the evaluation of tactic suggestions. The
before and after states extracted from the Coq standard library are considered
as the states that are presented in the Coq editor and those in users’ minds,
respectively. The results show that taking the after states into consideration,
together with the more compact characterization, is essential for correctly sug-
gesting tactics.

248 L. Zhang et al.

The following is an actual tactic suggestion question taken from the Coq
Discourse Forum1. The question can be summarized as finding a tactic that
transforms the following before state to the after state. The goal of the before
state is to prove that the element indexed by m − 0 in a list equals the element
indexed by m.

– Before state: l : list nat, x:nat, m : nat, H0 : 1 <= m |- nth
(m - 0) l 0 = nth m l 0

– After state: l : list nat, x:nat, m : nat, H0 : 1 <= m |- nth m l
0 = nth m l 0

Table 3 shows the first five tactics predicted by each model. If we consider only
the before state, we will obtain the correct prediction in the third place. However,
the first two synthesized tactics using anti-unification, tree difference as well as
unprocessed before and after states are appropriate. Besides the tactics displayed
in bold, other tactics do not perform the expected transformation due to various
reasons. Some tactics such as trivial, simpl, and auto do not change the proof
state. The tactics rewrite <- plus_n_O and apply sub_0_r are not applicable
and cause errors. The lemma minus_n_0 used in rewrite <- minus_n_0 does
not exist in the Coq standard library. Although rewrite <- sub_0_r does not
cause an error, it leads to an unexpected after state l : list nat, x:nat, m :
nat, H0 : 1 <= m |- nth (m - 0) l 0 = nth m l 0 - 0. Since the opera-
tions executed by trivial, simpl, and auto are quite complicated and may
depend on the context, we assume it is difficult for the model to comprehen-
sively understand them. Their occurrences in the first five predictions may be
mainly because they occur quite frequently in the training data. The results
confirm that the combination of before and after states is beneficial for suitably
suggesting tactics.

5.2 Shortening Proofs

The results presented in the previous Sect. 4 focused on decomposed tactics. This
means compound tactic expressions that perform several steps at once have been
decomposed into individual tactic invocations. We apply the technique that is
developed by [5] to decompose the tactics. Here, we utilize the same models;
however, we focus on the original human-written tactics and try to shorten
these (shortening expanded tactics would be unfair). For all tactic sequences of
lengths two and three in the training dataset, we input their before and after
states into the model. In our experiment, we can only consider the states in
the training dataset since our model is trained on all present tactics. Compared
to the validation dataset and testing dataset, our model should be able to give
better predictions on proof shortening for the training dataset. The amount of
original tactics in the training dataset is 56,788. The model synthesizes 10 tactics
for each sequence, and we execute them in Coq to verify that they perform the
same transformation as the sequence modulo α-equivalence.
1 https://coq.discourse.group/t/how-to-avoid-awkward-assertions/1153/2.

https://coq.discourse.group/t/how-to-avoid-awkward-assertions/1153/2

Learning Proof Transformations and Its Applications in ITP 249

Table 4. The shortening ratios and amounts of redundant tactics with different char-
acterizations and sequence lengths.

length before before after anti-unification tree difference
2 ratio 0.379% 0.824% 0.891% 0.833%

number 215 468 506 473
3 ratio 0.039% 0.148% 0.151% 0.148%

number 22 84 86 84

The results are presented in Table 4. We define the number of redundant
tactics of ps0 ⇒t0 ps1 ⇒t1 ps2... ⇒tn psn+1 as n. The shortening ratio is defined
as the number of all discovered redundant tactics divided by the total number
of occurrences of tactics in the training dataset. In this section, our method
only applies to a tactic sequence that, besides the last tactic, every intermediate
tactic produces a single after state. While in Sect. 4, our experiments apply to
tactic applications that may produce several after states. The reason is that it
is difficult to calculate the number of redundant tactics if intermediate tactics
produce several after states. The tactic sequence will become a tree of tactics,
and each path consists of a sequence of tactics. We initially expected that the
shortening ratios would not be very high because of the selected dataset. Indeed,
the Coq standard library is written by Coq experts and has been edited and
improved for decades, so we expected that there is not much room to improve.
However, given the size of the dataset, the proposed technique can find a number
of redundant tactics, which lets us conclude that taking the after states into
consideration is useful for proof shortening.

We discover many interesting cases, where proofs can be optimized. We
present two examples of such proofs in Table 5. The first is about the Riemann
integral where ring and field denote algebraic structures. The Coq user first
substituted a subterm in the proof state, rewrote the goal by several lemmas,
and finally applied a lemma about rings. However, our model discovers the non-
trivial transformation on ring can be completed with a single transformation in
field.

In the second example, the Coq library authors first applied the lemma
Qle_lteq to transform the goal into a disjunction. Later, they selected the left
side of the disjunction to continue the proof. Our model is able to figure out that
the operation is redundant. Indeed it finds another lemma Qlt_le_weak that is
able to immediately transform the goal to the left part of the disjunction.

In addition to such more impressive examples of simpler, shorter proofs, our
model is also able to find a few abbreviations. Such abbreviations make the proof
shorter but do not necessarily improve their readability. For instance, our model
sometimes combines unfold Un_growing and intro into intros x y P H n. It
uses the implicit mechanism of intros to unfold Un_growing. However, a Coq
user will not be able to understand what operation intros x y P H n conducts
without actually executing the Coq script.

250 L. Zhang et al.

Table 5. Two examples of shortening of proofs using the prediction. In both of the
presented cases, a single tactic provides an equivalent transformation as a sequence of
tactics. Since the hypotheses are not changed in any of the presented examples, we
omit them and only present the goals for simplicity.

1 field makes the same transformation as
(Tactic1. Tactic2.)

State 1 = (x - (x + h0)) * - / h0

Tactic1 replace (x - (x + h0)) with (- h0); [|
ring]

State 1 = - h0 * - / h0

Tactic2 rewrite Ropp_mult_d istr_l_reverse;
rewrite Ropp_mult_distr_r_reverse;
rewrite Ropp_involutive; apply Rinv_r_sym

State h0 <> 0

2 apply Qlt_le_weak makes the same
transformation as (Tactic1. Tactic2.)

State (Qabs (xn p - yn q) <= 1 # z * k)%Q

Tactic1 apply Qle_lteq

State (Qabs (xn p - yn q) < 1 # z * k)%Q ∨
(Qabs (xn p - yn q) == 1 # z * k)%Q

Tactic2 left

State (Qabs (xn p - yn q) < 1 # z * k)%Q

6 Related Work

Several problems originating in formal mathematics and theorem proving have
been considered from the machine learning point of view. One of the most
explored ones is premise selection [1]. The goal of this task is to find lemmas
in a large library, that are most likely to prove a given conjecture. For premise
selection, the meaning of dependency in formal mathematics has been explored
using both approaches that try to explicitly define the logical semantics [19],
as well as approaches that use deep learning for this [36]. Next, it is possible
to apply machine learning to guide inference-based theorem provers. As part of
this task, implicitly the meaning of provability and step usefulness are derived
by the learning methods. This has been explored in the two top-performing first-
order theorem provers [17,32] as well as in higher-order logic automated theorem
proving [10]. Similarly, the meaning of the usefulness of a proof step has been
considered, for example as part of the HOLStep [18], where various machine
learning methods try to predict if particular inferences are needed in a proof.
All these tasks are different from the task that we propose in the current paper.

Various proof automation systems have emerged to construct proofs by tac-
tic prediction and proof search. SEPIA infers tactics for Coq by tactic trace
and automata [13]. TacticToe [12] and Tactician [5,42] apply classical statistical

Learning Proof Transformations and Its Applications in ITP 251

learning techniques such k-nearest neighbors [9] and random forests [7] to gen-
erate tactic predictions based on the before states. Several systems use neural
networks for the same task, e.g. HOList [4], CoqGym [41], and Lime [40]. These
are all different from the current work that considers the after states as well.

Autoformalization [20] is a machine translation task applied to formal mathe-
matical proofs. The accuracy of the best methods applied to the task is still very
weak in comparison with human formalization [37], however, the neural methods
already show some minimal understanding of the meaning of formalization, for
example by finding equivalent formulations. Again this is a different task from
the one considered in the current work.

7 Conclusion

In this paper, we propose a new machine learning task, with which we aim to cap-
ture the semantics of tactics in formal mathematics. Based on a dataset of almost
160 thousand proof states we consider synthesizing a tactic that transforms a
before state to the expected after states. We implement three novel character-
izations to describe the transformation: feature difference, anti-unification, and
tree difference. The results of the experiments confirm the effectiveness of our
characterizations. Two applications of the task are discussed: tactic suggestion
for declarative proofs and proof shortening.

In the future, we will investigate if tactic embeddings can be used directly.
We can also try to estimate the after states by calculating the embeddings of
the before state and the tactic or align tactics between systems in a similar way
to how concepts are already aligned between systems [11].

Acknowledgements. This work was partially supported by the ERC Starting Grant
SMART no. 714034, the ERC Consolidator grant AI4REASON no. 649043, the
European Regional Development Fund under the Czech project AI&Reasoning no.
CZ.02.1.01/0.0/0.0/15_003/0000466, the Cost action CA20111 EuroProofNet, the
ERC-CZ project POSTMAN no. LL1902, Amazon Research Awards, and the EU ICT-
48 2020 project TAILOR no. 952215.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning
52(2), 191–213 (2013). https://doi.org/10.1007/s10817-013-9286-5

2. Bancerek, G., et al.: The role of the Mizar mathematical library for interactive
proof development in Mizar. J. Autom. Reasoning 61, 9–32 (2018)

3. Bancerek, G., et al.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette, J.,
Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp.
261–279. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_17

4. Bansal, K., Loos, S., Rabe, M., Szegedy, C., Wilcox, S.: HOList: an environment
for machine learning of higher order logic theorem proving. In: International Con-
ference on Machine Learning, pp. 454–463. PMLR (2019)

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/978-3-319-20615-8_17

252 L. Zhang et al.

5. Blaauwbroek, L., Urban, J., Geuvers, H.: Tactic learning and proving for the Coq
proof assistant. In: Albert, E., Kovács, L. (eds.) LPAR 2020: 23rd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC,
vol. 73, pp. 138–150. EasyChair (2020). https://doi.org/10.29007/wg1q

6. Blaauwbroek, L., Urban, J., Geuvers, H.: The Tactician. In: Benzmüller, C., Miller,
B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 271–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53518-6_17

7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
8. Brown, T., et al.: Language models are few-shot learners. Adv. Neural Inf. Process.

Syst. 33, 1877–1901 (2020)
9. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst.

Man Cybern. 4, 325–327 (1976)
10. Färber, M., Brown, C.: Internal guidance for Satallax. In: Olivetti, N., Tiwari, A.

(eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 349–361. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1_24

11. Gauthier, T., Kaliszyk, C.: Aligning concepts across proof assistant libraries. J.
Symbolic Comput. 90, 89–123 (2019). https://doi.org/10.1016/j.jsc.2018.04.005

12. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: TacticToe: Learning
to prove with tactics. J. Autom. Reasoning 65(2), 257–286 (2021)

13. Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using inferred
automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 246–255. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21401-6_16

14. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

15. Harrison, J., Urban, J., Wiedijk, F.: History of interactive theorem proving. In:
Computational Logic, Handbook of the History of Logic, vol. 9, pp. 135–214. Else-
vier (2014)

16. Hunt, J.W., MacIlroy, M.D.: An algorithm for differential file comparison. Bell
Laboratories Murray Hill (1976)

17. Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6_20

18. Kaliszyk, C., Chollet, F., Szegedy, C.: HolStep: a machine learning dataset for
higher-order logic theorem proving. In: ICLR 2017, OpenReview.net (2017)

19. Kaliszyk, C., Urban, J., Vyskocil, J.: Efficient semantic features for automated
reasoning over large theories. In: Yang, Q., Wooldridge, M.J. (eds.) IJCAI 2015,
pp. 3084–3090. AAAI Press (2015)

20. Kaliszyk, C., Urban, J., Vyskočil, J.: Automating formalization by statistical and
semantic parsing of mathematics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP
2017. LNCS, vol. 10499, pp. 12–27. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66107-0_2

21. Miraldo, V.C., Swierstra, W.: An efficient algorithm for type-safe structural diffing.
Proc. ACM Program. Lang. 3(ICFP), 1–29 (2019)

22. Mitchell, T.M., Mitchell, T.M.: Machine Learning, vol. 1. McGraw-hill, New York
(1997)

23. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean
theorem prover (System Description). In: Felty, A.P., Middeldorp, A. (eds.) CADE

https://doi.org/10.29007/wg1q
https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/10.1007/978-3-319-40229-1_24
https://doi.org/10.1016/j.jsc.2018.04.005
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/978-3-319-66107-0_2
https://doi.org/10.1007/978-3-319-66107-0_2

Learning Proof Transformations and Its Applications in ITP 253

2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_26

24. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): 5. the rules of the game. In:
Isabelle/HOL. LNCS, vol. 2283, pp. 67–104. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9_5

25. Paulin-Mohring, C.: Introduction to the calculus of inductive constructions (2015)
26. Pfenning, F.: Unification and anti-unification in the calculus of constructions. In:

LICS, vol. 91, pp. 74–85 (1991)
27. Plotkin, G.D.: A further note on inductive generalization. Mach. Intell. 6, 101–124

(1971)
28. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language

models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)
29. Reynolds, J.C.: Transformational systems and algebraic structure of atomic for-

mulas. Mach. Intell. 5, 135–151 (1970)
30. Schrittwieser, J., et al.: Mastering atari, go, chess and shogi by planning with a

learned model. Nature 588(7839), 604–609 (2020)
31. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,

Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7_6

32. Suda, M.: Vampire with a brain is a good ITP hammer. In: Konev, B., Reger,
G. (eds.) FroCoS 2021. LNCS (LNAI), vol. 12941, pp. 192–209. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86205-3_11

33. The coq development team: Coq reference manual 8.11.1 (2020). https://coq.
github.io/doc/v8.11/refman/index.html

34. Urban, J., Jakubův, J.: First neural conjecturing datasets and experiments. In:
Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 315–
323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_24

35. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

36. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by
deep graph embedding. In: Advances in Neural Information Processing Systems,
vol. 30 (2017)

37. Wang, Q., Brown, C.E., Kaliszyk, C., Urban, J.: Exploration of neural machine
translation in autoformalization of mathematics in Mizar. In: Blanchette, J.,
Hritcu, C. (eds.) Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2020. pp. 85–98. ACM (2020). https://
doi.org/10.1145/3372885.3373827

38. Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771 (2019)

39. Wu, Y., et al.: Autoformalization with large language models. arXiv preprint
arXiv:2205.12615 (2022)

40. Wu, Y., Rabe, M.N., Li, W., Ba, J., Grosse, R.B., Szegedy, C.: Lime: Learning
inductive bias for primitives of mathematical reasoning. In: International Confer-
ence on Machine Learning, pp. 11251–11262. PMLR (2021)

41. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: International Conference on Machine Learning, pp. 6984–6994. PMLR
(2019)

42. Zhang, L., Blaauwbroek, L., Piotrowski, B., Černỳ, P., Kaliszyk, C., Urban, J.:
Online machine learning techniques for Coq: a comparison. In: Kamareddine,
F., Sacerdoti Coen, C. (eds.) CICM 2021. LNCS (LNAI), vol. 12833, pp. 67–83.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81097-9_5

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-030-86205-3_11
https://coq.github.io/doc/v8.11/refman/index.html
https://coq.github.io/doc/v8.11/refman/index.html
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1145/3372885.3373827
https://doi.org/10.1145/3372885.3373827
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2205.12615
https://doi.org/10.1007/978-3-030-81097-9_5

254 L. Zhang et al.

43. Zhu, Y., et al.: Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 19–27 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Translating SUMO-K to Higher-Order Set
Theory

Chad E. Brown1, Adam Pease1,2(B) , and Josef Urban1

1 Czech Technical University in Prague, Prague, Czech Republic
apease@articulatesoftware.com

2 Parallax Advanced Research, Beavercreek, OH, USA

Abstract. We describe a translation from a fragment of SUMO (SUMO-
K) into higher-order set theory. The translation provides a formal seman-
tics for portions of SUMO which are beyond first-order and which have
previously only had an informal interpretation. It also for the first time
embeds a large common-sense ontology into an interactive theorem prov-
ing system. We further extend our previous work in finding contradictions
in SUMO from first-order constructs to include a portion of SUMO’s
higher-order constructs. Finally, using the translation, we can create
problems that can be proven using higher-order interactive and auto-
mated theorem provers. This is tested in several systems and used to
form a corpus of higher-order common-sense reasoning problems.

Keywords: ontology · theorem proving · Megalodon · theorem
proving · automated theorem proving · automated reasoning · SUMO

1 Introduction and Motivation

The Suggested Upper Merged Ontology (SUMO) [15,16] is a comprehensive
ontology of around 20,000 concepts and 80,000 hand-authored logical statements
in a higher-order logic. It has an associated integrated development environment
called Sigma [19]1 that interfaces to theorem provers such as E [22] and Vampire
[12]. In previous work on translating SUMO to the TPTP [25] THF (Typed
Higher-order Form) [1] format, a syntactic translation to THF was created but
did not resolve many aspects of the intended higher-order semantics of SUMO.

In this work, we lay the groundwork for a new translation to a language for
higher-order automated theorem provers based on expressing SUMO in higher-
order set theory. We believe this will attach to SUMO a stronger set-theoretical
interpretation that will allow deciding more queries and provide better intu-
ition for avoiding contradictory formalizations. Once this is done, our plan is to
train ENIGMA-style [5–8] query answering and contradiction-finding [23] AITP
systems on such SUMO problems and develop autoformalization [9–11,28] meth-
ods targeting common-sense reasoning based on SUMO. We believe that this is
the most viable path towards common-sense reasoning that is both trainable,
but also explainable and verifiable, providing an alternative to language models
which come with no formal guarantees.
1 https://www.ontologyportal.org.
c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 255–274, 2023.
https://doi.org/10.1007/978-3-031-43369-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_14&domain=pdf
http://orcid.org/0000-0001-9772-1266
http://orcid.org/0000-0002-1384-1613
https://www.ontologyportal.org
https://doi.org/10.1007/978-3-031-43369-6_14

256 C. E. Brown et al.

1.1 Related Work and Contributions

In earlier work, we described [19] how to translate SUMO to the strictly first-
order language of TPTP-FOF [20] and TF0 [17,18,26]. SUMO has an extensive
type structure and all relations have type restrictions on their arguments. Trans-
lation to TPTP FOF involved implementing a sorted (typed) logic axiomatically
in TPTP by altering all implications in SUMO to contain type restrictions on
any variables that appear.

In [21] 35 SUMO queries were converted into challenge problems for first-
order automated theorem provers. In many cases, first-order ATPs can prove
the corresponding problem. However, some of the queries involve aspects of
SUMO that go beyond first-order representation. For example, one of the queries
involves a term-level binder (κ).2 Several of the queries also involve row variables
(also called sequence variables), i.e., variables that should be instantiated with
a list of terms. We discuss here several such examples to motivate the trans-
lation to higher-order set theory. We then embed SUMO into the Megalodon
system, providing, to our knowledge, the first representation of a large common-
sense ontology within a interactive theorem prover (ITP). We then consider
the higher-order problems obtained via the translation. This provides a set of
challenge problems for higher-order theorem provers that come from a different
source than formalized mathematics or program verification.

The rest of the paper is organized as follows. In Sect. 2 we introduce the
SUMO-K fragment of SUMO, an extension of the first-order fragment of SUMO.
We also show there examples in SUMO that motivate the extensions. Section 3
describes a translation from SUMO-K into a higher-order set theory. We have
constructed interactive proofs of the translated form of 23 SUMO-K queries. We
describe several of the proofs in Sect. 4. From the interactive proofs we obtain
4880 ATP problems and we measure the performance of higher-order automated
theorem provers on this problem set in Sect. 5. Section 6 describes the planned
extensions and Sect. 7 concludes. Our code and problem set are available online.3

2 The SUMO-K Fragment

We define a fragment of SUMO we call SUMO-K. This extends the first-order
fragment of SUMO with support for row variables, variable arity functions
and relations, and the κ class formation term binder.4 Elements of SUMO not
included in SUMO-K are temporal, modal and probabilistic operations.

We start by defining SUMO-K terms, spines (lists of terms) and formulas.
Formally, we have standard variables (x), row variables (ρ) and constants (c).

2 Note that by “term-level binder” we mean a binder that yields a term. By way of
constrast, ∀ and ∃ are formula-level binders. κ is used to form classes in SUMO.
Informally, one can think of κx.ψ as the class {x|ψ}.

3 http://grid01.ciirc.cvut.cz/~chad/sumo2set-0.9.tgz.
4 SUMO classes should not be confused with set-theoretic classes. Our use of “class”

in this paper will always refer to SUMO classes.

http://grid01.ciirc.cvut.cz/~chad/sumo2set-0.9.tgz

Translating SUMO-K to Higher-Order Set Theory 257

We will also have signed rationals (q) represented by a decimal expression with
finitely many digits (i.e., those rationals expressible in such a way) as terms. We
define by mutual recursion the sets of SUMO-K terms t, SUMO-K spines s and
SUMO-K formulas ψ as follows:

t ::= x|c|q|(x s)|(c s)|(κx.ψ)|Real|Neg|Nonneg|(t + t)|(t − t)|(t ∗ t)|(t / t)
s ::= t s| · |ρ|ρ t · · · t
ψ ::= ⊥|�|(¬ψ)|(ψ → ψ)|(ψ ∧ ψ)|(ψ ∨ ψ)|(ψ ↔ ψ)|(∀x.ψ)|(∃x.ψ)|(∀ρ.ψ)|(∃ρ.ψ)

| (t = t)|(instance t t)|(subclass t t)|(t ≤ t)|(t < t)|(c s)

The definition is mutually recursive since the term κx.ψ depends on the formula
ψ. Of course, κ, ∀ and ∃ are binders. In practice, most occurrences of ρ are at
the end of the spine. In some cases, however, extra arguments t1, . . . , tn occur
after the ρ. The idea is that ρ will be a list of arguments and t1, . . . , tn will be
appended to the end of that list. Note that at most one row variable can occur
in a spine.

2.1 Implicit Type Guards

Properly parsing SUMO terms and formulas requires mechanisms for inferring
implicit type guards for variables (interpreted conjunctively for κ and ∃ and via
implication for ∀). Free variables in SUMO assertions are implicitly universally
quantified and are restricted by inferred type guards, as described in [19]. In
previous translations targeting first-order logic, relation and function variables
are instantiated during the translation (treating the general statement quantify-
ing over relations and functions as a macro to be expanded). Since the current
translation will leave these as variables, we must also deal with type guards that
are not known until the relation or function is instantiated.

2.2 Variable Arity Relations and Functions

Consider the SUMO relation partition, declared as follows:

(instance partition Predicate)
(instance partition VariableArityRelation)
(domain partition 1 Class)
(domain partition 2 Class)

The last three items indicate that partition has variable arity with at least 2
arguments, both of which are intended to be classes. If there are more than 2
arguments, the remaining arguments are also intended to be classes. In general,
the extra optional arguments of a variable arity relation or function are intended
to have the same domain as the last required argument. We will translate partition
to a set that encodes not only when the relation should hold, but also its domain
information, its minimum arity and whether or not it is variable arity.

258 C. E. Brown et al.

Two other variable arity relations (with the same arity and type information
as partition) are exhaustiveDecomposition and disjointDecomposition. The follow-
ing is an example of a SUMO-K assertion relating these concepts:

∀ρ.partition ρ → exhaustiveDecomposition ρ ∧ disjointDecomposition ρ.

Previous translations to first-order logic expanded this assertion into several
facts for different possible arities (using different predicates partition3, partition4,
etc.), up to some limit. The following is an example of a partition occurring in
Merge.kif5 with 6 arguments:

(partition Word Noun Verb Adjective Adverb ParticleWord)

From this one should be able to infer the following query:

Example 1 (wordex).

(query (exhaustiveDecomposition
Word Noun Verb Adjective Adverb ParticleWord))

However, the corresponding first-order problem will not be provable unless the
limit on the generated arity is at least 6. Our translation into set theory will free
us from the need to know such limits in advance.

2.3 Quantification over Relations

Merge.kif includes assertions that quantify over relations. The following is an
example of such an assertion:

(=>
(and

(subrelation ?REL1 ?REL2)
(instance ?REL1 Predicate)
(instance ?REL2 Predicate)
(?REL1 @ROW))

(?REL2 @ROW))

In previous first-order translations such assertions are instantiated with all
R and R′ where (subrelation R R′) is asserted. One of the 35 problems from [21]
(TQG22) makes use of the SUMO assertion that son is a subrelation of parent and
the macro expansion style of first-order translation is sufficient to handle this
example. However, the macro expansion approach is insufficient to handle hypo-
thetical subrelation assertions. The following is an example of a query creating
a hypothetical subrelation assertion:

5 Merge.kif is the main SUMO ontology file. While Merge.kif evolves over time,
we work with a fixed version of the file from January 2023. Latest versions of it
and all the other files that make up SUMO are available at https://github.com/
ontologyportal/sumo.

https://github.com/ontologyportal/sumo
https://github.com/ontologyportal/sumo

Translating SUMO-K to Higher-Order Set Theory 259

Example 2 (TQG22alt4).

(query (=> (exists (?X) (employs ?X ?X))
(not (subrelation employs uses))))

During the process of answering this query we will assume employs is a subrela-
tion of uses and then must instantiate the general assertion about subrelations
with employs and uses. Our translation to set theory will permit this.

2.4 Kappa Binders

One of the 35 queries from [21] (TQG27) has the following local assumption
making use of a κ-binder.

Example 3. The example TQG27 includes three assertions:
(A1) instance Planet Class, (A2) subclass Planet AstronomicalBody, and (the one
with a κ-binder) (A3) instance o (κp.instance p Planet ∧ attribute p Earthlike).
Informally, one can read (A3) as o ∈ {p|p is an Earthlike planet}. The query is
(Q) instance o Planet.

The query should easily follow by eliminating the κ-abstraction. The first-order
problem generated in [21] drops the assumption with the κ-abstraction (A3),
making the problem unlikely to be provable (at least not for the intended reason).
Our translation to set theory will handle κ-binders and the translation of this
problem will be provable in the set theory.

2.5 Real Arithmetic

Six of the 35 examples from [21] involve some real arithmetic. Two simple exam-
ple queries are the following:

Example 4 (TQG3).

(instance Number3-1 NonnegativeRealNumber)
(query (not (instance Number3-1 NegativeRealNumber)))

Example 5 (TQG11). (query (equal 12 (MultiplicationFn 3 4)))

For the sake of brevity we represent the first problem as having one local con-
stant n, one local assumption instance n Nonneg and the query (conjecture)
¬(instance n Neg). We will translate signed rationals with a finite decimal expan-
sion to real numbers represented as sets.6 We will also translate Real to be equal
to the set of reals . Furthermore we translate the operations +, −, ∗, /, < and ≤
to have the appropriate meaning when applied to two reals.7 We then translate
6 We use a fixed construction of the reals, but the details of this are not relevant here.
7 To be more precise, we are using a specific set of reals constructed in the higher-

order set theory, and operations (e.g., multiplication) are the expected set-theoretic
operations on that set of reals. For simplicity, our set-theoretic division is a total
function returning 0 when the denominator is 0.

260 C. E. Brown et al.

Neg to {x ∈ |x < 0} and Nonneg to {x ∈ |0 ≤ x}. Using the properties of the
set-theoretic encoding, the translated queries above are set-theoretic theorems.

In addition to direct uses of arithmetic as in the examples above, arithmetic
is also often used to check type guard information. This is due to the fact that
a spine like t1 t2 ρ will use subtraction to determine that under some constraints
the ith element of the corresponding list will be the (i − 2)nd element of the list
interpreting ρ.

3 Translation of SUMO-K to Set Theory

3.1 High Level Overview: Sets, Terms, Spines and Formulas

Our translation maps terms t to sets. The particular set theory we use is higher-
order Tarski-Grothendieck as described in [4].8 The details of this set theory
are not important here. We only note that we have ∈, ⊆ (which will be used
to interpret SUMO’s instance and subclass) and that we have the ability to
λ-abstract variables to form terms at higher types. The main types of interest
are ι (the base type of sets), o (the type of propositions), ι → ι (the type of
functions from sets to sets) and ι → o (the type of predicates over sets).

Terms: When we say SUMO terms t are translated to sets, we mean they are
translated to terms of type ι in the higher-order set theory.

Spines: Spines s are essentially lists of sets (of varying length). We translate
them as functions that encode finite sequences. These functions are formally of
the general type ι → ι. However, we only use them when restricted to natural
numbers, i.e., arguments n ∈ ω (where ω is the set of finite ordinals). We also
maintain the invariant that the function returns the empty set on all but finitely
many n ∈ ω. An auxiliary function listset : (ι → ι) → ι gives a set-theoretic
representation of the list by restricting its domain to ω.9

Tagging, Untagging, Length: To avoid confusion with the empty set being
on a list, we tag elements of lists to ensure they are nonempty. Let I : ι → ι
be such a tagging function (injective on the universe of sets) and U : ι → ι
be an untagging function. We then define nil : ι → ι to be constantly ∅ and
cons : ι → (ι → ι) → ι → ι to take a set x and a list l to the function mapping
0 to I x and i + 1 to l i for i ∈ ω. We also define a function len : (ι → ι) → ι
by λl.{i ∈ ω|l i �= ∅}10 giving us the length of the list (assuming it is a list).
Informally, a spine t0 · · · tn−1 is thus a function taking i to I(t′i) for each i ∈
{0, . . . , n− 1} where t′i is the set-theoretic value of ti and I the tagging function.

8 Tarski-Grothendieck is a set theory in which there are universes modeling ZFC set
theory. These set-theoretic universes should not be confused with the universe of
discourse Univ1 introduced below.

9 We include listset since sometimes a list needs to be considered as a set.
10 Note that by design this set is the finite ordinal giving the length of the list.

Translating SUMO-K to Higher-Order Set Theory 261

Formulas: The translation of a SUMO formula ψ can be thought of either
as a set (which should be one of the sets 0 or 1) or as a proposition. We also
sometimes coerce between type ι and o by considering the sets 0 and 1 to be sets
corresponding to false and true. Let P : ι → o be λX.∅ ∈ X and let B : o → ι be
λp.if p then 1 else 0. We use these functions as coercions between ι and o.

3.2 Motivating Examples

Before describing the translation in more detail, we give a few more simple
examples to explain various aspects of the translation and motivate our choices.

Univ1 and Kappa: Let Univ1 be a set. This set is intended to be a uni-
verse of discourse in which most (but not all) targets of interpretation for t
will live. Specifically, we will map the SUMO-type Class to the set ℘ Univ1
(the power set of the universe). We take all SUMO-types except the four spe-
cial cases Class, SetOrClass, Abstract and Entity to be sets in ℘ Univ1. Con-
sequently, if a SUMO object is an instance of some class other than Class,
SetOrClass, Abstract and Entity, we will know that the object is a member of
Univ1. Due to this we choose to translate κ-binders using simple separation
bounded by Univ1. Reconsidering TQG27 discussed in Sect. 2.4 we translate
instance o (κp.instance p Planet ∧ attribute p Earthlike) to a set-theoretic propo-
sition11 of the form o ∈ {p ∈ Univ1| · · · p ∈ PLANET ∧ · · · } (only partially
specified at the moment).12 From this set-theoretic proposition we can easily
derive o ∈ PLANET to solve the set-theoretic version of TQG27.

Variable Arity and Type Guards: As mentioned above, partition is a vari-
able arity relation of at least arity 2 where every argument must be of SUMO-
type Class. We will translate partition to a set PA containing multiple pieces
of information. The behavior of PA as a relation is captured by the results one
obtains by applying it to a set encoding a list of sets (via a set-theoretic operation
ap : ι → ι → ι). We can apply an abstract function arity : ι → ι to obtain the min-
imum arity of PA. We can apply an abstract predicate vararity : ι → o to encode
that PA has variable arity. Likewise we can apply an abstract domseq : ι → ι → ι
to PA and an i ∈ ω to recover the intended domain of argument i of PA. These
extra pieces of information are important to determine type guards in the pres-
ence of function and relation arguments.

In the specific case of partition the translation yields a set PA such that
arity PA = 2, vararity PA is true and for i ∈ {0, 1, 2}, domseq PA i = ℘ Univ1. The
value of domseq PA 2 determines the intended domain of all remaining (optional)
arguments of the relation. (Note that SUMO indexes the first argument by 1
while in the set theory the first argument is indexed by 0.) The SUMO assertion

(partition Word Noun Verb Adjective Adverb ParticleWord)

11 A set-theoretic proposition is a closed formula in the language of higher-order set
theory [4].

12 Note that the SUMO constant is Planet while its translated set-theoretic counterpart
is PLANET.

262 C. E. Brown et al.

translates to the set-theoretic statement13

P (ap PA (listset (cons Word (cons Noun (cons Verb (cons Adjective
(cons Adverb (cons ParticleWord nil)))))))).

Recall the SUMO-K assertion

∀ρ.partition ρ → exhaustiveDecomposition ρ ∧ disjointDecomposition ρ.

In this case the translation also generates type guards for the row variable ρ. Let
PA, ED and DD be the sets corresponding to the SUMO constants partition,
exhaustiveDecomposition and disjointDecomposition. Essentially, the assertion
should only apply to ρ when ρ has at least length 2 and every entry is a (tagged)
class. The translated set-theoretic statement (with type guards) is

∀ρ : ι → ι.dom_of (vararity PA) (arity PA) (domseq PA) ρ
→ dom_of (vararity ED) (arity ED) (domseq ED) ρ
→ dom_of (vararity DD) (arity DD) (domseq DD) ρ

→ P (ap PA ρ) → P (ap ED ρ) ∧ P (ap DD ρ)

The statement above makes use of a new definition: dom_of : o → ι → (ι → ι) →
(ι → ι) → o. The first argument of dom_of is a proposition encoding whether
or not the function or relation is variable arity. In this case, all three of the
propositions are variable arity (with the same typing information for all three).
In the variable arity case dom_of � n D ρ is defined to be dom_of_varar n D ρ
where dom_of_varar : ι → (ι → ι) → (ι → ι) → o, n is the minimum arity, D
is the list of domain information and ρ is the list we are requiring to satisfy the
guard. dom_of_varar n D ρ is defined to hold if the following three conditions
hold:

1. n ⊆ len ρ (ρ has at least length n)
2. ∀i ∈ n,U (ρ i) ∈ D i and
3. ∀i ∈ len ρ, n ⊆ i → U (ρ i) ∈ D n.

For fixed arity, dom_of is defined via a simpler dom_of_fixedar condition.
Another SUMO assertion about partitions is

(=>
(partition ?SUPER ?SUB1 ?SUB2)
(partition ?SUPER ?SUB2 ?SUB1))

In this case there are three standard (nonrow) variables needing type guards
in the translation. Roughly speaking, domseq PA has the information we need,
but in general we must modify it to be appropriate for variable arity relations.
For this reason domseqm : ι → ι → ι is defined to be

λri.if vararity r then domseq r (if i ∈ arity r then i else arity r) else domseq r i.

13 Note that we omit parentheses via the usual convention that implication is right
associative, i.e., φ → ψ → ξ means φ → (ψ → ξ). Note also this is logically equivalent
to φ ∧ ψ → ξ.

Translating SUMO-K to Higher-Order Set Theory 263

The translated statement is

∀XY Z.X ∈ domseqm PA 0 → Y ∈ domseqm PA 1 → Z ∈ domseqm PA 2
→ Z ∈ domseqm PA 1 → Y ∈ domseqm PA 2
→ P(ap PA (cons X (cons Y (cons Z nil)))))
→ P(ap PA (cons X (cons Z (cons Y nil))))).

A simpler translation for handling type guards in this example could avoid
the use of dom_of and domseqm and instead look up the arity and typing infor-
mation for partition, etc. This translation would not work in general since SUMO
assertions quantify over relations, in which case the particular type guards are
not known until the relation variables are instantiated. Consider the SUMO-K
formula

∀R1R2.∀ρ.subrelation R1 R2 ∧ instance R1 Predicate → instance R2 Predicate
→ R1 ρ → R2 ρ.

This translates to the set-theoretic proposition

∀R1R2 : ι.∀ρ : ι → ι.R1 ∈ domseqm SR 0 → R2 ∈ domseqm SR 1 →
R1 ∈ E → R2 ∈ E → dom_of (vararity R1) (arity R1) ρ

→ dom_of (vararity R2) (arity R2) ρ
→ P (ap SR (cons R1 (cons R2 nil))) ∧ R1 ∈ PR → R2 ∈ PR → P (ap R1 ρ)

→ P (ap R2 ρ)

where E, SR and PR are the sets corresponding to the SUMO constants Entity,
subrelation and Predicate. Here the type guards on ρ depend on R1 and R2. Two
special cases are the type guards Ri ∈ E which are derived from the use of Ri as
the first argument of instance.

3.3 The Translation

We now describe the translation itself. A first pass through the SUMO files given
records the typing information from domain, range, domainsubclass, rangesubclass
and subrelation assertions. A finite number of secondary passes determines which
names will have variable arity (either due to a direct assertion or due to being
inferred to be in a variable arity class).14

The final pass translates the assertions, and this is our focus here. Each
SUMO-K assertion is a SUMO-K formula ϕ which may have free variables in it.
Thus if we translate the SUMO-K formula ϕ into the set-theoretic proposition
ϕ′, then the translated assertion will be

∀x1 · · · xn.G1 → · · · Gm → ϕ′

where x1, . . . , xn are the free variables in ϕ and G1, . . . , Gm are the type guards
for these free variables. Note that some of these free variables may be for spine
14 In practice with the current Merge.kif file, a single secondary pass suffices, but in

general one might need an extra pass to climb the class hierarchy.

264 C. E. Brown et al.

variables (i.e., row variables) and may have type ι → ι. Such variables may also
have type guards.

SUMO-K variables x translate to themselves where after translation x is a
variable of type ι (ranging over sets). For SUMO-K constants c we choose a
name c′ and declare this as having type ι. Rational numbers q with a finite
decimal expansion are translated to the set calculating the quotient of the base
ten numerator divided by the appropriate power of 10. For example, 11.2 would
be translated to the term 1 ∗ 102 + 1 ∗ 10 + 2 divided by 10 (where 1, 2 and
10 are the usual finite ordinals and exponentiation by finite ordinals is defined
by recursion). When a variable or constant is applied to a spine we translate
the spine and use ap. As mentioned in Sect. 2.5 Real is translated to the set ,
Neg is translated to {x ∈ |x < 0} and Nonneg is translated to {x ∈ |0 ≤ x}.
The other arithmetical constructs are translated to sets, but we assume special
properties such as

∀xy ∈ .ap ADD (cons x (cons y nil)) = x + y,

∀xy ∈ .ap MULT (cons x (cons y nil)) = x · y

and
∀xy ∈ .P (ap (LESSTHAN (cons x (cons y nil)))) = (x < y).

– (x s) translates to (ap x (listset s′)) where s′ is the result of translating the
SUMO-K spine s.

– (c s) translates to (ap c′ (listset s′)) where s′ is the result of translating the
SUMO-K spine s and c′ is the chosen set as a counterpart to the SUMO-K
constant c. Arithmetical operations are handled the same way.

The only remaining case for terms is κ binder terms.

– We translate (κx.ψ) to

{x ∈ Univ1 | G1 ∧ . . . Gm ∧ ψ′}

where G1, . . . , Gm are generated type guards for x and ψ′ is the result of
translating the SUMO-K formula ψ to a set-theoretic proposition. Note that
x ranges over Univ1.

The translations of spines is relatively straightforward, but a few points are
worth mentioning.

– The SUMO-K spine (t s) is translated to the list one gets by applying cons
to I t′ onto s′ where t′ is the translation of t and s′ is the translation of s.

– A spine variable ρ is translated to itself (a variable of type ι → ι).
– In the case ρ t1 . . . tn we translate ρ to itself (a variable of type ι → ι) and

translate each ti to a set t′i and return the function that returns ρ j given
j < len ρ and returns t′i given len ρ + i (appending the two lists).

– The empty spine is translated to nil.

Translating SUMO-K to Higher-Order Set Theory 265

We consider each case of a SUMO-K formula. The usual logical operators are
translated as the corresponding operators:

– ⊥ and � translate simply to ⊥ and �.
– (¬ ψ) translates to ¬ψ′ where ψ is a SUMO-K formula which translates to

the set-theoretic proposition ψ′.
– (ψ → ξ) translates to ψ′ → ξ′ where ψ and ξ are SUMO-K formulas translate

to the set-theoretic propositions ψ′ and ξ′.
– (ψ ↔ ξ) translates to ψ′ ↔ ξ′ where ψ and ξ are SUMO-K formulas translate

to the set-theoretic propositions ψ′ and ξ′.
– Theoretically, ψ ∧ ξ translates to ψ′ ∧ ξ′. Practically speaking in SUMO-K

conjunction is n-ary so it is more accurate to state that (and ψ1 · · · ψn)
translates to ψ′

1 ∧ · · · ∧ ψ′
n where ψ1, . . . , ψn are SUMO-K formulas translate

to the set-theoretic propositions ψ′
1, . . . , ψ

′
n.

– Again, theoretically ψ ∨ ξ translates to ψ′ ∨ ξ′. Practically, (or ψ1 · · · ψn)
translates to ψ′

1 ∨ · · · ∨ ψ′
n where ψ1, . . . , ψn are SUMO-K formulas translate

to the set-theoretic propositions ψ′
1, . . . , ψ

′
n.

– Theoretically, ∀x.ψ translates to ∀x.G1 → · · · → Gm → ψ′ where ψ′ is the
result of translating ψ and G1, . . . , Gm are the generated type guards for
x. Practically speaking, SUMO-K allows several variables to be universally
quantified at once, so it is more accurate to say (forall (x1 . . . xn) ψ) trans-
lates to ∀x1 . . . xn.G1 → · · · → Gm → ψ′ where x1, . . . , xn are variables,
G1, . . . , Gm are the generated type guards for these variables and ψ′ is the
set-theoretic proposition obtained by translating ψ. That is, each Gi is a type
guard induced by one of the variables xj , with all the guards computed for
the n variables simultaneously. While we could combine the guards into a
single conjunction, we do not.

– ∀ρ.ψ is translated similarly, but with type guards for the row variable ρ.
– Again, theoretically ∃x.ψ translates to ∃x.G1 ∧ · · · ∧ Gm ∧ ψ′, where ψ′ is

the set-theoretic proposition obtained by translating the SUMO-K formula
ψ, but generalized to handle quantifying multiple variables.

– ∃ρ.ψ is translated similarly, but with type guards for the row variable ρ.
– (t1 = t2) translates to t′1 = t′2 where t1 and t2 are SUMO terms which

translate to sets t′1 and t′2.

We use set membership and inclusion to interpret instance and subclass.

– (instance t1 t2) translates to t′1 ∈ t′2 where t1 and t2 are SUMO terms which
translate to sets t′1 and t′2.

– (subclass t1 t2) translates to t′1 ⊆ t′2 where t1 and t2 are SUMO terms which
translate to sets t′1 and t′2.

4 Interactive Proofs of Translated SUMO Queries

The motivating set of examples were the 35 example queries from [21], now
expanded15. Six of the original examples involve temporal reasoning. We omit
15 https://github.com/ontologyportal/sumo/tree/master/tests.

https://github.com/ontologyportal/sumo/tree/master/tests

266 C. E. Brown et al.

these for the moment, leaving a future translation to handle temporal and modal
reasoning. 9 questions involve too many arguments for the existing first-order
translation with macro expansion to work, but which are handled by our new
translation. Among the remaining problems, 5 require some arithmetical reason-
ing, which use preexisting translations to standard first-order logic (FOF) and
to an extension of first-order logic with arithmetic (TFF). For the remaining
problems, the results of (at least) 5 were still not provable by the ATPs Vampire
or E within a 600 s timeout.

We carefully looked at the set-theoretic translation of 13 of the problems
that were too difficult for first-order provers (for any of the above reasons other
than the use of temporal or modal reasoning). We either did an interactive
proof or found slight modifications of the problem that could be interactively
proven. The interactive proofs were done in Megalodon (the successor to the
Egal system [4]). One advantage of having such a translation is the ability to
attempt interactive proofs and recognize what may be missing from Merge.kif
or the original query. We also did interactive proofs of 4 problems that the first-
order provers could prove. We additionally included the 6 problems dealing with
variable arity and row variables (e.g., Example 1). In total we have 23 SUMO-
K queries translated to set-theoretic statements that have been interactively
proven. We briefly describe some of the interactive proofs here.

An example with a particularly simple proof is TQG27 (Example 3), the
example with a κ-binder. The assertion with the κ-binder translates to the set-
theoretic proposition

o ∈ {p ∈ Univ1| p ∈ E ∧ p ∈ domseqm attribute 0 ∧ p ∈ Planet
∧P (ap attribute (listset (cons p (cons Earthlike nil))))}.

The query translates simply to o ∈ Planet.
When interactively proving the translated query in Megalodon, we are free

to use statements coming from three sources: set-theoretic propositions already
previously proven in Megalodon (or are axioms of Tarski-Grothendieck), propo-
sitions resulting from the translation of formulas in Merge.kif, and propositions
resulting from translating formulas local to the example. In this case we only
need two propositions: the translated formula local to the example given above
and one known set-theoretic proposition of the form:

∀X : ι.∀P : ι → o.∀x : ι.x ∈ {x ∈ X|P x} → x ∈ X ∧ P x.

From the two propositions we easily obtain the conjunction

o ∈ Univ1 ∧ o ∈ E ∧ o ∈ domseqm attribute 0 ∧ o ∈ Planet
∧P (ap attribute (listset (cons o (cons Earthlike nil)))).

After this first step, a series of steps eliminate the conjunctions until we have
the desired conjunct o ∈ Planet.

Another relatively simple example is TQG11 (Example 5) in which we must
essentially prove 12 is 3 · 4. To be more precise we must prove

1 · 10 + 2 = ap MULT (listset (cons 3 (cons 4 nil))).

Translating SUMO-K to Higher-Order Set Theory 267

As mentioned in Sect. 3.3 the translation adds the proposition

∀xy ∈ .ap MULT (cons x (cons y nil)) = x · y

which will be useful here. In the interactive proof, we first prove a claim that
every natural number (finite ordinal) is a real number (i.e., ω ⊆ , which is
true for the representation of the reals being used). This claim is then used to
prove 3 ∈ and 4 ∈ . This allows us to reduce the main goal to proving
1 ·10+2 = 3 ·4. This goal is then proven by an unsurprising sequence of rewrites
using equations defining the behavior of + and · on finite ordinals. (Many details
are elided here, such as the fact that there are actually two different operations
+, one on reals and one only on finite ordinals and that they provably agree on
finite ordinals.)

We next consider the proof of the translation of Example 2. The set-theoretic
proposition resulting from translating the query is

(∃x.x ∈ domseqm employs 0 ∧ x ∈ domseqm employs 1
∧P (ap employs (listset (cons x (cons x nil)))))

→ ¬P (SR (listset (cons employs (cons uses nil)))).

We begin the interactive proof by proving the following sequence of claims:

1. len nil = 0.
2. ∀X.∀R : ι → ι.∀n.nat_p n → len R = n → len (cons X R) = ordsucc n.
3. ∀y.¬vararity y → ∀i.domseqm y i = domseq y i.
4. ∀y.¬vararity y → ∀xi.x ∈ domseq y i → x ∈ domseqm y i.
5. ∀X.∀R : ι → ι.cons X R 0 = I X
6. ∀n.nat_p n → ∀X.∀R : ι → ι.cons X R (ordsucc n) = R n.

We can then rewrite domseqm employs into domseq employs. Starting the main
body of the proof, we assume we have an x such that x ∈ domseq employs 0,
x ∈ domseq employs 1 and P (ap employs (listset (cons x (cons x nil)))). We further
assume P (SR (listset (cons employs (cons uses nil))) and prove a contradiction.
Using the translated Merge.kif type information from employs we can infer x is
an autonomous agent and an object. Likewise we can infer employs is a predicate
and a relation, and the same for uses. The contradiction follows from two claims:
P (ap uses (cons x (cons x nil))) and ¬P (ap uses (cons x (cons x nil))).

We first prove P (ap uses (cons x (cons x nil))). We locally let ROW be
cons x (cons x nil) and use the claims above prove from ROW 0 = I x, ROW 1 =
I x, U (ROW 0) = x, U (ROW 1) = x and len ROW = 2. We can then essentially
complete the subproof using the local assumptions

P (ap employs (listset (cons x (cons x nil))))

and
P (SR (listset (cons employs (cons uses nil))))

along with the translation of the following Merge.kif formula:

268 C. E. Brown et al.

(=>
(and

(subrelation ?REL1 ?REL2)
(instance ?REL1 Predicate)
(instance ?REL2 Predicate)
(?REL1 @ROW))

(?REL2 @ROW))

To complete the contradiction we prove ¬P (ap uses (cons x (cons x nil))).
The three most significant Merge.kif formulas whose translated propositions are
used in the subproof are:

(instance uses AsymmetricRelation)
(subclass AsymmetricRelation IrreflexiveRelation)
(=>

(instance ?REL IrreflexiveRelation)
(forall (?INST)

(not
(?REL ?INST ?INST))))

That is, Merge.kif declares that uses is an asymmetric relation, every asym-
metric relation is an irreflexive relation, and that irreflexive relations have the
expected property of irreflexivity.

5 ATP Problem Set

After interactively proving the 23 problems, we created TH016 problems
restricted to the axioms used in the proof. This removes the need for the higher-
order ATP to do premise selection. Additionally we used Megalodon to analyze
the interactive proof to create a number of subgoal problems for ATPs – rang-
ing from the full problem (the initial goal to be proven) to the smallest subgoals
(completed by a single tactic). For example, the interactive proofs of Examples 1,
2 and 5 generate 415, 322 and 100 TH0 problems, respectively. In total analy-
sis of the interactive proofs yields 4880 (premise-minimized) TH0 problems for
ATPs. In Table 1 we give the results for several higher-order automated theorem
provers (Leo-III [24], Vampire [13], Lash [3], Zipperposition [27], E [22]), given
a 60 s timeout.

6 Future Work

The primary plan to extend the translation is to include temporal and modal
operators. SUMO includes many modal operators including necessity, possibility,

16 TH0 was introduced as THF0 in [2] as a core language for representing typed higher-
order formulas (in the sense of Church’s simple type theory) for automated theorem
provers.

Translating SUMO-K to Higher-Order Set Theory 269

Table 1. Number of Subgoals Proven Automatically in 60 s

Problem Subgoals Zipperposition Vampire E Lash Leo-III

TQG1 50 50 (100%) 50 (100%) 50 (100%) 50 (100%) 50 (100%)
TQG3 20 20 (100%) 20 (100%) 14 (70%) 20 (100%) 8 (40%)
TQG7 195 188 (96%) 185 (95%) 180 (92%) 160 (82%) 158 (81%)
TQG9 19 19 (100%) 19 (100%) 19 (100%) 19 (100%) 19 (100%)
TQG10 112 112 (100%) 112 (100%) 100 (89%) 58 (52%) 96 (86%)
TQG11 100 76 (76%) 39 (39%) 67 (67%) 45 (45%) 13 (13%)
TQG19 37 34 (92%) 22 (59%) 20 (54%) 37 (100%) 11 (30%)
TQG20 41 34 (83%) 22 (54%) 20 (49%) 41 (100%) 13 (32%)
TQG21 207 154 (74%) 150 (72%) 143 (69%) 101 (49%) 56 (27%)
TQG22alt3 319 246 (77%) 214 (67%) 193 (61%) 197 (62%) 136 (43%)
TQG22alt4 322 251 (78%) 218 (68%) 197 (61%) 201 (62%) 142 (44%)
TQG22 315 271 (86%) 224 (71%) 212 (67%) 201 (64%) 142 (45%)
TQG23 67 61 (91%) 67 (100%) 42 (63%) 51 (76%) 38 (57%)
TQG25alt1 910 652 (72%) 526 (58%) 580 (64%) 529 (58%) 246 (27%)
TQG27 7 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%)
TQG28alt1 600 428 (71%) 386 (64%) 349 (58%) 261 (44%) 213 (36%)
TQG30 4 4 (100%) 4 (100%) 3 (75%) 4 (100%) 4 (100%)
TQG33 112 82 (73%) 83 (74%) 79 (71%) 85 (76%) 36 (32%)
TQG45 162 136 (84%) 131 (81%) 128 (79%) 106 (65%) 36 (22%)
TQG46 344 258 (75%) 215 (62%) 225 (65%) 163 (47%) 144 (42%)
TQG47 186 141 (76%) 113 (61%) 109 (59%) 93 (50%) 79 (42%)
TQG48 336 249 (74%) 234 (70%) 219 (65%) 184 (55%) 146 (43%)
wordex 415 315 (76%) 255 (61%) 236 (57%) 284 (68%) 143 (34%)
Total 4880 3788 (78%) 3296 (68%) 3192 (65%) 2897 (59%) 1936 (40%)

deontological operators (obligation and permission) and modalities for knowl-
edge, beliefs and desires. Each modality can be modelled using Kripke style
semantics [14] (possible worlds with an accessibility relation).

The following is an example of a SUMO formula in Merge.kif using modali-
ties17 :

(=>
(modalAttribute ?FORMULA Necessity)
(modalAttribute ?FORMULA Possibility))

17 Note that SUMO embeds several different modalities that have different axiomatiza-
tions. Rather than assuming one particular modal logic axiomatization (S4, S5 etc.)
by embedding different modal logics in higher-order logic we hope to determine if
we can create a coherent system of axiomatizations while avoiding known paradoxes
like the gentle murderer paradox.

270 C. E. Brown et al.

The current translation simply skips these formulas as they are not in the SUMO-
K fragment. If we only wanted to extend the translation to include necessity and
possibility, we could change the translation to make the dependence on worlds
explicit. The SUMO formula above could translate to the proposition

∀w ∈ W.∀ϕ : ι → ι.(∀v ∈ W.R w v → P (ϕ v)) → (∃v ∈ W.R w v ∧ P (ϕ v)).

Here W is a set of worlds and R is an accessibility relation on W . Note that
the translated formula variable has type ι → ι instead of type ι to make the
dependence of the formula on the world explicit. In general, terms, spines and
formulas would depend on a world w and in an asserted formula the world w
would be universally quantified (ranging over W) as above.

If we took the approach above to model necessity and possibility, then to add
deontic modalities later we would need a second set of worlds and accessibility
relation. The translation of terms would then have type ι → ι → ι to account
for the dependence on both kinds of worlds. In order to prevent needing to keep
adding new dependencies for every modalities, our plan is to combine the sets of
worlds and accessibility relations in an extensible way. Thus terms will translate
to have type ι → ι essentially giving dependence on a single set encoding a
sequence of worlds (where we are open ended about the length of the sequence).
Using this idea, the SUMO formula above would translate to something like

∀w ∈ (Πx ∈ X.W x).∀ϕ : ι → ι.(∀v ∈ (Πx ∈ X.W x).R m w v → P (ϕ v))
→ (∃v ∈ (Πx ∈ X.W x).R m w v ∧ P (ϕ v))

where X is an index set (where each x ∈ X corresponds to a modality being
interpreted), m ∈ X is the specific index for necessity and possibility, W x is
the set of worlds for x, and R x is a relation between w, v ∈ Πx ∈ X.W x that
holds if the x components satisfy the accessibility relation over W x and the
other components of w and v do not change. This allows us to model an arbi-
trary number of modalities using Kripke semantics while only carrying one world
argument. Another advantage is that it minimizes the change to the translation
of formulas in the SUMO-K fragment (without modalities). The only required
change is to add a single dependence on w via a new argument and universally
quantify over w if the formula is asserted.

We have already done some experiments with this approach and it shows
promise. The previous experiments need to be extended to include changes that
have occurred to obtain the SUMO-K translation described in the present paper.
Once this is done, we must ensure that translated examples both with modalities
and the examples in this paper without modalities are provable interactively.
We plan to also test automated theorem provers on the subgoals obtained from
the interactive proofs. Doing so with the 23 examples in this paper will give an
indication how much more difficult the translated problems become if the Kripke
infrastructure to handle modalities is included.

Another aspect of SUMO are modalities involving likelihood and probability.
These cannot be modelled by Kripke semantics (as the modalities are not nor-
mal). We are experimenting with using neighborhood semantics to include these
modalities.

Translating SUMO-K to Higher-Order Set Theory 271

7 Conclusion

We have described a translation from the SUMO-K fragment of SUMO into
higher-order set theory. We have considered a number of examples that use
aspects of SUMO-K that go beyond traditional first-order logic, namely vari-
able arity functions and relations, row variables, term-level κ-binders and arith-
metic. We have described a number of interactive proofs of translated queries
and tested higher-order automated theorem provers on problems obtained by
doing premise selection using the corresponding interactive proofs. This gives a
set of problems for automated theorem provers that come from the area of “com-
mon sense reasoning,” an area quite different from the more common sources of
formalized mathematics and program verification. On most of the examples,
higher-order automated theorem provers cannot fully automatically prove the
query, but they perform reasonably well on subgoal problems extracted from
the interactive proofs. This gives an indication that the full problems (assum-
ing premise selection) are not too far out of reach for current state of the art
higher-order automated theorem provers.

Acknowledgments. This work was partially supported by the ERC-CZ project
POSTMAN no. LL1902, Amazon Research Awards, EU ICT-48 2020 project TAILOR
no. 952215 and the European Regional Development Fund under the Czech project
AI&Reasoning with identifier CZ.02.1.01/0.0/0.0/15_003/0000466.

References

1. Benzmüller, C., Pease, A.: Higher-Order Aspects and Context in SUMO. In: Jos
Lehmann, I.J.V., Bundy, A. (eds.) Special issue on Reasoning with context in the
Semantic Web, vol. 12–13. Science, Services and Agents on the World Wide Web
(2012)

2. Benzmüller, C., Rabe, F., Sutcliffe, G.: Thf0 - the core of the tptp language for
higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated
Reasoning, pp. 491–506. Springer, Berlin Heidelberg, Berlin, Heidelberg (2008)

3. Brown, C.E., Kaliszyk, C.: Lash 1.0 (system description). In: Blanchette, J.,
Kovács, L., Pattinson, D. (eds.) Automated Reasoning - 11th International Joint
Conference, IJCAR 2022, Haifa, Israel, August 8–10, 2022, Proceedings. Lecture
Notes in Computer Science, vol. 13385, pp. 350–358. Springer (2022)

4. Brown, C.E., Pąk, K.: A Tale of Two Set Theories. In: Kaliszyk, C., Brady, E.,
Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617,
pp. 44–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4_4

5. Chvalovský, K., Jakubuv, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E. In: Fontaine, P. (ed.) Automated
Deduction - CADE 27–27th International Conference on Automated Deduction,
Natal, Brazil, August 27–30, 2019, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 11716, pp. 197–215. Springer (2019). https://doi.org/10.1007/978-3-030-
29436-6_12

https://doi.org/10.1007/978-3-030-23250-4_4
https://doi.org/10.1007/978-3-030-29436-6_12
https://doi.org/10.1007/978-3-030-29436-6_12

272 C. E. Brown et al.

6. Jakubuv, J., Chvalovský, K., Olsák, M., Piotrowski, B., Suda, M., Urban, J.:
ENIGMA anonymous: Symbol-independent inference guiding machine (system
description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning
- 10th International Joint Conference, IJCAR 2020, Paris, France, July 1–4, 2020,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12167, pp. 448–463.
Springer (2020). https://doi.org/10.1007/978-3-030-51054-1_29

7. Jakubuv, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
Intelligent Computer Mathematics - 10th International Conference, CICM 2017,
Edinburgh, UK, July 17–21, 2017, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 10383, pp. 292–302. Springer (2017). https://doi.org/10.1007/978-3-319-
62075-6

8. Jakubuv, J., Urban, J.: Hammering Mizar by learning clause guidance. In: Harri-
son, J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interac-
tive Theorem Proving, ITP 2019(September), pp. 9–12, 2019. Portland, OR, USA.
LIPIcs, vol. 141, pp. 34:1–34:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPIcs.ITP.2019.34

9. Kaliszyk, C., Urban, J., Vyskočil, J.: Automating Formalization by Statistical and
Semantic Parsing of Mathematics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP
2017. LNCS, vol. 10499, pp. 12–27. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66107-0_2

10. Kaliszyk, C., Urban, J., Vyskočil, J.: Learning to parse on aligned corpora (rough
diamond). In: Urban, C., Zhang, X. (eds.) Interactive Theorem Proving - 6th
International Conference, ITP 2015, Nanjing, China, August 24–27, 2015, Pro-
ceedings. Lecture Notes in Computer Science, vol. 9236, pp. 227–233. Springer
(2015). https://doi.org/10.1007/978-3-319-22102-1

11. Kaliszyk, C., Urban, J., Vyskočil, J., Geuvers, H.: Developing corpus-based trans-
lation methods between informal and formal mathematics: Project description. In:
Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) Intelligent
Computer Mathematics - International Conference, CICM 2014, Coimbra, Portu-
gal, July 7–11, 2014. Proceedings. LNCS, vol. 8543, pp. 435–439. Springer (2014).
https://doi.org/10.1007/978-3-319-08434-3_34

12. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

13. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

14. Kripke, S.A.: Semantical analysis of modal logic i normal modal propositional
calculi. Mathematical Logic Quarterly 9, 67–96 (1963). https://doi.org/10.1002/
malq.19630090502

https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-319-62075-6
https://doi.org/10.1007/978-3-319-62075-6
https://doi.org/10.4230/LIPIcs.ITP.2019.34
https://doi.org/10.1007/978-3-319-66107-0_2
https://doi.org/10.1007/978-3-319-66107-0_2
https://doi.org/10.1007/978-3-319-22102-1
https://doi.org/10.1007/978-3-319-08434-3_34
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1002/malq.19630090502

Translating SUMO-K to Higher-Order Set Theory 273

15. Niles, I., Pease, A.: Toward a Standard Upper Ontology. In: Welty, C., Smith,
B. (eds.) Proceedings of the 2nd International Conference on Formal Ontology in
Information Systems (FOIS-2001). pp. 2–9 (2001)

16. Pease, A.: Ontology: A Practical Guide. Articulate Software Press, Angwin, CA
(2011)

17. Pease, A.: Arithmetic and inference in a large theory. In: AI in Theorem Proving
(2019)

18. Pease, A.: Converting the Suggested Upper Merged Ontology to Typed First-order
Form arXiv:2303.04148 [cs.AI] (2023)

19. Pease, A., Schulz, S.: Knowledge Engineering for Large Ontologies with Sigma
KEE 3.0. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS
(LNAI), vol. 8562, pp. 519–525. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08587-6_40

20. Pease, A., Sutcliffe, G., Siegel, N., Trac, S.: Large Theory Reasoning with SUMO
at CASC. AI Communications, Special issue on Practical Aspects of Automated
Reasoning 23(2–3), 137–144 (2010)

21. Pease, A., Sutcliffe, G., Siegel, N., Trac, S.: Large theory reasoning with sumo at
casc. AI Commun. 23(2–3), 137–144 (2010). https://doi.org/10.3233/AIC-2010-
0466

22. Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2–3), 111–126 (2002)
23. Schulz, S., Sutcliffe, G., Urban, J., Pease, A.: Detecting inconsistencies in large

first-order knowledge bases. In: Proceedings of CADE 26. pp. 310–325. Springer
(2017)

24. Steen, A., Benzmüller, C.: The higher-order prover leo-iii. CoRR abs/1802.02732
(2018), https://arxiv.org/abs/1802.02732

25. Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Proceedings of the Second Inter-
national Conference on Computer Science: Theory and Applications. pp. 6–22.
CSR’07, Springer-Verlag, Berlin, Heidelberg (2007), https://dl.acm.org/citation.
cfm?id=2391910.2391914

26. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP Typed First-
Order Form with Arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012.
LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28717-6_32

27. Vukmirović, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tourret,
S.: Making higher-order superposition work. In: Platzer, A., Sutcliffe, G. (eds.)
Automated Deduction - CADE 28, pp. 415–432. Springer International Publishing,
Cham (2021)

28. Wang, Q., Kaliszyk, C., Urban, J.: First Experiments with Neural Translation of
Informal to Formal Mathematics. In: Rabe, F., Farmer, W.M., Passmore, G.O.,
Youssef, A. (eds.) CICM 2018. LNCS (LNAI), vol. 11006, pp. 255–270. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96812-4_22

http://arxiv.org/abs/2303.04148
https://doi.org/10.1007/978-3-319-08587-6_40
https://doi.org/10.1007/978-3-319-08587-6_40
https://doi.org/10.3233/AIC-2010-0466
https://doi.org/10.3233/AIC-2010-0466
https://arxiv.org/abs/1802.02732
https://dl.acm.org/citation.cfm?id=2391910.2391914
https://dl.acm.org/citation.cfm?id=2391910.2391914
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-319-96812-4_22

274 C. E. Brown et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Al Wardani, Farah 176
Aoto, Takahito 99

B
Barrett, Clark 41, 159
Blaauwbroek, Lasse 236
Blanchette, Jasmin 23
Briefs, Yasmine 81
Bromberger, Martin 137
Brown, Chad E. 255

C
Chaudhuri, Kaustuv 176
Cignarale, Giorgio 119

D
Dahmen, Sander R. 23

E
Ekici, Burak 41

G
Giesl, Jürgen 3

H
Haga, Ryota 99
Hirokawa, Nao 63

K
Kagaya, Yuki 99
Kaliszyk, Cezary 236
Kuznets, Roman 119

L
Leidinger, Hendrik 81
Leutgeb, Lorenz 137
Lommen, Nils 3

M
Miller, Dale 176
Möhle, Sibylle 195

N
Nummelin, Visa 23

P
Pease, Adam 255

R
Rincon Galeana, Hugo 119

S
Saito, Teppei 63
Schmid, Ulrich 119

T
Tinelli, Cesare 41
Toledo, Guilherme V. 159
Torstensson, Olle 217

U
Urban, Josef 236, 255

V
Viswanathan, Arjun 41

W
Weber, Tjark 217
Weidenbach, Christoph 81, 137

Z
Zhang, Liao 236
Zohar, Yoni 41, 159

© The Editor(s) (if applicable) and The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, p. 275, 2023.
https://doi.org/10.1007/978-3-031-43369-6

https://doi.org/10.1007/978-3-031-43369-6

	 Preface
	 Organization
	Abstracts of Invited Talks
	 Incremental Reasoning in Embedded SAT Solvers
	 On Datatypes, Synergies, and Unicorns: Recent Developments in Theory Combination
	 Contents

	Analysis of Programs and Equations
	Targeting Completeness: Using Closed Forms for Size Bounds of Integer Programs
	1 Introduction
	2 Size Bounds by Closed Forms
	3 Size and Runtime Bounds for Solvable Loops
	3.1 Closed Forms for Solvable Loops
	3.2 Periodic Rational Solvable Loops

	4 Size Bounds for Integer Programs
	5 Completeness of Size and Runtime Analysis for Programs
	6 Conclusion and Evaluation
	References

	Recurrence-Driven Summations in Automated Deduction
	1 Introduction
	2 Inference Rule
	3 Initialization
	4 Propagation
	5 Induction
	6 Examples
	7 Related Work
	8 Conclusion
	References

	Formal Verification of Bit-Vector Invertibility Conditions in Coq
	1 Introduction
	2 Preliminaries
	2.1 Theory of Bit-Vectors
	2.2 Coq

	3 Invertibility Conditions and Their Verification
	4 The BVList Library
	4.1 BVList Without Extensions
	4.2 Extending BVList

	5 Proving Invertibility Equivalences in Coq
	5.1 General Approach
	5.2 Detailed Examples
	5.3 Results

	6 Conclusion and Future Work
	References

	Unification
	Weighted Path Orders Are Semantic Path Orders
	1 Introduction
	2 Preliminaries
	2.1 Term Rewriting
	2.2 Weighted Path Orders

	3 Semantic Path Orders Based on Order Pairs
	4 Simulating WPOs by SPOs
	5 Generalized Weighted Path Orders
	6 Experimental Results
	7 Simulating Dependency Pairs by GWPOs
	8 Conclusion
	References

	KBO Constraint Solving Revisited
	1 Introduction
	2 Preliminaries
	3 Simple, Right-Ground KBO Constraints
	4 Further Constraint Variants and Ordering Relaxation
	5 Experiments
	6 Discussion
	References

	A Critical Pair Criterion for Level-Commutation of Conditional Term Rewriting Systems
	1 Introduction
	2 Preliminaries
	3 Level-Commutation of Oriented CTRSs
	4 Critical Pair Criteria for Join and Semi-Equational CTRSs
	4.1 Level-Confluence of Join and Semi-Equational 3-CTRSs
	4.2 Commutation of Semi-Equational 3-CTRSs

	5 Conclusion
	References

	Decidable Fragments
	Logic of Communication Interpretation: How to Not Get Lost in Translation
	1 Introduction
	2 Heterogeneous Distributed Systems
	3 Epistemic Logic for Heterogeneous Distributed Systems
	4 Soundness and Completeness of EHL
	5 Properties of Creed
	6 Applications
	6.1 Formalizing ``The Murders in the Rue Morgue''
	6.2 Solution to Knights and Knaves
	6.3 Modelling of Software Updates
	6.4 Comparison to Related Work

	7 Conclusion and Future Work
	References

	Symbolic Model Construction for Saturated Constrained Horn Clauses
	1 Introduction
	2 Preliminaries and Notation
	2.1 Horn Bernays-Schönfinkel with Linear Arithmetic
	2.2 Ordering Literals and Clauses
	2.3 Hierarchic Superposition, Redundancy and Saturation
	2.4 Interpretations
	2.5 Consequence and Least Model

	3 Model Construction
	4 Conclusion
	References

	Frameworks
	Combining Finite Combination Properties: Finite Models and Busy Beavers
	1 Introduction
	2 Preliminary Notions
	2.1 Many-Sorted Logic
	2.2 Theory Combination Properties

	3 Relationships Between Model-Theoretic Properties
	3.1 General Signatures
	3.2 Empty Signatures

	4 A Taxonomy of Examples
	4.1 The Table
	4.2 Theories from ch9BarTolZoh
	4.3 New Theories: The Simple Cases
	4.4 New Theories: The Busy Beaver
	4.5 Theory Operators

	5 Conclusion
	References

	Formal Reasoning Using Distributed Assertions
	1 Introduction
	2 Design of DAMF
	2.1 Languages, Contexts, and Formulas
	2.2 Sequents and Assertions
	2.3 Adapters
	2.4 Composing Assertions, Trust
	2.5 Producing Assertions, Formal Reasoning Tools
	2.6 Logical Consistency of Heterogeneous Combinations

	3 Implementation: Information, Processes, and Tools
	3.1 The Structures of the Global Store
	3.2 Processes in DAMF, and Dispatch as an Intermediary Tool
	3.3 Edge Systems Example: Abella

	4 Discussion: Design Choices and Alternatives
	4.1 The Role of Formal Proofs
	4.2 Potential Benefits to Mainstream Systems
	4.3 Other Use Cases

	5 Related Work
	6 Conclusion
	References

	An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL
	1 Introduction
	2 Preliminaries
	3 Chronological CDCL for CNF-to-d-DNNF Compilation
	4 Calculus
	5 Proofs
	6 Generalization
	7 Discussion
	References

	Higher-Order Theorem Proving
	Hammering Floating-Point Arithmetic
	1 Introduction
	2 Background
	2.1 The Sledgehammer Proof Process
	2.2 IEEE 754 Binary Floating-Point Arithmetic

	3 An Implementation of SMT-LIB Floating-Point Arithmetic in Isabelle/HOL
	4 Interpreting Isabelle/HOL Floating-Point Arithmetic in SMT-LIB
	4.1 SMT-LIB Logic
	4.2 Types
	4.3 Constants

	5 Evaluation
	5.1 Results
	5.2 Discussion

	6 Related Work
	7 Conclusions
	References

	Learning Proof Transformations and Its Applications in Interactive Theorem Proving
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Proof State Characterizations
	2.1 Feature Difference
	2.2 Anti-unification
	2.3 Tree Difference
	2.4 Input Formats

	3 Learning Models
	4 Experiments
	5 Applications
	5.1 Tactic Suggestion
	5.2 Shortening Proofs

	6 Related Work
	7 Conclusion
	References

	Translating SUMO-K to Higher-Order Set Theory
	1 Introduction and Motivation
	1.1 Related Work and Contributions

	2 The SUMO-K Fragment
	2.1 Implicit Type Guards
	2.2 Variable Arity Relations and Functions
	2.3 Quantification over Relations
	2.4 Kappa Binders
	2.5 Real Arithmetic

	3 Translation of SUMO-K to Set Theory
	3.1 High Level Overview: Sets, Terms, Spines and Formulas
	3.2 Motivating Examples
	3.3 The Translation

	4 Interactive Proofs of Translated SUMO Queries
	5 ATP Problem Set
	6 Future Work
	7 Conclusion
	References

	Author Index

