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Abstract. Industrializing metal additive manufacturing for mass pro-
duction requires a consistent manufacturing process that reliably pro-
duces high-quality end products. In order to meet these quality require-
ments, layer-wise in-situ monitoring data is captured to detect process
deviations that potentially lead to product defects. However, this way
of process monitoring is limited to a retrospective analysis, where defect
development is usually unavoidable. Still, accurate forecasting of part
fabrication within the same or subsequent layers would allow a timely
corrective adjustment of the control strategy. In our work, we formulate
the forecasting of part fabrication as an image inpainting problem, where
areas of the part that have not been printed yet, are treated as missing
regions within layer-wise in-situ image data. We propose to train gener-
ative inpainting models to fill in these missing regions, thus predicting
possible outcomes of the printing process. In our experiments, we train
a generative neural architecture on layer-wise images of heat signatures
that were captured with an optical tomography monitoring system dur-
ing Laser Powder Bed Fusion (LPBF) processes. By varying machine
parameter configurations and part geometry, we evaluate the prediction
capabilities of the model. Our results reveal, that our model is capable of
accurately predicting realistic outcomes of LPBF processes using in-situ
monitoring data with a sufficient level of detail. From that we conclude,
that generative models show promising results towards an online defect
prediction system, that allows a timely intervention of the current con-
trol strategy. With our approach, we lay the foundation of a model-based
control framework that may prevent product defects from forming.
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1 Introduction

Laser Powder Bed Fusion (LPBF) is a layerwise manufacturing process that
fabricates metallic components from powder. During the fabrication process,
a laser melts powdered particles to fuse them with the underlying layer [1].
Compared to traditional manufacturing approaches, almost arbitrary geometries
can be manufactured directly from a 3D model without machine preprocessing.
However, due to the stochastic nature of the process, the fabrication outcome is
unpredictable and therefore quality standards cannot be met consistently.

In order to mitigate the manufacturing of low-quality products, quality assur-
ance approaches are applied either during (in-situ) or after (ex-situ) the fabri-
cation process. Ex-situ solutions require the destruction of the fabricated part
(e.g., mechanical tests), or are time and cost-expensive (e.g., computer tomog-
raphy scans). Alternatively, recent research efforts aim to leverage the layerwise
procedure of the manufacturing process, to monitor defect flaws within the geom-
etry in an in-situ fashion [2]. This form of in-situ monitoring potentially enables
closed-loop control systems to detect and negate the occurrence of defects during
part fabrication.

With the advancement of sensor technology and the increase in data quality
and quantity, machine learning (ML) technology has been extensively explored
to detect part defects and process deviations within in-situ monitoring data
[3]. However, these proposed solutions are usually limited by their capability of
detecting defects from a retrospective perspective. In particular, their detections
are applied on data from already printed areas. Consequently, these detection
solutions may not be in time for a closed-loop control system.

To address this issue, we propose to use generative models to forecast the
fabrication process through in-situ image data. We simplify the fabrication fore-
casting problem to an image inpainting problem; Image inpainting describes the
task of filling missing regions within an image so that the inpainted regions match
their surroundings semantically. This task simplification is possible, due to the
limited exposure time of our monitoring system, where only a fraction of the
whole layer is captured in a single image. By treating the missing areas within
the in-situ monitoring data as holes to be filled, we train a generative model
to inpaint these regions and thus forecast the fabrication process. We believe
that our approach enables model-based control strategies that are capable of
mitigating part defects.

Our contributions are summarized as follows:

— We reformulate the fabrication forecasting task as an image inpainting prob-
lem (cf. Sect. 3.3) by using masks which separate regions with available infor-
mation from regions with missing information (cf. Sect. 3.2).

— We propose a hyperparameter tuning pipeline to steer the hyperparameter
search towards the generation of high-quality images (cf. Sect.4.1).

— We quantitatively and qualitatively evaluate the forecasting performance of
an image inpainting model (cf. Sect. 4.2).
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2 Related Work

Currently, image-based in-situ monitoring data is mainly used to detect defects
during the fabrication process. Most commonly, the developed solutions analyse
images of each layer and highlight areas within the image that corresponds to
a potential defect or irregularity. Specifically where LPBF processes are mon-
itored with optical tomography (OT) sensors, that are identical to the ones
from our monitoring setup (cf. Sect.3.1), both discriminative and generative
ML approaches were investigated to learn the relationship between OT image
and quality metric.

Within investigated discriminative approaches, one way to use in-situ mon-
itoring data is to detect defects through hotspots within each layer [4]. In their
work, the authors propose to train a classification model in a semi-supervised
fashion. Within their experiments, they show that a transfer to part geometries
with increased complexity is possible.

In another work, tree-based models were used to predict the likelihood of
porosity through discretizing the volume derived from a layerwise stacking of
OT images into cuboids [5]. A cuboid contains a fixed number of pixel values
with equal size in width and length, thus containing information from multiple
layers. Based on their results, they argue that an accurate porosity prediction
using one layer is not sufficient due to the self-healing phenomena of melting
underlying layers.

Further work uses a fully convolutional neural network to classify OT data
into three defect classes [6]. Although the presented results of the model show
high accuracy in distinguishing between different defect types, it is most likely
unable to distinguish between defect-free and defective layers and thus not trans-
ferable to a production-ready setup.

Besides discriminative models of previous works, generative models were also
sporadically investigated in the context of LPBF processes. The first contribution
that uses in-situ OT image data to train generative models was presented in [7].
In their work, the authors were able to predict possible energy emissions layer-
wise using the information on part contour and scan vector orientation, before
printing the part with the machine. However, the model prediction ignores energy
emission deviations from geometry information (e.g., overhang angle), that may
impact the resulting energy distribution within a layer.

The work presented in [8] extends the results from [7] involving the part
contour of multiple layers as input data to the generative model. The resulting
model was capable of predicting laser emissions with overhang angles up to 45°.
Both approaches aim to predict the fabrication outcome of a whole layer, with-
out considering the sequential and fragmentary properties of the collected data.
By conditioning the prediction on available information from already printed
regions, we not only simplify the forecasting task, but also generate fabrication
outcomes at any time step during the process.
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3 Methods

Compared to the presented related work, we propose to use image inpainting
models to forecast the fabrication process with in-situ monitoring data. For that,
we first collect OT images during the printing process and derive a binary mask
that separates fabricated areas from missing ones. With the acquired data, we
train an image inpainting model to fill in the missing areas, which is equivalent
to forecasting the fabrication process.

3.1 Data Acquisition

Our monitoring and manufacturing setup is based on the work of Zenzinger
et al. [9]. We execute our printing jobs on a laboratory machine EOS M
290 in which a near-infrared (NIR) scientific complementary metal-oxide-
semiconductor (sCMOS) camera PCO.edge 5.5 is integrated. The camera’s field
of view covers the whole building platform, with a size of 250 x 250 mm. Due
to the limited camera exposure time of 2s, multiple heat signature images are
captured per layer throughout the continuous fabrication process. All thermal
radiation emitted during the exposure time of the camera from the melt pool
is aggregated into one heat signature image of the processing area. In fact,
each layer composes of multiple heat signature images, where the exact num-
ber depends on part geometry and printing parameter (e.g., scanning speed). A
photodiode was integrated into the machine setup to detect the printing start
and end of each layer, therefore enabling a clear separation of all images into
their corresponding layer number. Our whole setup is illustrated in Fig. 1.

With the presented machine and monitoring setup, we print ng = 5 differ-
ent geometries, provided by the DIN EN ISO/ASTM 52902 [10], with different
parameter combinations, depicted in Table 1. The selected geometries were a
linear test body (LA), a circular-shaped test body (CA_F), and three resolution
test bodies, one for holes (RH_F), one for slits (RS_F) and one for slit angles
(RSA_F). The parts were arranged on the building platform as described in
Fig. 3. Because the layer thickness is held constant, each geometry g consists of
a different number of total layers L.

3.2 Data Preprocessing

After capturing the OT image data, preprocessing steps are necessary to create
a dataset suitable for model training. First, we use manually drawn rectangular
bounding boxes, to crop image patches from the raw OT image data and after-
wards sort out image patches that do not contain any heat signatures. Grouping
all image patches based on part geometry g and part position p results in a
sequence of images X = {z()| t = 1...T}} for each layer I, with sequence
length 7;. By summing up all images of X pixelwise, we end up with an image
T = Ztll z(®) that captures the heat signature of a whole layer of one part.
Given an image x and its corresponding sequence X, we derive a binary mask
m® from (), which separates visible heat signature regions from missing ones.
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Fig. 1. LPBF experiment and monitoring setup, displayed (a) schematically with its
corresponding (b) real-world implementation at the Digital Additive Production chair
(DAP).

The mask is calculated according to Eq. (1) using Otsu thresholding O(-) [11], in
which [- < -] denotes a pixel-wise logical biconditional operator. Thus, forming
for each layer I equivalently to X' a sequence of masks M = {m®|t=1...T}}.

m! =[0(z) < O(z")]. (1)

We end up with a dataset D according to Eq. (2) of triplets containing, for
each layer [, part position p and part geometry g, a sequence of images X with
their corresponding sequence of masks M and a single image = that captures
the heat signature of the part’s cross-section. Example images with their corre-
sponding masks are illustrated in Fig. 2.

D={(XM2)gpil 1 <g<ng,1<p<my1 <1< Ly} (2)

3.3 Inpainting In-Situ Monitoring Data

Due to the sequential nature of the image capturing process, we rephrase the
fabrication forecasting problem as a prediction task of heat signatures z for
an arbitrary layer at time step 7 < T, given its subsequence of images X7 =
{e®] t = 1...7} C X. Because the overlap between each z(*) € X appears
only at the edges of its heat signature, we further reformulate the forecasting
problem as an image inpainting problem. That is, to fill in the missing regions
of x, = Z;l x| given its corresponding mask m,, which is similarly derived
according to Eq. (1), with time step 7 < T;. With z, and m, defined, we train an
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Fig. 2. Example images of dataset D, of part geometry CA_F are shown. The first 4
columns depict pairs from sequences X and M at different time steps ¢ and layer [.
The last column shows the complete heat signature x of each layer.

image inpainting model fy to predict an inpainted heat signature z, according
to Eq. (3).

&y = fo(xr,m,), for T <Tj. (3)

Model Architecture. With the fabrication forecasting problem defined, we
train a U-Net architecture with partial convolutions (PConvUnet) [12] to inpaint
missing regions of heat signatures. The authors of the model replaced the con-
volutional layers of a U-Net with partial convolutions. A partial convolution
operates like a regular one but is conditioned on a mask, so that the kernel
operation weights valid pixels higher.

Loss Functions. Besides the model architecture, the training of image inpaint-
ing models relies on the design of a loss function, which results in generated
images that cover plausible inpaintings and display sharp image quality features.
Consequently, we adopt the same approach of the original publication [12], where
the loss function is a weighted sum of different loss terms, each covering separate
image quality aspects of the generated image:
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Table 1. Printing parameters according to part position p, where the parameters
scanning speed v, laser power P and hatch distance Ay were varied. The layer thickness
D = 30 pm was kept constant for both prints. The volume energy distribution E, results
from the previous parameters.

v[mmsfl] P[W] | Ay[pm] Ev[J/mS]

p

1| 800 120 80 62.5
2| 600 200 70 158.7
3| 800 300 | 100 125

4| 800 200 40 208.3
5| 300 120 70 190.5
61000 120 150 26.7
7| 800 50 70 29.8
811500 120 80 33.3

1. The reconstruction loss enforces an accurate per-pixel reconstruction of the
generated image. This is done by calculating the mean absolute error of all
pixel values between the generated and the ground truth image.

2. Compared to the reconstruction loss on pixel level, the perceptual and style
loss uses a pretrained network ¢(+) to extract high-level features from the gen-
erated image & and the ground truth image x. This allows to calculate image
differences on a higher feature level. Compared to the original approach in
[12], we use a ResNet50 architecture from [13], that is pretrained on greyscale
images.

Finally, each weight of the sum is determined through a hyperparameter
search, which is described in our experimental setup in Sect. 4.1.

4 Experiments

4.1 Model Training Setup

After describing the model architecture and loss function, we present our two-
stage model training setup. First, we search for the best hyperparameter config-
uration that leads to the best-performing models, and second, we use the found
hyperparameters to train ten models with different random seeds to derive a
robust model performance evaluation.

Hyperparameter Tuning. During hyperparameter tuning, multiple trials are
executed in which one model is trained with a fixed set of hyperparameters
each. For each trial, the hyperparameter combination is sampled from a pre-
defined parameter range, and after each training run the model is evaluated
based on a predefined performance metric. For our experiments, we define our
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Fig. 3. The layout of part position within our printing setup. On the left side, the
building platform is depicted with its distinct n, = 8 part positions. On the right side,
a zoomed-in view of a part position p with its relative part geometry arrangement is
presented.

parameter ranges to be comparable to those proposed by the model’s authors.
However, because the loss function does not necessarily correlate perfectly with
image quality, we propose to use the HaarPSI (HPSI) [14] image quality metric
to evaluate the performance of our models. In their work, the authors show that
HPSI values fit well with human perception of image similarity. During tuning,
we use the early stopping strategy Asynchronous Successive Halving Algorithm
(ASHA) [15], which stops low performing runs early. We combine ASHA with a
Tree-structured Parzan estimator approach (TPE) [16] that learns a probability
distribution of the expected improvement of the model performance over the
hyperparameter space and thus increases sample efficiency of hyperparameter
combinations. We implement our whole training pipeline using the hyperparam-
eter tuning framework ray-tune [17].

Data Augmentation. In order to further augment the available training sam-
ples, we load images during training with reflection padding and random crop-
ping. Furthermore, we introduce an augmentation technique, that instead of
using z, adds up random subsequent z*) into one training instance z,.; accord-
ing to equation (4), where U(-,-) depicts a uniform distribution. By varying
the available information through this sampling method, we increase the data
variation during training.

=Y 2™, with i ~ U(1,7). (4)
t=1
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4.2 Results

Through our experiments, we first investigate the influence of part geometry g,
machine parameters represented by part position p and the amount of available
information represented by time step 7 on the inpainting performance measured
with image quality metric HPSI. Afterwards, we present samples of generated
images to qualitatively demonstrate the models’ prediction ability and limita-
tions.
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Fig. 4. In the pairwise matrix plot, part geometries are arranged column-wise and
machine parameter configuration p row-wise. For each part geometry and machine
parameter configuration, the frequency of HPSI values for generated images & over 7 is
displayed. For machine parameter configurations p > 5 the results were omitted, due to
the high scanning speed v, resulting in distributions similar to that of geometry RH_F.

In Fig. 4 we can observe that for all five printed geometries and the depicted
machine parameter configuration, an overall high HPSI score for the inpainted
samples can be achieved. A higher HPSI value corresponds to a better match
between & and z. Thus, indicating good image quality of the model prediction.
With the increase of available information, the inpainting task should become
easier. Our results confirm this assumption, that indeed with increasing 7, which
corresponds to the amount of available information, the probability of generating
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an image with high HPSI increases too. However, our results also show, that
images with low HPSI were generated, despite the high amount of available
information. This becomes especially relevant, for parts where one layer is printed
in a few time steps, like LA and RH_F, so that an accurate prediction should be
possible after one or two time steps t.

RSA_F

e Py 2

HPSI = 0.89 HPSI = 0.93 HPSI = 0.92 HPSI = 0.91 HPSI = 0.85

v

HPSI = 0.86 HPSI = 0.77 HPSI = 0.78 HPSI = 0.93 HPSI = 0.95

Fig.5. The top row depicts machine parameter configurations at position p = 3, and
the bottom row depicts position p = 5. One square tile consists of z, (top left), its
corresponding mask m. (top right), the cross-section heat signature x (bottom left)
and the predicted image % (bottom right). Other machine parameter configurations are
omitted due to low energy distribution levels and therefore low image contrast.

Besides an overview of the distribution of HPSI values across different geome-
tries and machine parameter configurations, we also show inpainting results with
their corresponding HPSI values in Fig. 5. The generated samples display accu-
rate heat signature levels, which can be visually confirmed by comparing the
greyscale values of x and Z. But under closer inspection, we observe that the
model inpaintings are limited by their degree of detailed features. Especially in
images, where bigger regions are missing (see Fig. 5 geometry CA_F and p = 5),
instead of detailed textures, the missing area was filled with an almost evenly
distributed grey value. This indicates that the model learned to average over all
possible solutions, instead of distinct detailed solutions. However, features like
slits that occur in part geometries like RSA_F and RS_F are accurately extended,
thus confirming that the model is capable of generating images with features of
a limited level.

5 Discussion and Conclusion

With our results, we demonstrated the inpainting performance of our model to
produce high-quality images with plausible heat signature levels and to some
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degree detailed feature continuity. High HPSI values of generated samples com-
pared to corresponding ground truth instances indicate high fabrication fore-
casting accuracy. However, with the illustrated limited level of detail in the
generated samples, small critical features like pores that cover a few pixels will
not be predictable. We conclude from our results, that further inpainting perfor-
mance improvements are required, by either adjusting the presented approach
or modifying the model architecture.

Although previous work of Gobert et al. [7] and Zhang et al. [8] already
applied generative models for LPBF in-situ OT monitoring data, their results
are only comparable on an image-based qualitative level. In both works, the
authors evaluate their models by manually comparing expected heat signature
features between prediction and ground truth. Likewise, we validated the per-
formance of our model through the continuity of slits, which arguably surpasses
the level of detail from generated images in previously reported results. Because
qualitative evaluations depend on the subjective opinion and domain expertise
of the evaluator, we additionally introduced the usage of HPSI as an image
quality metric to quantify our model performance. This not only enables bet-
ter comparability between results, but also provides a model hyperparameter
tuning objective. Although HPSI is reported to correlate with human percep-
tion, it remains up to debate, how to accurately measure fabrication forecasting
performance for LPBF processes.

Our contribution and the associated improvement in fabrication forecasting
enable more-profound decisions during process control. Although the presented
forecasting capabilities are limited to the same layer and regarding the feature
level of detail, they leverage the time dependant sequential property of the print-
ing process and monitoring setup, to predict future fabrication outcomes. Given
an accurate online forecasting model of the fabrication process, model-based
predictive control strategies could use these forecasting predictions to steer the
fabrication process towards a defect-free manufacturing result.
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