Skip to main content

Macrolides and Inflammatory Cells, Signaling, and Mediators

  • Chapter
  • First Online:
Macrolides as Immunomodulatory Agents

Part of the book series: Progress in Inflammation Research ((PIR,volume 92))

  • 120 Accesses

Abstract

Low-dose long-term macrolide therapy had a remarkable effect on the prognosis of diffuse panbronchiolitis and suppression of airway secretion and neutrophilic inflammation in this disease. Macrolides inhibit airway water secretion, mucin secretion, and mucus production. Macrolides also suppress neutrophilic infiltration through suppression of proinflammatory cytokines, chemokines, and adhesion molecules. However, macrolides do not appear to be immunosuppressive but rather immunomodulatory, to reset and normalize inflammation. In order to elucidate the mechanism of action of macrolides, the intracellular signal transduction mechanism has been investigated using animal models and cell lines, and in these models, it is important to inhibit mitogen-activated protein kinases and transcription factors such as NFκB. However, the effects of macrolides are widespread and diverse, as are their target proteins and receptors. Since macrolides affect lysosome, autophagy, and apoptosis, their affinity with the membranes that constitute the cell membrane and intracellular organelles attracts attention. This can explain many of the actions of macrolides, intracellular accumulation, and temporal transition of actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1829–32.

    Article  CAS  PubMed  Google Scholar 

  2. Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev. 2010;23(3):590–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tamaoki J, Isono K, Sakai N, Kanemura T, Konno K. Erythromycin inhibits cl secretion across canine tracheal epithelial cells. Eur Respir J. 1992;5(2):234–8.

    Article  CAS  PubMed  Google Scholar 

  4. Tamaoki J, Takeyama K, Tagaya E, Konno K. Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections. Antimicrob Agents Chemother. 1995;39(8):1688–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tamaoki J. The effects of macrolides on inflammaotry cells. Chest. 2004;125(2 Suppl):41S–50S.

    Article  CAS  PubMed  Google Scholar 

  6. Ikeda K, Wu D, Takasaka T. Inhibition of acetylcholine-evoked cl- currents by 14-membered macrolide antibiotics in isolated acinar cells of the Guinea pig nasal gland. Am J Respir Cell Mol Biol. 1995;13(4):449–54.

    Article  CAS  PubMed  Google Scholar 

  7. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322(5901):590–4.

    Article  CAS  PubMed  Google Scholar 

  8. Hara K, Kondo M, Tsuji M, Takeyama K, Tamaoki J. Clarithromycin suppresses IL-13-induced goblet cell metaplasia via the TMEM16A-dependent pathway in Guinea pig airway epithelial cells. Respir Investig. 2019;57(1):79–88.

    Article  PubMed  Google Scholar 

  9. Kondo M, Kanoh S, Tamaoki J, Shirakawa H, Miyazaki S, Nagai A. Erythromycin inhibits ATP-induced intracellular calcium responses in bovine tracheal epithelial cells. Am J Respir Cell Mol Biol. 1998;19(5):799–804.

    Article  CAS  PubMed  Google Scholar 

  10. Barker PM, Gillie DJ, Schechter MS, Rubin BK. Effect of macrolides on in vivo ion transport across cystic fibrosis nasal epithelium. Am J Respir Crit Care Med. 2005;171(8):868–71.

    Article  PubMed  Google Scholar 

  11. Tagaya E, Tamaoki J, Kondo M, Nagai A. Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion. Chest. 2002;122(1):213–8.

    Article  CAS  PubMed  Google Scholar 

  12. Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010;363(23):2233–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tamaoki J, Takeyama K, Yamawaki I, Kondo M, Konno K. Lipopolysaccharide-induced goblet cell hypersecretion in the Guinea pig trachea: inhibition by macrolides. Am J Physiol. 1997;272(1 Pt 1):L15–9.

    CAS  PubMed  Google Scholar 

  14. Takeyama K, Dabbagh K, Lee HM, Agustí C, Lausier JA, Ueki IF, et al. Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci U S A. 1999;96(6):3081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perrais M, Pigny P, Copin MC, Aubert JP, Van Seuningen I. Induction od MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF)nfamily is mediated by EGF receptor/Ras/Raf/extracellular signal-regulated kinase cascase and Sp1. J Biol Chem. 2002;277:32258–67.

    Article  CAS  PubMed  Google Scholar 

  16. Takeyama K, Tamaoki J, Kondo M, Aoshiba K, Nakata J, Isono K, et al. Effect of macrolide antibiotics on MUC5AC production on human bronchial epithelial cells. Jpn J Antibiot. 2001;54:52–4.

    PubMed  Google Scholar 

  17. Takeyama K, Dabbagh K, Jeong Shim J, Dao-Pick T, Ueki IF, Nadel JA. Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils. J Immunol. 2000;164(3):1546–52.

    Article  CAS  PubMed  Google Scholar 

  18. Kohri K, Ueki IF, Nadel JA. Neutrophil elastase induces mucin production by ligand-dependent epidermal growth factor receptor activation. Am J Physiol Lung Cell Mol Physiol. 2002;283(3):L531–40.

    Article  CAS  PubMed  Google Scholar 

  19. Kohri K, Ueki IF, Shim JJ, Burgel PR, Oh YM, Tam DC, et al. Pseudomonas aeruginosa induces MUC5AC production via epidermal growth factor receptor. Eur Respir J. 2002;20(5):1263–70.

    Article  CAS  PubMed  Google Scholar 

  20. Sakito O, Kadota J, Kohno S, Abe K, Shirai R, Hara K. Interleukin 1 beta, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: a potential mechanism of macrolide therapy. Respiration. 1996;63(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  21. Ou XM, Feng YL, Wen FQ, Wang K, Yang J, Deng ZP, et al. Macrolides attenuate mucus hypersecretion in rat airways through inactivation of NF-kappaB. Respirology. 2008;13(1):63–72.

    Article  PubMed  Google Scholar 

  22. Lin HC, Wang CH, Liu CY, Yu CT, Kuo HP. Erythromycin inhibits beta2-integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils. Respir Med. 2000;94(7):654–60.

    Article  CAS  PubMed  Google Scholar 

  23. Enomoto F, Andou I, Nagaoka I, Ichikawa G. Effect of new macrolides on the expression of adhesion molecules on neutrophils in chronic sinusitis. Auris Nasus Larynx. 2002;29(3):267–9.

    Article  PubMed  Google Scholar 

  24. Li Y, Azuma A, Takahashi S, Usuki J, Matsuda K, Aoyama A, et al. Fourteen-membered ring macrolides inhibit vascular cell adhesion molecule 1 messenger RNA induction and leukocyte migration: role in preventing lung injury and fibrosis in bleomycin-challenged mice. Chest. 2002;122(6):2137–45.

    Article  CAS  PubMed  Google Scholar 

  25. Sanz MJ, Nabah YN, Cerdá-Nicolás M, O'Connor JE, Issekutz AC, Cortijo J, et al. Erythromycin exerts in vivo anti-inflammatory activity downregulating cell adhesion molecule expression. Br J Pharmacol. 2005;144(2):190–201.

    Article  CAS  PubMed  Google Scholar 

  26. Sato E, Nelson DK, Koyama S, Hoyt JC, Robbins RA. Erythromycin modulates eosinophil chemotactic cytokine production by human lung fibroblasts in vitro. Antimicrob Agents Chemother. 2001;45(2):401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Konno S, Adachi M, Asano K, Okamoto K, Takahashi T. Anti-allergic activity of roxithromycin: inhibition of interleukin-5 production from mouse T lymphocytes. Life Sci. 1993;52(4):PL25–30.

    Article  CAS  PubMed  Google Scholar 

  28. Mann TS, Larcombe AN, Wang KCW, Shamsuddin D, Landwehr KR, Noble PB, et al. Azithromycin inhibits mucin secretion, mucous metaplasia, airway inflammation, and airways hyperresponsiveness in mice exposed to house dust mite extract. Am J Physiol Lung Cell Mol Physiol. 2022;322(5):L683–98.

    Article  CAS  PubMed  Google Scholar 

  29. Seemungal TA, Wilkinson TM, Hurst JR, Perera WR, Sapsford RJ, Wedzicha JA. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2008;178(11):1139–47.

    Article  CAS  PubMed  Google Scholar 

  30. Uzun S, Djamin RS, Kluytmans JA, Mulder PG, van’t Veer NE, Ermens AA, et al. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial. Lancet. Respir Med. 2014;2(5):361–8.

    CAS  Google Scholar 

  31. Suzuki T, Yamaya M, Sekizawa K, Hosoda M, Yamada N, Ishizuka S, et al. Erythromycin inhibits rhinovirus infection in cultured human tracheal epithelial cells. Am J Respir Crit Care Med. 2002;165(8):1113–8.

    Article  PubMed  Google Scholar 

  32. Yamaya M, Azuma A, Takizawa H, Kadota J, Tamaoki J, Kudoh S. Macrolide effects on the prevention of COPD exacerbations. Eur Respir J. 2012;40(2):485–94.

    Article  CAS  PubMed  Google Scholar 

  33. Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med. 2008;177(2):148–55.

    Article  CAS  PubMed  Google Scholar 

  34. Kanoh S, Tanabe T, Rubin BK. IL-13-induced MUC5AC production and goblet cell differentiation is steroid resistant in human airway cells. Clin Exp Allergy. 2011;41(12):1747–56.

    Article  CAS  PubMed  Google Scholar 

  35. Tanabe T, Kanoh S, Tsushima K, Yamazaki Y, Kubo K, Rubin BK. Clarithromycin inhibits interleukin-13-induced goblet cell hyperplasia in human airway cells. Am J Respir Cell Mol Biol. 2011;45(5):1075–83.

    Article  CAS  PubMed  Google Scholar 

  36. Nagashima A, Shinkai M, Shinoda M, Shimokawaji T, Kimura Y, Mishina K, et al. Clarithromycin suppresses Chloride Channel accessory 1 and inhibits Interleukin-13-induced goblet cell hyperplasia in human bronchial epithelial cells. Antimicrob Agents Chemother. 2016;60(11):6585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sala-Rabanal M, Yurtsever Z, Nichols CG, Brett TJ. Secreted CLCA1 modulates TMEM16A to activate ca(2+)-dependent chloride currents in human cells. elife. 2015;4:4.

    Article  Google Scholar 

  38. Gibson PG, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10095):659–68.

    Article  CAS  PubMed  Google Scholar 

  39. Shinkai M, Henke MO, Rubin BK. Macrolide antibiotics as immunomodulatory medications: proposed mechanisms of action. Pharmacol Ther. 2008;117(3):393–405.

    Article  CAS  PubMed  Google Scholar 

  40. Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Front Immunol. 2016;7:311.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang H, Qiu SL, Tang QY, Zhou X, Zhang JQ, He ZY, et al. Erythromycin suppresses neutrophil extracellular traps in smoking-related chronic pulmonary inflammation. Cell Death Dis. 2019;10(9):678.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Murphy BS, Sundareshan V, Cory TJ, Hayes D, Anstead MI, Feola DJ. Azithromycin alters macrophage phenotype. J Antimicrob Chemother. 2008;61(3):554–60.

    Article  CAS  PubMed  Google Scholar 

  43. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.

    Article  CAS  PubMed  Google Scholar 

  44. Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143(2):225–45.

    Article  CAS  PubMed  Google Scholar 

  45. Iwamoto S, Kumamoto T, Azuma E, Hirayama M, Ito M, Amano K, et al. The effect of azithromycin on the maturation and function of murine bone marrow-derived dendritic cells. Clin Exp Immunol. 2011;166(3):385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pollock J, Chalmers JD. The immunomodulatory effects of macrolide antibiotics in respiratory disease. Pulm Pharmacol Ther. 2021;71:102095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sugiyama K, Shirai R, Mukae H, Ishimoto H, Nagata T, Sakamoto N, et al. Differing effects of clarithromycin and azithromycin on cytokine production by murine dendritic cells. Clin Exp Immunol. 2007;147(3):540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Foulds G, Shepard RM, Johnson RB. The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother. 1990;25(Suppl A):73–82.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao DM, Xue HH, Chida K, Suda T, Oki Y, Kanai M, et al. Effect of erythromycin on ATP-induced intracellular calcium response in A549 cells. Am J Physiol Lung Cell Mol Physiol. 2000;278(4):L726–36.

    Article  CAS  PubMed  Google Scholar 

  50. Lu S, Liu H, Farley JM. Macrolide antibiotics inhibit mucus secretion and calcium entry in swine airway submucosal mucous gland cells. J Pharmacol Exp Ther. 2011;336(1):178–87.

    Article  CAS  PubMed  Google Scholar 

  51. Kase K, Hua J, Yokoi H, Ikeda K, Nagaoka I. Inhibitory action of roxithromycin on histamine release and prostaglandin D2 production from beta-defensin 2-stimulated mast cells. Int J Mol Med. 2009;23(3):337–40.

    CAS  PubMed  Google Scholar 

  52. Mitsuyama T, Hidaka K, Furuno T, Hara N. Neutrophil-induced endothelial cell damage: inhibition by a 14-membered ring macrolide through the action of nitric oxide. Int Arch Allergy Immunol. 1997;114(2):111–5.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–2.

    Article  CAS  PubMed  Google Scholar 

  54. Shinkai M, Foster GH, Rubin BK. Macrolide antibiotics modulate ERK phosphorylation and IL-8 and GM-CSF production by human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2006;290(1):L75–85.

    Article  CAS  PubMed  Google Scholar 

  55. Shinkai M, Tamaoki J, Kobayashi H, Kanoh S, Motoyoshi K, Kute T, et al. Clarithromycin delays progression of bronchial epithelial cells from G1 phase to S phase and delays cell growth via extracellular signal-regulated protein kinase suppression. Antimicrob Agents Chemother. 2006;50(5):1738–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Imamura Y, Yanagihara K, Mizuta Y, Seki M, Ohno H, Higashiyama Y, et al. Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-Oxododecanoyl) homoserine lactone in NCI-H292 cells. Antimicrob Agents Chemother. 2004;48(9):3457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsai WC, Rodriguez ML, Young KS, Deng JC, Thannickal VJ, Tateda K, et al. Azithromycin blocks neutrophil recruitment in pseudomonas endobronchial infection. Am J Respir Crit Care Med. 2004;170(12):1331–9.

    Article  PubMed  Google Scholar 

  58. Kaneko Y, Yanagihara K, Seki M, Kuroki M, Miyazaki Y, Hirakata Y, et al. Clarithromycin inhibits overproduction of muc5ac core protein in murine model of diffuse panbronchiolitis. Am J Physiol Lung Cell Mol Physiol. 2003;285(4):L847–53.

    Article  CAS  PubMed  Google Scholar 

  59. Bin YF, Ma N, Lu YX, Sun XJ, Liang Y, Bai J, et al. Erythromycin reverses cigarette smoke extract-induced corticosteroid insensitivity by inhibition of the JNK/c-Jun pathway. Free Radic Biol Med. 2020;152:494–503.

    Article  CAS  PubMed  Google Scholar 

  60. Desaki M, Takizawa H, Ohtoshi T, Kasama T, Kobayashi K, Sunazuka T, et al. Erythromycin suppresses nuclear factor-kappaB and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun. 2000;267(1):124–8.

    Article  CAS  PubMed  Google Scholar 

  61. Ichiyama T, Nishikawa M, Yoshitomi T, Hasegawa S, Matsubara T, Hayashi T, et al. Clarithromycin inhibits NF-kappaB activation in human peripheral blood mononuclear cells and pulmonary epithelial cells. Antimicrob Agents Chemother. 2001;45(1):44–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kikuchi T, Hagiwara K, Honda Y, Gomi K, Kobayashi T, Takahashi H, et al. Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors. J Antimicrob Chemother. 2002;49(5):745–55.

    Article  CAS  PubMed  Google Scholar 

  63. Aghai ZH, Kode A, Saslow JG, Nakhla T, Farhath S, Stahl GE, et al. Azithromycin suppresses activation of nuclear factor-kappa B and synthesis of pro-inflammatory cytokines in tracheal aspirate cells from premature infants. Pediatr Res. 2007;62(4):483–8.

    Article  CAS  PubMed  Google Scholar 

  64. Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P. Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells. Biochem Biophys Res Commun. 2006;350(4):977–82.

    Article  CAS  PubMed  Google Scholar 

  65. Araki N, Yanagihara K, Morinaga Y, Yamada K, Nakamura S, Yamada Y, et al. Azithromycin inhibits nontypeable Haemophilus influenzae-induced MUC5AC expression and secretion via inhibition of activator protein-1 in human airway epithelial cells. Eur J Pharmacol. 2010;644(1–3):209–14.

    Article  CAS  PubMed  Google Scholar 

  66. Bosnar M, Čužić S, Bošnjak B, Nujić K, Ergović G, Marjanović N, et al. Azithromycin inhibits macrophage interleukin-1β production through inhibition of activator protein-1 in lipopolysaccharide-induced murine pulmonary neutrophilia. Int Immunopharmacol. 2011;11(4):424–34.

    Article  CAS  PubMed  Google Scholar 

  67. Weng D, Wu Q, Chen XQ, Du YK, Chen T, Li H, et al. Azithromycin treats diffuse panbronchiolitis by targeting T cells via inhibition of mTOR pathway. Biomed Pharmacother. 2019;110:440–8.

    Article  CAS  PubMed  Google Scholar 

  68. Ratzinger F, Haslacher H, Poeppl W, Hoermann G, Kovarik JJ, Jutz S, et al. Azithromycin suppresses CD4(+) T-cell activation by direct modulation of mTOR activity. Sci Rep. 2014;4:7438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao X, Yu FQ, Huang XJ, Xu BY, Li YL, Zhao XY, et al. Azithromycin influences airway remodeling in asthma via the PI3K/Akt/MTOR/HIF-1α/VEGF pathway. J Biol Regul Homeost Agents. 2018;32(5):1079–88.

    CAS  PubMed  Google Scholar 

  70. Wang J, Xie L, Wang S, Lin J, Liang J, Xu J. Azithromycin promotes alternatively activated macrophage phenotype in systematic lupus erythematosus via PI3K/Akt signaling pathway. Cell Death Dis. 2018;9(11):1080.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sun X, Chen L, He Z. PI3K/Akt-Nrf2 and anti-inflammation effect of macrolides in chronic obstructive pulmonary disease. Curr Drug Metab. 2019;20(4):301–4.

    Article  CAS  PubMed  Google Scholar 

  72. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20.

    Article  CAS  PubMed  Google Scholar 

  73. Gualdoni GA, Lingscheid T, Schmetterer KG, Hennig A, Steinberger P, Zlabinger GJ. Azithromycin inhibits IL-1 secretion and non-canonical inflammasome activation. Sci Rep. 2015;5:12016.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Seys SF, Lokwani R, Simpson JL, Bullens DMA. New insights in neutrophilic asthma. Curr Opin Pulm Med. 2019;25(1):113–20.

    Article  CAS  PubMed  Google Scholar 

  75. Otsu K, Ishinaga H, Suzuki S, Sugawara A, Sunazuka T, Omura S, et al. Effects of a novel nonantibiotic macrolide, EM900, on cytokine and mucin gene expression in a human airway epithelial cell line. Pharmacology. 2011;88(5–6):327–32.

    Article  CAS  PubMed  Google Scholar 

  76. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ozsvari B, Nuttall JR, Sotgia F, Lisanti MP. Azithromycin and Roxithromycin define a new family of "senolytic" drugs that target senescent human fibroblasts. Aging (Albany NY). 2018;10(11):3294–307.

    Article  CAS  PubMed  Google Scholar 

  78. Chen X, Xu H, Hou J, Wang H, Zheng Y, Li H, et al. Epithelial cell senescence induces pulmonary fibrosis through Nanog-mediated fibroblast activation. Aging (Albany NY). 2019;12(1):242–59.

    Article  PubMed  Google Scholar 

  79. Fiorillo M, Tóth F, Sotgia F, Lisanti MP. Doxycycline, azithromycin and vitamin C (DAV): a potent combination therapy for targeting mitochondria and eradicating cancer stem cells (CSCs). Aging (Albany NY). 2019;11(8):2202–16.

    Article  CAS  PubMed  Google Scholar 

  80. Ballabio A, Bonifacino JS. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol. 2020;21(2):101–18.

    Article  CAS  PubMed  Google Scholar 

  81. Breiden B, Sandhoff K. Emerging mechanisms of drug-induced phospholipidosis. Biol Chem. 2019;401(1):31–46.

    Article  PubMed  Google Scholar 

  82. Randow F, Münz C. Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol. 2012;33(10):475–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Klionsky DJ. Autophagy participates in, well, just about everything. Cell Death Differ. 2020;27(3):831–2.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Stamatiou R, Paraskeva E, Boukas K, Gourgoulianis KI, Molyvdas PA, Hatziefthimiou AA. Azithromycin has an antiproliferative and autophagic effect on airway smooth muscle cells. Eur Respir J. 2009;34(3):721–30.

    Article  CAS  PubMed  Google Scholar 

  85. Renna M, Schaffner C, Brown K, Shang S, Tamayo MH, Hegyi K, et al. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J Clin Invest. 2011;121(9):3554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsubouchi K, Araya J, Minagawa S, Hara H, Ichikawa A, Saito N, et al. Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4. Autophagy. 2017;13(8):1420–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moriya S, Che XF, Komatsu S, Abe A, Kawaguchi T, Gotoh A, et al. Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells. Int J Oncol. 2013;42(5):1541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fimia GM, Piacentini M. Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci. 2010;67(10):1581–8.

    Article  CAS  PubMed  Google Scholar 

  89. Koch CC, Esteban DJ, Chin AC, Olson ME, Read RR, Ceri H, et al. Apoptosis, oxidative metabolism and interleukin-8 production in human neutrophils exposed to azithromycin: effects of Streptococcus pneumoniae. J Antimicrob Chemother. 2000;46(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  90. Reijnders TDY, Saris A, Schultz MJ, van der Poll T. Immunomodulation by macrolides: therapeutic potential for critical care. Lancet Respir Med. 2020;8(6):619–30.

    Article  CAS  PubMed  Google Scholar 

  91. Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ. Nonantimicrobial actions of macrolides: overview and perspectives for future development. Pharmacol Rev. 2021;73(4):233–62.

    Article  CAS  PubMed  Google Scholar 

  92. Gupta A, Ökesli-Armlovich A, Morgens D, Bassik MC. Khosla C A genome-wide analysis of targets of macrolide antibiotics in mammalian cells. J Biol Chem. 2020;295(7):2057–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuko Kondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kondo, M. (2024). Macrolides and Inflammatory Cells, Signaling, and Mediators. In: Rubin, B.K., Shinkai, M. (eds) Macrolides as Immunomodulatory Agents. Progress in Inflammation Research, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-031-42859-3_2

Download citation

Publish with us

Policies and ethics