Skip to main content

Mechanical Characterization of Decellularized Blood Vessels: A Valuable Tool to Provide Comprehensive Information About the Scaffold

  • Conference paper
  • First Online:
6th International Conference on Nanotechnologies and Biomedical Engineering (ICNBME 2023)

Abstract

Cardiovascular diseases (CVDs) remain an important global health problem. Surgical revascularization (or bypass surgery) has been established as the most optimal therapeutic approach for patients with severe injury; however, not in all cases a suitable vascular substitute can be identified. The field of vascular tissue engineering and regenerative medicine aim to produce suitable tissue-engineered vascular grafts (TEVGs) for vascular repair, replacement, or reconstructive aims. Decellularization (DC) is a promising approach because it completely removes the antigenic cellular components. The goal of the proposed study was to examine the mechanical integrity of the decellularized porcine carotid arteries (a prototype of small-diameter vascular grafts).

The developed DC procedure included osmotic shock, chemical surfactant treatment, and enzymatic digestion. Agree to other DC protocols reported previously, we were able to demonstrate, on the one hand, complete removal of cells throughout the arterial wall by performing H&E staining and DAPI, on the other hand, good biomechanical properties of decellularized tissue by performing the suture retention strength testing. The average suture retention strength of native porcine vessels was 1.08 ± 0.39 N. The average suture retention strength of decellularized vessels was 1.14 ± 0.38 N (p = 0.0731). In summary, the both control and treated vessels exhibited similar mechanical properties; the used combined method had beneficial effect in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong, V., Gada, S., Sing, M., Merna, N.: The development of small-caliber vascular grafts using human umbilical artery: an evaluation of methods. Tissue Eng. Part C Methods 29(1), 1–10 (2023). https://doi.org/10.1089/ten.TEC.2022.0144

    Article  Google Scholar 

  2. World Health Organization [Internet]. Cardiovascular diseases (CVDs). Key facts; 2017 May 17. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  3. Song, P., et al.: Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob. Health 8(7), e1020–e1030 (2019). https://doi.org/10.1016/S2214-109X(19)30255-4

  4. Fowkes, F.G.R., et al.: Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 9901(382), 1329–1340 (2013). https://doi.org/10.1016/S0140-6736(13)61249-0

  5. Kudo, T., Chandra, F.A., Kwun, W.H., Haas, B.T., Ahn, S.S.: Changing pattern of surgical revascularization for critical limb ischemia over 12 years: endovascular versus open bypass surgery. J Vasc Surg 44(2), 304–313 (2006). https://doi.org/10.1016/j.jvs.2006.03.040

    Article  Google Scholar 

  6. Li, J., et al.: Characterization of a heparinized decellularized scaffold and its effects on mechanical and structural properties. J Biomater Sci Polym Ed 31(8), 999–1023 (2020). https://doi.org/10.1080/09205063.2020.1736741

    Article  Google Scholar 

  7. Tong, Z., et al.: Effectiveness of distal arterial bypass with porcine decellularized vascular graft for treating diabetic lower limb ischemia. Int J Artif Organs 44(8), 580–586 (2021). https://doi.org/10.1177/0391398820980021

    Article  Google Scholar 

  8. Tsao, C.W., et al.: Heart disease and stroke statistics-2022 update: a report from the Am. Heart Assoc. Circul. 145, e153–e639 (2022). https://doi.org/10.1161/CIR.0000000000001052

  9. Naso, F., Gandaglia, A.: Different approaches to heart valve decellularization: a comprehensive overview of the past 30 years. Xenotransplantation 25, e12354 (2018). https://doi.org/10.1111/xen.12354

    Article  Google Scholar 

  10. Kostelnik, C.: Small-diameter artery decellularization: effects of anionic detergent concentration and treatment duration on porcine internal thoracic arteries. J. Biomed. Mater. Res. B. Appl. Biomater. 110(4), 885–897 (2022). https://doi.org/10.1002/jbm.b.34969

  11. Go, A., Mozaffarian, D., Roger, V.: Executive summary: heart disease and stroke statistics—2014 update: a report of the American heart association. Circulation 129, 399–410 (2014). https://doi.org/10.1161/01.cir.0000442015.53336.12

    Article  Google Scholar 

  12. Du, P., et al.: Improved hemocompatibility by modifying acellular blood vessels with bivalirudin and its biocompatibility evaluation. J. Biomed. Mater Res. A 110(3), 635–651 (2022). https://doi.org/10.1002/jbm.a.37316

    Article  Google Scholar 

  13. Bachleda, P., Kalinova, L., Utikal, P., Kolar, M., Hricova, K., Stosova, T.: Infected prosthetic dialysis arteriovenous grafts: a single dialysis center study. Surg. Infect. (Larchmt) 13(6), 366–370 (2012). https://doi.org/10.1089/sur.2011.041

    Article  Google Scholar 

  14. Weekes, A., Bartnikowski, N., Pinto, N., Jenkins, J., Meinert, C., Klein, T.J.: Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater. 15(138), 92–111 (2022). https://doi.org/10.1016/j.actbio.2021.11.012

    Article  Google Scholar 

  15. He, G.W.: Arterial grafts for coronary artery bypass grafting: Biological characteristics, functional classification, and clinical choice. Ann Thorac Surg 67(1), 277–284 (1999). https://doi.org/10.1016/s0003-4975(98)01207-7

    Article  Google Scholar 

  16. Nomi, M., Atala, A., Coppi, P.D., Soker, S.: Principals of neovascularization for tissue engineering. Mol. Aspects Med. 23(6), 463–483 (2002). https://doi.org/10.1016/s0098-2997(02)00008-0

    Article  Google Scholar 

  17. Gilpin, A., Yang, Y.: Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed. Res. Int. 2017, 1–13 (2017). https://doi.org/10.1155/2017/9831534

    Article  Google Scholar 

  18. Weinberg, C., Bell, E.: A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736), 397–400 (1986). https://doi.org/10.1126/science.2934816

    Article  Google Scholar 

  19. Liu, X., et al.: An innovative method to obtain porous porcine aorta scaffolds for tissue engineering. Artif. Organs 43(12), 1162–1169 (2019). https://doi.org/10.1111/aor.13519

    Article  Google Scholar 

  20. Devillard, C.D., Marquette, C.A.: Vascular tissue engineering: challenges and requirements for an ideal large scale blood vessel. Front. Bioeng. Biotechnol. 9, 721843 (2021). https://doi.org/10.3389/fbioe.2021.721843

    Article  Google Scholar 

  21. Cheng, J., et al.: Decellularization of porcine carotid arteries using low-concentration sodium dodecyl sulfate. Int. J. Artif. Organs 44(7), 497–508 (2021). https://doi.org/10.1177/0391398820975420

    Article  Google Scholar 

  22. Cai, Z., Gu, Y., Xiao, Y., Wang, C., Wang, Z.: Porcine carotid arteries decellularized with a suitable concentration combination of Triton X-100 and sodium dodecyl sulfate for tissue engineering vascular grafts. Cell Tissue Bank 22(2), 277–286 (2021). https://doi.org/10.1007/s10561-020-09876-7

    Article  Google Scholar 

  23. Moroni, F., Mirabella, T.: Decellularized matrices for cardiovascular tissue engineering. Am. J. Stem. Cells 3(1), 1–20 (2014)

    Google Scholar 

  24. Gilbert, T.W., Sellaro, T.L., Badylak, S.F.: Decellularization of tissues and organs. Biomaterials 27, 3675–3683 (2006). https://doi.org/10.1016/j.biomaterials.2006.02.014

    Article  Google Scholar 

  25. Rieder, E., et al.: Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 127(2), 399–405 (2004). https://doi.org/10.1016/j.jtcvs.2003.06.01

    Article  Google Scholar 

  26. Pu, L., et al.: Determining the optimal protocol for preparing an acellular scaffold of tissue engineered small-diameter blood vessels. J. Biomed. Mater. Res. - Part B Appl. Biomater. 106(2), 619–631 (2018). https://doi.org/10.1002/jbm.b.33827

    Article  Google Scholar 

  27. Weymann, A., et al.: Total aortic arch replacement: superior ventriculo-arterial coupling with decellularized allografts compared with conventional prostheses. PLoS ONE 9(7), e103588 (2014). https://doi.org/10.1371/journal.pone.0103588

    Article  Google Scholar 

  28. Li, D., et al.: Decellularized sheep internal carotid arteries as a tissue-engineered small-diameter vascular scaffold. Int. J. Clin. Exp. Med. 9(6), 9983–9991 (2016)

    Google Scholar 

  29. Malcova, T.: Morphological and biomechanical modifications in blood vessels decellularization [Ph.D. thesis]. Nicolae Testemitanu State University of Medicine and Pharmacy of the Republic of Moldova. Chisinau, Republic of Moldova (2023). (in print)

    Google Scholar 

  30. Kitsch, E.J.: Biomechanical and histological characterization of a decellularised pericardial mitral valve [Bachelor thesis]. Gottfried Wilhelm Leibniz Universität. NiedersächsischesZentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE). Hanover, Germany (2016)

    Google Scholar 

  31. Malcova, T., Nacu, V., Rojnoveanu, Gh., Andrée, B., Hilfiker, A.: Decelularizarea de success a aortei porcine pentru generarea scaffoldului acellular necesar în obținerea grefelor vasculare inginerești. Abstract Book. Conferința Științifică Anuală. Cercetarea în biomedicine și sănătate: calitate, excelență și performanță, 250 (2021)

    Google Scholar 

  32. Malcova, T., Nacu, V., Rojnoveanu, G., Andrée, B., Hilfiker, A.: Protocolul de decelularare a vaselor sanguine este dependent de diametrul acestora. Chirurgia (Bucur) 116(Suppl. 1), 118–119 (2021)

    Google Scholar 

  33. Xu, S., et al.: Preparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model. Biomed. Eng. Online 16(1), 1–15 (2017). https://doi.org/10.1186/s12938-017-0344-9

    Article  Google Scholar 

  34. Keane, T.J.,Swinehart, I.T., Badylak, S.F.: Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84, 25–34 (2015). https://doi.org/10.1016/j.ymeth.2015.03.005

  35. Badylak, S.F., Taylor, D., Uygun, K.: Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27–53 (2011). https://doi.org/10.1146/annurev-bioeng-071910-124743

    Article  Google Scholar 

  36. Ravi, S., Chaikof, E.L.: Biomaterials for vascular tissue engineering. Regen. Med. 5(1), 107 (2010). https://doi.org/10.2217/rme.09.77

    Article  Google Scholar 

  37. Williams, C., et al.: Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomater. 5, 993–1005 (2009). https://doi.org/10.1016/j.actbio.2008.11.028

    Article  Google Scholar 

  38. Fitzpatrick, J.C., Clark, P.M., Capaldi, F.M.: Effect of decellularization protocol on the mechanical behavior of porcine descending aorta. Int. J. Biomater. 2010, 620503 (2010). https://doi.org/10.1155/2010/620503

    Article  Google Scholar 

  39. Poornejad, N., et al.: The impact of decellularization agents on renal tissue extracellular matrix [published correction appears in J. Biomater. Appl. 32(4), 543 (2017)]. J. Biomater. Appl. 31(4), 521–533 (2016). https://doi.org/10.1177/0885328216656099

  40. Schmitt, A., et al.: Optimized protocol for whole organ decellularization. Eur. J. Med. Res. 22(1), 31 (2017). https://doi.org/10.1186/s40001-017-0272-y

  41. Wang, X., Chan, V., Corridon, P.R.: Decellularized blood vessel development: current state of-the-art and future directions. Front. BioengBiotechnol. 10, 951644 (2022). https://doi.org/10.3389/fbioe.2022.951644

    Article  Google Scholar 

  42. Crapo, P.M., Gilbert, T.W., Badylak, S.F.: An overview of tissue and whole organ decellularization processes. Biomaterials 32(12), 3233–3243 (2011). https://doi.org/10.1016/j.biomaterials.2011.01.057

    Article  Google Scholar 

  43. Tuan-Mu, H.Y., Yu, C.H., Hu, J.J.: On the decellularization of fresh or frozen human umbilical arteries: implications for small-diameter tissue engineered vascular grafts. Ann. Biomed. Eng. 42(6), 1305–1318 (2014). https://doi.org/10.1007/s10439-014-1000-1

    Article  Google Scholar 

  44. Boccafoschi, F., Botta, M., Fusaro, L., Copes, F., Ramella, M., Cannas, M.: Decellularized biological matrices: an interesting approach for cardiovascular tissue repair and regeneration. J. Tissue Eng. Regen. Med. 11(5), 1648–1657 (2017). https://doi.org/10.1002/term.2103

    Article  Google Scholar 

  45. Lin, C.H., et al.: Sonication-assisted method for decellularization of human umbilical artery for small-caliber vascular tissue engineering. Polymers 13(11), 1699 (2021). https://doi.org/10.3390/polym13111699

    Article  Google Scholar 

  46. Syed, O., Walters, N.J., Day, R.M., Kim, H.W., Knowles, J.C.: Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater 12(10), 5043–5054 (2014). https://doi.org/10.1016/j.actbio.2014.08.024

    Article  Google Scholar 

  47. Xing, Q., Yates, K., Tahtinen, M., Shearier, E., Qian, Z., Zhao, F.: Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Eng. Part C Methods 21, 77–87 (2015). https://doi.org/10.1089/ten.tec.2013.0666

    Article  Google Scholar 

  48. Pellegata, A.F., et al.: Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering. BioMed. Res. Int. 2013, 918753 (2013). https://doi.org/10.1155/2013/918753

    Article  Google Scholar 

  49. Abousleiman, R.I., Reyes, Y., McFetridge, P., Sikavitsas, V.: The human umbilical vein: a novel scaffold for musculoskeletal soft tissue regeneration. Artif. Organs 32(9), 735–742 (2008). https://doi.org/10.1111/j.1525-1594.2008.00598.x

    Article  Google Scholar 

  50. Naegeli, K.M., Kural, M.H., Li, Y., Wang, J., Hugentobler, E.A., Niklason, L.E.: Bioengineering human tissues and the future of vascular replacement. Circ. Res. 131(1), 109–126 (2022). https://doi.org/10.1161/CIRCRESAHA.121.319984

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by these grants: “NanoMedTwin – Promoting smart specialization at the Technical University of Moldova by developing the field of Novel Nanomaterials for BioMedical Applications through excellence in research and twinning” (810652) and “Nanoarhitecturi în bază de GaN și matrici tridimensionale din materiale biologice pentru aplicații în microfluidică și inginerie tisulară” (20.80009.5007.20).

We thank Dr. Phil. Andres Hilfiker, Dr. Rer. Nat. Birgit Andrée, and Dr. Phil. Sugat Ratna Tuladhar (MHH Hannover Medical School, Hannover, Germany) for assistance in conducting the research, doing the measurements, and valuable comments on experimental results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Malcova .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malcova, T., Rojnoveanu, G., Ciubotaru, A., Nacu, V. (2024). Mechanical Characterization of Decellularized Blood Vessels: A Valuable Tool to Provide Comprehensive Information About the Scaffold. In: Sontea, V., Tiginyanu, I., Railean, S. (eds) 6th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2023. IFMBE Proceedings, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-031-42775-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42775-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42774-9

  • Online ISBN: 978-3-031-42775-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics