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Abstract. The adoption of Extended Reality (XR) technologies for sup-
porting learning processes is an increasingly popular research topic for a
wide variety of domains, including medical education. Currently, within
this community, the metrics applied to quantify the potential impact
these technologies have on procedural knowledge acquisition are incon-
sistent. This paper proposes a practical definition of standard metrics
for the learning goals in the application of XR to surgical training. Their
value in the context of previous research in neurosurgical training is
also discussed. Objective metrics of performance include: spatial accu-
racy and precision, time-to-task completion, number of attempts. The
objective definition of what the learner’s aims are enables the creation
of comparable XR systems that track progress during training. The first
impact is to provide a community-wide metric of progress that allows
for consistent measurements. Furthermore, a measurable target opens
the possibility for automated performance assessments with constructive
feedback.
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1 Introduction

Surgical education is lengthy. It takes medical students from textbooks in the
classroom to performing surgeries on live patients. There are currently numerous
opportunities for surgical residents, i.e. doctors in training, to acquire nominal
knowledge on human anatomy and physiology by means of both analog and dig-
ital tools. Conversely, hands-on practice of operations tends to be limited prior
to the learner stepping into a real operating room (OR). In the traditional edu-
cational path, gaining the know-how about a specific operation happens directly
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in front of a live patient: residents start by observing a senior surgeon perform-
ing the operation, then they operate on their own while being under supervision
of an expert until they gain the independence to operate on their own. Before
entering the OR, opportunities for honing manual dexterity and hand-eye coor-
dination are rare and expensive. Residents might be able to gain access to animal
and/or human cadavers in a handful of occasions and with limited possibilities
for repeated training sessions. In this context, what is lacking is the possibility
for residents to quickly and independently assess their own performance after
a surgical simulation, as well as compare it with the performance of experts
or their own past performance, with the aim of analyzing their own learning
curve over time. In recent years, researchers in medicine and engineering have
come together to address this lack of resources for surgical practice by proposing
numerous novel tools and environments targeting residents as individual learners
who wish to hone their skills in a risk-free, controlled and accessible environment.

Table 1. Systematic review of metrics used in XR cranial neurosurgical training clas-
sified by educational setting. Based on [11].

Metric type Learning Practicing Skill assessment Total (freq.)

Space-time [10] [2,6,12,22,27] [1,3,8,16,18,19,24,25] 14 (54%)

Force [10] [6,22] [1,3,5,8,18,19,24,26] 11 (42%)

Outcome [4,10,14] [6,7,22,27] [1,3,5,8,16,19,21,24–26] 17 (65%)

Qualitative [13,17,20] [2,15,23] [16,26] 8 (31%)

The adoption of anatomically realistic phantom models, as well as of XR
technologies, such as augmented and virtual reality, are two of the most prolific
avenues of research from this perspective [9]. By combining virtual with real
imagery, and integrating it with accurate replicas of human anatomy, numer-
ous possibilities for interactive, realistic and adaptable simulation scenarios are
enabled. One of the greatest benefits of employing these accessible and easy-
to-develop emerging technologies is arguably the versatility of the resulting
learning environments to fit different types of surgical practices. Furthermore,
through sensors and automatic data collection, assessing simulation performance
improvements over time is greatly facilitated by modern applications. A conse-
quence of this research windfall is the need for common learning-measuring cri-
teria. To enable a full exploration of the versatility, scalability and accessibility
of newly developed XR tools for surgical education, there needs to be a common
set of metrics that quantify simulation performance as a measure of procedu-
ral knowledge acquisition and transfer. With widespread adoption of standard
performance metrics by the research community, it may be possible to compare
learning achievements both across different technologies and between different
actors, potentially distantly located and with varying degrees of expertise. In
the present paper, we propose a set of metrics for the assessment of outcomes
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in XR simulations of surgical operations, specifically in the field of cranial neu-
rosurgery. From this perspective, this narrower field of research comes with a
partially different set of challenges when compared to, for instance, spinal neu-
rosurgery, and, as we have previously shown, has so far been relatively uncharted
territory for educational XR technologies [11]. Nevertheless, our proposed set of
metrics can be applied to other types of surgery where procedural knowledge
acquisition and transfer involves precise and efficient hand-eye coordination and
manual dexterity.

2 Survey of the Domain of Practice

In a recent systematic review, we surveyed the adoption of XR technologies,
with varying degrees of augmentation, in cranial neurosurgical education [11].
There, we defined education as a combination of learning, practicing and skill
assessment, with the goal of acquiring the necessary knowledge to successfully
perform a surgical procedure. Table 1 highlights the variability in the metrics
considered among the 26 studies that measured user performance. Studies are
grouped by education type according to the definition above, while performance
metrics are arbitrarily categorized based on complexity, degree of aggregation
and collection method (automatic vs. non-automatic) into the following:

– Space-time metrics include time, position and orientation measures in the
surgical performance, i.e. kinematic measures that can be related to both
the surgical simulation as a whole or only part of it. Examples are time to
completion, instrument position, entry point location.

– Force metrics include measures of forces applied by test subjects onto the
instrument or onto the apparatus being used as a proxy for the patient (e.g.
a phantom). Examples are bandwidth, ratio and sum of the forces applied.

– Outcome metrics include frequencies and patterns of accuracy, errors, preci-
sion and consistency in the simulation. Metrics derived from comparisons with
the intended outcome or an existing benchmark are also included. Examples
are number of attempts, frequency of complications and success rate.

– Qualitative metrics include non-automatic evaluations made by experi-
menters or experts to evaluate surgical simulation performance, according
to either standard or arbitrary criteria. Examples are grades based on scales,
answers to questions and scores given to operative dictation.

As shown in Table 1, despite a broad arbitrary categorization of performance
metrics considered in the studies, there is no clear consensus on a common type
of metric. There appears to be notable variance in the frequency distribution of
the single metric categories considered here. The outcome category, while being
the most frequent (65%), still falls short of being labeled as “widely adopted”.
This is surprising, considering that simple measures of success, accuracy and
precision fall into this category. Possible reasons may be the nature and scale of
the research questions investigated, as well as the alternative adoption of more
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qualitative methods for assessing performance, i.e. the fourth category of met-
rics. In other words, not all the studies present data related to, for instance, time
to completion or distance to the target, because an approximate estimate of out-
come was performed by experts. This qualitative category, on the other hand, is
the least representative among the 26 studies (31%). It involves non-automatic
assessment from senior surgeons grading through validated forms, ensuring sys-
tematic scoring. Finally, quantity and variability of metrics also noticeably vary
between different types of education under scrutiny. In particular, while only a
handful of distinct “learning” studies employ performance metrics at all (n=7),
the “skill assessment” studies present considerably richer data (n=12). In the
latter case, more than one category of metric is often considered simultaneously.

3 PARENT Metrics for Objective Assessment

As previously discussed, one of the many benefits of adopting XR technolo-
gies in surgical education is their versatility and scalability in different settings.
By enabling asynchronous, distributed, and independent procedural knowl-
edge acquisition and transfer, the learning opportunities for a resident surgeon
increase compared to traditional education. Given the traditional co-located,
synchronous learning in this field, portable and relatively inexpensive XR tech-
nologies can thus complement training through automatically assessed perfor-
mance metrics. Such metrics need not be limited to low-dimension measures
of e.g. kinematics and forces; “advanced” computed metrics can also be con-
sidered, such that multiple “simple” ones can be aggregated into meaningful
indexes. Furthermore, the absence of a teacher during this mediated learning
experience entails that subjective evaluations of surgical performance are not
scalable in space and time. That is, the need for an expert surgeon assessing
and grading simulation performance is unwarranted by the ability for residents
to practice “anytime, anywhere”.

In order to propose a set of metrics that can reach consensus across multiple
domains of expertise, their usefulness should be balanced with their scalability.
While metrics that suit a specific surgical operation are effective in providing
the necessary data to inform reliable evaluations, this approach is very sensitive
to small variations in the learning scenario. This means that, for instance, the
total volume of tumor removed may be relevant in tumor resection tasks, but
not applicable at all in ventriculostomy tasks. On the other hand, metrics that
are too abstract for the scenario may fall short of being informative enough
for a learner aiming at assessing their own performance by comparing it to the
intended one (e.g. as performed by experts) or to their past performances. A
simple grade on an arbitrary and opaque A–F scale is an example: the grade
does not tell why the performance was graded as such or what the student may
have done correctly or not. The following proposed metrics should therefore act
as a concrete origin for the automatic collection and aggregation of relevant
performance indicators. If kept agnostic to the specific surgical procedure, they
can be robust enough to enable cross-domain comparisons, and sufficient for a
preliminary real-time assessment.
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– Precision of distances and angles: how close the measured values are to
each other, i.e. their variability across multiple simulation trials. This can
be inferred by calculating Euclidean and angular distances between surgical
instruments at equivalent time frames in two or more trials.

– Accuracy of distances and angles: how close the measured values are to the
intended (target) value, i.e. their correctness for each simulation trial, inferred
by comparing against benchmark baselines.

– Rate of success: ratio between the number of successful simulation trials and
total number of trials. It is complementary to the rate of error, the ratio
between the number of unsuccessful trials and total number of trials. A clear
definition of a threshold between success and error is warranted here.

– Errors of measurement : robustness of the hardware in measuring performance
indicators, expressed as the minimal detectable difference between two dis-
tinct observations over the range of values across all observations.

– Number of attempts: count of simulation trials. This metric needs a clear
definition distinguishing a re-start from a continuation of a previous attempt.

– Time to completion: total time elapsed between the start and the end of a
single simulation trial. A clear definition for procedure start and end, either
as a location in space and/or a moment in time, is warranted here.

4 Conclusions and Future Work

Growing research on XR technologies in neurosurgical training calls for consen-
sus one learning metrics. By observing current trends in the field and carefully
balancing scalability and efficacy, we have proposed six concrete metrics for
objective quantification of procedural knowledge acquisition and transfer. Con-
sensus over them and, ultimately, their adoption throughout the broader field of
surgical education will potentially enable more impactful research results that
are comparable across different application domains. In future research, these
metrics may afford rigorous and quantitative comparison between participant
populations, simulated procedures, and XR tools. For validation, we plan to
disseminate them in future workshops and surveying the research community.
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