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Abstract. We describe a fielded online tutoring system that learns
which of several candidate assistance actions (e.g., one of multiple hints)
to provide to students when they answer a practice question incorrectly.
The system learns, from large-scale data of prior students, which assis-
tance action to give for each of thousands of questions, to maximize
measures of student learning outcomes. Using data from over 190,000
students in an online Biology course, we quantify the impact of differ-
ent assistance actions for each question on a variety of outcomes (e.g.,
response correctness, practice completion), framing the machine learning
task as a multi-armed bandit problem. We study relationships among dif-
ferent measures of learning outcomes, leading us to design an algorithm
that for each question decides on the most suitable assistance policy
training objective to optimize central target measures. We evaluate the
trained policy for providing assistance actions, comparing it to a ran-
domized assistance policy in live use with over 20,000 students, showing
significant improvements resulting from the system’s ability to learn to
teach better based on data from earlier students in the course. We dis-
cuss our design process and challenges we faced when fielding data-driven
technology, providing insights to designers of future learning systems.

Keywords: intelligent tutoring systems · multi-armed bandits

1 Introduction

Intelligent tutoring systems (ITSs) are part of everyday life for millions of stu-
dents worldwide. ITSs promote accessible learning experiences that can narrow
the educational achievement gap [24] and that, in some cases, can be as effective
as human tutoring [13]. In their effort to create effective learning systems, ITS
designers are confronted with a plethora of design decisions ranging from spec-
ifying general instructional design principles [12] to the creation of individual
learning and practice materials. Designers rely on their domain expertise and
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consider effects of different design choices, but in many cases it is difficult to
predict which exact choice will benefit students the most [18], and often thou-
sands of design decisions have to be made on a case by case basis (e.g., which
exact hint is most effective for this specific question). In this context, the promise
of data-driven design approaches is that they can leverage system usage data to
evaluate the effects of different design choices inside the ITS on student learning
and can improve learning outcomes by refining the ITS automatically over time.

This work describes an online tutoring system that embraces a data-driven
design approach by using large-scale student data to learn which of several can-
didate assistance actions to provide to students after they answer a practice
questions incorrectly. We report results from a study–analysing data from over
190,000 students in a Biology course–evaluating the impact of individual assis-
tance actions and assistance policies on different measures of learning outcomes.
We discuss rationales behind our methodology and provide insights for the design
of future learning systems. The main contributions of this work include:

– Quantifying effects of assistance. We evaluate effects of over 7,000 individual
assistance actions on a variety of student learning outcome measures (e.g.,
practice completion). We study the relationship among different measures and
design an assistance policy training algorithm that for each question decides
on the most suitable policy training objective to optimize the student’s success
at the current question as well as their overall session performance.

– Offline policy optimization. We compute statistically significant estimates on
the effects of multi-armed bandit policies trained to optimize different learning
outcome measures. Studying assistance actions selected by these policies, we
find that there is no single best assistance type (e.g., hint, vocabulary).

– Live A/B evaluation. We evaluate the assistance policy trained using our algo-
rithm in comparison to a randomized assistance policy in live use with over
20,000 students. The system’s ability to learn to teach better using data from
prior students improves learning outcomes of future students significantly.

2 Related Work

2.1 Evaluating Treatment Effects Inside ITSs

Initially the effects of ITSs on student learning were evaluated at the system
level by comparing a group of students that uses the ITS to a control group
in a post-test [13]. Later research focuses on studying the effects of individual
instructional design choices [12] and conducts experiments with students that
interact with different configurations of the same learning system (e.g., [16,17]).
With the ever increasing popularity of online ITSs, large-scale student log data
becomes available, which enables investigating the effects of increasingly detailed
system design choices, up to the choice of individual practice questions and hints.

As part of this development, ASSISTments introduced AXIS [27], the E-
TRIALS TestBed [19] and the TeacherASSSIST system [20] to allow educa-
tors and researchers to create and evaluate the effectiveness of different prob-
lem sets and on-demand assistance materials. In the context of massive open
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online courses (MOOCs), DynamicProblem [28] was introduced as a proof-of-
concept system that supports bandit algorithms [14] to collect feedback from
students regarding the helpfulness of individual assistance materials. Relatedly,
the MOOClet framework [23] allows instructors to specify multiple versions of
educational resources and to evaluate them in A/B tests using randomization
and bandit algorithms. The UpGrade system [8] was introduced as a flexible A/B
testing framework designed for easy integration into various learning systems.

This work describes a fielded online tutoring system at CK12.org that learns
to provide effective assistance actions (e.g., choose one of multiple available hints)
to support students after they answer practice questions incorrectly. We use
offline evaluation techniques [15] to leverage log data capturing over 4,800,000
assistance requests from over 190,000 students in a Biology course. The unprece-
dented scale of this data enables us to compute statistically significant estimates
on the effects of individual assistance actions and assistance policies on differ-
ent measures of learning outcomes. We further evaluate the effectiveness of the
learned assistance policy in live use with over 20,000 students.

2.2 Data-Driven Assistance Policies

Here, we provide a concise overview of related research that uses data-driven
techniques to support students during the problem solving process via bandit
and reinforcement learning (RL) algorithms. For a comprehensive review on RL
in the education domain we refer to a survey by Doroudi et al. [6].

Barnes and Stamper [3] induced a Markov decision process (MDP) based on
hundreds of student solution paths and used RL to generate new hints inside a
logic ITS. Chi et al. [4] modeled a physics tutor via an MDP with 16 states and
learned a RL policy to improve student learning outcomes by deciding whether
to ask the student to reflect on a problem or to tell them additional information.
Georgila et al. [9] used Least-Squares Policy Iteration to learn a feedback policy
for an interpersonal skill training system using data describing over 500 features
from 72 participants. Ju et al. [10] identified critical pedagogical decisions based
on Q-value and reward function estimates derived from logs of 1,148 students
inside a probability ITS. Relatedly, Ausin et al. [1,2] explored Gaussian Process-
and inverse RL-based approaches to address the credit assignment problem inside
a logic ITS. A recent series of works [7,25,26] used a random policy to collect data
from 500 students in an operational command course and explored offline RL
techniques to learn adaptive scaffolding policies based on the ICAP framework.

A recent study by Prihar et al. [21] compared a multi-armed bandit algo-
rithm based on Thompson Sampling to a random assistance policy with respect
to their ability to increase students’ success on the next question. In a two-month
long experiment with 2,923 questions they find the bandit algorithm to be only
slightly more effective than the random policy and argue that this is due to
sample size limitations (on average 6.5 samples per action). In contrast, this
work accurately estimates the impact of individual actions on different measures
of learning outcomes by leveraging hundreds of samples per action (Table 1).
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Fig. 1. Example views from the concept Human Chromosomes. [Left] In the Lesson
section the student interacts with multi-modal learning materials. [Right] During Adap-
tive Practice the student develops and tests their understanding by answering practice
questions. In the shown example the system displays a paragraph with illustration to
assist the student before they reattempt the question after an initial incorrect response.

Further, in contrast to Prihar et al. [21], we quantify treatment effects by auto-
matically providing assistance in response to incorrect student responses which
avoids self-selection effects when assistance is only shown upon student request.

3 CK-12 FlexBook 2.0 System

The CK-12 Foundation is a non-profit organization that provides millions of
students worldwide with access to free educational resources. CK-12’s Flexbook
2.0 system1 is a web-based ITS that offers a large variety of courses for different
subjects and grade levels. Each course consists of a sequence of concepts. Each
concept has a Lesson section with learning materials and an Adaptive Practice
(AP) section where students can develop and test their understanding (Fig. 1).

The AP section features item response theory (IRT)-driven question sequenc-
ing and tries to select practice questions matching the student’s ability level
(Goldilocks principle [12]). After the system selects a question, the student can
request a hint before submitting a first response. If the first response is incor-
rect, the system provides immediate feedback by displaying one assistance action
(e.g., a hint or vocabulary) and the student reattempts the question. Afterwards,
the system uses the student’s first response to update the student’s ability esti-
mate and selects the next practice question. This process repeats until the stu-
dent completes the AP session successfully by achieving 10 correct responses or
until the question pool is exhausted in which case the student can try again.

This paper centers on the question of how we can employ data-driven tech-
niques to learn an assistance policy that selects the most effective assistance
action as feedback for each individual question. We focus on CK-12’s Biology for
High School course which is used by hundreds of thousands of students each year
and whose content has been developed and refined for over ten years. The course
covers hundreds of concepts and features over 12,000 questions corresponding
1 https://www.ck12.org.

https://www.ck12.org
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to five categories: multiple-choice, select-all-that-apply, fill-in-the-blank, short-
answer and true-false. The AP system associates each question with a set of
potential assistance actions. An exception are true-false questions which students
only attempt once. The average non-true-false question is associated with 4.8 dif-
ferent actions. Each action falls into one of six categories: hint, paragraph (short
text from lesson), vocabulary (keyword definitions), remove distractor (removes
multiple-choice/select-all-that-apply response option), first letter (shows initial
of fill-in-the-blank/short-answer solution) and no assistance (as baseline).

4 Methodology

4.1 Formal Problem Statement

We denote the set of practice questions inside the system as Q = {q1, . . . , qk}.
Each question q ∈ Q is associated with a set of nq assistance actions Aq =
{aq,1, . . . , aq,nq

} that the system can use to support students after their first
incorrect response. In this work, we approach the problem of learning one effec-
tive assistance policy for the entire practice system by learning one question-
specific multi-armed bandit policy πq for each practice question q ∈ Q. Dur-
ing deployment, πq responds to each assistance query for question q by select-
ing one assistance action aq ∈ Aq and in return receives a real-valued reward
rq ∈ IR which is assumed to be sampled from an action-specific and time-
invariant distribution Raq

with mean μaq
. The optimal question-specific assis-

tance policy π∗
q maximizes the expected reward by always selecting action

a∗
q = argmaxaq∈Aq

μaq
.

For us, multi-armed bandits are a framework that enables our system to auto-
matically make design decisions by learning from the observed behavior of earlier
students. It is difficult for experts to predict the most effective design ahead of
time [18] and the bandit framework enables the system to estimate the effects of
potential design choices using student data to refine the ITS automatically over
time. Section 6 discusses benefits and limitations of our bandit formulation.

4.2 Data Collection

This work focuses on an online high-school Biology course that has been in
continuous refinement for over ten years. Because of this, its content base features
multiple assistance actions for individual questions. This raises the question of
what type of assistance action is most effective for a particular question (e.g.,
should one provide hints or keyword definitions?). Even if the domain experts
decide on a specific type of assistance, it is still unclear what action from the
reduced action set is most effective (e.g., which exact hint should one show?).

To address these questions, we conduct an experiment to quantify the impact
of individual assistance actions on different measures of learning outcomes. Start-
ing from Aug 23rd, 2022, a randomized assistance policy was deployed. Each time
this policy is queried to provide assistance for a question q ∈ Q, it uniformly
(with same chance) chooses one action at random from the set Aq. An overview
of the data collected up to Jan 11th, 2023, is provided by Table 1.
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4.3 Measures of Learning Outcomes

One key question in this work is how to define a reward function that takes as
input information about a student practice session and that outputs a reward
value that quantifies the degree to which the assistance provided by the system
led to successful learning. This reward function is central as it serves as objective
during policy training and thus directly affects the experience of future students.

Table 1. Data collection overview. The Overall column shows statistics on the raw data
collected for all content in the Biology course. The Offline/Online Evaluation columns
show statistics on the data that went into the offline/online evaluation experiments.

Overall Offline Eval. Online Eval.

# of questions 12,496 1,336 4,521
# of assistance actions 36,354 7,707 11,406
# of concepts 470 166 166
# of students 191,554 164,516 27,268
# of practice sessions 1,274,072 1,007,850 62,464
# of student responses 20,425,691 17,081,054 953,185
# of shown actions 4,842,856 3,266,171 234,178
average correctness 63.3% 60.0% 61.1%
average completion 75.1% 77.1% 69.4%
collection period (days) 142 142 9

The designers of the practice system want to promote growth in student
knowledge as well as student engagement. Unfortunately, student knowledge and
engagement are both unobservable variables and the system is limited in that it
can only access data that describes the student’s observable interactions with the
website interface. Because of this, we compiled a list specifying different measures
of learning outcomes that can be computed from the observed log data:

– Reattempt correct : Binary indicator ({0, 1}) of whether the student is correct
on the reattempt directly after the assistance action.

– Student Ability : 3-Parameter item response theory (IRT)-based ability esti-
mate using all first attempt responses computed at end of session. IRT is a
logistic model that explains response correctness by fitting student- (ability)
and question-specific (difficulty, discrimination, guessing) parameters [5].

– Session success: Binary indicator ({0, 1}) of whether the student achieves 10
correct responses in the practice session.

– Future correct rate: Proportion of student’s correct responses on first attempts
on other practice questions following the assistance action.

– Next question correct : Binary indicator ({0, 1}) of whether the student is cor-
rect on the next question following the assistance action (used in [21]).
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– Future response time: Measures the student’s average response time on ques-
tions after an assistance action in seconds (individual question response time
values are capped at 60 s (95% percentile) to mitigate outliers).

– Student confidence: Tertiary indicator ({1, 2, 3}) of the student’s self-reported
confidence level at the end of the practice session.

In the experiments we study the relationships between these individual outcome
measures (Sect. 5.1) which leads us to defining our final reward function R as

R(s, q) = 0.4 · reattempt_correct(s, q) + 0.6 · student_ability(s). (1)

Here, s represents information about a student’s entire practice session and q
indicates the question for which the student received assistance. The reward
value is computed as a weighted sum that considers the student’s success at
reattempting question q as well as their overall practice session performance.

4.4 Offline Policy Optimization and Evaluation

Preprocessing. Before policy optimization and evaluation we perform the fol-
lowing preprocessing steps: (i) To avoid early dropouts, we only consider prac-
tice sessions in which students respond to at least five different questions. (ii)
To avoid memorization effects, we only consider each student’s first practice
attempt for each concept. (iii) To avoid confounding, we estimate the effects of
individual assistance actions using only practice sessions in which the student
did not request a hint before their first attempt. (iv) To achieve high confidence
in our effect estimates we focus on practice questions with at least 100 samples
per assistance action. As a result, we consider a set of 1,336 unique questions
from 166 concepts associated with 7,707 assistance actions and draw from over
3,200,000 assistance queries occurring in over 1,000,000 different practice sessions
(Table 1).

Optimization. To train and evaluate the effects of different assistance policies
without conducting repeated live experiments we rely on offline policy optimiza-
tion [15] and leverage log data collected by the randomized exploration policy.
First, we estimate the effectiveness of individual assistance actions by computing
the mean value for each learning outcome measure across all relevant practice
sessions. From there, our experiments study various multi-armed bandit policies
trained to optimize different outcome measures. In preliminary experiments,
we found that when using measures with high variance as training objectives
(i.e., student ability and session success), the conventional policy optimization
approach–that for each question selects the assistance action estimated to be
optimal–struggles to reliably identify actions that perform well in the evaluation
on separate test data. For the average question we found optimizing policies for
reattempt correctness–a measure with focus on a single question and thus lower
variance–to be the most effective way to also boost student ability and session
success due to its positive correlations to the other measures (Fig. 3 left).



390 R. Schmucker et al.

Still, for a sizeable number of questions the conventional approach yielded
better policies when directly optimizing for the measure of interest (Sect. 5.2).
These tended to be questions with more available data or with larger differ-
ences in the effects of individual assistance actions. This motivated the design
of a training algorithm that for each question automatically decides whether we
have sufficient data to optimize the measure of interest (e.g., reward) directly or
whether we should use the low variance reattempt correctness measure. We first
use the training data to identify the two actions that optimize the measure of
interest and reattempt correctness. We then conduct a one-sided Welch T-Test
to decide whether the former has a significantly larger effect on the measure of
interest than the reattempt correctness action and if not select the low variance
reattempt correctness measure as the question-specific training objective.

Evaluation. In the offline evaluation experiments we report mean performance
estimates derived from a 20 times repeated 5-fold cross validation. In each fold
80% of practice sessions are used for policy training and the remaining 20% are
used for testing. This process yields a statistically unbiased estimate of the bandit
policy’s performance as it simulates a series of interactions with different students
inside the system and avoids overfitting effects of sampling with replacement-
based approaches [15]. For the significance test we determine a suitable p-value
for each individual outcome measure by evaluating p ∈ {0.01, 0.02, . . . , 0.1} via
cross-validation. The final policy used in live A/B evaluation is trained using
data from all practice sessions and optimizes our reward function (Eq. 1).

5 Results

5.1 Assistance Action Evaluation

We estimate the effects of individual assistance actions on different measures of
learning outcomes by leveraging the student log data collected by the randomized
assistance policy (Sect. 4.2). One example of the results of this evaluation process
is provided by Fig. 2. It shows the question text, the set of available assistance
actions and estimates on how each action affects different outcome measures. We
can see how the paragraph that provides detailed information leads to the highest
reattempt correctness rate. In comparison, hint 1 leads to a lower reattempt
correctness, but conveys insights that improve overall session performance as
captured by the final student ability score. We can also identify actions that are
not helpful. For example, hint 2 and vocabulary both lead to worse outcomes
than showing no assistance. Overall, these estimates are very compelling for the
content creators, as they allow them to reflect on how the individual resources
they designed affect the student experience in different ways.

To study the relationships between the different learning outcome mea-
sures we analyse average within question correlations across the 1,336 questions
(Fig. 3). We focus on within question correlation instead of total correlation to
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be more robust towards effects caused by systematic differences between indi-
vidual questions (e.g., difficulty). We observe that reattempt correctness is most
correlated with the IRT-based student ability estimates (r = 0.27) and that it is
mostly uncorrelated with next question correctness (r = 0.04). This shows that
while assistance actions can improve students’ overall session performance, due
to differences between individual questions, it is not enough to focus only on the
next question. Matching our intuition, ability estimates correlate with session

Fig. 2. Example of assistance action evaluation for
one individual question.

success (r = 0.35), future
correctness (r = 0.64) and
next question correctness rates
(r = 0.36). This is because
these measures all consider
first attempt response correct-
ness. Student response time has
a low positive correlation to
student ability (r = 0.23)
and self-reported student con-
fidence shows very low correla-
tions with the other considered
measures.

Before moving on to train-
ing assistance policies we quan-
tify the degree to which we
can differentiate the effects of
assistance actions for individ-
ual questions based on the
available log data via analy-
sis of variance (ANOVA). Com-
pared to the bandit problem
which tries to identify the single
most effective action, ANOVA
focuses on the simpler question
of whether there are statisti-
cally significant differences in
mean effects between individ-
ual actions. For a p-value of
0.05 ANOVA rejects the null
hypothesis for reattempt cor-
rectness for 83.2% (n = 1, 111),
for student ability for 13.3%
(n = 178) and for session suc-
cess rate for 9.6% (n = 128)
of questions. We can explain
this by studying sample vari-
ance and the effect size gaps between the most and least effective assistance
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action for each outcome measure. By only focusing on the current question, reat-
tempt correctness exhibits on average across the 1,336 question a better ratio
between action effect gaps and sample variance (δ = 0.230, σ2 = 0.229) com-
pared to the student ability (δ = 0.302, σ2 = 3.665) and session completion rate
(δ = 0.042, σ2 = 0.085) measures which describe overall session performance.

5.2 Offline Policy Evaluation

While ANOVA finds significant differences in mean action effects on reattempt
correctness for most questions, it only detects differences on student ability and
session completion for a smaller subset of questions. For our offline policy eval-
uation process this suggests that it is difficult to reliably identify the optimal

Fig. 3. [Left] Average within question correlations between individual measures of
learning outcomes across 1, 336 questions. [Right] Pareto front visualizing the esti-
mated average performance of policies optimized to increase the final student ability
estimates (x-axis) and reattempt correctness rate (y-axis) across 178 questions. Each
bandit policy is marked with a number that indicates how it weights the two objectives.

Table 2. Offline evaluation of various policies across the 178 questions for which
ANOVA indicated significant differences (p < 0.05) in mean action effects on student
ability. The first two rows show no assistance and randomized policies as baselines. The
following four rows are bandit policies optimized directly for different outcome mea-
sures and the reward function. We report mean values and 95% confidence intervals.

policy/measure Reward Reatt. Cor. Stud. Abil. Sess. Succ.

no assistance 0.241 ±.064 0.433 ±.023 0.113 ±.106 0.801 ±.039
random 0.288 ±.067 0.501 ±.021 0.146 ±.109 0.806 ±.039
reattempt correct 0.419 ±.071 0.672 ±.020 0.250 ±.115 0.816 ±.038
student ability 0.442 ±.068 0.606 ±.025 0.332 ±.109 0.819 ±.038
session success 0.371 ±.068 0.573 ±.025 0.237 ±.109 0.817 ±.037
reward 0.454 ±.068 0.637 ±.023 0.332 ±.108 0.820 ±.038
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assistance actions for the latter two measures even when having access to hun-
dreds of samples per action. Indeed, in preliminary experiments we found that
action effect rankings based on training data often deviate from rankings based
on separate test data. For the average question we found training assistance
policies based on reattempt correctness estimates to be the most effective way
to boost all three outcome measures. This is due to its lower variance and the
fact that improvements in reattempt correctness are positively correlated with
improvements in student ability and session completion rates (Fig. 3 left).

Still, for 178 (13.3%) of the 1,366 questions ANOVA detected significant dif-
ferences in action effects on student ability which is a core measure of interest. To
study the relationship between reattempt correctness and student ability for these
178 questions, we train bandit policies for different objectives. Here, analog to
the reward function (Eq. 1), we assign each policy a weight w1 ∈ {0, 0.1, . . . , 1.0}
and compute its reward values by linearly weighting reattempt correctness with
w1 and student ability with 1− w1. We visualize the Pareto front defined by the
resulting policies (Fig. 3 right) and observe performance estimates that range
in reattempt correctness rates from 60.6% to 67.2% and in student ability from

Table 3. Offline evaluation of various policies across 1, 336 questions. The first two rows
show no assistance and randomized policies as baselines. The following four rows are
bandit policies optimized with our algorithm for different learning outcome measures
and the reward function. We report mean values and 95% confidence intervals.

policy/measure Reward Reatt. Cor Stud. Abil. Sess. Succ.

no assistance 0.218 ±.026 0.498 ±.008 0.032 ±.042 0.815 ±.014
random 0.255 ±.026 0.551 ±.007 0.058 ±.042 0.820 ±.013
reattempt correct 0.327 ±.026 0.666 ±.007 0.101 ±.043 0.827 ±.013
student ability 0.327 ±.026 0.660 ±.007 0.105 ±.043 0.827 ±.013
session success 0.326 ±.026 0.663 ±.007 0.101 ±.043 0.827 ±.013
reward 0.328 ±.026 0.664 ±.007 0.104 ±.043 0.827 ±.013

Table 4. Types of assistance actions selected by the multi-armed bandit policy learned
using our reward function for all 1,336 questions. The individual columns show how the
policy focuses on different types of assistance actions for different types of questions.

action/question Mult.-Choice All-That-Apply Fill-Blank Short-Answ.

no assistance 5.0% 7.3% 1.8% 3.4%
hint 11.4% 15.6% 6.6% 5.6%
paragraph 51.2% 43.1% 57.9% 55.1%
vocabulary 5.7% 16.5% 1.8% 3.4%
hide distractor 26.8% 17.4% - -
first letter - - 31.7% 32.6%
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0.250 to 0.332. All learned policies outperform the random policy significantly.
In collaboration with domain experts we select w1 = 0.4 as reward function to
train the assistance policy for live evaluation as it improves both measures sub-
stantially. Table 2 provides detailed performance statistics for policies trained to
optimize different outcome measures across the 178 questions.

To train an assistance policy for all 1,366 questions we designed an algorithm
that for each question decides whether we have sufficient data to optimize the
measure of interest (e.g., reward) directly or whether we should use the low
variance reattempt correctness measure (Sect. 4.4). Table 3 shows average per-
formance metrics across 1,336 questions for a policy that always selects the no
assistance action, the random policy, and four policies trained using our algo-
rithm to optimize reattempt correctness rates, student ability, successful session
completion rates, and reward function. The algorithm resolves the variance issue
and the trained policies enhance the student experience in different ways.

Lastly, we study for which types of questions the final policy offers which
types of assistance actions to maximize the reward objective. Table 4 shows for
each question type for what proportion of questions the policy finds a certain
assistance type to be most effective. We find that the policy utilizes a diverse
blend of different assistance types for each type of question and that paragraph
actions are selected most frequently overall. Because of this, we compare the
effects of a policy that always selects paragraph actions to the trained reward pol-
icy in an additional experiment. Across the 1,175 questions with paragraphs, we
find that the reward policy outperforms the paragraph policy in all outcome mea-
sures (reward: 0.336/0.299, reattempt correctness: 67.3%/61.5%, student abil-
ity: 0.112/0.089, session success: 84.0%/83.7%). Thus, the data-driven approach
benefits by selecting effective teaching actions on a question-by-question basis.

Table 5. Live policy evaluation. We randomly assign student practice sessions to the
randomized policy (n = 31, 527) and the learned bandit policy (n = 30, 937) condition,
track various outcome measures and report mean values and 95% confidence intervals.

policy/measure Reward Reatt. Cor. Stud. Abil. Sess. Succ.

random 0.753 ±.016 0.585 ±.004 0.866 ±.026 0.676 ±.005
bandit 0.881 ±.015 0.683 ±.004 1.013 ±.024 0.712 ±.005

5.3 Online Policy Evaluation

To evaluate the policy optimized using our training algorithm we compare its
ability to provide students with effective assistance actions to the randomized
assistance policy. For this a nine-day long A/B evaluation (Apr 5th to Apr 13th,
2023) was conducted in which practice sessions for the 166 studied concepts
were randomly assigned to the bandit and the randomized policy condition.
During this period we collected log data describing over 62,000 sessions from over
20,000 different students (Table 1). Even though the learned assistance policy
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implemented only 1,336 question-specific bandit policies, it was able to provide
learned actions for 87,721 (74.9%) of the 117,180 queries and only needed to
default to random action selection in 29,459 (25.1%) cases. This is because the
majority of incorrect responses occur on a smaller number of questions.

Table 5 reports average performance for the two different policies. The trained
assistance policy outperforms the randomized policy significantly in all out-
come measures, achieving on average a 9.8% improvement in reattempt correct-
ness rate and a 0.147 higher student ability estimate. The session success rate
improvement from 67.6% to 71.2% corresponds to a 11.1% reduction in sessions
in which students did not achieve the practice target. We note that in contrast
to the offline evaluation (Sect. 5.2) where we estimate effects based on individual
assistance queries, here we compute metrics based on the session level.

6 Discussion

The results show how the offline evaluation approach can leverage large-scale
student log data to quantify the impact of individual assistance actions (e.g.,
hints and keyword definitions) for each question on different measures of student
learning outcomes (e.g., reattempt correctness, practice completion). This allows
ITS designers to monitor and reflect on fine-grained design decisions inside the
system (e.g., which assistance action for which question) and enables a data-
driven design process in which the designers can specify a reward function to
train an assistance policy that promotes the desired student learning experience.
The live use evaluation confirms that this process provides the system with the
ability to learn to teach better automatically over time, by showing how the
actions selected by the learned multi-armed bandit policies lead to significant
improvements in learning outcomes compared to a randomized assistance policy.

By studying the assistance actions selected by our optimized policy (Fig. 4)
we observe that there is no single best type of assistance that is always most
effective. This emphasizes the importance of algorithms that can identify the
most effective teaching action for each individual practice question based on
observational data. Interestingly, the policy blends more informative (e.g., para-
graphs) with less informative assistance actions (e.g., hints) and decides for some
questions to provide no additional help at all. This indicates a trade-off between
giving and withholding information during the learning process which is a phe-
noma that has been described as assistance dilemma in prior research [11].

Our methodology combines multi-armed bandit and offline policy evaluation
techniques [15] with large-scale student log data to compute high confidence esti-
mates on the effects of individual assistance actions. One inherent property of
our multi-armed bandit formulation of the problem is that it focuses on selecting
the teaching action that is most effective for the average student and does not
attempt to provide assistance conditioned on the individual student, and does
not capture synergies that could occur when certain combinations of assistance
actions are shown to a student in the same practice session. While a reinforce-
ment learning approach could be used to address both of these shortcomings, the
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volume of training data required for such an approach would increase dramati-
cally, and it would be much harder to compute statistically significant estimates
on the effects of individual policies before deployment. We will explore the poten-
tial of personalized assistance policies via contextual bandit and reinforcement
learning algorithms [7,22] in future work. Another future direction is the integra-
tion of online bandit algorithms [14] into the current system to keep enhancing
the assistance policies by adaptively sampling individual actions based on evolv-
ing effect estimates in live deployment. Adaptive sampling is of particular interest
to us as the pool of questions and assistance actions is continuously refined.

7 Conclusion

In this paper we discussed a large-scale online tutoring system that uses student
log data to learn which of several candidate assistance actions (e.g., hints and
paragraphs) to provide to students when they answer a particular practice ques-
tion incorrectly. We used offline policy evaluation to leverage data from over
1,000,000 student practice sessions to evaluate the effects of individual assis-
tance actions and multi-armed bandit policies on various measures of learning
outcomes. We studied relationships among outcome measures and designed an
algorithm to train an assistance policy that optimizes the student’s success at
answering the current question, as well as their overall practice session perfor-
mance. In a live evaluation with over 20,000 students we compared the trained
assistance policy to a randomized assistance policy finding that the system’s
ability to learn to select more effective teaching actions automatically over time
enables significant improvements in learning outcomes of future students. The
trained policy now supports thousands of students practicing Biology each day.
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