
Unit 3 Lesson: Using Reaction Time
and Mixed Models

Christer Johansson and Per Olav Folgerø

This lesson will introduce some concepts related to empirical studies and statisti-
cal evaluation. The focus is on evaluating a specified model with controlled fixed
factors and several control variables in the context that we have one continuous
dependent variable, such as reaction time.

It should be noted that it is important to clearly state the expectations before
collecting data and that we assume a null hypothesis of no difference for our
fixed factors. If we observe a significant difference for any of our fixed factors
the difference can be explained in many ways, but a first assumption is that
we can take a gamble and claim that there is a real difference, given that the
probability of observing a difference by random chance is appropriately small. If
there is a real difference this real difference may warrant an explanation, or at
least an interpretation.

One general explanation for faster reaction times, associated with a factor, is
that somehow the mental processing leading up to the decision to press a button,
for our subjects, is easier. We may then talk about facilitation, or priming, i.e.,
that the processing was prepared, for example if there is evidence that information
was presented before the decision that made the decision more fluent, and thus eas-
ier and faster. We would like that accuracy is unaffected, or at least equally good,
so that the results are not simply due to a tradeoff between speed and accuracy.

Similarly, the experimental paradigm might predict interference when a deci-
sion is taken based on competing resources drawing on similar resources. For
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example, if there is a choice between two items, the more conflict or the closer the
items are, the harder it is to take a decision. However, people can have different
preferences in such situations. One possible strategy for making close decisions
could be that if two items are equal, it matters less which choice is made, both
are good, or both are bad. This could be observed in a tendency to make a default
choice, such as pressing the most frequent choice, or pressing the right hand side
button, for right handed people.

It is not always possible to determine what the correct decision was or was
supposed to be. In those cases, we may want supporting evidence, for example
showing relevant correlations with other factors, for example features of the input,
and showing that those correlations are not random. Argumentation is needed,
and the formal results are typically not clearly associated with one and only one
possible interpretation.

We are often interested in the intuitive fast decisions that people make given
the available information, possibly in situations where the difficulty of the choice
is varied. Ideally, we would like to exhaustively contrast the possibilities, but we
should recognize that this is not always possible, for example because time is
limited.

The dependent variable is typically a measurement that we want to explain by,
or relate to, fixed independent variables that we can control and vary within the
experiment. We are interested in the degree that we can influence the dependent
variable by changing the value of our fixed variables in a principled way. We need
the dependent variable to be a preferentially continuous variable on an interval
scale, which means that we know that a change of one unit is worth the same
wherever we are. One example is reaction time. One millisecond is the same time
interval wherever we are on the scale, and wherever we are in the world. If the
measurement also includes an absolute zero, meaning that 0 means absolutely
nothing of whatever we measure we may also say something about proportions.
The reaction times were twice as long, assume that there is such a thing as an
absence of reaction time, simultaneous reaction to stimulus. However, it takes time
from the presentation of the stimulus to the decision and the reaction. The real
starting point is thus sometime after the stimulus has been presented, depending
on how long it takes to perceive the stimulus. In real life, human reaction times
cannot realistically be much smaller than 200ms, as it takes time to process that
which we should react to, and it takes time to send the signal from our brain to
the finger to activate the muscle that should press the button.

The independent variables are the variables that we manipulate, or control, to
affect the dependent variable. These are the fixed effects that we want to investi-
gate. Fixed effects have a limited and exhaustive number of levels, and ideally, we
should have included all those in our experiment. Example of a condition related
to a fixed variable is if the target stimulus that we should react to is primed or
not. Generally, we like conditions to be two levels, either primed or not primed, as
it is easier to interpret the statistical model if this is the case. In the experimental
design, we like to balance the conditions we are interested in, for example such
that we have an equal number of primed and unprimed events. In this case, the
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unprimed is our baseline, and in the analysis, we could name the levels such that
the baseline is included in the intercept, i.e., in the starting point of our regression
equation.

The control variables are variables that we know, or suspect will affect the
dependent variable, but these variables are not necessarily planned factors that we
are interested in. Since they affect the dependent variable, without being a properly
controlled independent variable (a fixed effect), we would like to regress out their
effect. Examples of such variables are the learning effect, the effect of hesitation,
the effect of making an error in the previous event, the effect of exceptionally
slow or fast responses (positive and negative outliers), and the effect of having
such an outlier in the previous response. Other examples are to control for the
exact onset time of the stimuli we are interested in and to control the linear distance
between say a prime and a target. A prime is an item that is presented before the
target and is thought to affect the response to the target. The prime and the target
could be placed at slightly different distances. With continuous temporal stimuli,
like a speech signal, we can measure the time between the onset of the prime and
the target. In a discrete design, it could be the number of items (typically written
words) between them. Those effects could also be related to the conditions we are
interested in. For example, it could be that the learning effect is larger for one
of the conditions. This can be controlled by adding the estimation of a slope for
each condition. A slope is the change in the response that depends on the condition
compared to a baseline.

The aim of the model is to explain as much of the variance in the data as
possible. Our tool for creating such models is linear regression, and mixed effects
models with random effects in particular. In a linear regression, we try to estimate
a baseline, the intercept, and estimate the change that our variables will have.
For example, what is the effect of seeing a prime word compared to no prime
word? The learning effect, and such control variables, can be fitted regression
lines that depend on a numerical value to calculate the effect on the response
variable, i.e., the dependent variable. Once the regression line is fitted it accounts
for some variance, and thus the estimates for the controlled fixed effects will become
more precise, as the effect of the control variables has been accounted for. In real
experiments, there will be correlations between the variables that can be difficult
to entangle, but the model makes a principled attempt at separating the sources of
variance in the data.

There obviously need to be fairly large amounts of data, to estimate the effects
of all the included variables. The restriction to a linear model helps. Linear equa-
tions have the property that adding the estimation of a factor (i.e., adding the
estimation of a line) will result in a new linear equation, which can be solved if
there is enough independent data.

Thus, to be able to estimate a line, for each subject, we need at least two points.
It is a problem that subjects may have no responses which could potentially make
it impossible to estimate lines. Therefore, we need to have more data points from
each condition. A common rule of thumb is to have at least four data points in
each of the conditions. For example, if we have a 2 by 2 design (say, two levels
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of prime and two levels of targets), we minimally need 4*2*2 (i.e., 16) balanced
data points from each subject. Ideally, we aim for an equal number of data points
in each condition, so to keep the balance in this example, increments will be in
steps of four (2 by 2).

The data should ideally be balanced for other factors too, for example if we plan
to use gender as an explanatory factor, we will need roughly the same number of
each gender in our sample of subjects. Another common rule of thumb is that we
need at least a thousand data points in total, assuming a small number of fixed
effects. From this we can estimate the number of subjects needed in our study. If
we increase the number of data points per subject, we will be able to better control
the influence of individual variance, and if we do this by including more diverse
test items, we will also better control the variance that is due to test items. In our
example, the minimal number of subjects would thus be 64, as 1000 / 16 = 62.4,
and if we balanced the genders we would need 32 of each gender. Here, we ignore
the problems that arise from balancing the gender that the subjects might identify
with. Some of that problem is handled by including a random factor for individual
variance, rather than expanding the gender variable.

We need to consider howmuch data we can collect from each subject. In reaction
time experiments, we can expect a subject to be concentrated for up to 20 minutes,
and allowing 10 seconds for each test item (including presentation and reaction)
would set a limit of 120 items per subject. Your experiment may have different
demands. In the example, this would allow for 30 test items in a total of four
conditions. Following the logic above, this would mean that minimally we need
10 subjects with 120 data points from each subject (1000 / 120 = 8.33, and the
nearest higher even number is 10).

It is recommended to sample more than the minimum and to balance subject
and item demands. If we go for 20 subjects and 16 test items in four conditions,
we end up with 1280 data points in total, which is close to the minimal demand.
We should also anticipate that not all subjects can be included. We may expect
between 5 and 10 percent of the subjects to be excluded as outliers. That would
mean adding 2 extra subjects to compensate. However, recall that if for some
reason more outliers are detected we will get an underpowered study. If possible,
we should add at least 25 percent of subjects, which will result in 20 + 5 subjects.
Recall that it is difficult to add more items, as that would likely exceed the limit for
fatigue in the subjects. If we discover that the planned number of subjects is too
large to be realistic, we might consider repeating the study to sample more data
from the same subjects. This might also allow us to test for the effect of repeating
the study. In a longitudinal study, there is always a risk that the subjects will not
return to the second session.

Ideally, we would like our study to generalize to the full population. However,
this would mean that we would need to actively include a balanced sample from
all the relevant sub-populations. A common choice is therefore to focus on a sub-
population. This sub-population is typically a convenience sample. At a university,
students between 18 and 32 might be a convenient sample. This limits generaliza-
tion, but it also helps to control variance. University students are a pre-selected
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sample and may represent not only the young in the population, but also those
with an interest in study and related to that better reading ability, and possibly bet-
ter working memory capacity and reasoning skills. This may also result in better
compliance with instructions. If the subjects in turn may help with recruiting new
subjects, we may talk about a snowball sample approach. This can be actively
used to test the effects of social networks, but often the recruiting strategy is just
reported in the resulting article and is up to the external reviewers to evaluate if
it is a reasonable choice. There is no such thing as an optimal research design,
and limits on available resources are often an important part of the research. This
will also allow other researchers to repeat the research under similar or other con-
ditions. The proof of the pudding is in the tasting, and for experiments we are
interested in how much variance is explained and in how easy it is to repeat the
results. In that process, we will find out more details, and some of those details
may be more important than the original study.

A last point, before moving on to another example. A laboratory-controlled
experiment may often be unnatural, which in turn may affect the relevance of the
study. For example, we may focus on reaction time for decision tasks, but such
tasks might be only weakly related to the phenomena we study. Sometimes it is
argued that ecological validity should be valued as well. That is, how well the
task matches with what people are doing in the wild, outside of the laboratory.
Control and ecological validity are often in opposition, but ecological validity is
not only about bad control of variables, but also about allowing other sources of
variance to estimate the true variance more closely. Ideally, different experiments
may complement each other, or at least raise important and interesting questions.

Let us investigate a potential experiment, comparing faces in a hot-or-not con-
test, except that we will ask participants to pick the face that is either more
attractive or separately the face that is more trustworthy. The faces are constructed
from real faces morphed with a Jesus prototype. Each face can be labeled for the
male or female substrate. Will people be able to detect which faces are male and
which are female? Will the results be different between the attractiveness condi-
tion and the trustworthy condition. The dependent variable is the reaction time,
i.e., the time it takes to make a choice.

Each face has slightly different facial features that can be measured in the pic-
tures. We will look at features that indicate left/right symmetry in the face, the
eyes, and the mouth. There is well-known research (the so-called Thatcher effect)
that established that we typically judge eyes and mouth separately. We will also
look at features such as how wide the eyes are apart, and how wide the mouth is.
Furthermore, we will look at the proportion of the face in the vertical direction:
how large is the forehead, the mid-section, and the chin. These measurements will
be continuous measurements of proportions, which makes them scale-free, i.e.,
there is no measurement unit just proportions that can be compared regardless of
how large the face is. All faces will be approximately the same size as they are
presented on screen.
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Fig. 1 Female and male competition: Attractiveness (female winner left, male winner right)

We will control the order of presentation. We expect the participants to make
increasingly faster decisions as they get more familiar with the task. This learn-
ing effect can be handled by regression analysis, after we have made the order
of presentation explicit in our data. The typical experimental program will give
the order of presentation implicitly but will not create a variable for the order of
presentation.

We will use the gender of the two pictures presented in pairs on the screen.
The competition could be female–male (two directions), female–female, and male–
male. This may interact with the gender of the selected picture, and the gender of
the subject.

It might also interact with the gender preferences of the participants. This will
be handled as a random effect that may explain more variance.

An example is given below (Figs. 1 and 2). Would you pick the same in each
pair if it was a choice of attractiveness or a choice of trust? Can you identify the
male and female substrates?

A Model of Face Proportions

The line K–L is the baseline for the horizontal dimension. This reference line is
found by estimating the position of the zygomaticus bone, using information also
from the ear lobes and the nose tip. The line G–H is the baseline in the vertical
direction. This line is estimated from the highest point of the forehead to the lowest
point of the chin, following the nose and through the philtrum. The point I is on
the G_L and is the reference point for eye symmetry. The point J is similarly the
reference point for mouth symmetry.
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Fig. 2 Female and male competition: Trustworthiness (female winner left, male winner right)

The forehead is estimated by the area of triangle CGD compared to the larger
triangle KGD.

The chin is estimated by the area of the triangle EHF similarly compared to
KGD.

The mid-section is estimated by the area of the polygon KCDL compared to
the larger polygon KGLH. Furthermore, the slant of the eyeline is estimated as the
lower angle between CD and GH, and similarly for the slant of the mouth line, as
marked in Fig. 3.

The face’s right side is estimated by the area of the triangle GKH, and its left
side is by GLH.

If GKH divided by GLH is larger than 1 the face’s right side is larger, if smaller
than one its left side is larger, and perfect symmetry is at a ratio of 1.

To visualize multi-factorial data of the same kind (e.g., proportions) we can
use Correspondence Analysis (CA), cf. Glynn, 2014. This is just to mention the
possibility. CA often gives a quick and intuitive overview of a dataset, as it projects
a multitude of factors into a 2D plane. The points that are closer to the origin (0,0)
are more as expected. The further from the origin the more distinct, and points that
are close are more similar, but we should also value the angle of the line toward
the origin. Points that are both close and have close angles are more the same.
The axes of the CA graph are often possible to interpret, using the most extreme
points along the x and y axes. In Fig. 4 we see an association from mouth width
to mouth symmetry along the x axis, and from eye width (and proportion of mid-
section, associated with eyes) to eye symmetry along the y axis. This has been
detected by the algorithm from a limited set of investigated faces (marked in red,
row points) and their anatomical proportions (marked in blue, anatomical column
points). The clusters indicate prototypical faces (female (F#), male (MP#), human
(H#)), Romanian Faces (X#), Men (M#), and Women(W#).
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Fig. 3 Face proportions

Outlier Analysis

There are typically three types of outliers. The first is an analysis of the perfor-
mance of the subjects. The subjects could solve the task differently. Given that
there is a task that could be evaluated to be correct or not, it is possible to see if a
subject has chosen more of the “incorrect” than other participants. One way to do
this is to perform an association analysis. This is based on a cross-table analysis
of the distribution of correct and incorrect answers for each subject. In each of the
cells it is possible to calculate the Pearson residual (proportional to the contribu-
tion toward significance, cf. Cohen, 1980; Friendly, 1992) and the support in that
cell, which is proportional to the number of observations in that cell. This type of
analysis may objectively reveal if some subjects have solved the task in a differ-
ent manner than other subjects. We do not know if their way of solving the task
is better or worse, but we do know that it is likely to be different. For example,
some subjects might always choose one of the decision buttons (for example, the
left one). For some tasks it is not possible to know which decision is correct, but
we may still see if the participants give similar answers and figure out if some of
the participants have solved the task using some unintended strategy. We may also
analyze the reaction times of each participant. Some people are faster than others,
and this can be handled by having different intercepts (starting points) for each
subject. However, it could also be that some subjects are faster because they solve
the task in a different way, for example always pressing one of the buttons. In the
analysis, we should pay attention to both the trend (e.g., the average time) and the
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Fig. 4 CA map

variance (standard deviation). A significantly lower standard deviation may be an
indicator, especially if this is combined with a low performance on the accuracy
of the task. A significantly higher standard deviation might be an indicator that the
subject has been unsure of the task or possibly been inattentive. It could also be
that they have a stronger reaction, and this might be interesting.

In the item analysis, we are interested in the representativeness of our test items,
i.e., the items that the participants are supposed to react to. Some items may be
more interesting, or easier or harder to process, etc. This could be handled by
different intercepts (starting points) for each item in the random effects analysis. It
could also be that some items should be marked as outliers, and possibly removed
from the data.

In the analysis of the data, we should look at those reactions that are outside of
a confidence interval for the data. Those items that are slower than the trend plus
two standard deviations are typically marked as outliers, as well as those items
that are faster than the trend minus two standard deviations. We should also mark
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those items that are unrealistically fast. Items that are faster than 200ms are so
fast that it is unrealistic that there was time enough to take a decision and press a
button. In the analysis of data errors there are also some no responses (NR) that
typically are marked with a reaction time of 0. No reactions are typically removed
from the dataset, as no data was given by the participant. However, it is possible
that there is a signal if the no responses are systematic in some way, for example,
that they are more common for a participant or a test item. If this is the case, we
may consider removing the participant or the test item from the dataset.

We would like to avoid removing data for many reasons. If we remove par-
ticipants, it must be declared when we write up an article, as it affects how well
the experiment may generalize. However, it is often the preferred choice, even
if we lose many data points we may increase the quality of the data points. For
items, we may consider estimating the contribution of the items in the analysis,
for example as a random intercept. We may also mark the items in an item factor,
say “extreme_item”, as expected, too fast, or too slow, and try to regress out their
effect on the trends For data we might see if it is better to mark the data points
and regress out their effect. For example, we may have a factor “extreme” that
tells if the data is as expected (i.e., within the confidence interval), too fast, or too
slow. This has the benefit that we can keep more data, without letting the extreme
values affect the trends disproportionately.

The Format of a Mixed Effects Model

A mixed effects model using linear regression is a model-based evaluation of an
experiment. We can build up a model using the factors we suspect will have an
effect, the correlations we think will play a role, and the sources of variance we
know about. One philosophy is to start with a maximal model and reduce that
model as necessary. Another philosophy is to start with a minimal model and add
factors if they improve the model fit. Here we will suggest starting with a large
model with interactions and looking at model fit. We may have to reduce the model
if the model fails to converge (i.e., the model cannot be solved using the available
data).

In R the format for the models can be stated as:

dependent factor1 ∗ factor2 ∗ factor3 ∗ factor4+
+ control1+ control2+ control3+ control4+ control5+ control6+ control7+
+ outlier+
+ (1|Participant)+(1|Item)

The measurement variable (dependent) is explained by (~) the fixed factors 1…4,
the control variables 1 … 5, the starting points of each Participant and Item. Test-
ing for an interaction effect is noted by the use of a “*”. An interaction between
two items is when their independent values do not add up when they are together,
at the same time. A common day example, if you buy eggs and bacon together
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you may pay less than if you buy them together because you have a rebate coupon
when buying them together. A four way interaction between four factors as indi-
cated above, relabeled for brevity as a, b, c, and d, will give rise to more than
three interaction terms, in fact there will be four main effects (a, b, c, d) and 11
interactions (ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd). This is obviously
very costly to estimate. We can decide to only consider the main effects by using
a different operator between the factors, i.e., a “+”. It is often not possible to esti-
mate the interaction between everything, because of lack of data and because of
the correlation structure in the dataset. The inclusion of an interaction is useful if it
explains data better, and models with and without an interaction can be compared
using analysis of variance, as outlined by Baayen and Milin (2010).

The last two items in the formula above are called random factors that estimate
the variance between the Participants and the Items. The Items are the controlled
stimuli that the Participants will decide. An item is here thought of as an event,
i.e., a test item presented in a specific context. It is also possible to structure the
Items such that an item is presented in many different contexts and the formula
will then be represented as (context | Item_name). Here we will prefer the notation
with a different intercept for each presented stimulus (1|Item). The random effects
are used to estimate the variance due to Participants and Items.

The fixed factors in the example experiment that we described earlier could be:
SelectedGender, CompetingGender, ParticipantGender, and Condition.

Condition is whether the task is related to trust or beauty.
The control variables could be PresentationOrder, FaceSymmetrySelected,

MouthSymmetrySelected, MouthWidthSelected, EyeSymmetrySelected, Eye-
WidthSelected, MIDproportionSelected, and outlier.

The presentation order is a measure of learning. The more items the participant
has seen the faster the responses. This may be because the participant has learned
something about the task and the items used in the testing, and/or has become
more confident. Typical effects are about 5±1ms faster per item seen, depending
on the task.

The various measures of symmetry and relative width of eyes and mouth are
anatomical scale-less proportions related to attractiveness. Attractiveness may lead
to faster responses. However, one hypothesis is that the effects would be different
for trust and beauty. Rather than having one very large model that investigates
the interaction between all the control variables and the experimental condition,
we might test trust and beauty separately in two similar models, to avoid very
complicated interaction terms. The outlier factor marks if the data point is as
expected inside the confidence interval, or if it is faster or slower.

Evaluating the Model

The model generated by the mixed effects analysis can be evaluated using an
analysis of variance on the model. This will tell us which factors show signifi-
cant differences and which correlation lines show significant trends. The call in
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Table 1 The analysis of the model, in a table from analysis of variance

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

factor1 # # 1 45.04 9.1539 0.0041 **

factor2 # # 1 173.84 15.5468 0.0001 ***

control1 # # 1 1585.65 255.67 1E-16 ***

factor1 ×
factor2

# # 1 45.02 0.6693 0.4176

Type III Analysis of Variance Table with Satterthwaite’s method

R is simply anova(model). To get the full model, including the effects, we use a
different call: summary(model).

As an example, consider a simpler model below.

> anova(model)

The sum squares can be useful and should be reported in a full table, as in
Table 1. Here we focus on the information that is often stated in an article text.
Here, factor1 is significant (F(1, 45.04) = 9.15; p = 0.0041) and factor2 is sig-
nificant (F(1, 173.84) = 15.55; p = 0.0001). The regression line associated with
control1 is significant (F(1, 1585.65) = 255.67, p = 0.0000). The so-called scien-
tific notation 1E-16 denotes that 1 is 16 decimals behind the decimal point, which
is a very small number. There is no significant interaction between the two factors.

NumDF denotes the degrees of freedom between (which is a measure of the
useful contrasts, here there are only two levels and thus one contrast). DenDF
denotes the degrees of freedom within, which is a measure of the number of
independent data points that was used—this is estimated mathematically, and it
includes using correlations rather than the typical paired “repeated measures”
structure. Satterthwaite’s method is a reference to how this number has been esti-
mated. Thus within degrees of freedom is a measure of how many independent
data points were used to arrive at the estimate of significance. The F-value quan-
tifies the deviance from expectations, and together with the between and within
degrees of freedom it is possible to arrive at a p-value that we can use to take a
decision for what constitutes a significant difference between the levels for the fac-
tor. The p-value is the probability of observing an F-value larger than the observed
F-value, given the between and within degrees of freedom (i.e., the number of
contrasts, and the size of the experiment).

If we want to see the resulting effects, we need to look at the summary of the
model. Below, we will focus on the fixed effects (including the control variables).
The correlation matrix and the random effects are typically not as “important” but
should typically be included for reference in an appendix.

In Table 2, we start with the intercept. The intercept is the value associated
with level1 of factor1 and factor2 and the starting point (0) of the regression line
in control1. This value is here 1519.65. The values for the various factor levels
must be calculated from the offsets in the table. Note that for the result of the
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Table 2 Table of effects

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 1519.65 442.12 46.8 3.437 0.0011 **

factor1Level2 184.88 66.85 44.9 2.766 0.0082 **

factor2Level2 −333.58 105.87 157.6 −3.151 0.0019 **

control1 −6.51 0.77 1576.1 −16.66 1E-16 ***

factor1Level2 ×
factor2Level2

−76.45 93.45 45.02 −0.82 0.4176

Table 3 Calculating the value for each combination of factor levels

factor1 factor2

level1 level1 1519.65

level2 level1 1519.65 + 184.88 1704.53

level1 level2 1519.65 − 333.58 1186.07

level2 level2 1519.65 + 184.88 − 333.58 − 76.45 1294.50

interaction effect we first do the pure additive effects and then the effect due to
interaction (see Table 3). For the regression line associated with control1 we get
6.51ms faster for each item, i.e., 1519.65 -6.51*control1 is the reaction time after
control1 number of presentations. If we want to correct the dependent (reaction
times) for this controlled “learning” effect we can cancel out the effect with a
simple calculation (RT + 6.51*control1) as the corrected reaction time. This may
be necessary for generating more accurate graphs.

Common graphs to illustrate the results include boxplots and interaction plots,
and sometimes so-called lattice plots to investigate the interaction of more than two
factors. Typically, these graphs are performed using the raw data, but if we have
significant effects of control variables it might be worth considering correcting
the dependent variable. This is easy to do for control variables that are main effect
correlation, i.e., general regression lines that are not dependent on the combination
of other factors.

Interpreting the Results

The formal analysis of our model will tell us which factors have a significant
impact on the dependent variable. The word “significant” is used in the statistical
sense and does not necessarily mean that this is an important difference. It just
means that the impact is difficult to explain by random uncertainty in the data.
However, variance and uncertainty can have causes that are not controlled in the
experiment, and the causal structure might be different from the assumption in our
model. There is always a chance r risk that other factors could explain the data
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better. We might have attributed a tentative causation where there is no causation,
and what looks like a causal relation might just be a correlation.

When we have the results from the analysis it is therefore important that we
interpret the results, and relate the results to our hypotheses, and other relevant
research if such research exists. It is very often the case that we discover more
detail and other predictions that can be tested when we explicitly argue for the
interpretation of our findings. A model criticism might inform us of how well the
model explains the data, and how much variance is still unexplained.

Summary

This lesson has introduced Mixed Effects models for evaluating experiments. First
some vocabulary was introduced, and a brief introduction of some concerns when
we plan an experiment. We need to know how many participants we need and how
many items per participant we need. As it is likely that we will have outliers for
participants, items, and data points, we would rather oversample. We introduced
the use of control variables and some principles for outlier analysis, and finally
how to interpret and report the result of the analysis.

Below is a short literature list. The presentation has assumed the availability
of the R Statistical Software, the lmerTest package for Linear Mixed Effects
Models, the vcd package for association graphs, and the package FactoMiner for
Correspondance Analysis. It is possible to use other software to implement the
formal analysis. R and all the mentioned packages are currently widely available
for free download.
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