Skip to main content

Disorders of Cholesterol Trafficking and the Formation of Cholesterol Crystals in Atherosclerotic Plaque

  • Chapter
  • First Online:
Cholesterol Crystals in Atherosclerosis and Other Related Diseases

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 154 Accesses

Abstract

The control of cholesterol trafficking plays an essential role in maintaining the integrity of the arterial wall. Abnormal cholesterol trafficking has major influence on the genesis of atherosclerosis. Accumulation of free cholesterol in the endothelium, macrophages and the plaque core predisposes to the formation of cholesterol crystals that drive atherogenesis due to their ability to trigger inflammation and induce direct cellular damage. Herein we discuss factors that affect cholesterol traffic in the arterial wall that predisposes to plaque growth and cholesterol crystallization that eventually leads to plaque rupture and/or erosion and consequent myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnett DK, Blumenthal RS, Albert MA, et al. ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;2019:140.

    Google Scholar 

  2. Boren J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 2020;41:2313–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 2020;41:2313–30.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Joseph A, Ackerman D, Talley JD, Johnstone J, Kupersmith J. Manifestations of coronary atherosclerosis in young trauma victims—an autopsy study. J Am Coll Cardiol. 1993;22:459–67.

    Article  CAS  PubMed  Google Scholar 

  5. Abela GS, Aziz K, Vedre A, Pathak DR, Talbott JD, Dejong J. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol. 2009;103:959–68.

    Article  CAS  PubMed  Google Scholar 

  6. Nidorf SM, Fiolet A, Abela GS. Viewing atherosclerosis through a crystal lens: how the evolving structure of cholesterol crystals in atherosclerotic plaque alters its stability. J Clin Lipidol. 2020;14:619–30.

    Article  PubMed  Google Scholar 

  7. McGowan MP, Hosseini Dehkordi SH, Moriarty PM, Duell PB. Diagnosis and treatment of heterozygous familial hypercholesterolemia. J Am Heart Assoc. 2019;8:e013225.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Watts GF, Gidding S, Wierzbicki AS, et al. Integrated guidance on the care of familial hypercholesterolaemia from the international FH foundation. Eur J Prev Cardiol. 2015;22:849–54.

    Article  PubMed  Google Scholar 

  9. Batais MA, Almigbal TH, Shaik NA, Alharbi FK, Alharbi KK, Ali KI. Screening of common genetic variants in the APOB gene related to familial hypercholesterolemia in a Saudi population: a case–control study. Medicine. 2019;98:e14247.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vaverkova H, Tichy L, Karasek D, Freiberger T. A case of autosomal recessive hypercholesterolemia caused by a new variant in the LDL receptor adaptor protein 1 gene. J Clin Lipidol. 2019;13:405–10.

    Article  PubMed  Google Scholar 

  11. Benjannet S, Hamelin J, Chrétien M, Seidah NG. Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem. 2012;287:33745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161–5.

    Article  CAS  PubMed  Google Scholar 

  13. Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    Article  CAS  PubMed  Google Scholar 

  14. Gusarova V, Alexa CA, Wang Y, et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J Lipid Res. 2015;56:1308–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Folsom AR, Peacock JM, Demerath E, Boerwinkle E. Variation in ANGPTL4 and risk of coronary heart disease: the atherosclerosis risk in communities study. Metabolism. 2008;57:1591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cahill PA, Redmond EM. Vascular endothelium—gatekeeper of vessel health. Atherosclerosis. 2016;248:97–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lum H, Malik AB. Mechanisms of increased endothelial permeability. Can J Physiol Pharmacol. 1996;74:787–800.

    CAS  PubMed  Google Scholar 

  18. LaMack JA, Himburg HA, Li X-M, Friedman MH. Interaction of wall shear stress magnitude and gradient in the prediction of arterial macromolecular permeability. Ann Biomed Eng. 2005;33:457–64.

    Article  PubMed  Google Scholar 

  19. Hartman EMJ, De Nisco G, Gijsen FJH, et al. The definition of low wall shear stress and its effect on plaque progression estimation in human coronary arteries. Sci Rep. 2021;11:11.

    Article  Google Scholar 

  20. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54:2129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Libby P, Nahrendorf M, Swirski FK. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “cardiovascular continuum”. J Am Coll Cardiol. 2016;67:1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Sessa WC, Fernández-Hernando C. Endothelial transcytosis of lipoproteins in atherosclerosis. Front Cardiovasc Med. 2018;5:130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Armstrong SM, Sugiyama MG, Fung KYY, et al. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc Res. 2015;108:268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jang E, Robert J, Rohrer L, von Eckardstein A, Lee WL. Transendothelial transport of lipoproteins. Atherosclerosis. 2020;315:111–25.

    Article  CAS  PubMed  Google Scholar 

  25. Nordestgaard BG, Nielsen LB. Atherosclerosis and arterial influx of lipoproteins. Curr Opin Lipidol. 1994;5:252–7.

    Article  CAS  PubMed  Google Scholar 

  26. Khalil MF, Wagner WD, Goldberg IJ. Molecular interactions leading to lipoprotein retention and the initiation of atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:2211–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sekimoto T, Shinji K, Mori H, et al. Impact of small dense low-density lipoprotein cholesterol on cholesterol crystals in patients with acute coronary syndrome: an optical coherence tomography study. J Clin Lipidol. 2022;16:438–46.

    Article  PubMed  Google Scholar 

  28. Mattson JM, Turcotte R, Zhang Y. Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics. Biomech Model Mechanobiol. 2017;16:213–25.

    Article  PubMed  Google Scholar 

  29. Wight TN, Merrilees MJ. Proteoglycans in atherosclerosis and restenosis. Circ Res. 2004;94:1158–67.

    Article  CAS  PubMed  Google Scholar 

  30. Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 2016;27:473–83.

    Article  PubMed  Google Scholar 

  31. Skålén K, Gustafsson M, Rydberg EK, et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature. 2002;417:750–4.

    Article  PubMed  Google Scholar 

  32. Schönherr E, Järveläinen HT, Sandell LJ, Wight TN. Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem. 1991;266:17640–7.

    Article  PubMed  Google Scholar 

  33. Little PJ, Tannock L, Olin KL, Chait A, Wight TN. Proteoglycans synthesized by arterial smooth muscle cells in the presence of transforming growth factor-β1 exhibit increased binding to LDLs. Arterioscler Thromb Vasc Biol. 2002;22:55–60.

    Article  CAS  PubMed  Google Scholar 

  34. Schwartz CJ, Mitchell JRA. Cellular infiltration of the human arterial adventitia associated with atheromatous plaques. Circulation. 1962;26:73–8.

    Article  CAS  PubMed  Google Scholar 

  35. Srikakulapu P, McNamara CA. B cells and atherosclerosis. Am J Physiol Heart Circ Physiol. 2017;312:H1060–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. Hum Pathol. 1999;30:919–25.

    Article  CAS  PubMed  Google Scholar 

  38. Parma L, Baganha F, Quax PHA, De Vries MR. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol. 2017;816:107–15.

    Article  CAS  PubMed  Google Scholar 

  39. Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349:2316–25.

    Article  CAS  PubMed  Google Scholar 

  40. Madder RD, Husaini M, Davis AT, et al. Large lipid-rich coronary plaques detected by near-infrared spectroscopy at non-stented sites in the target artery identify patients likely to experience future major adverse cardiovascular events. Eur Heart J CV Imag. 2016;17:393–9.

    Google Scholar 

  41. Leopold JA, Loscalzo J. Oxidative enzymopathies and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1332–40.

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida H, Kisugi R. Mechanisms of LDL oxidation. Clin Chim Acta. 2010;411:1875–82.

    Article  CAS  PubMed  Google Scholar 

  43. Vergeer M, Korporaal SJA, Franssen R, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364:136–45.

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci. 1979;76:333–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robbins CS, Hilgendorf I, Weber GF, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013;19:1166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ben J, Zhu X, Zhang H, Chen Q. Class A1 scavenger receptors in cardiovascular diseases. Br J Pharmacol. 2015;172:5523–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tabas I, Bornfeldt KE. Macrophage function and cholesterol crystal formation. Circ Res. 2016;118:653–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8:222–32.

    Article  CAS  PubMed  Google Scholar 

  49. Singh K, Rohatgi A. Examining the paradox of high high-density lipoprotein and elevated cardiovascular risk. J Thorac Dis. 2018;10:109–12.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kellner-Weibel G, Jerome WG, Small DM, et al. Effects of intracellular free cholesterol accumulation on macrophage viability. Arterioscler Thromb Vasc Biol. 1998;18:423–31.

    Article  CAS  PubMed  Google Scholar 

  51. Röhrl C, Stangl H. HDL endocytosis and resecretion. Biochim Biophys Acta. 2013;1831:1626–33.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brundert M, Heeren J, Merkel M, et al. Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells[S]. J Lipid Res. 2011;52:745–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goffinet M, Tardy C, Boubekeur N, et al. P2Y13 receptor regulates HDL metabolism and atherosclerosis in vivo. PloS One. 2014;9:e95807.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res. 2019;124:1505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oram J. Tangier disease and ABCA1. Biochim Biophys Acta Mol Cell Biol Lipids. 2000;1529:321–30.

    Article  CAS  Google Scholar 

  56. Strong A, Rader DJ. Clinical implications of lipid genetics for cardiovascular disease. Curr Cardiovasc Risk Rep. 2010;4:461–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Frikke-Schmidt R. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008;299:2524.

    Article  CAS  PubMed  Google Scholar 

  58. Kennedy MA, Barrera GC, Nakamura K, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 2005;1:121–31.

    Article  CAS  PubMed  Google Scholar 

  59. Liu F, Wang W, Xu Y, et al. ABCG1 rs57137919G<A polymorphism is functionally associated with varying gene expression and apoptosis of macrophages. PloS One. 2014;9:e97044.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang X, Sethi A, Yanek LR, et al. SCARB1 gene variants are associated with the phenotype of combined high high-density lipoprotein cholesterol and high lipoprotein (a). Circ Cardiovasc Genet. 2016;9:408–18.

    Article  CAS  PubMed  Google Scholar 

  61. Yoo E-G. Sitosterolemia: a review and update of pathophysiology, clinical spectrum, diagnosis, and management. Ann Pediatr Endocrinol Metab. 2016;21:7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nomura A, Emdin CA, Won HH, et al. Heterozygous ABCG5 gene deficiency and risk of coronary artery disease. Circ Genom Precis Med. 2020;13:417–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Evans TD, Sergin I, Zhang X, Razani B. Modulating oxysterol sensing to control macrophage apoptosis and atherosclerosis. Circ Res. 2016;119:1258–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yeagle PL. Modulation of membrane function by cholesterol. Biochimie. 1991;73:1303–10.

    Article  CAS  PubMed  Google Scholar 

  65. Kellner-Weibel G, Yancey PG, Jerome WG, et al. Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol. 1999;19:1891–8.

    Article  CAS  PubMed  Google Scholar 

  66. Clare K, Hardwick SJ, Carpenter KLH, Weeratunge N, Mitchinson MJ. Toxicity of oxysterols to human monocyte-macrophages. Atherosclerosis. 1995;118:67–75.

    Article  CAS  PubMed  Google Scholar 

  67. Crick PJ, Yutuc E, Abdel-Khalik J, et al. Formation and metabolism of oxysterols and cholestenoic acids found in the mouse circulation: lessons learnt from deuterium-enrichment experiments and the CYP46A1 transgenic mouse. J Steroid Biochem Mol Biol. 2019;195:105475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yao PM, Tabas I. Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem. 2001;276:42468–76.

    Article  CAS  PubMed  Google Scholar 

  69. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16:663–9.

    Article  CAS  PubMed  Google Scholar 

  70. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Investig. 1998;101:890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thorp E, Tabas I. Mechanisms and consequences of efferocytosis in advanced atherosclerosis. J Leukoc Biol. 2009;86:1089–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schrijvers DM, De Meyer GRY, Kockx MM, Herman AG, Martinet W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25:1256–61.

    Article  CAS  PubMed  Google Scholar 

  73. Kojima Y, Volkmer J-P, McKenna K, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Komura H, Miksa M, Wu R, Goyert SM, Wang P. Milk fat globule epidermal growth factor-factor VIII is Down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol. 2009;182:581–7.

    Article  CAS  PubMed  Google Scholar 

  75. Schrijvers D, Demeyer G, Herman A, Martinet W. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res. 2007;73:470–80.

    Article  CAS  PubMed  Google Scholar 

  76. Kojima Y, Weissman IL, Leeper NJ. The role of Efferocytosis in atherosclerosis. Circulation. 2017;135:476–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Libby P. Act local, act global: inflammation and the multiplicity of “vulnerable” coronary plaques. J Am Coll Cardiol. 2005;45:1600–2.

    Article  PubMed  Google Scholar 

  78. Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278:483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo X, Lv Y, Bai X, et al. Plaque erosion: a distinctive pathological mechanism of acute coronary syndrome. Front Cardiovasc Med. 2021;8:8.

    Article  Google Scholar 

  80. Silvestre-Roig C, Winther MP, Weber C, Daemen MJ, Lutgens E, Soehnlein O. Atherosclerotic plaque destabilization. Circ Res. 2014;114:214–26.

    Article  CAS  PubMed  Google Scholar 

  81. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Heart. 1993;69:377–81.

    Article  CAS  Google Scholar 

  82. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J. 2013;34:719–28.

    Article  CAS  PubMed  Google Scholar 

  83. Ahmadi A, Leipsic J, Blankstein R, et al. Do plaques rapidly Progress prior to myocardial infarction? Circ Res. 2015;117:99–104.

    Article  CAS  PubMed  Google Scholar 

  84. Stewart GT. Liquid crystals of lipid in normal and atheromatous tissue. Nature. 1959;183:873–5.

    Article  CAS  PubMed  Google Scholar 

  85. Ghosh S, Zhao B, Bie J, Song J. Macrophage cholesteryl ester mobilization and atherosclerosis. Vascul Pharmacol. 2010;52:1–10.

    Article  CAS  PubMed  Google Scholar 

  86. North BE, Katz SS, Small DM. The dissolution of cholesterol monohydrate crystals in atherosclerotic plaque lipids. Atherosclerosis. 1978;30:211–7.

    Article  CAS  PubMed  Google Scholar 

  87. Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J. 2016;37:1959–67.

    Article  CAS  PubMed  Google Scholar 

  88. Pirillo A, Catapano AL, Norata GD. Biological consequences of dysfunctional HDL. Curr Med Chem. 2019;26:1644–64.

    Article  CAS  PubMed  Google Scholar 

  89. Kosmas CE, Silverio D, Sourlas A, Montan PD, Guzman E. Dysfunctional high-density lipoprotein and atherogenesis. Vessel Plus. 2019;3:2.

    CAS  Google Scholar 

  90. Vedre A, Pathak DR, Crimp M, Lum C, Koochesfahani M, Abela GS. Physical factors that trigger cholesterol crystallization leading to plaque rupture. Atherosclerosis. 2009;203:89–96.

    Article  CAS  PubMed  Google Scholar 

  91. Konikoff FM, De La Porte PL, Laufer H, Domingo N, Lafont H, Gilat T. Calcium and the anionic polypeptide fraction (APF) have opposing effects on cholesterol crystallization in model bile. J Hepatol. 1997;27:707–15.

    Article  CAS  PubMed  Google Scholar 

  92. Abela GS, Aziz K. Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events—a novel insight into plaque rupture by scanning electron microscopy. Scanning. 2006;28:1–10.

    Article  CAS  PubMed  Google Scholar 

  93. Abela GS, Vedre A, Janoudi A, Huang R, Durga S, Tamhane U. Effect of statins on cholesterol crystallization and atherosclerotic plaque stabilization. Am J Cardiol. 2011;107:1710–7.

    Article  CAS  PubMed  Google Scholar 

  94. Abela GS. Cholesterol crystals piercing the arterial plaque and intima triggers local and systemic inflammation. J Clin Lipidol. 2010;4:156–64.

    Article  PubMed  Google Scholar 

  95. Varsano N, Beghi F, Elad N, et al. Two polymorphic cholesterol monohydrate crystal structures form in macrophage culture models of atherosclerosis. Proc Natl Acad Sci U S A. 2018;115:7662–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care. 2012;1:60–74.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yang M, Lv H, Liu Q, et al. Colchicine alleviates cholesterol crystal-induced endothelial cell Pyroptosis through activating AMPK/SIRT1 pathway. Oxid Med Cell Longev. 2020;2020:9173530.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Patel R, Janoudi A, Vedre A, Aziz K, Tamhane U, Rubinstein J, Abela O, Berger K, Abela GS. Plaque rupture and thrombosis is reduced by lowering cholesterol levels and crystallization with ezetimibe and is correlated with FDG-PET. Arterioscler Thromb Vasc Biol. 2011;31:2007–14.

    Article  CAS  PubMed  Google Scholar 

  100. Lettiero B, Inasu M, Kimbung S, Borgquist S. Insensitivity to atorvastatin is associated with increased accumulation of intracellular lipid droplets and fatty acid metabolism in breast cancer cells. Sci Rep. 2018;8:5462.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Boumegouas M, Grondal B, Fry L, De Feijter-Rupp H, Janoudi A, Abela GS. Metformin inhibition of volume expansion with cholesterol crystallization may contribute to reducing plaque rupture and improved cardiac outcomes. J Clin Lipidol. 2020;579(171):14.

    Google Scholar 

  102. Tang G, Duan F, Li W, et al. Metformin inhibited nod-like receptor protein 3 inflammasomes activation and suppressed diabetes-accelerated atherosclerosis in apoE−/− mice. Biomed Pharmacother. 2019;119:109410.

    Article  CAS  PubMed  Google Scholar 

  103. Kataoka Y, Nicholls SJ, Andrews J, et al. Plaque microstructures during metformin therapy in type 2 diabetic subjects with coronary artery disease: optical coherence tomography analysis. Cardiovasc Diag Therapy. 2022;12:77–87.

    Article  Google Scholar 

  104. Luo F, Guo Y, Ruan G-Y, et al. Combined use of metformin and atorvastatin attenuates atherosclerosis in rabbits fed a high-cholesterol diet. Sci Rep. 2017;7:2169.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Alsop RJ, Barrett MA, Zheng S, Dies H, Rheinstädter MC. Acetylsalicylic acid (ASA) increases the solubility of cholesterol when incorporated in lipid membranes. Soft Matter. 2014;10:4275–86.

    Article  CAS  PubMed  Google Scholar 

  106. Fry L, Lee A, Khan S, Aziz K, Vedre A, Abela GS. Effect of aspirin on cholesterol crystallization: a potential mechanism for plaque stabilization. Am Heart J Plus Cardiol Res Pract. 2022;13:100083.

    Article  Google Scholar 

  107. Nidorf SM, Fiolet ATL. Mosterd a, et al for the LoDoCo2 trail investigators. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383:1838–47.

    Article  CAS  PubMed  Google Scholar 

  108. Nidorf SM, Eikelboom JW, Thompson PL. Targeting cholesterol crystal-induced inflammation for the secondary prevention of cardiovascular disease. J Cardiovasc Pharmacol Ther. 2014;19:45–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter P. Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaine, S.P., Jones, S.R., Toth, P.P. (2023). Disorders of Cholesterol Trafficking and the Formation of Cholesterol Crystals in Atherosclerotic Plaque. In: Abela, G.S., Nidorf, S.M. (eds) Cholesterol Crystals in Atherosclerosis and Other Related Diseases. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-41192-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41192-2_7

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-41191-5

  • Online ISBN: 978-3-031-41192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics