Skip to main content

Activation of Systemic- and Intracellular Complement by Cholesterol Crystals

  • Chapter
  • First Online:
Cholesterol Crystals in Atherosclerosis and Other Related Diseases

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 168 Accesses

Abstract

Chronic inflammation is a common feature for atherosclerosis, with elevated complement components and activation products in the circulation and in tissues. Recent studies have unveiled the pivotal role of the complement system in the initiation and the regulation of atherosclerosis. Cholesterol crystals (CC) which appear early in the disease process trigger an inflammatory response in the arterial wall which is to a high extent dependent on the complement system. Plasma-derived complement is undeniably necessary for the opsonization and the phagocytosis of CC and activation of the vascular endothelium. Uptake of CC by macrophages is sensed by cell-intrinsic intracellularly active complement (i.e., the complosome) which acts as a signaling hub of the inflammatory responses to CC, culminating into the release of the pro-inflammatory cytokine IL-1β. Overall, complement constitutes a dynamic system that controls the inflammatory responses to crystalline cholesterol from the recognition and phagocytosis to the priming of macrophages and cross-talk with intracellular inflammasome sensor NLRP3. Here, we describe the role of plasma-derived complement and the complosome in the pathogenesis of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz SS, Shipley GG, Small DM. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest. 1976;58(1):200–11. https://doi.org/10.1172/jci108450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14(8):812–20. https://doi.org/10.1038/ni.2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61. https://doi.org/10.1038/nature08938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kataoka Y, Puri R, Hammadah M, Duggal B, Uno K, Kapadia SR, et al. Cholesterol crystals associate with coronary plaque vulnerability in vivo. J Am Coll Cardiol. 2015;65(6):630–2. https://doi.org/10.1016/j.jacc.2014.11.039.

    Article  CAS  PubMed  Google Scholar 

  5. Fujiyoshi K, Minami Y, Ishida K, Kato A, Katsura A, Muramatsu Y, et al. Incidence, factors, and clinical significance of cholesterol crystals in coronary plaque: an optical coherence tomography study. Atherosclerosis. 2019;283:79–84. https://doi.org/10.1016/j.atherosclerosis.2019.02.009.

    Article  CAS  PubMed  Google Scholar 

  6. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13. https://doi.org/10.1101/sqb.1989.054.01.003.

    Article  CAS  PubMed  Google Scholar 

  7. Pandey S, Kawai T, Akira S. Microbial sensing by toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol. 2014;7(1):a016246. https://doi.org/10.1101/cshperspect.a016246.

    Article  CAS  PubMed  Google Scholar 

  8. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20. https://doi.org/10.1038/nri.2016.58.

    Article  CAS  PubMed  Google Scholar 

  9. Kohl J. The role of complement in danger sensing and transmission. Immunol Res. 2006;34(2):157–76. https://doi.org/10.1385/ir:34:2:157.

    Article  CAS  PubMed  Google Scholar 

  10. Liszewski MK, Kolev M, Le Friec G, Leung M, Bertram PG, Fara AF, et al. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity. 2013;39(6):1143–57. https://doi.org/10.1016/j.immuni.2013.10.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20. https://doi.org/10.1016/j.cell.2010.01.022.

    Article  CAS  PubMed  Google Scholar 

  12. Fidler TP, Xue C, Yalcinkaya M, Hardaway B, Abramowicz S, Xiao T, et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature. 2021;592(7853):296–301. https://doi.org/10.1038/s41586-021-03341-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kirii H, Niwa T, Yamada Y, Wada H, Saito K, Iwakura Y, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(4):656–60. https://doi.org/10.1161/01.atv.0000064374.15232.c3.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang X, Wang F, Wang Y, Gistera A, Roy J, Paulsson-Berne G, et al. Inflammasome-driven interleukin-1alpha and interleukin-1beta production in atherosclerotic plaques relates to hyperlipidemia and plaque complexity. JACC Basic Transl Sci. 2019;4(3):304–17. https://doi.org/10.1016/j.jacbts.2019.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  16. Samstad EO, Niyonzima N, Nymo S, Aune MH, Ryan L, Bakke SS, et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol. 2014;192(6):2837–45. https://doi.org/10.4049/jimmunol.1302484.

    Article  CAS  PubMed  Google Scholar 

  17. Niyonzima N, Rahman J, Kunz N, West EE, Freiwald T, Desai JV, et al. Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation. Sci Immunol. 2021;6(66):eabf2489. https://doi.org/10.1126/sciimmunol.abf2489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niyonzima N, Bakke SS, Gregersen I, Holm S, Sandanger Ø, Orrem HL, et al. Cholesterol crystals use complement to increase NLRP3 signaling pathways in coronary and carotid atherosclerosis. EBioMedicine. 2020;60:102985. https://doi.org/10.1016/j.ebiom.2020.102985.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jules Bordet OG. Sur l'existence de substances sensibilisatrices dans la plupart des sérums antimicrobiens. Paris: Institut Pasteur; 1901.

    Google Scholar 

  20. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol. 2015;6:257. https://doi.org/10.3389/fimmu.2015.00257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I - molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262. https://doi.org/10.3389/fimmu.2015.00262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97. https://doi.org/10.1038/ni.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaboriaud C, Thielens NM, Gregory LA, Rossi V, Fontecilla-Camps JC, Arlaud GJ. Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends Immunol. 2004;25(7):368–73. https://doi.org/10.1016/j.it.2004.04.008.

    Article  CAS  PubMed  Google Scholar 

  24. Wallis R, Mitchell DA, Schmid R, Schwaeble WJ, Keeble AH. Paths reunited: initiation of the classical and lectin pathways of complement activation. Immunobiology. 2010;215(1):1–11. https://doi.org/10.1016/j.imbio.2009.08.006.

    Article  CAS  PubMed  Google Scholar 

  25. Runza VL, Schwaeble W, Männel DN. Ficolins: novel pattern recognition molecules of the innate immune response. Immunobiology. 2008;213(3–4):297–306. https://doi.org/10.1016/j.imbio.2007.10.009.

    Article  CAS  PubMed  Google Scholar 

  26. Kjaer TR, Jensen L, Hansen A, Dani R, Jensenius JC, Dobó J, et al. Oligomerization of Mannan-binding lectin dictates binding properties and complement activation. Scand J Immunol. 2016;84(1):12–9. https://doi.org/10.1111/sji.12441.

    Article  CAS  PubMed  Google Scholar 

  27. Garred P, Honoré C, Ma YJ, Rørvig S, Cowland J, Borregaard N, et al. The genetics of ficolins. J Innate Immun. 2010;2(1):3–16. https://doi.org/10.1159/000242419.

    Article  CAS  PubMed  Google Scholar 

  28. Yongqing T, Drentin N, Duncan RC, Wijeyewickrema LC, Pike RN. Mannose-binding lectin serine proteases and associated proteins of the lectin pathway of complement: two genes, five proteins and many functions? Biochim Biophys Acta. 2012;1824(1):253–62. https://doi.org/10.1016/j.bbapap.2011.05.021.

    Article  CAS  PubMed  Google Scholar 

  29. Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev. 2016;274(1):74–97. https://doi.org/10.1111/imr.12468.

    Article  CAS  PubMed  Google Scholar 

  30. Sahu A, Kozel TR, Pangburn MK. Specificity of the thioester-containing reactive site of human C3 and its significance to complement activation. Biochem J. 1994;302(Pt 2):429–36. https://doi.org/10.1042/bj3020429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harboe M, Mollnes TE. The alternative complement pathway revisited. J Cell Mol Med. 2008;12(4):1074–84. https://doi.org/10.1111/j.1582-4934.2008.00350.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kemper C, Atkinson JP, Hourcade DE. Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol. 2010;28:131–55. https://doi.org/10.1146/annurev-immunol-030409-101250.

    Article  CAS  PubMed  Google Scholar 

  33. Niculescu F, Rus H. Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol Res. 2001;24(2):191–9. https://doi.org/10.1385/ir:24:2:191.

    Article  CAS  PubMed  Google Scholar 

  34. Monk PN, Scola AM, Madala P, Fairlie DP. Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol. 2007;152(4):429–48. https://doi.org/10.1038/sj.bjp.0707332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev. 2013;65(1):500–43. https://doi.org/10.1124/pr.111.005223.

    Article  CAS  PubMed  Google Scholar 

  36. Croker DE, Monk PN, Halai R, Kaeslin G, Schofield Z, Wu MC, et al. Discovery of functionally selective C5aR2 ligands: novel modulators of C5a signalling. Immunol Cell Biol. 2016;94(8):787–95. https://doi.org/10.1038/icb.2016.43.

    Article  CAS  PubMed  Google Scholar 

  37. Croker DE, Halai R, Kaeslin G, Wende E, Fehlhaber B, Klos A, et al. C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and β-arrestin recruitment. Immunol Cell Biol. 2014;92(7):631–9. https://doi.org/10.1038/icb.2014.32.

    Article  CAS  PubMed  Google Scholar 

  38. Khameneh HJ, Ho AW, Laudisi F, Derks H, Kandasamy M, Sivasankar B, et al. C5a regulates IL-1β production and leukocyte recruitment in a murine model of monosodium urate crystal-induced peritonitis. Front Pharmacol. 2017;8:10. https://doi.org/10.3389/fphar.2017.00010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ratajczak MZ, Adamiak M, Kucia M, Tse W, Ratajczak J, Wiktor-Jedrzejczak W. The emerging link between the complement Cascade and purinergic signaling in stress hematopoiesis. Front Immunol. 2018;9:1295. https://doi.org/10.3389/fimmu.2018.01295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712–6. https://doi.org/10.1126/science.aad8373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gregersen E, Betzer C, Kim WS, Kovacs G, Reimer L, Halliday GM, et al. Alpha-synuclein activates the classical complement pathway and mediates complement-dependent cell toxicity. J Neuroinflammation. 2021;18(1):177. https://doi.org/10.1186/s12974-021-02225-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hajishengallis G, Lambris JD. Crosstalk pathways between toll-like receptors and the complement system. Trends Immunol. 2010;31(4):154–63. https://doi.org/10.1016/j.it.2010.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee CC, Avalos AM, Ploegh HL. Accessory molecules for toll-like receptors and their function. Nat Rev Immunol. 2012;12(3):168–79. https://doi.org/10.1038/nri3151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barratt-Due A, Pischke SE, Nilsson PH, Espevik T, Mollnes TE. Dual inhibition of complement and toll-like receptors as a novel approach to treat inflammatory diseases-C3 or C5 emerge together with CD14 as promising targets. J Leukoc Biol. 2017;101(1):193–204. https://doi.org/10.1189/jlb.3VMR0316-132R.

    Article  CAS  PubMed  Google Scholar 

  45. Nymo S, Niyonzima N, Espevik T, Mollnes TE. Cholesterol crystal-induced endothelial cell activation is complement-dependent and mediated by TNF. Immunobiology. 2014;219(10):786–92. https://doi.org/10.1016/j.imbio.2014.06.006.

    Article  CAS  PubMed  Google Scholar 

  46. Strainic MG, Liu J, Huang D, An F, Lalli PN, Muqim N, et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity. 2008;28(3):425–35. https://doi.org/10.1016/j.immuni.2008.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu J, Miwa T, Hilliard B, Chen Y, Lambris JD, Wells AD, et al. The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J Exp Med. 2005;201(4):567–77. https://doi.org/10.1084/jem.20040863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lalli PN, Strainic MG, Yang M, Lin F, Medof ME, Heeger PS. Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood. 2008;112(5):1759–66. https://doi.org/10.1182/blood-2008-04-151068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Passwell J, Schreiner GF, Nonaka M, Beuscher HU, Colten HR. Local extrahepatic expression of complement genes C3, factor B, C2, and C4 is increased in murine lupus nephritis. J Clin Invest. 1988;82(5):1676–84. https://doi.org/10.1172/jci113780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morgan BP, Gasque P. Extrahepatic complement biosynthesis: where, when and why? Clin Exp Immunol. 1997;107(1):1–7. https://doi.org/10.1046/j.1365-2249.1997.d01-890.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Welch TR, Beischel LS, Witte DP. Differential expression of complement C3 and C4 in the human kidney. J Clin Invest. 1993;92(3):1451–8. https://doi.org/10.1172/jci116722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sacks SH, Zhou W, Andrews PA, Hartley B. Endogenous complement C3 synthesis in immune complex nephritis. Lancet. 1993;342(8882):1273–4. https://doi.org/10.1016/0140-6736(93)92362-w.

    Article  CAS  PubMed  Google Scholar 

  53. Sacks SH, Zhou W. Locally produced complement and its role in renal allograft rejection. Am J Transplant. 2003;3(8):927–32. https://doi.org/10.1034/j.1600-6143.2003.00175.x.

    Article  CAS  PubMed  Google Scholar 

  54. Yasojima K, Schwab C, McGeer EG, McGeer PL. Human heart generates complement proteins that are upregulated and activated after myocardial infarction. Circ Res. 1998;83(8):860–9. https://doi.org/10.1161/01.res.83.8.860.

    Article  CAS  PubMed  Google Scholar 

  55. Sugihara T, Kobori A, Imaeda H, Tsujikawa T, Amagase K, Takeuchi K, et al. The increased mucosal mRNA expressions of complement C3 and interleukin-17 in inflammatory bowel disease. Clin Exp Immunol. 2010;160(3):386–93. https://doi.org/10.1111/j.1365-2249.2010.04093.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Molmenti EP, Ziambaras T, Perlmutter DH. Evidence for an acute phase response in human intestinal epithelial cells. J Biol Chem. 1993;268(19):14116–24.

    Article  CAS  PubMed  Google Scholar 

  57. Andoh A, Fujiyama Y, Bamba T, Hosoda S. Differential cytokine regulation of complement C3, C4, and factor B synthesis in human intestinal epithelial cell line, Caco-2. J Immunol. 1993;151(8):4239–47.

    Article  CAS  PubMed  Google Scholar 

  58. Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol. 2011;48(14):1592–603. https://doi.org/10.1016/j.molimm.2011.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shavva VS, Mogilenko DA, Dizhe EB, Oleinikova GN, Perevozchikov AP, Orlov SV. Hepatic nuclear factor 4α positively regulates complement C3 expression and does not interfere with TNFα-mediated stimulation of C3 expression in HepG2 cells. Gene. 2013;524(2):187–92. https://doi.org/10.1016/j.gene.2013.04.036.

    Article  CAS  PubMed  Google Scholar 

  60. Gerritsma JS, van Kooten C, Gerritsen AF, van Es LA, Daha MR. Transforming growth factor-beta 1 regulates chemokine and complement production by human proximal tubular epithelial cells. Kidney Int. 1998;53(3):609–16. https://doi.org/10.1046/j.1523-1755.1998.00799.x.

    Article  CAS  PubMed  Google Scholar 

  61. Bialas AR, Stevens B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. 2013;16(12):1773–82. https://doi.org/10.1038/nn.3560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kolev M, West EE, Kunz N, Chauss D, Moseman EA, Rahman J, et al. Diapedesis-induced integrin signaling via LFA-1 facilitates tissue immunity by inducing intrinsic complement C3 expression in immune cells. Immunity. 2020;52(3):513–27.e8. https://doi.org/10.1016/j.immuni.2020.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Asgari E, Le Friec G, Yamamoto H, Perucha E, Sacks SS, Köhl J, et al. C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood. 2013;122(20):3473–81. https://doi.org/10.1182/blood-2013-05-502229.

    Article  CAS  PubMed  Google Scholar 

  64. Grailer JJ, Bosmann M, Ward PA. Regulatory effects of C5a on IL-17A, IL-17F, and IL-23. Front Immunol. 2012;3:387. https://doi.org/10.3389/fimmu.2012.00387.

    Article  PubMed  Google Scholar 

  65. Arbore G, West EE, Rahman J, Le Friec G, Niyonzima N, Pirooznia M, et al. Complement receptor CD46 co-stimulates optimal human CD8(+) T cell effector function via fatty acid metabolism. Nat Commun. 2018;9(1):4186. https://doi.org/10.1038/s41467-018-06706-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kolev M, Le Friec G, Kemper C. Complement—tapping into new sites and effector systems. Nat Rev Immunol. 2014;14(12):811–20. https://doi.org/10.1038/nri3761.

    Article  CAS  PubMed  Google Scholar 

  67. West EE, Kunz N, Kemper C. Complement and human T cell metabolism: location, location, location. Immunol Rev. 2020;295:68. https://doi.org/10.1111/imr.12852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arbore G, West EE, Spolski R, Robertson AA, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science. 2016;352(6292):aad1210. https://doi.org/10.1126/science.aad1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kolev M, Dimeloe S, Le Friec G, Navarini A, Arbore G, Povoleri GA, et al. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity. 2015;42(6):1033–47. https://doi.org/10.1016/j.immuni.2015.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. West EE, Kemper C. Complement and T cell metabolism: food for thought. Immunometabolism. 2019;1(T Cell Metabolic Reprogramming):e190006. https://doi.org/10.20900/immunometab20190006.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kolev M, Kemper C. Keeping it all going-complement meets metabolism. Front Immunol. 2017;8:1. https://doi.org/10.3389/fimmu.2017.00001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yan B, Freiwald T, Chauss D, Wang L, West E, Mirabelli C, et al. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Sci Immunol. 2021;6(58):eabg0833. https://doi.org/10.1126/sciimmunol.abg0833.

    Article  PubMed  PubMed Central  Google Scholar 

  73. King BC, Kulak K, Krus U, Rosberg R, Golec E, Wozniak K, et al. Complement component C3 is highly expressed in human pancreatic islets and prevents β cell death via ATG16L1 interaction and autophagy regulation. Cell Metab. 2019;29(1):202–10.e6. https://doi.org/10.1016/j.cmet.2018.09.009.

    Article  CAS  PubMed  Google Scholar 

  74. Kulkarni HS, Elvington ML, Perng YC, Liszewski MK, Byers DE, Farkouh C, et al. Intracellular C3 protects human airway epithelial cells from stress-associated cell death. Am J Respir Cell Mol Biol. 2019;60(2):144–57. https://doi.org/10.1165/rcmb.2017-0405OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Daugan MV, Revel M, Lacroix L, Sautès-Fridman C, Fridman WH, Roumenina LT. Complement detection in human tumors by immunohistochemistry and immunofluorescence. Methods Mol Biol. 2021;2227:191–203. https://doi.org/10.1007/978-1-0716-1016-9_18.

    Article  CAS  PubMed  Google Scholar 

  76. Hammerschmidt DE, Greenberg CS, Yamada O, Craddock PR, Jacob HS. Cholesterol and atheroma lipids activate complement and stimulate granulocytes. A possible mechanism for amplification of ischemic injury in atherosclerotic states. J Lab Clin Med. 1981;98(1):68–77.

    Article  CAS  PubMed  Google Scholar 

  77. Seifert PS, Kazatchkine MD. Generation of complement anaphylatoxins and C5b-9 by crystalline cholesterol oxidation derivatives depends on hydroxyl group number and position. Mol Immunol. 1987;24(12):1303–8.

    Article  CAS  PubMed  Google Scholar 

  78. Vogt W, von Zabern I, Damerau B, Hesse D, Luhmann B, Nolte R. Mechanisms of complement activation by crystalline cholesterol. Mol Immunol. 1985;22(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  79. Swartz GM Jr, Gentry MK, Amende LM, Blanchette-Mackie EJ, Alving CR. Antibodies to cholesterol. Proc Natl Acad Sci U S A. 1988;85(6):1902–6. https://doi.org/10.1073/pnas.85.6.1902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pilely K, Rosbjerg A, Genster N, Gal P, Pal G, Halvorsen B, et al. Cholesterol crystals activate the lectin complement pathway via Ficolin-2 and mannose-binding lectin: implications for the progression of atherosclerosis. J Immunol. 2016;196(12):5064–74. https://doi.org/10.4049/jimmunol.1502595.

    Article  CAS  PubMed  Google Scholar 

  81. Gravastrand CS, Steinkjer B, Halvorsen B, Landsem A, Skjelland M, Jacobsen EA, et al. Cholesterol crystals induce coagulation activation through complement-dependent expression of monocytic tissue factor. J Immunol. 2019;203(4):853–63. https://doi.org/10.4049/jimmunol.1900503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Niculescu F, Rus HG, Vlaicu R. Activation of the human terminal complement pathway in atherosclerosis. Clin Immunol Immunopathol. 1987;45(2):147–55. https://doi.org/10.1016/0090-1229(87)90029-8.

    Article  CAS  PubMed  Google Scholar 

  83. Niculescu F, Hugo F, Rus HG, Vlaicu R, Bhakdi S. Quantitative evaluation of the terminal C5b-9 complement complex by ELISA in human atherosclerotic arteries. Clin Exp Immunol. 1987;69(2):477–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yasojima K, Schwab C, McGeer EG, McGeer PL. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am J Pathol. 2001;158(3):1039–51. https://doi.org/10.1016/s0002-9440(10)64051-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rus HG, Niculescu F, Vlaicu R. Co-localization of terminal C5b-9 complement complexes and macrophages in human atherosclerotic arterial walls. Immunol Lett. 1988;19(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  86. Vlaicu R, Rus HG, Niculescu F, Cristea A. Quantitative determinations of immunoglobulins and complement components in human aortic atherosclerotic wall. Med Interne. 1985;23(1):29–35.

    CAS  PubMed  Google Scholar 

  87. Niculescu F, Rus HG, Vlaicu R. Immunohistochemical localization of C5b-9, S-protein, C3d and apolipoprotein B in human arterial tissues with atherosclerosis. Atherosclerosis. 1987;65(1–2):1–11. https://doi.org/10.1016/0021-9150(87)90002-5.

    Article  CAS  PubMed  Google Scholar 

  88. Lappegard KT, Christiansen D, Pharo A, Thorgersen EB, Hellerud BC, Lindstad J, et al. Human genetic deficiencies reveal the roles of complement in the inflammatory network: lessons from nature. Proc Natl Acad Sci U S A. 2009;106(37):15861–6. https://doi.org/10.1073/pnas.0903613106.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Speidl WS, Kastl SP, Hutter R, Katsaros KM, Kaun C, Bauriedel G, et al. The complement component C5a is present in human coronary lesions in vivo and induces the expression of MMP-1 and MMP-9 in human macrophages in vitro. FASEB J. 2011;25(1):35–44. https://doi.org/10.1096/fj.10-156083.

    Article  CAS  PubMed  Google Scholar 

  90. Paramel Varghese G, Folkersen L, Strawbridge RJ, Halvorsen B, Yndestad A, Ranheim T, et al. NLRP3 Inflammasome expression and activation in human atherosclerosis. J Am Heart Assoc. 2016;5(5):e003031. https://doi.org/10.1161/jaha.115.003031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Franklin BS, Mangan MS, Latz E. Crystal formation in inflammation. Annu Rev Immunol. 2016;34:173–202. https://doi.org/10.1146/annurev-immunol-041015-055539.

    Article  CAS  PubMed  Google Scholar 

  92. Missiroli S, Patergnani S, Caroccia N, Pedriali G, Perrone M, Previati M, et al. Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis. 2018;9(3):329. https://doi.org/10.1038/s41419-017-0027-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Andreeva L, David L, Rawson S, Shen C, Pasricha T, Pelegrin P, et al. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell. 2021;184(26):6299–312.e22. https://doi.org/10.1016/j.cell.2021.11.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42(3):406–17. https://doi.org/10.1016/j.immuni.2015.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tumurkhuu G, Shimada K, Dagvadorj J, Crother TR, Zhang W, Luthringer D, et al. Ogg1-dependent DNA repair regulates NLRP3 Inflammasome and prevents atherosclerosis. Circ Res. 2016;119(6):e76–90. https://doi.org/10.1161/circresaha.116.308362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nomura J, So A, Tamura M, Busso N. Intracellular ATP decrease mediates NLRP3 Inflammasome activation upon Nigericin and crystal stimulation. J Immunol. 2015;195(12):5718–24. https://doi.org/10.4049/jimmunol.1402512.

    Article  CAS  PubMed  Google Scholar 

  97. Kiss MG, Binder CJ. The multifaceted impact of complement on atherosclerosis. Atherosclerosis. 2022;351:29. https://doi.org/10.1016/j.atherosclerosis.2022.03.014.

    Article  CAS  PubMed  Google Scholar 

  98. Smith PK, Shernan SK, Chen JC, Carrier M, Verrier ED, Adams PX, et al. Effects of C5 complement inhibitor pexelizumab on outcome in high-risk coronary artery bypass grafting: combined results from the PRIMO-CABG I and II trials. J Thorac Cardiovasc Surg. 2011;142(1):89–98. https://doi.org/10.1016/j.jtcvs.2010.08.035.

    Article  CAS  PubMed  Google Scholar 

  99. Zimmer S, Grebe A, Bakke SS, Bode N, Halvorsen B, Ulas T, et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med. 2016;8(333):333ra50. https://doi.org/10.1126/scitranslmed.aad6100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terje Espevik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niyonzima, N., Kemper, C., Halvorsen, B., Mollnes, T.E., Espevik, T. (2023). Activation of Systemic- and Intracellular Complement by Cholesterol Crystals. In: Abela, G.S., Nidorf, S.M. (eds) Cholesterol Crystals in Atherosclerosis and Other Related Diseases. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-41192-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41192-2_14

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-41191-5

  • Online ISBN: 978-3-031-41192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics