Skip to main content

Role of Antioxidants, and Lifestyle in Managing Brain Disorders Oxidative Stress Biomarkers and Antioxidant Treatments in Brain Diseases

  • Chapter
  • First Online:
The Role of Natural Antioxidants in Brain Disorders

Part of the book series: Food Bioactive Ingredients ((FBC))

  • 142 Accesses

Abstract

Currently, research continues on the stage of the disease and the biological characteristics of oxidative stress, which occurs at the molecular level in the neuropathophysiology of neuropsychiatric disorders. When neuropsychiatric diseases are examined, including their effects on peripheral, neuron interactions, CSF fluid distribution, and other tissues, an increase in the levels of oxidative stress biomarkers and a decrease in antioxidative defense are observed. In this book chapter, we review current knowledge about the biomarkers of oxidative stress in Alzheimer’s diseases, autism, and schizophrenia based on clinical trials and in vivo/vitro studies, we also determine the oxidative effects of antioxidant therapies and clinically used drugs and question the existence of new treatment methods to reduce oxidative stress. This approach strengthens the scarcity of limited treatment methods for neuropsychiatric diseases and the perspective of patients’ life quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Milbourn HR, Fitzgerald M (2017) Limiting oxidative stress following neurotrauma with a combination of ion channel inhibitors. Discov Med 23

    Google Scholar 

  2. Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822:1363–1373. https://doi.org/10.1016/J.BBADIS.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  3. Mahadik SP, Scheffer RE (1996) Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 55:45–54. https://doi.org/10.1016/S0952-3278(96)90144-1

    Article  CAS  PubMed  Google Scholar 

  4. Mhillaj E, Morgese M, Trabace L (2015) Early life and oxidative stress in psychiatric disorders: what can we learn from animal models? Curr Pharm Des 21:1396–1403. https://doi.org/10.2174/1381612821666150105122422

    Article  CAS  PubMed  Google Scholar 

  5. Cannon TD, Yu C, Addington J et al (2016) An individualized risk calculator for research in prodromal psychosis. Am J Psychiatr 173:980–988. https://doi.org/10.1176/APPI.AJP.2016.15070890

    Article  PubMed  Google Scholar 

  6. Davison J, O’Gorman A, Brennan L, Cotter DR (2018) A systematic review of metabolite biomarkers of schizophrenia. Schizophr Res 195:32–50. https://doi.org/10.1016/J.SCHRES.2017.09.021

    Article  PubMed  Google Scholar 

  7. Fraguas D, Díaz-Caneja CM, Ayora M et al (2019) Oxidative stress and inflammation in first-episode psychosis: a systematic review and meta-analysis. Schizophr Bull 45:742–751. https://doi.org/10.1093/SCHBUL/SBY125

    Article  PubMed  Google Scholar 

  8. Mahadik SP, Mukherjee S (1996) Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr Res 19:1–17. https://doi.org/10.1016/0920-9964(95)00049-6

    Article  CAS  PubMed  Google Scholar 

  9. Buosi P, Borghi FA, Lopes AM et al (2021) Oxidative stress biomarkers in treatment-responsive and treatment-resistant schizophrenia patients. Trends psychiatry Psychother 43:278–285. https://doi.org/10.47626/2237-6089-2020-0078

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cruz BF, de Campos-Carli SM, de Oliveira AM et al (2021) Investigating potential associations between neurocognition/social cognition and oxidative stress in schizophrenia. Psychiatry Res 298. https://doi.org/10.1016/J.PSYCHRES.2021.113832

  11. Kim E, Keskey Z, Kang M et al (2019) Validation of oxidative stress assay for schizophrenia. Schizophr Res 212:126–133. https://doi.org/10.1016/J.SCHRES.2019.07.057

    Article  PubMed  Google Scholar 

  12. Najjar S, Pahlajani S, De Sanctis V et al (2017) Neurovascular unit dysfunction and blood-brain barrier hyperpermeability contribute to schizophrenia neurobiology: a theoretical integration of clinical and experimental evidence. Front Psychiatr 8. https://doi.org/10.3389/FPSYT.2017.00083

  13. Le Bai Z, Li XS, Chen GY et al (2018) Serum oxidative stress marker levels in unmedicated and medicated patients with schizophrenia. J Mol Neurosci 66:428–436. https://doi.org/10.1007/S12031-018-1165-4

    Article  CAS  PubMed  Google Scholar 

  14. Juchnowicz D, Dzikowski M, Rog J et al (2021) Pro/antioxidant state as a potential biomarker of Schizophrenia. J Clin Med 10. https://doi.org/10.3390/JCM10184156

  15. Ma J, Yan L, Guo T et al (2020) A pilot study of biomarkers of oxidative stress in serum and schizophrenia. Psychiatry Res 284. https://doi.org/10.1016/J.PSYCHRES.2020.112757

  16. Guler EM, Kurtulmus A, Gul AZ et al (2021) Oxidative stress and schizophrenia: A comparative cross-sectional study of multiple oxidative markers in patients and their first-degree relatives. Int J Clin Pract 75. https://doi.org/10.1111/IJCP.14711

  17. Grignon S, Chianetta JM (2007) Assessment of malondialdehyde levels in schizophrenia: a meta-analysis and some methodological considerations. Prog Neuropsychopharmacol Biol Psychiatr 31:365–369. https://doi.org/10.1016/J.PNPBP.2006.09.012

    Article  CAS  Google Scholar 

  18. Zhang M, Zhao ZM, He L, Wan CL (2010) A meta-analysis of oxidative stress markers in schizophrenia. Sci China Life Sci 53:112–124. https://doi.org/10.1007/S11427-010-0013-8

    Article  CAS  PubMed  Google Scholar 

  19. Sharpe MA, Robb SJ, Clark JB (2003) Nitric oxide and Fenton/Haber-Weiss chemistry: nitric oxide is a potent antioxidant at physiological concentrations. J Neurochem 87:386–394. https://doi.org/10.1046/J.1471-4159.2003.02001.X

    Article  CAS  PubMed  Google Scholar 

  20. Prabhulkar S, Li CZ (2010) Assessment of oxidative DNA damage and repair at single cellular level via real-time monitoring of 8-OHdG biomarker. Biosens Bioelectron 26:1743–1749. https://doi.org/10.1016/J.BIOS.2010.08.029

    Article  CAS  PubMed  Google Scholar 

  21. Markkanen E, Meyer U, Dianov GL (2016) DNA damage and repair in Schizophrenia and Autism: implications for cancer comorbidity and beyond. Int J Mol Sci 17. https://doi.org/10.3390/IJMS17060856

  22. Cardozo-Pelaez F, Brooks PJ, Stedeford T et al (2000) DNA damage, repair, and antioxidant systems in brain regions: a correlative study. Free Radic Biol Med 28:779–785. https://doi.org/10.1016/S0891-5849(00)00172-6

    Article  CAS  PubMed  Google Scholar 

  23. Nishioka N, Arnold SE (2004) Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia. Am J Geriatr Psychiatr 12:167–175. https://doi.org/10.1097/00019442-200403000-00008

    Article  Google Scholar 

  24. Esteve JM, Mompo J, Asuncion JG et al (1999) Oxidative damage to mitochondrial DNA and glutathione oxidation in apoptosis: studies in vivo and in vitro. FASEB J 13:1055–1064. https://doi.org/10.1096/FASEBJ.13.9.1055

    Article  CAS  PubMed  Google Scholar 

  25. Aizenman E, Stout AK, Hartnett KA et al (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75:1878–1888. https://doi.org/10.1046/J.1471-4159.2000.0751878.X

    Article  CAS  PubMed  Google Scholar 

  26. Catts VS, Catts SV (2000) Apoptosis and schizophrenia: is the tumour suppressor gene, p53, a candidate susceptibility gene? Schizophr Res 41:405–415. https://doi.org/10.1016/S0920-9964(99)00077-8

    Article  CAS  PubMed  Google Scholar 

  27. Kagan VE, Gleiss B, Tyurina YY et al (2002) A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J Immunol 169:487–499. https://doi.org/10.4049/JIMMUNOL.169.1.487

    Article  CAS  PubMed  Google Scholar 

  28. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331. https://doi.org/10.1016/S0092-8674(00)81871-1

    Article  CAS  PubMed  Google Scholar 

  29. Do KQ, Trabesinger AH, Kirsten-Krüger M et al (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12:3721–3728. https://doi.org/10.1046/J.1460-9568.2000.00229.X

    Article  CAS  PubMed  Google Scholar 

  30. Lavoie S, Murray MM, Deppen P et al (2008) Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology 33:2187–2199. https://doi.org/10.1038/SJ.NPP.1301624

    Article  CAS  PubMed  Google Scholar 

  31. MacDowell KS, Caso JR, Martín-Hernández D et al (2016) The atypical antipsychotic paliperidone regulates endogenous antioxidant/anti-inflammatory pathways in rat models of acute and chronic restraint stress. Neurotherapeutics 13:833–843. https://doi.org/10.1007/S13311-016-0438-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. García S, Alberich S, Martínez-Cengotitabengoa M et al (2018) The complex association between the antioxidant defense system and clinical status in early psychosis. PLoS One 13. https://doi.org/10.1371/JOURNAL.PONE.0194685

  33. Li P, Xu Y, Wang B, et al (2020) miR-34a-5p and miR-125b-5p attenuate Aβ-induced neurotoxicity through targeting BACE1. J Neurol Sci:413. https://doi.org/10.1016/J.JNS.2020.116793

  34. Micó JA, Rojas-Corrales MO, Gibert-Rahola J, et al (2011) Reduced antioxidant defense in early onset first-episode psychosis: a case-control study. BMC Psychiatr:11. https://doi.org/10.1186/1471-244X-11-26

  35. Raffa M, Atig F, Mhalla A, et al (2011) Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatr:11. https://doi.org/10.1186/1471-244X-11-124

  36. Ranjekar PK, Hinge A, Hegde MV et al (2003) Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatr Res 121:109–122. https://doi.org/10.1016/s0165-1781(03)00220-8

    Article  CAS  Google Scholar 

  37. Schiavone S, Trabace L (2018) The use of antioxidant compounds in the treatment of first psychotic episode: highlights from preclinical studies. CNS Neurosci Ther 24:465–472. https://doi.org/10.1111/CNS.12847

    Article  PubMed  PubMed Central  Google Scholar 

  38. Altuntas I, Aksoy H, Coskun I et al (2000) Erythrocyte superoxide dismutase and glutathione peroxidase activities, and malondialdehyde and reduced glutathione levels in schizophrenic patients. Clin Chem Lab Med 38:1277–1281. https://doi.org/10.1515/CCLM.2000.201

    Article  CAS  PubMed  Google Scholar 

  39. Dakhale G, Khanzode S, Khanzode S et al (2004) Oxidative damage and schizophrenia: the potential benefit by atypical antipsychotics. Neuropsychobiology 49:205–209. https://doi.org/10.1159/000077368

    Article  PubMed  Google Scholar 

  40. Kuloglu M, Ustundag B, Atmaca M et al (2002) Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 20:171–175. https://doi.org/10.1002/CBF.940

    Article  CAS  PubMed  Google Scholar 

  41. Michel TM, Thome J, Martin D et al (2004) Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis. J Neural Transm 111:1191–1201. https://doi.org/10.1007/S00702-004-0160-9

    Article  CAS  PubMed  Google Scholar 

  42. Monji A, Kato T, Kanba S (2009) Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63:257–265. https://doi.org/10.1111/J.1440-1819.2009.01945.X

    Article  CAS  PubMed  Google Scholar 

  43. Okubo Eneni AE, Ben-Azu B, Mayowa Ajayi A, Oladele Aderibigbe A (2020) Diosmin attenuates schizophrenia-like behavior, oxidative stress, and acetylcholinesterase activity in mice. Drug Metab Pers Ther. https://doi.org/10.1515/DMDI-2020-0119

  44. Li XR, Xiu MH, Guan XN et al (2021) Altered antioxidant defenses in drug-naive first episode patients with schizophrenia are associated with poor treatment response to risperidone: 12-week results from a prospective longitudinal study. Neurotherapeutics 18:1316–1324. https://doi.org/10.1007/S13311-021-01036-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yolland COB, Hanratty D, Neill E et al (2020) Meta-analysis of randomised controlled trials with N-acetylcysteine in the treatment of schizophrenia. Aust N Z J Psychiatr 54:453–466. https://doi.org/10.1177/0004867419893439

    Article  Google Scholar 

  46. Ermakov EA, Dmitrieva EM, Parshukova DA, et al (2021) Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxid Med Cell Longev:2021. https://doi.org/10.1155/2021/8881770

  47. Park SW, Lee CH, Lee JG et al (2011) Protective effects of atypical antipsychotic drugs against MPP(+)-induced oxidative stress in PC12 cells. Neurosci Res 69:283–290. https://doi.org/10.1016/J.NEURES.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  48. Sadowska-Bartosz I, Galiniak S, Bartosz G et al (2016) Antioxidant properties of atypical antipsychotic drugs used in the treatment of schizophrenia. Schizophr Res 176:245–251. https://doi.org/10.1016/J.SCHRES.2016.07.010

    Article  PubMed  Google Scholar 

  49. Phensy A, Driskill C, Lindquist K et al (2017) Antioxidant treatment in male mice prevents mitochondrial and synaptic changes in an NMDA receptor dysfunction model of schizophrenia. eNeuro 4. https://doi.org/10.1523/ENEURO.0081-17.2017

  50. Caruso G, Grasso M, Fidilio A et al (2020) Antioxidant properties of second-generation antipsychotics: focus on microglia. Pharmaceuticals (Basel) 13:1–20. https://doi.org/10.3390/PH13120457

    Article  Google Scholar 

  51. Dean O, Giorlando F, Berk M (2011) N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatr Neurosci 36:78. https://doi.org/10.1503/JPN.100057

    Article  Google Scholar 

  52. Miyake N, Miyamoto S (2016) Effectiveness of N-acetylcysteine in the treatment of schizophrenia. Japanese J Neuropsychopharmacol 36:29–35

    CAS  Google Scholar 

  53. Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: Increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin – the antioxidant proteins. Life Sci 75:2539–2549. https://doi.org/10.1016/J.LFS.2004.04.038

    Article  CAS  PubMed  Google Scholar 

  54. Raghu G, Berk M, Campochiaro PA et al (2021) The multifaceted therapeutic role of N-acetylcysteine (NAC) in disorders characterized by oxidative stress. Curr Neuropharmacol 19:1202–1224. https://doi.org/10.2174/1570159X19666201230144109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16:551–563. https://doi.org/10.1038/NRN3992

    Article  CAS  PubMed  Google Scholar 

  56. Percário S, Da A, Barbosa S et al (2020) No Title. https://doi.org/10.1155/2020/2360872

  57. Haile Y, Deng X, Ortiz-Sandoval C et al (2017) Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J Neuroinflammation 14. https://doi.org/10.1186/S12974-016-0788-Z

  58. dos Santos AA, Ferrer B, Gonçalves FM, et al (2018) Oxidative stress in methylmercury-induced cell toxicity. Toxics:6. https://doi.org/10.3390/TOXICS6030047

  59. Fatemi SH, Aldinger KA, Ashwood P et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11:777–807. https://doi.org/10.1007/S12311-012-0355-9

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zambrelli E, Lividini A, Spadavecchia S et al (2021) Effects of supplementation with antioxidant agents on sleep in autism spectrum disorder: a review. Front Psychiatr 12. https://doi.org/10.3389/FPSYT.2021.689277

  61. Skalny AV, Simashkova NV, Skalnaya AA et al (2017) Assessment of gender and age effects on serum and hair trace element levels in children with autism spectrum disorder. Metab Brain Dis 32:1675–1684. https://doi.org/10.1007/S11011-017-0056-7

    Article  CAS  PubMed  Google Scholar 

  62. Rose S, Bennuri SC, Wynne R et al (2017) Mitochondrial and redox abnormalities in autism lymphoblastoid cells: a sibling control study. FASEB J 31:904–909. https://doi.org/10.1096/FJ.201601004R

    Article  CAS  PubMed  Google Scholar 

  63. James SJ, Melnyk S, Fuchs G et al (2009) Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr 89:425–430. https://doi.org/10.3945/AJCN.2008.26615

    Article  CAS  PubMed  Google Scholar 

  64. Poggi C, Dani C (2018) Sepsis and oxidative stress in the newborn: from pathogenesis to novel therapeutic targets. Oxid Med Cell Longev:2018. https://doi.org/10.1155/2018/9390140

  65. Ghanizadeh A, Akhondzadeh S, Hormozi M et al (2012) Glutathione-related factors and oxidative stress in autism, a review. Curr Med Chem 19:4000–4005. https://doi.org/10.2174/092986712802002572

    Article  CAS  PubMed  Google Scholar 

  66. Burger BJ, Rose S, Bennuri SC et al (2017) Autistic siblings with novel mutations in two different genes: insight for genetic workups of autistic siblings and connection to mitochondrial dysfunction. Front Pediatr 5. https://doi.org/10.3389/FPED.2017.00219

  67. Kang DW, Ilhan ZE, Isern NG et al (2018) Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 49:121–131. https://doi.org/10.1016/J.ANAEROBE.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  68. Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin – the antioxidant proteins. Life Sci 75:2539–2549. https://doi.org/10.1016/J.LFS.2004.04.038

    Article  CAS  PubMed  Google Scholar 

  69. Efe A, Neşelioğlu S, Soykan A (2021) An investigation of the dynamic thiol/disulfide homeostasis, as a novel oxidative stress plasma biomarker, in children with autism spectrum disorders. Autism Res 14:473–487. https://doi.org/10.1002/AUR.2436

    Article  PubMed  Google Scholar 

  70. Needham BD, Adame MD, Serena G et al (2021) Plasma and fecal metabolite profiles in autism spectrum disorder. Biol Psychiatr 89:451–462. https://doi.org/10.1016/J.BIOPSYCH.2020.09.025

    Article  CAS  Google Scholar 

  71. James SJ, Cutler P, Melnyk S et al (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617. https://doi.org/10.1093/AJCN/80.6.1611

    Article  CAS  PubMed  Google Scholar 

  72. Chen L, Shi XJ, Liu H et al (2021) Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109). Transl Psychiatry 11. https://doi.org/10.1038/S41398-020-01135-3

  73. Frustaci A, Neri M, Cesario A et al (2012) Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med 52:2128–2141. https://doi.org/10.1016/J.FREERADBIOMED.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  74. Filipek PA, Juranek J, Nguyen MT et al (2004) Relative carnitine deficiency in autism. J Autism Dev Disord 34:615–623. https://doi.org/10.1007/S10803-004-5283-1

    Article  PubMed  Google Scholar 

  75. Oliveira G, Diogo L, Grazina M et al (2005) Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol 47:185–189. https://doi.org/10.1017/S0012162205000332

    Article  CAS  PubMed  Google Scholar 

  76. Kardani A, Soltani A, Sewell RDE et al (2019) Neurotransmitter, antioxidant and anti-neuroinflammatory mechanistic potentials of herbal medicines in ameliorating autism spectrum disorder. Curr Pharm Des 25:4421–4429. https://doi.org/10.2174/1381612825666191112143940

    Article  CAS  PubMed  Google Scholar 

  77. Pangrazzi L, Balasco L, Bozzi Y (2020) Natural antioxidants: a novel therapeutic approach to autism spectrum disorders? Antioxidants (Basel, Switzerland) 9:1–16. https://doi.org/10.3390/ANTIOX9121186

  78. Kukull WA, Bowen JD (2002) Dementia epidemiology. Med Clin North Am 86:573–590. https://doi.org/10.1016/S0025-7125(02)00010-X

    Article  PubMed  Google Scholar 

  79. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279. https://doi.org/10.1016/J.JALZ.2011.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bertens D, Knol DL, Scheltens P, Visser PJ (2015) Temporal evolution of biomarkers and cognitive markers in the asymptomatic, MCI, and dementia stage of Alzheimer’s disease. Alzheimers Dement 11:511–522. https://doi.org/10.1016/J.JALZ.2014.05.1754

    Article  PubMed  Google Scholar 

  81. Leung YY, Toledo JB, Nefedov A et al (2015) Identifying amyloid pathology-related cerebrospinal fluid biomarkers for Alzheimer’s disease in a multicohort study. Alzheimer’s Dement (Amsterdam, Netherlands) 1:339–348. https://doi.org/10.1016/J.DADM.2015.06.008

  82. Praticò D, Clark CM, Liun F et al (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59:972–976. https://doi.org/10.1001/ARCHNEUR.59.6.972

    Article  PubMed  Google Scholar 

  83. Tadokoro K, Morihara R, Ohta Y et al (2019) Clinical benefits of antioxidative supplement Twendee X for mild cognitive impairment: a multicenter, randomized, double-blind, and placebo-controlled prospective interventional study. J Alzheimers Dis 71:1063–1069. https://doi.org/10.3233/JAD-190644

    Article  CAS  PubMed  Google Scholar 

  84. Solovyev N, Drobyshev E, Bjørklund G et al (2018) Selenium, selenoprotein P, and Alzheimer’s disease: is there a link? Free Radic Biol Med 127:124–133. https://doi.org/10.1016/J.FREERADBIOMED.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  85. McGeer EG, McGeer PL (2010) Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 19:355–361. https://doi.org/10.3233/JAD-2010-1219

    Article  CAS  PubMed  Google Scholar 

  86. Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355. https://doi.org/10.1385/MN:27:3:325

    Article  CAS  PubMed  Google Scholar 

  87. Matos M, Augusto E, Oliveira CR, Agostinho P (2008) Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 156:898–910. https://doi.org/10.1016/J.NEUROSCIENCE.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  88. Galasko D, Montine TJ (2010) Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark Med 4:27–36. https://doi.org/10.2217/BMM.09.89

    Article  CAS  PubMed  Google Scholar 

  89. Tadokoro K, Ohta Y, Inufusa H et al (2020) Prevention of cognitive decline in alzheimer’s disease by novel antioxidative supplements. Int J Mol Sci 21. https://doi.org/10.3390/IJMS21061974

  90. García-Blanco A, Baquero M, Vento M et al (2017) Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease. J Neurol Sci 373:295–302. https://doi.org/10.1016/J.JNS.2017.01.020

    Article  PubMed  Google Scholar 

  91. Chang YT, Chang WN, Tsai NW, et al (2014) The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review. Biomed Res Int:2014. https://doi.org/10.1155/2014/182303

  92. Uruno A, Matsumaru D, Ryoke R et al (2020) Nrf2 suppresses oxidative stress and inflammation in app knock-in Alzheimer’s disease model mice. Mol Cell Biol 40. https://doi.org/10.1128/MCB.00467-19

  93. Cioffi F, Adam RHI, Bansal R, Broersen K (2021) A review of oxidative stress products and related genes in early Alzheimer’s disease. J Alzheimers Dis 83:977–1001. https://doi.org/10.3233/JAD-210497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Collin F, Cheignon C, Hureau C (2018) Oxidative stress as a biomarker for Alzheimer’s disease. Biomark Med 12:201–203. https://doi.org/10.2217/BMM-2017-0456

    Article  CAS  PubMed  Google Scholar 

  95. Kou X, Li J, Liu X et al (2017) Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics. J Appl Physiol 122:1462–1469. https://doi.org/10.1152/JAPPLPHYSIOL.00018.2017

    Article  CAS  PubMed  Google Scholar 

  96. Lugli G, Cohen AM, Bennett DA, et al (2015) Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One:10. https://doi.org/10.1371/JOURNAL.PONE.0139233

  97. Gayen M, Bhomia M, Balakathiresan N, Knollmann-Ritschel B (2020) Exosomal MicroRNAs released by activated astrocytes as potential neuroinflammatory biomarkers. Int J Mol Sci:21. https://doi.org/10.3390/IJMS21072312

  98. Shen Y, Shen Z, Guo L et al (2018) MiR-125b-5p is involved in oxygen and glucose deprivation injury in PC-12 cells via CBS/H2S pathway. Nitric Oxide Biol Chem 78:11–21. https://doi.org/10.1016/J.NIOX.2018.05.004

    Article  CAS  Google Scholar 

  99. Tcw J, Goate AM (2017) Genetics of β-amyloid precursor protein in Alzheimer’s disease. Cold Spring Harb Perspect Med 7. https://doi.org/10.1101/CSHPERSPECT.A024539

  100. Dubey T, Chinnathambi S (2019) Brahmi (Bacopa monnieri): an ayurvedic herb against the Alzheimer’s disease. Arch Biochem Biophys 676. https://doi.org/10.1016/J.ABB.2019.108153

  101. Khan H, Ullah H, Aschner M et al (2019) Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 10. https://doi.org/10.3390/BIOM10010059

  102. Singh SK, Srivastav S, Castellani RJ et al (2019) Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 16:666–674. https://doi.org/10.1007/S13311-019-00767-8

    Article  PubMed  PubMed Central  Google Scholar 

  103. Noori T, Dehpour AR, Sureda A et al (2021) Role of natural products for the treatment of Alzheimer’s disease. Eur J Pharmacol 898. https://doi.org/10.1016/J.EJPHAR.2021.173974

  104. Azm SAN, Djazayeri A, Safa M et al (2018) Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats. Appl Physiol Nutr Metab 43:718–726. https://doi.org/10.1139/APNM-2017-0648

    Article  Google Scholar 

  105. Kobayashi Y, Sugahara H, Shimada K et al (2017) Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 7. https://doi.org/10.1038/S41598-017-13368-2

  106. Deng H, Dong X, Chen M, Zou Z (2020) Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer’s disease or mild cognitive impairment – a meta-analysis of randomized controlled trials. Aging (Albany NY) 12:4010–4039. https://doi.org/10.18632/AGING.102810

    Article  CAS  Google Scholar 

  107. He L, He T, Farrar S et al (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553. https://doi.org/10.1159/000485089

    Article  PubMed  Google Scholar 

  108. Chen YF, Wu SN, Gao JM et al (2020) The antioxidant, anti-inflammatory, and neuroprotective properties of the synthetic chalcone derivative AN07. Molecules 25. https://doi.org/10.3390/MOLECULES25122907

  109. Drummond NJ, Davies NO, Lovett JE et al (2017) A synthetic cell permeable antioxidant protects neurons against acute oxidative stress. Sci Rep 7. https://doi.org/10.1038/S41598-017-12072-5

  110. Butler M, Nelson VA, Davila H et al (2018) Over-the-counter supplement interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: a systematic review. Ann Intern Med 168:52–62. https://doi.org/10.7326/M17-1530

    Article  PubMed  Google Scholar 

  111. Forbes SC, Holroyd-Leduc JM, Poulin PhD MJ, Hogan DB (2015) Effect of nutrients, dietary supplements and vitamins on cognition: a systematic review and meta-analysis of randomized controlled trials. Can Geriatr J 18:231–245. https://doi.org/10.5770/CGJ.18.189

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhsin Konuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Özcan, Ö.Ö., Karahan, M., Konuk, M. (2023). Role of Antioxidants, and Lifestyle in Managing Brain Disorders Oxidative Stress Biomarkers and Antioxidant Treatments in Brain Diseases. In: Imran, A., Hussain, G. (eds) The Role of Natural Antioxidants in Brain Disorders. Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-031-41188-5_10

Download citation

Publish with us

Policies and ethics