
Chapter 4

Polynomials

This chapter contains material on polynomials that we will use to investigate
linear maps from a vector space to itself. Many results in this chapter will already
be familiar to you from other courses; they are included here for completeness.

Because this chapter is not about linear algebra, your instructor may go through
it rapidly. You may not be asked to scrutinize all the proofs. Make sure, however,
that you at least read and understand the statements of all results in this chapter—
they will be used in later chapters.

This chapter begins with a brief discussion of algebraic properties of the
complex numbers. Then we prove that a nonconstant polynomial cannot have
more zeros than its degree. We also give a linear-algebra-based proof of the
division algorithm for polynomials, which is worth reading even if you are already
familiar with a proof that does not use linear algebra.

As we will see, the fundamental theorem of algebra leads to a factorization of
every polynomial into degree-one factors if the scalar field is 𝐂 or to factors of
degree at most two if the scalar field is 𝐑.

standing assumption for this chapter

• 𝐅 denotes 𝐑 or 𝐂.
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Before discussing polynomials with complex or real coefficients, we need to
learn a bit more about the complex numbers.

4.1 definition: real part, Re 𝑧, imaginary part, Im 𝑧

Suppose 𝑧 = 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are real numbers.

• The real part of 𝑧, denoted by Re 𝑧, is defined by Re 𝑧 = 𝑎.

• The imaginary part of 𝑧, denoted by Im 𝑧, is defined by Im 𝑧 = 𝑏.

Thus for every complex number 𝑧, we have

𝑧 = Re 𝑧 + (Im 𝑧)𝑖.

4.2 definition: complex conjugate, 𝑧, absolute value, |𝑧|

Suppose 𝑧 ∈ 𝐂.

• The complex conjugate of 𝑧 ∈ 𝐂, denoted by 𝑧, is defined by

𝑧 = Re 𝑧 − (Im 𝑧)𝑖.

• The absolute value of a complex number 𝑧, denoted by |𝑧|, is defined by

|𝑧| = √(Re 𝑧)2 + (Im 𝑧)2.

4.3 example: real and imaginary part, complex conjugate, absolute value

Suppose 𝑧 = 3 + 2𝑖. Then

• Re 𝑧 = 3 and Im 𝑧 = 2;

• 𝑧 = 3 − 2𝑖;

• |𝑧| = √32 + 22 = √13.

Identifying a complex number 𝑧 ∈ 𝐂 with the ordered pair (Re 𝑧, Im 𝑧) ∈ 𝐑2

identifies 𝐂 with 𝐑2. Note that 𝐂 is a one-dimensional complex vector space,
but we can also think of 𝐂 (identified with 𝐑2) as a two-dimensional real vector
space.

The absolute value of each complex number is a nonnegative number. Specif-
ically, if 𝑧 ∈ 𝐂, then |𝑧| equals the distance from the origin in 𝐑2 to the point
(Re 𝑧, Im 𝑧) ∈ 𝐑2.

You should verify that 𝑧 = 𝑧 if and only
if 𝑧 is a real number.

The real and imaginary parts, com-
plex conjugate, and absolute value have
the properties listed in the following
multipart result.
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4.4 properties of complex numbers

Suppose 𝑤, 𝑧 ∈ 𝐂. Then the following equalities and inequalities hold.

sum of 𝑧 and 𝑧
𝑧 + 𝑧 = 2Re 𝑧.

difference of 𝑧 and 𝑧
𝑧 − 𝑧 = 2(Im 𝑧)𝑖.

product of 𝑧 and 𝑧
𝑧𝑧 = |𝑧|2.

additivity and multiplicativity of complex conjugate
𝑤 + 𝑧 = 𝑤 + 𝑧 and 𝑤𝑧 = 𝑤 𝑧.

double complex conjugate
𝑧 = 𝑧.

real and imaginary parts are bounded by |𝑧|
|Re 𝑧| ≤ |𝑧| and | Im 𝑧| ≤ |𝑧|.

absolute value of the complex conjugate
∣𝑧∣ = |𝑧|.

multiplicativity of absolute value
|𝑤𝑧| = |𝑤| |𝑧|.

triangle inequality
|𝑤 + 𝑧| ≤ |𝑤| + |𝑧|.

Geometric interpretation of triangle in-
equality: The length of each side of a
triangle is less than or equal to the sum
of the lengths of the two other sides.

Proof Except for the last item above,
the routine verifications of the assertions
above are left to the reader. To verify the
triangle inequality, we have

|𝑤 + 𝑧|2 = (𝑤 + 𝑧)(𝑤 + 𝑧)
= 𝑤𝑤 + 𝑧𝑧 + 𝑤𝑧 + 𝑧𝑤
= |𝑤|2 + |𝑧|2 + 𝑤𝑧 + 𝑤𝑧
= |𝑤|2 + |𝑧|2 + 2Re(𝑤𝑧)
≤ |𝑤|2 + |𝑧|2 + 2∣𝑤𝑧∣
= |𝑤|2 + |𝑧|2 + 2|𝑤| |𝑧|
= (|𝑤| + |𝑧|)2.

See Exercise 2 for the reverse triangle
inequality.

Taking square roots now gives the desired
inequality |𝑤 + 𝑧| ≤ |𝑤| + |𝑧|.
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Zeros of Polynomials
Recall that a function 𝑝 ∶ 𝐅 → 𝐅 is called a polynomial of degree 𝑚 if there exist
𝑎0,…, 𝑎𝑚 ∈ 𝐅 with 𝑎𝑚 ≠ 0 such that

𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + ⋯ + 𝑎𝑚𝑧𝑚

for all 𝑧 ∈ 𝐅. A polynomial could have more than one degree if the representation
of 𝑝 in the form above were not unique. Our first task is to show that this cannot
happen.

The solutions to the equation 𝑝(𝑧) = 0 play a crucial role in the study of a
polynomial 𝑝 ∈ 𝒫(𝐅). Thus these solutions have a special name.

4.5 definition: zero of a polynomial

A number 𝜆 ∈ 𝐅 is called a zero (or root) of a polynomial 𝑝 ∈ 𝒫(𝐅) if

𝑝(𝜆) = 0.

The next result is the key tool that we will use to show that the degree of a
polynomial is unique.

4.6 each zero of a polynomial corresponds to a degree-one factor

Suppose 𝑚 is a positive integer and 𝑝 ∈ 𝒫(𝐅) is a polynomial of degree 𝑚.
Suppose 𝜆 ∈ 𝐅. Then 𝑝(𝜆) = 0 if and only if there exists a polynomial
𝑞 ∈ 𝒫(𝐅) of degree 𝑚 − 1 such that

𝑝(𝑧) = (𝑧 − 𝜆)𝑞(𝑧)

for every 𝑧 ∈ 𝐅.

Proof First suppose 𝑝(𝜆) = 0. Let 𝑎0, 𝑎1,…, 𝑎𝑚 ∈ 𝐅 be such that

𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + ⋯ + 𝑎𝑚𝑧𝑚

for all 𝑧 ∈ 𝐅. Then

4.7 𝑝(𝑧) = 𝑝(𝑧) − 𝑝(𝜆) = 𝑎1(𝑧 − 𝜆) + ⋯ + 𝑎𝑚(𝑧𝑚 − 𝜆𝑚)

for all 𝑧 ∈ 𝐅. For each 𝑘 ∈ {1,…,𝑚}, the equation

𝑧𝑘 − 𝜆𝑘 = (𝑧 − 𝜆)
𝑘
∑
𝑗 = 1

𝜆𝑗−1𝑧𝑘−𝑗

shows that 𝑧𝑘 − 𝜆𝑘 equals 𝑧 − 𝜆 times some polynomial of degree 𝑘 − 1. Thus 4.7
shows that 𝑝 equals 𝑧 − 𝜆 times some polynomial of degree 𝑚 − 1, as desired.

To prove the implication in the other direction, now suppose that there is
a polynomial 𝑞 ∈ 𝒫(𝐅) such that 𝑝(𝑧) = (𝑧 − 𝜆)𝑞(𝑧) for every 𝑧 ∈ 𝐅. Then
𝑝(𝜆) = (𝜆 − 𝜆)𝑞(𝜆) = 0, as desired.
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Now we can prove that polynomials do not have too many zeros.

4.8 degree 𝑚 implies at most 𝑚 zeros

Suppose 𝑚 is a positive integer and 𝑝 ∈ 𝒫(𝐅) is a polynomial of degree 𝑚.
Then 𝑝 has at most 𝑚 zeros in 𝐅.

Proof We will use induction on 𝑚. The desired result holds if 𝑚 = 1 because
if 𝑎1 ≠ 0 then the polynomial 𝑎0 + 𝑎1𝑧 has only one zero (which equals −𝑎0/𝑎1).
Thus assume that 𝑚 > 1 and the desired result holds for 𝑚 − 1.

If 𝑝 has no zeros in 𝐅, then the desired result holds and we are done. Thus
suppose 𝑝 has a zero 𝜆 ∈ 𝐅. By 4.6, there is polynomial 𝑞 ∈ 𝒫(𝐅) of degree
𝑚 − 1 such that

𝑝(𝑧) = (𝑧 − 𝜆)𝑞(𝑧)
for every 𝑧 ∈ 𝐅. Our induction hypothesis implies that 𝑞 has at most 𝑚 − 1 zeros
in 𝐅. The equation above shows that the zeros of 𝑝 in 𝐅 are exactly the zeros of 𝑞
in 𝐅 along with 𝜆. Thus 𝑝 has at most 𝑚 zeros in 𝐅.

The result above implies that the coefficients of a polynomial are uniquely
determined (because if a polynomial had two different sets of coefficients, then
subtracting the two representations of the polynomial would give a polynomial
with some nonzero coefficients but infinitely many zeros). In particular, the degree
of a polynomial is uniquely defined.

The 0 polynomial is declared to have
degree −∞ so that exceptions are not
needed for various reasonable results
such as deg(𝑝𝑞) = deg 𝑝 + deg 𝑞.

Recall that the degree of the 0 poly-
nomial is defined to be −∞. When
necessary, use the expected arithmetic
with −∞. For example, −∞ < 𝑚 and
−∞ + 𝑚 = −∞ for every integer 𝑚.

Division Algorithm for Polynomials
If 𝑝 and 𝑠 are nonnegative integers, with 𝑠 ≠ 0, then there exist nonnegative
integers 𝑞 and 𝑟 such that

𝑝 = 𝑠𝑞 + 𝑟
and 𝑟 < 𝑠. Think of dividing 𝑝 by 𝑠, getting quotient 𝑞 with remainder 𝑟. Our next
result gives an analogous result for polynomials. Thus the next result is often
called the division algorithm for polynomials, although as stated here it is not
really an algorithm, just a useful result.

Think of the division algorithm for poly-
nomials as giving a remainder polyno-
mial 𝑟 when the polynomial 𝑝 is divided
by the polynomial 𝑠.

The division algorithm for polynomi-
als could be proved without using any
linear algebra. However, as is appropri-
ate for a linear algebra textbook, the proof
given here uses linear algebra techniques
and makes nice use of a basis of 𝒫𝑛(𝐅), which is the (𝑛 + 1)-dimensional vector
space of polynomials with coefficients in 𝐅 and of degree at most 𝑛.
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4.9 division algorithm for polynomials

Suppose that 𝑝, 𝑠 ∈ 𝒫(𝐅), with 𝑠 ≠ 0. Then there exist unique polynomials
𝑞, 𝑟 ∈ 𝒫(𝐅) such that

𝑝 = 𝑠𝑞 + 𝑟

and deg 𝑟 < deg 𝑠.

Proof Let 𝑛 = deg 𝑝 and let 𝑚 = deg 𝑠. If 𝑛 < 𝑚, then take 𝑞 = 0 and 𝑟 = 𝑝 to
get the desired equation 𝑝 = 𝑠𝑞 + 𝑟 with deg 𝑟 < deg 𝑠. Thus we now assume that
𝑛 ≥ 𝑚.

The list

4.10 1, 𝑧,…, 𝑧𝑚−1, 𝑠, 𝑧𝑠,…, 𝑧𝑛−𝑚𝑠

is linearly independent in 𝒫𝑛(𝐅) because each polynomial in this list has a different
degree. Also, the list 4.10 has length 𝑛 + 1, which equals dim 𝒫𝑛(𝐅). Hence 4.10
is a basis of 𝒫𝑛(𝐅) [by 2.38].

Because 𝑝 ∈ 𝒫𝑛(𝐅) and 4.10 is a basis of 𝒫𝑛(𝐅), there exist unique constants
𝑎0, 𝑎1,…, 𝑎𝑚−1 ∈ 𝐅 and 𝑏0, 𝑏1,…, 𝑏𝑛−𝑚 ∈ 𝐅 such that

𝑝 = 𝑎0 + 𝑎1𝑧 + ⋯ + 𝑎𝑚−1𝑧𝑚−1 + 𝑏0𝑠 + 𝑏1𝑧𝑠 + ⋯ + 𝑏𝑛−𝑚𝑧𝑛−𝑚𝑠4.11

= 𝑎0 + 𝑎1𝑧 + ⋯ + 𝑎𝑚−1𝑧𝑚−1⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟

+ 𝑠(𝑏0 + 𝑏1𝑧 + ⋯ + 𝑏𝑛−𝑚𝑧𝑛−𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞

).

With 𝑟 and 𝑞 as defined above, we see that 𝑝 can be written as 𝑝 = 𝑠𝑞 + 𝑟 with
deg 𝑟 < deg 𝑠, as desired.

The uniqueness of 𝑞, 𝑟 ∈ 𝒫(𝐅) satisfying these conditions follows from the
uniqueness of the constants 𝑎0, 𝑎1,…, 𝑎𝑚−1 ∈ 𝐅 and 𝑏0, 𝑏1,…, 𝑏𝑛−𝑚 ∈ 𝐅 satisfy-
ing 4.11.

Factorization of Polynomials over 𝐂

The fundamental theorem of algebra is
an existence theorem. Its proof does
not lead to a method for finding zeros.
The quadratic formula gives the zeros
explicitly for polynomials of degree 2.
Similar but more complicated formulas
exist for polynomials of degree 3 and 4.
No such formulas exist for polynomials
of degree 5 and above.

W have been handling polynomials with
complex coefficients and polynomials
with real coefficients simultaneously, let-
ting 𝐅 denote 𝐑 or 𝐂. Now we will
see differences between these two cases.
First we treat polynomials with complex
coefficients. Then we will use those re-
sults to prove corresponding results for
polynomials with real coefficients.

Our proof of the fundamental theorem
of algebra implicitly uses the result that a continuous real-valued function on a
closed disk in 𝐑2 attains a minimum value. A web search can lead you to several
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other proofs of the fundamental theorem of algebra. The proof using Liouville’s
theorem is particularly nice if you are comfortable with analytic functions. All
proofs of the fundamental theorem of algebra need to use some analysis, because
the result is not true if 𝐂 is replaced, for example, with the set of numbers of the
form 𝑐 + 𝑑𝑖 where 𝑐, 𝑑 are rational numbers.

4.12 fundamental theorem of algebra, first version

Every nonconstant polynomial with complex coefficients has a zero in 𝐂.

Proof De Moivre’s theorem, which you can prove using induction on 𝑘 and the
addition formulas for cosine and sine, states that if 𝑘 is a positive integer and
𝜃 ∈ 𝐑, then

(cos 𝜃 + 𝑖 sin 𝜃)𝑘 = cos 𝑘𝜃 + 𝑖 sin 𝑘𝜃.
Suppose 𝑤 ∈ 𝐂 and 𝑘 is a positive integer. Using polar coordinates, we know

that there exist 𝑟 ≥ 0 and 𝜃 ∈ 𝐑 such that

𝑟(cos 𝜃 + 𝑖 sin 𝜃) = 𝑤.

De Moivre’s theorem implies that

(𝑟1/𝑘(cos 𝜃
𝑘 + 𝑖 sin 𝜃

𝑘))
𝑘
= 𝑤.

Thus every complex number has a 𝑘th root, a fact that we will soon use.
Suppose 𝑝 is a nonconstant polynomial with complex coefficients and highest-

order nonzero term 𝑐𝑚𝑧𝑚. Then |𝑝(𝑧)| → ∞ as |𝑧| → ∞ (because |𝑝(𝑧)|/∣𝑧𝑚∣ → |𝑐𝑚|
as |𝑧| → ∞). Thus the continuous function 𝑧 ↦ |𝑝(𝑧)| has a global minimum at
some point 𝜁 ∈ 𝐂. To show that 𝑝(𝜁) = 0, suppose that 𝑝(𝜁) ≠ 0.

Define a new polynomial 𝑞 by

𝑞(𝑧) =
𝑝(𝑧 + 𝜁)
𝑝(𝜁)

.

The function 𝑧 ↦ |𝑞(𝑧)| has a global minimum value of 1 at 𝑧 = 0. Write

𝑞(𝑧) = 1 + 𝑎𝑘𝑧𝑘 + ⋯ + 𝑎𝑚𝑧𝑚,

where 𝑘 is the smallest positive integer such that the coefficient of 𝑧𝑘 is nonzero;
in other words, 𝑎𝑘 ≠ 0.

Let 𝛽 ∈ 𝐂 be such that 𝛽𝑘 = −
1
𝑎𝑘

. There is a constant 𝑐 > 1 such that if

𝑡 ∈ (0, 1), then

|𝑞(𝑡𝛽)| ≤ ∣1 + 𝑎𝑘𝑡𝑘𝛽𝑘∣ + 𝑡𝑘+1𝑐
= 1 − 𝑡𝑘(1 − 𝑡𝑐).

Thus taking 𝑡 to be 1/(2𝑐) in the inequality above, we have |𝑞(𝑡𝛽)| < 1, which
contradicts the assumption that the global minimum of 𝑧 ↦ |𝑞(𝑧)| is 1. This
contradiction implies that 𝑝(𝜁) = 0, showing that 𝑝 has a zero, as desired.
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Computers can use clever numerical methods to find good approximations to
the zeros of any polynomial, even when exact zeros cannot be found. For example,
no one will ever give an exact formula for a zero of the polynomial 𝑝 defined by

𝑝(𝑥) = 𝑥5 − 5𝑥4 − 6𝑥3 + 17𝑥2 + 4𝑥 − 7.

However, a computer can find that the zeros of 𝑝 are approximately the five
numbers −1.87, −0.74, 0.62, 1.47, 5.51.

The first version of the fundamental theorem of algebra leads to the following
factorization result for polynomials with complex coefficients. Note that in this
factorization, the zeros of 𝑝 are the numbers 𝜆1,…, 𝜆𝑚, which are the only values
of 𝑧 for which the right side of the equation in the next result equals 0.

4.13 fundamental theorem of algebra, second version

If 𝑝 ∈ 𝒫(𝐂) is a nonconstant polynomial, then 𝑝 has a unique factorization
(except for the order of the factors) of the form

𝑝(𝑧) = 𝑐(𝑧 − 𝜆1)⋯(𝑧 − 𝜆𝑚),

where 𝑐, 𝜆1,…, 𝜆𝑚 ∈ 𝐂.

Proof Let 𝑝 ∈ 𝒫(𝐂) and let 𝑚 = deg 𝑝. We will use induction on 𝑚. If 𝑚 = 1,
then the desired factorization exists and is unique. So assume that 𝑚 > 1 and that
the desired factorization exists and is unique for all polynomials of degree 𝑚 − 1.

First we will show that the desired factorization of 𝑝 exists. By the first version
of the fundamental theorem of algebra (4.12), 𝑝 has a zero 𝜆 ∈ 𝐂. By 4.6, there
is a polynomial 𝑞 of degree 𝑚 − 1 such that

𝑝(𝑧) = (𝑧 − 𝜆)𝑞(𝑧)

for all 𝑧 ∈ 𝐂. Our induction hypothesis implies that 𝑞 has the desired factorization,
which when plugged into the equation above gives the desired factorization of 𝑝.

Now we turn to the question of uniqueness. The number 𝑐 is uniquely deter-
mined as the coefficient of 𝑧𝑚 in 𝑝. So we only need to show that except for the
order, there is only one way to choose 𝜆1,…, 𝜆𝑚. If

(𝑧 − 𝜆1)⋯(𝑧 − 𝜆𝑚) = (𝑧 − 𝜏1)⋯(𝑧 − 𝜏𝑚)

for all 𝑧 ∈ 𝐂, then because the left side of the equation above equals 0 when
𝑧 = 𝜆1, one of the 𝜏’s on the right side equals 𝜆1. Relabeling, we can assume
that 𝜏1 = 𝜆1. Now if 𝑧 ≠ 𝜆1, we can divide both sides of the equation above by
𝑧 − 𝜆1, getting

(𝑧 − 𝜆2)⋯(𝑧 − 𝜆𝑚) = (𝑧 − 𝜏2)⋯(𝑧 − 𝜏𝑚)

for all 𝑧 ∈ 𝐂 except possibly 𝑧 = 𝜆1. Actually the equation above holds for all
𝑧 ∈ 𝐂, because otherwise by subtracting the right side from the left side we would
get a nonzero polynomial that has infinitely many zeros. The equation above and
our induction hypothesis imply that except for the order, the 𝜆’s are the same as
the 𝜏’s, completing the proof of uniqueness.
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Factorization of Polynomials over 𝐑

The failure of the fundamental theorem
of algebra for 𝐑 accounts for the differ-
ences between linear algebra on real
and complex vector spaces, as we will
see in later chapters.

A polynomial with real coefficients may
have no real zeros. For example, the poly-
nomial 1 + 𝑥2 has no real zeros.

To obtain a factorization theorem over
𝐑, we will use our factorization theorem
over 𝐂. We begin with the next result.

4.14 polynomials with real coefficients have nonreal zeros in pairs

Suppose 𝑝 ∈ 𝒫(𝐂) is a polynomial with real coefficients. If 𝜆 ∈ 𝐂 is a zero
of 𝑝, then so is 𝜆.

Proof Let
𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + ⋯ + 𝑎𝑚𝑧𝑚,

where 𝑎0,…, 𝑎𝑚 are real numbers. Suppose 𝜆 ∈ 𝐂 is a zero of 𝑝. Then

𝑎0 + 𝑎1𝜆 + ⋯ + 𝑎𝑚𝜆𝑚 = 0.

Take the complex conjugate of both sides of this equation, obtaining

𝑎0 + 𝑎1𝜆 + ⋯ + 𝑎𝑚𝜆𝑚 = 0,

where we have used basic properties of the complex conjugate (see 4.4). The
equation above shows that 𝜆 is a zero of 𝑝.

Think about the quadratic formula in
connection with the result below.

We want a factorization theorem for
polynomials with real coefficients. We
begin with the following result.

4.15 factorization of a quadratic polynomial

Suppose 𝑏, 𝑐 ∈ 𝐑. Then there is a polynomial factorization of the form

𝑥2 + 𝑏𝑥 + 𝑐 = (𝑥 − 𝜆1)(𝑥 − 𝜆2)

with 𝜆1, 𝜆2 ∈ 𝐑 if and only if 𝑏2 ≥ 4𝑐.

Proof Notice that

𝑥2 + 𝑏𝑥 + 𝑐 = (𝑥 +
𝑏
2
)

2
+ (𝑐 −

𝑏2

4
).

The equation above is the basis of
the technique called completing the
square.

First suppose 𝑏2 < 4𝑐. Then the right
side of the equation above is positive for
every 𝑥 ∈ 𝐑. Hence the polynomial
𝑥2 + 𝑏𝑥 + 𝑐 has no real zeros and thus
cannot be factored in the form (𝑥 − 𝜆1)(𝑥 − 𝜆2) with 𝜆1, 𝜆2 ∈ 𝐑.
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Conversely, now suppose 𝑏2 ≥ 4𝑐. Then there is a real number 𝑑 such that
𝑑2 = 𝑏2

4 − 𝑐. From the displayed equation above, we have

𝑥2 + 𝑏𝑥 + 𝑐 = (𝑥 +
𝑏
2
)

2
− 𝑑2

= (𝑥 +
𝑏
2

+ 𝑑)(𝑥 +
𝑏
2
− 𝑑),

which gives the desired factorization.

The next result gives a factorization of a polynomial over 𝐑. The idea of
the proof is to use the second version of the fundamental theorem of algebra
(4.13), which gives a factorization of 𝑝 as a polynomial with complex coefficients.
Complex but nonreal zeros of 𝑝 come in pairs; see 4.14. Thus if the factorization
of 𝑝 as an element of 𝒫(𝐂) includes terms of the form (𝑥 − 𝜆) with 𝜆 a nonreal
complex number, then (𝑥 − 𝜆) is also a term in the factorization. Multiplying
together these two terms, we get

(𝑥2 − 2(Re 𝜆)𝑥 + |𝜆|2),

which is a quadratic term of the required form.
The idea sketched in the paragraph above almost provides a proof of the

existence of our desired factorization. However, we need to be careful about
one point. Suppose 𝜆 is a nonreal complex number and (𝑥 − 𝜆) is a term in the
factorization of 𝑝 as an element of 𝒫(𝐂). We are guaranteed by 4.14 that (𝑥 − 𝜆)
also appears as a term in the factorization, but 4.14 does not state that these two
factors appear the same number of times, as needed to make the idea above work.
However, the proof works around this point.

In the next result, either 𝑚 or 𝑀 may equal 0. The numbers 𝜆1,…, 𝜆𝑚 are
precisely the real zeros of 𝑝, for these are the only real values of 𝑥 for which the
right side of the equation in the next result equals 0.

4.16 factorization of a polynomial over 𝐑

Suppose 𝑝 ∈ 𝒫(𝐑) is a nonconstant polynomial. Then 𝑝 has a unique factor-
ization (except for the order of the factors) of the form

𝑝(𝑥) = 𝑐(𝑥 − 𝜆1)⋯(𝑥 − 𝜆𝑚)(𝑥2 + 𝑏1𝑥 + 𝑐1)⋯(𝑥2 + 𝑏𝑀𝑥 + 𝑐𝑀),

where 𝑐, 𝜆1,…, 𝜆𝑚, 𝑏1,…, 𝑏𝑀, 𝑐1,…, 𝑐𝑀 ∈ 𝐑, with 𝑏𝑘
2 < 4𝑐𝑘 for each 𝑘.

Proof First we will prove that the desired factorization exists, and after that we
will prove the uniqueness.

Think of 𝑝 as an element of 𝒫(𝐂). If all (complex) zeros of 𝑝 are real, then
we have the desired factorization by 4.13. Thus suppose 𝑝 has a zero 𝜆 ∈ 𝐂 with
𝜆 ∉ 𝐑. By 4.14, 𝜆 is a zero of 𝑝. Thus we can write



Chapter 4 Polynomials 129

𝑝(𝑥) = (𝑥 − 𝜆)(𝑥 − 𝜆)𝑞(𝑥)
= (𝑥2 − 2(Re 𝜆)𝑥 + |𝜆|2)𝑞(𝑥)

for some polynomial 𝑞 ∈ 𝒫(𝐂) of degree two less than the degree of 𝑝. If we
can prove that 𝑞 has real coefficients, then using induction on the degree of 𝑝
completes the proof of the existence part of this result.

To prove that 𝑞 has real coefficients, we solve the equation above for 𝑞, getting

𝑞(𝑥) =
𝑝(𝑥)

𝑥2 − 2(Re 𝜆)𝑥 + |𝜆|2

for all 𝑥 ∈ 𝐑. The equation above implies that 𝑞(𝑥) ∈ 𝐑 for all 𝑥 ∈ 𝐑. Writing

𝑞(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛−2𝑥𝑛−2,

where 𝑛 = deg 𝑝 and 𝑎0,…, 𝑎𝑛−2 ∈ 𝐂, we thus have

0 = Im 𝑞(𝑥) = (Im 𝑎0) + (Im 𝑎1)𝑥 + ⋯ + (Im 𝑎𝑛−2)𝑥𝑛−2

for all 𝑥 ∈ 𝐑. This implies that Im 𝑎0,…, Im 𝑎𝑛−2 all equal 0 (by 4.8). Thus all
coefficients of 𝑞 are real, as desired. Hence the desired factorization exists.

Now we turn to the question of uniqueness of our factorization. A factor of 𝑝
of the form 𝑥2+𝑏𝑘𝑥+𝑐𝑘 with 𝑏𝑘

2 < 4𝑐𝑘 can be uniquely written as (𝑥− 𝜆𝑘)(𝑥− 𝜆𝑘)
with 𝜆𝑘 ∈ 𝐂. A moment’s thought shows that two different factorizations of 𝑝 as
an element of 𝒫(𝐑) would lead to two different factorizations of 𝑝 as an element
of 𝒫(𝐂), contradicting 4.13.

Exercises 4

1 Suppose 𝑤, 𝑧 ∈ 𝐂. Verify the following equalities and inequalities.
(a) 𝑧 + 𝑧 = 2Re 𝑧
(b) 𝑧 − 𝑧 = 2(Im 𝑧)𝑖
(c) 𝑧𝑧 = |𝑧|2

(d) 𝑤 + 𝑧 = 𝑤 + 𝑧 and 𝑤𝑧 = 𝑤 𝑧
(e) 𝑧 = 𝑧
(f) |Re 𝑧| ≤ |𝑧| and | Im 𝑧| ≤ |𝑧|
(g) ∣𝑧∣ = |𝑧|
(h) |𝑤𝑧| = |𝑤| |𝑧|

The results above are the parts of 4.4 that were left to the reader.

2 Prove that if 𝑤, 𝑧 ∈ 𝐂, then ∣ |𝑤| − |𝑧| ∣ ≤ |𝑤 − 𝑧|.
The inequality above is called the reverse triangle inequality.
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3 Suppose 𝑉 is a complex vector space and 𝜑 ∈ 𝑉′. Define 𝜎 ∶ 𝑉 → 𝐑 by
𝜎(𝑣) = Re𝜑(𝑣) for each 𝑣 ∈ 𝑉. Show that

𝜑(𝑣) = 𝜎(𝑣) − 𝑖𝜎(𝑖𝑣)

for all 𝑣 ∈ 𝑉.

4 Suppose 𝑚 is a positive integer. Is the set

{0} ∪ {𝑝 ∈ 𝒫(𝐅) ∶ deg 𝑝 = 𝑚}

a subspace of 𝒫(𝐅)?

5 Is the set
{0} ∪ {𝑝 ∈ 𝒫(𝐅) ∶ deg 𝑝 is even}

a subspace of 𝒫(𝐅)?

6 Suppose that 𝑚 and 𝑛 are positive integers with 𝑚 ≤ 𝑛, and suppose
𝜆1,…, 𝜆𝑚 ∈ 𝐅. Prove that there exists a polynomial 𝑝 ∈ 𝒫(𝐅) with
deg 𝑝 = 𝑛 such that 0 = 𝑝(𝜆1) = ⋯ = 𝑝(𝜆𝑚) and such that 𝑝 has no
other zeros.

7 Suppose that 𝑚 is a nonnegative integer, 𝑧1,…, 𝑧𝑚+1 are distinct elements
of 𝐅, and 𝑤1,…,𝑤𝑚+1 ∈ 𝐅. Prove that there exists a unique polynomial
𝑝 ∈ 𝒫𝑚(𝐅) such that

𝑝(𝑧𝑘) = 𝑤𝑘

for each 𝑘 = 1,…,𝑚 + 1.
This result can be proved without using linear algebra. However, try to find
the clearer, shorter proof that uses some linear algebra.

8 Suppose 𝑝 ∈ 𝒫(𝐂) has degree 𝑚. Prove that 𝑝 has 𝑚 distinct zeros if and
only if 𝑝 and its derivative 𝑝′ have no zeros in common.

9 Prove that every polynomial of odd degree with real coefficients has a real
zero.

10 For 𝑝 ∈ 𝒫(𝐑), define 𝑇𝑝 ∶ 𝐑 → 𝐑 by

(𝑇𝑝)(𝑥) =
⎧{{
⎨{{⎩

𝑝(𝑥) − 𝑝(3)
𝑥 − 3

if 𝑥 ≠ 3,

𝑝′(3) if 𝑥 = 3

for each 𝑥 ∈ 𝐑. Show that 𝑇𝑝 ∈ 𝒫(𝐑) for every polynomial 𝑝 ∈ 𝒫(𝐑) and
also show that 𝑇 ∶ 𝒫(𝐑) → 𝒫(𝐑) is a linear map.

11 Suppose 𝑝 ∈ 𝒫(𝐂). Define 𝑞 ∶ 𝐂 → 𝐂 by

𝑞(𝑧) = 𝑝(𝑧) 𝑝(𝑧).

Prove that 𝑞 is a polynomial with real coefficients.
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12 Suppose 𝑚 is a nonnegative integer and 𝑝 ∈ 𝒫𝑚(𝐂) is such that there are
distinct real numbers 𝑥0, 𝑥1,…, 𝑥𝑚 with 𝑝(𝑥𝑘) ∈ 𝐑 for each 𝑘 = 0, 1,…,𝑚.
Prove that all coefficients of 𝑝 are real.

13 Suppose 𝑝 ∈ 𝒫(𝐅) with 𝑝 ≠ 0. Let 𝑈 = {𝑝𝑞 ∶ 𝑞 ∈ 𝒫(𝐅)}.
(a) Show that dim 𝒫(𝐅)/𝑈 = deg 𝑝.
(b) Find a basis of 𝒫(𝐅)/𝑈.

14 Suppose 𝑝, 𝑞 ∈ 𝒫(𝐂) are nonconstant polynomials with no zeros in common.
Let 𝑚 = deg 𝑝 and 𝑛 = deg 𝑞. Use linear algebra as outlined below in (a)–(c)
to prove that there exist 𝑟 ∈ 𝒫𝑛−1(𝐂) and 𝑠 ∈ 𝒫𝑚−1(𝐂) such that

𝑟𝑝 + 𝑠𝑞 = 1.

(a) Define 𝑇 ∶ 𝒫𝑛−1(𝐂) × 𝒫𝑚−1(𝐂) → 𝒫𝑚+𝑛−1(𝐂) by

𝑇(𝑟, 𝑠) = 𝑟𝑝 + 𝑠𝑞.

Show that the linear map 𝑇 is injective.
(b) Show that the linear map 𝑇 in (a) is surjective.
(c) Use (b) to conclude that there exist 𝑟 ∈ 𝒫𝑛−1(𝐂) and 𝑠 ∈ 𝒫𝑚−1(𝐂)

such that 𝑟𝑝 + 𝑠𝑞 = 1.
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