
Chapter 1

Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vector spaces.
Eventually we will learn what all these terms mean. In this chapter we will define
vector spaces and discuss their elementary properties.

In linear algebra, better theorems and more insight emerge if complex numbers
are investigated along with real numbers. Thus we will begin by introducing the
complex numbers and their basic properties.

We will generalize the examples of a plane and of ordinary space to 𝐑𝑛 and
𝐂𝑛, which we then will generalize to the notion of a vector space. As we will see,
a vector space is a set with operations of addition and scalar multiplication that
satisfy natural algebraic properties.

Then our next topic will be subspaces, which play a role for vector spaces
analogous to the role played by subsets for sets. Finally, we will look at sums
of subspaces (analogous to unions of subsets) and direct sums of subspaces
(analogous to unions of disjoint sets).
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René Descartes explaining his work to Queen Christina of Sweden.
Vector spaces are a generalization of the description of a plane

using two coordinates, as published by Descartes in 1637.
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2 Chapter 1 Vector Spaces

1A 𝐑𝑛 and 𝐂𝑛

Complex Numbers
You should already be familiar with basic properties of the set 𝐑 of real numbers.
Complex numbers were invented so that we can take square roots of negative
numbers. The idea is to assume we have a square root of −1, denoted by 𝑖, that
obeys the usual rules of arithmetic. Here are the formal definitions.

1.1 definition: complex numbers, 𝐂

• A complex number is an ordered pair (𝑎, 𝑏), where 𝑎, 𝑏 ∈ 𝐑, but we will
write this as 𝑎 + 𝑏𝑖.

• The set of all complex numbers is denoted by 𝐂:

𝐂 = {𝑎 + 𝑏𝑖 ∶ 𝑎, 𝑏 ∈ 𝐑}.

• Addition and multiplication on 𝐂 are defined by

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖,
(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖;

here 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐑.

If 𝑎 ∈ 𝐑, we identify 𝑎 + 0𝑖 with the real number 𝑎. Thus we think of 𝐑 as a
subset of 𝐂. We usually write 0+ 𝑏𝑖 as just 𝑏𝑖, and we usually write 0+ 1𝑖 as just 𝑖.

The symbol 𝑖 was first used to denote
√−1 by Leonhard Euler in 1777.

To motivate the definition of complex
multiplication given above, pretend that
we knew that 𝑖2 = −1 and then use the
usual rules of arithmetic to derive the formula above for the product of two
complex numbers. Then use that formula to verify that we indeed have

𝑖2 = −1.

Do not memorize the formula for the product of two complex numbers—you
can always rederive it by recalling that 𝑖2 = −1 and then using the usual rules of
arithmetic (as given by 1.3). The next example illustrates this procedure.

1.2 example: complex arithmetic

The product (2 + 3𝑖)(4 + 5𝑖) can be evaluated by applying the distributive and
commutative properties from 1.3:

(2 + 3𝑖)(4 + 5𝑖) = 2 ⋅ (4 + 5𝑖) + (3𝑖)(4 + 5𝑖)
= 2 ⋅ 4 + 2 ⋅ 5𝑖 + 3𝑖 ⋅ 4 + (3𝑖)(5𝑖)
= 8 + 10𝑖 + 12𝑖 − 15
= −7 + 22𝑖.
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Our first result states that complex addition and complex multiplication have
the familiar properties that we expect.

1.3 properties of complex arithmetic

commutativity
𝛼 + 𝛽 = 𝛽 + 𝛼 and 𝛼𝛽 = 𝛽𝛼 for all 𝛼, 𝛽 ∈ 𝐂.

associativity
(𝛼 + 𝛽) + 𝜆 = 𝛼 + (𝛽 + 𝜆) and (𝛼𝛽)𝜆 = 𝛼(𝛽𝜆) for all 𝛼, 𝛽, 𝜆 ∈ 𝐂.

identities
𝜆 + 0 = 𝜆 and 𝜆1 = 𝜆 for all 𝜆 ∈ 𝐂.

additive inverse
For every 𝛼 ∈ 𝐂, there exists a unique 𝛽 ∈ 𝐂 such that 𝛼 + 𝛽 = 0.

multiplicative inverse
For every 𝛼 ∈ 𝐂 with 𝛼 ≠ 0, there exists a unique 𝛽 ∈ 𝐂 such that 𝛼𝛽 = 1.

distributive property
𝜆(𝛼 + 𝛽) = 𝜆𝛼 + 𝜆𝛽 for all 𝜆, 𝛼, 𝛽 ∈ 𝐂.

The properties above are proved using the familiar properties of real numbers
and the definitions of complex addition and multiplication. The next example
shows how commutativity of complex multiplication is proved. Proofs of the
other properties above are left as exercises.

1.4 example: commutativity of complex multiplication

To show that 𝛼𝛽 = 𝛽𝛼 for all 𝛼, 𝛽 ∈ 𝐂, suppose

𝛼 = 𝑎 + 𝑏𝑖 and 𝛽 = 𝑐 + 𝑑𝑖,

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐑. Then the definition of multiplication of complex numbers
shows that

𝛼𝛽 = (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖)
= (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖

and

𝛽𝛼 = (𝑐 + 𝑑𝑖)(𝑎 + 𝑏𝑖)
= (𝑐𝑎 − 𝑑𝑏) + (𝑐𝑏 + 𝑑𝑎)𝑖.

The equations above and the commutativity of multiplication and addition of real
numbers show that 𝛼𝛽 = 𝛽𝛼.
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Next, we define the additive and multiplicative inverses of complex numbers,
and then use those inverses to define subtraction and division operations with
complex numbers.

1.5 definition: −𝛼, subtraction, 1/𝛼, division

Suppose 𝛼, 𝛽 ∈ 𝐂.

• Let −𝛼 denote the additive inverse of 𝛼. Thus −𝛼 is the unique complex
number such that

𝛼 + (−𝛼) = 0.

• Subtraction on 𝐂 is defined by

𝛽 − 𝛼 = 𝛽 + (−𝛼).

• For 𝛼 ≠ 0, let 1/𝛼 and 1
𝛼 denote the multiplicative inverse of 𝛼. Thus 1/𝛼 is

the unique complex number such that

𝛼(1/𝛼) = 1.

• For 𝛼 ≠ 0, division by 𝛼 is defined by

𝛽/𝛼 = 𝛽(1/𝛼).

So that we can conveniently make definitions and prove theorems that apply
to both real and complex numbers, we adopt the following notation.

1.6 notation: 𝐅

Throughout this book, 𝐅 stands for either 𝐑 or 𝐂.

The letter 𝐅 is used because 𝐑 and 𝐂
are examples of what are called fields.

Thus if we prove a theorem involving
𝐅, we will know that it holds when 𝐅 is
replaced with 𝐑 and when 𝐅 is replaced
with 𝐂.

Elements of 𝐅 are called scalars. The word “scalar” (which is just a fancy
word for “number”) is often used when we want to emphasize that an object is a
number, as opposed to a vector (vectors will be defined soon).

For 𝛼 ∈ 𝐅 and 𝑚 a positive integer, we define 𝛼𝑚 to denote the product of 𝛼
with itself 𝑚 times:

𝛼𝑚 = 𝛼⋯𝛼⏟
𝑚 times

.

This definition implies that

(𝛼𝑚)𝑛 = 𝛼𝑚𝑛 and (𝛼𝛽)𝑚 = 𝛼𝑚𝛽𝑚

for all 𝛼, 𝛽 ∈ 𝐅 and all positive integers 𝑚, 𝑛.
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Lists
Before defining 𝐑𝑛 and 𝐂𝑛, we look at two important examples.

1.7 example: 𝐑2 and 𝐑3

• The set 𝐑2, which you can think of as a plane, is the set of all ordered pairs of
real numbers:

𝐑2 = {(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ 𝐑}.

• The set 𝐑3, which you can think of as ordinary space, is the set of all ordered
triples of real numbers:

𝐑3 = {(𝑥, 𝑦, 𝑧) ∶ 𝑥, 𝑦, 𝑧 ∈ 𝐑}.

To generalize 𝐑2 and 𝐑3 to higher dimensions, we first need to discuss the
concept of lists.

1.8 definition: list, length

• Suppose 𝑛 is a nonnegative integer. A list of length 𝑛 is an ordered collec-
tion of 𝑛 elements (which might be numbers, other lists, or more abstract
objects).

• Two lists are equal if and only if they have the same length and the same
elements in the same order.

Many mathematicians call a list of
length 𝑛 an 𝑛-tuple.

Lists are often written as elements
separated by commas and surrounded by
parentheses. Thus a list of length two is
an ordered pair that might be written as (𝑎, 𝑏). A list of length three is an ordered
triple that might be written as (𝑥, 𝑦, 𝑧). A list of length 𝑛 might look like this:

(𝑧1,…, 𝑧𝑛).
Sometimes we will use the word list without specifying its length. Remember,

however, that by definition each list has a finite length that is a nonnegative integer.
Thus an object that looks like (𝑥1, 𝑥2,…), which might be said to have infinite
length, is not a list.

A list of length 0 looks like this: ( ). We consider such an object to be a list
so that some of our theorems will not have trivial exceptions.

Lists differ from sets in two ways: in lists, order matters and repetitions have
meaning; in sets, order and repetitions are irrelevant.

1.9 example: lists versus sets

• The lists (3, 5) and (5, 3) are not equal, but the sets {3, 5} and {5, 3} are equal.
• The lists (4, 4) and (4, 4, 4) are not equal (they do not have the same length),

although the sets {4, 4} and {4, 4, 4} both equal the set {4}.
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𝐅𝑛

To define the higher-dimensional analogues of 𝐑2 and 𝐑3, we will simply replace
𝐑 with 𝐅 (which equals 𝐑 or 𝐂) and replace the 2 or 3 with an arbitrary positive
integer.

1.10 notation: 𝑛

Fix a positive integer 𝑛 for the rest of this chapter.

1.11 definition: 𝐅𝑛, coordinate

𝐅𝑛 is the set of all lists of length 𝑛 of elements of 𝐅:

𝐅𝑛 = {(𝑥1,…, 𝑥𝑛) ∶ 𝑥𝑘 ∈ 𝐅 for 𝑘 = 1,…, 𝑛}.

For (𝑥1,…, 𝑥𝑛) ∈ 𝐅𝑛 and 𝑘 ∈ {1,…, 𝑛}, we say that 𝑥𝑘 is the 𝑘th coordinate of
(𝑥1,…, 𝑥𝑛).

If 𝐅 = 𝐑 and 𝑛 equals 2 or 3, then the definition above of 𝐅𝑛 agrees with our
previous notions of 𝐑2 and 𝐑3.

1.12 example: 𝐂4

𝐂4 is the set of all lists of four complex numbers:

𝐂4 = {(𝑧1, 𝑧2, 𝑧3, 𝑧4) ∶ 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ 𝐂}.

Read Flatland: A Romance of Many
Dimensions, by Edwin A. Abbott, for
an amusing account of how 𝐑3 would
be perceived by creatures living in 𝐑2.
This novel, published in 1884, may
help you imagine a physical space of
four or more dimensions.

If 𝑛 ≥ 4, we cannot visualize 𝐑𝑛 as
a physical object. Similarly, 𝐂1 can be
thought of as a plane, but for 𝑛 ≥ 2, the
human brain cannot provide a full image
of 𝐂𝑛. However, even if 𝑛 is large, we
can perform algebraic manipulations in
𝐅𝑛 as easily as in 𝐑2 or 𝐑3. For example,
addition in 𝐅𝑛 is defined as follows.

1.13 definition: addition in 𝐅𝑛

Addition in 𝐅𝑛 is defined by adding corresponding coordinates:

(𝑥1,…, 𝑥𝑛) + (𝑦1,…, 𝑦𝑛) = (𝑥1 + 𝑦1,…, 𝑥𝑛 + 𝑦𝑛).

Often the mathematics of 𝐅𝑛 becomes cleaner if we use a single letter to denote
a list of 𝑛 numbers, without explicitly writing the coordinates. For example, the
next result is stated with 𝑥 and 𝑦 in 𝐅𝑛 even though the proof requires the more
cumbersome notation of (𝑥1,…, 𝑥𝑛) and (𝑦1,…, 𝑦𝑛).
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1.14 commutativity of addition in 𝐅𝑛

If 𝑥, 𝑦 ∈ 𝐅𝑛, then 𝑥 + 𝑦 = 𝑦 + 𝑥.

Proof Suppose 𝑥 = (𝑥1,…, 𝑥𝑛) ∈ 𝐅𝑛 and 𝑦 = (𝑦1,…, 𝑦𝑛) ∈ 𝐅𝑛. Then

𝑥 + 𝑦 = (𝑥1,…, 𝑥𝑛) + (𝑦1,…, 𝑦𝑛)

= (𝑥1 + 𝑦1,…, 𝑥𝑛 + 𝑦𝑛)

= (𝑦1 + 𝑥1,…, 𝑦𝑛 + 𝑥𝑛)

= (𝑦1,…, 𝑦𝑛) + (𝑥1,…, 𝑥𝑛)

= 𝑦 + 𝑥,

where the second and fourth equalities above hold because of the definition of
addition in 𝐅𝑛 and the third equality holds because of the usual commutativity of
addition in 𝐅.

The symbol means “end of proof ”.If a single letter is used to denote an
element of 𝐅𝑛, then the same letter with
appropriate subscripts is often used when
coordinates must be displayed. For example, if 𝑥 ∈ 𝐅𝑛, then letting 𝑥 equal
(𝑥1,…, 𝑥𝑛) is good notation, as shown in the proof above. Even better, work with
just 𝑥 and avoid explicit coordinates when possible.

1.15 notation: 0

Let 0 denote the list of length 𝑛 whose coordinates are all 0:

0 = (0,…, 0).

Here we are using the symbol 0 in two different ways—on the left side of the
equation above, the symbol 0 denotes a list of length 𝑛, which is an element of 𝐅𝑛,
whereas on the right side, each 0 denotes a number. This potentially confusing
practice actually causes no problems because the context should always make
clear which 0 is intended.

1.16 example: context determines which 0 is intended

Consider the statement that 0 is an additive identity for 𝐅𝑛:

𝑥 + 0 = 𝑥 for all 𝑥 ∈ 𝐅𝑛.

Here the 0 above is the list defined in 1.15, not the number 0, because we have
not defined the sum of an element of 𝐅𝑛 (namely, 𝑥) and the number 0.
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Elements of 𝐑2 can be thought of
as points or as vectors.

A picture can aid our intuition. We will
draw pictures in 𝐑2 because we can sketch
this space on two-dimensional surfaces
such as paper and computer screens. A
typical element of 𝐑2 is a point 𝑣 = (𝑎, 𝑏).
Sometimes we think of 𝑣 not as a point
but as an arrow starting at the origin and
ending at (𝑎, 𝑏), as shown here. When we
think of an element of 𝐑2 as an arrow, we
refer to it as a vector.

A vector.

When we think of vectors in 𝐑2 as arrows, we
can move an arrow parallel to itself (not changing
its length or direction) and still think of it as the
same vector. With that viewpoint, you will often
gain better understanding by dispensing with the
coordinate axes and the explicit coordinates and
just thinking of the vector, as shown in the figure here. The two arrows shown
here have the same length and same direction, so we think of them as the same
vector.

Mathematical models of the economy
can have thousands of variables, say
𝑥1,…, 𝑥5000, which means that we must
work in 𝐑5000. Such a space cannot be
dealt with geometrically. However, the
algebraic approach works well. Thus
our subject is called linear algebra.

Whenever we use pictures in 𝐑2 or
use the somewhat vague language of
points and vectors, remember that these
are just aids to our understanding, not sub-
stitutes for the actual mathematics that
we will develop. Although we cannot
draw good pictures in high-dimensional
spaces, the elements of these spaces are
as rigorously defined as elements of 𝐑2.

For example, (2,−3, 17,𝜋, √2) is an element of 𝐑5, and we may casually
refer to it as a point in 𝐑5 or a vector in 𝐑5 without worrying about whether the
geometry of 𝐑5 has any physical meaning.

Recall that we defined the sum of two elements of 𝐅𝑛 to be the element of 𝐅𝑛

obtained by adding corresponding coordinates; see 1.13. As we will now see,
addition has a simple geometric interpretation in the special case of 𝐑2.

The sum of two vectors.

Suppose we have two vectors 𝑢 and 𝑣 in 𝐑2

that we want to add. Move the vector 𝑣 parallel
to itself so that its initial point coincides with the
end point of the vector 𝑢, as shown here. The
sum 𝑢 + 𝑣 then equals the vector whose initial
point equals the initial point of 𝑢 and whose end
point equals the end point of the vector 𝑣, as
shown here.

In the next definition, the 0 on the right side of the displayed equation is the
list 0 ∈ 𝐅𝑛.
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1.17 definition: additive inverse in 𝐅𝑛, −𝑥

For 𝑥 ∈ 𝐅𝑛, the additive inverse of 𝑥, denoted by −𝑥, is the vector −𝑥 ∈ 𝐅𝑛

such that
𝑥 + (−𝑥) = 0.

Thus if 𝑥 = (𝑥1,…, 𝑥𝑛), then −𝑥 = (−𝑥1,…,−𝑥𝑛).

A vector and its additive inverse.

The additive inverse of a vector in 𝐑2 is the
vector with the same length but pointing in the
opposite direction. The figure here illustrates
this way of thinking about the additive inverse
in 𝐑2. As you can see, the vector labeled −𝑥 has
the same length as the vector labeled 𝑥 but points
in the opposite direction.

Having dealt with addition in 𝐅𝑛, we now turn to multiplication. We could
define a multiplication in 𝐅𝑛 in a similar fashion, starting with two elements of
𝐅𝑛 and getting another element of 𝐅𝑛 by multiplying corresponding coordinates.
Experience shows that this definition is not useful for our purposes. Another
type of multiplication, called scalar multiplication, will be central to our subject.
Specifically, we need to define what it means to multiply an element of 𝐅𝑛 by an
element of 𝐅.

1.18 definition: scalar multiplication in 𝐅𝑛

The product of a number 𝜆 and a vector in 𝐅𝑛 is computed by multiplying
each coordinate of the vector by 𝜆:

𝜆(𝑥1,…, 𝑥𝑛) = (𝜆𝑥1,…, 𝜆𝑥𝑛);

here 𝜆 ∈ 𝐅 and (𝑥1,…, 𝑥𝑛) ∈ 𝐅𝑛.

Scalar multiplication in 𝐅𝑛 multiplies
together a scalar and a vector, getting
a vector. In contrast, the dot product in
𝐑2 or 𝐑3 multiplies together two vec-
tors and gets a scalar. Generalizations
of the dot product will become impor-
tant in Chapter 6.

Scalar multiplication has a nice geo-
metric interpretation in 𝐑2. If 𝜆 > 0 and
𝑥 ∈ 𝐑2, then 𝜆𝑥 is the vector that points
in the same direction as 𝑥 and whose
length is 𝜆 times the length of 𝑥. In other
words, to get 𝜆𝑥, we shrink or stretch 𝑥
by a factor of 𝜆, depending on whether
𝜆 < 1 or 𝜆 > 1.

Scalar multiplication.

If 𝜆 < 0 and 𝑥 ∈ 𝐑2, then 𝜆𝑥 is the
vector that points in the direction opposite
to that of 𝑥 and whose length is |𝜆| times
the length of 𝑥, as shown here.
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Digression on Fields
A field is a set containing at least two distinct elements called 0 and 1, along with
operations of addition and multiplication satisfying all properties listed in 1.3.
Thus 𝐑 and 𝐂 are fields, as is the set of rational numbers along with the usual
operations of addition and multiplication. Another example of a field is the set
{0, 1} with the usual operations of addition and multiplication except that 1 + 1 is
defined to equal 0.

In this book we will not deal with fields other than 𝐑 and 𝐂. However, many
of the definitions, theorems, and proofs in linear algebra that work for the fields
𝐑 and 𝐂 also work without change for arbitrary fields. If you prefer to do so,
throughout much of this book (except for Chapters 6 and 7, which deal with inner
product spaces) you can think of 𝐅 as denoting an arbitrary field instead of 𝐑
or 𝐂. For results (except in the inner product chapters) that have as a hypothesis
that 𝐅 is 𝐂, you can probably replace that hypothesis with the hypothesis that 𝐅
is an algebraically closed field, which means that every nonconstant polynomial
with coefficients in 𝐅 has a zero. A few results, such as Exercise 13 in Section
1C, require the hypothesis on 𝐅 that 1 + 1 ≠ 0.

Exercises 1A

1 Show that 𝛼 + 𝛽 = 𝛽 + 𝛼 for all 𝛼, 𝛽 ∈ 𝐂.

2 Show that (𝛼 + 𝛽) + 𝜆 = 𝛼 + (𝛽 + 𝜆) for all 𝛼, 𝛽, 𝜆 ∈ 𝐂.

3 Show that (𝛼𝛽)𝜆 = 𝛼(𝛽𝜆) for all 𝛼, 𝛽, 𝜆 ∈ 𝐂.

4 Show that 𝜆(𝛼 + 𝛽) = 𝜆𝛼 + 𝜆𝛽 for all 𝜆, 𝛼, 𝛽 ∈ 𝐂.

5 Show that for every 𝛼 ∈ 𝐂, there exists a unique 𝛽 ∈ 𝐂 such that 𝛼 + 𝛽 = 0.

6 Show that for every 𝛼 ∈ 𝐂 with 𝛼 ≠ 0, there exists a unique 𝛽 ∈ 𝐂 such
that 𝛼𝛽 = 1.

7 Show that
−1 + √3𝑖

2
is a cube root of 1 (meaning that its cube equals 1).

8 Find two distinct square roots of 𝑖.

9 Find 𝑥 ∈ 𝐑4 such that

(4,−3, 1, 7) + 2𝑥 = (5, 9,−6, 8).

10 Explain why there does not exist 𝜆 ∈ 𝐂 such that

𝜆(2 − 3𝑖, 5 + 4𝑖,−6 + 7𝑖) = (12 − 5𝑖, 7 + 22𝑖,−32 − 9𝑖).
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11 Show that (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝐅𝑛.

12 Show that (𝑎𝑏)𝑥 = 𝑎(𝑏𝑥) for all 𝑥 ∈ 𝐅𝑛 and all 𝑎, 𝑏 ∈ 𝐅.

13 Show that 1𝑥 = 𝑥 for all 𝑥 ∈ 𝐅𝑛.

14 Show that 𝜆(𝑥 + 𝑦) = 𝜆𝑥 + 𝜆𝑦 for all 𝜆 ∈ 𝐅 and all 𝑥, 𝑦 ∈ 𝐅𝑛.

15 Show that (𝑎 + 𝑏)𝑥 = 𝑎𝑥 + 𝑏𝑥 for all 𝑎, 𝑏 ∈ 𝐅 and all 𝑥 ∈ 𝐅𝑛.

“Can you do addition?” the White Queen asked. “What’s one and one and one
and one and one and one and one and one and one and one?”
“I don’t know,” said Alice. “I lost count.”

—Through the Looking Glass, Lewis Carroll
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1B Definition of Vector Space

The motivation for the definition of a vector space comes from properties of
addition and scalar multiplication in 𝐅𝑛: Addition is commutative, associative,
and has an identity. Every element has an additive inverse. Scalar multiplication
is associative. Scalar multiplication by 1 acts as expected. Addition and scalar
multiplication are connected by distributive properties.

We will define a vector space to be a set 𝑉 with an addition and a scalar
multiplication on 𝑉 that satisfy the properties in the paragraph above.

1.19 definition: addition, scalar multiplication

• An addition on a set 𝑉 is a function that assigns an element 𝑢 + 𝑣 ∈ 𝑉
to each pair of elements 𝑢, 𝑣 ∈ 𝑉.

• A scalar multiplication on a set 𝑉 is a function that assigns an element
𝜆𝑣 ∈ 𝑉 to each 𝜆 ∈ 𝐅 and each 𝑣 ∈ 𝑉.

Now we are ready to give the formal definition of a vector space.

1.20 definition: vector space

A vector space is a set 𝑉 along with an addition on 𝑉 and a scalar multiplication
on 𝑉 such that the following properties hold.
commutativity

𝑢 + 𝑣 = 𝑣 + 𝑢 for all 𝑢, 𝑣 ∈ 𝑉.

associativity
(𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) and (𝑎𝑏)𝑣 = 𝑎(𝑏𝑣) for all 𝑢, 𝑣,𝑤 ∈ 𝑉 and for all
𝑎, 𝑏 ∈ 𝐅.

additive identity
There exists an element 0 ∈ 𝑉 such that 𝑣 + 0 = 𝑣 for all 𝑣 ∈ 𝑉.

additive inverse
For every 𝑣 ∈ 𝑉, there exists 𝑤 ∈ 𝑉 such that 𝑣 + 𝑤 = 0.

multiplicative identity
1𝑣 = 𝑣 for all 𝑣 ∈ 𝑉.

distributive properties
𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑎𝑣 and (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣 for all 𝑎, 𝑏 ∈ 𝐅 and all 𝑢, 𝑣 ∈ 𝑉.

The following geometric language sometimes aids our intuition.

1.21 definition: vector, point

Elements of a vector space are called vectors or points.
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The scalar multiplication in a vector space depends on 𝐅. Thus when we need
to be precise, we will say that 𝑉 is a vector space over 𝐅 instead of saying simply
that 𝑉 is a vector space. For example, 𝐑𝑛 is a vector space over 𝐑, and 𝐂𝑛 is a
vector space over 𝐂.

1.22 definition: real vector space, complex vector space

• A vector space over 𝐑 is called a real vector space.

• A vector space over 𝐂 is called a complex vector space.

Usually the choice of 𝐅 is either clear from the context or irrelevant. Thus we
often assume that 𝐅 is lurking in the background without specifically mentioning it.

The simplest vector space is {0}, which
contains only one point.

With the usual operations of addition
and scalar multiplication, 𝐅𝑛 is a vector
space over 𝐅, as you should verify. The
example of 𝐅𝑛 motivated our definition of vector space.

1.23 example: 𝐅∞

𝐅∞ is defined to be the set of all sequences of elements of 𝐅:

𝐅∞ = {(𝑥1, 𝑥2,…) ∶ 𝑥𝑘 ∈ 𝐅 for 𝑘 = 1, 2,…}.

Addition and scalar multiplication on 𝐅∞ are defined as expected:

(𝑥1, 𝑥2,…) + (𝑦1, 𝑦2,…) = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2,…),
𝜆(𝑥1, 𝑥2,…) = (𝜆𝑥1, 𝜆𝑥2,…).

With these definitions, 𝐅∞ becomes a vector space over 𝐅, as you should verify.
The additive identity in this vector space is the sequence of all 0’s.

Our next example of a vector space involves a set of functions.

1.24 notation: 𝐅𝑆

• If 𝑆 is a set, then 𝐅𝑆 denotes the set of functions from 𝑆 to 𝐅.

• For 𝑓, 𝑔 ∈ 𝐅𝑆, the sum 𝑓 + 𝑔 ∈ 𝐅𝑆 is the function defined by

( 𝑓 + 𝑔)(𝑥) = 𝑓 (𝑥) + 𝑔(𝑥)

for all 𝑥 ∈ 𝑆.

• For 𝜆 ∈ 𝐅 and 𝑓 ∈ 𝐅𝑆, the product 𝜆 𝑓 ∈ 𝐅𝑆 is the function defined by

(𝜆 𝑓 )(𝑥) = 𝜆 𝑓 (𝑥)

for all 𝑥 ∈ 𝑆.
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As an example of the notation above, if 𝑆 is the interval [0, 1] and 𝐅 = 𝐑, then
𝐑[0,1] is the set of real-valued functions on the interval [0, 1].

You should verify all three bullet points in the next example.

1.25 example: 𝐅𝑆 is a vector space

• If 𝑆 is a nonempty set, then 𝐅𝑆 (with the operations of addition and scalar
multiplication as defined above) is a vector space over 𝐅.

• The additive identity of 𝐅𝑆 is the function 0 ∶ 𝑆 → 𝐅 defined by

0(𝑥) = 0

for all 𝑥 ∈ 𝑆.

• For 𝑓 ∈ 𝐅𝑆, the additive inverse of 𝑓 is the function − 𝑓 ∶ 𝑆 → 𝐅 defined by

(− 𝑓 )(𝑥) = − 𝑓 (𝑥)

for all 𝑥 ∈ 𝑆.

The elements of the vector space 𝐑[0,1]

are real-valued functions on [0, 1], not
lists. In general, a vector space is an
abstract entity whose elements might
be lists, functions, or weird objects.

The vector space 𝐅𝑛 is a special case
of the vector space 𝐅𝑆 because each
(𝑥1,…, 𝑥𝑛) ∈ 𝐅𝑛 can be thought of as
a function 𝑥 from the set {1, 2,…, 𝑛} to 𝐅
by writing 𝑥(𝑘) instead of 𝑥𝑘 for the 𝑘th

coordinate of (𝑥1,…, 𝑥𝑛). In other words,
we can think of 𝐅𝑛 as 𝐅{1,2,…,𝑛}. Similarly, we can think of 𝐅∞ as 𝐅{1,2,…}.

Soon we will see further examples of vector spaces, but first we need to develop
some of the elementary properties of vector spaces.

The definition of a vector space requires it to have an additive identity. The
next result states that this identity is unique.

1.26 unique additive identity

A vector space has a unique additive identity.

Proof Suppose 0 and 0′ are both additive identities for some vector space 𝑉.
Then

0′ = 0′ + 0 = 0 + 0′ = 0,

where the first equality holds because 0 is an additive identity, the second equality
comes from commutativity, and the third equality holds because 0′ is an additive
identity. Thus 0′ = 0, proving that 𝑉 has only one additive identity.

Each element 𝑣 in a vector space has an additive inverse, an element 𝑤 in the
vector space such that 𝑣 + 𝑤 = 0. The next result shows that each element in a
vector space has only one additive inverse.
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1.27 unique additive inverse

Every element in a vector space has a unique additive inverse.

Proof Suppose 𝑉 is a vector space. Let 𝑣 ∈ 𝑉. Suppose 𝑤 and 𝑤′ are additive
inverses of 𝑣. Then

𝑤 = 𝑤 + 0 = 𝑤 + (𝑣 + 𝑤′) = (𝑤 + 𝑣) + 𝑤′ = 0 + 𝑤′ = 𝑤′.

Thus 𝑤 = 𝑤′, as desired.

Because additive inverses are unique, the following notation now makes sense.

1.28 notation: −𝑣, 𝑤 − 𝑣

Let 𝑣,𝑤 ∈ 𝑉. Then

• −𝑣 denotes the additive inverse of 𝑣;

• 𝑤 − 𝑣 is defined to be 𝑤 + (−𝑣).

Almost all results in this book involve some vector space. To avoid having to
restate frequently that 𝑉 is a vector space, we now make the necessary declaration
once and for all.

1.29 notation: 𝑉

For the rest of this book, 𝑉 denotes a vector space over 𝐅.

In the next result, 0 denotes a scalar (the number 0 ∈ 𝐅) on the left side of the
equation and a vector (the additive identity of 𝑉) on the right side of the equation.

1.30 the number 0 times a vector

0𝑣 = 0 for every 𝑣 ∈ 𝑉.

The result in 1.30 involves the additive
identity of 𝑉 and scalar multiplication.
The only part of the definition of a vec-
tor space that connects vector addition
and scalar multiplication is the dis-
tributive property. Thus the distribu-
tive property must be used in the proof
of 1.30.

Proof For 𝑣 ∈ 𝑉, we have

0𝑣 = (0 + 0)𝑣 = 0𝑣 + 0𝑣.

Adding the additive inverse of 0𝑣 to both
sides of the equation above gives 0 = 0𝑣,
as desired.

In the next result, 0 denotes the addi-
tive identity of 𝑉. Although their proofs
are similar, 1.30 and 1.31 are not identical. More precisely, 1.30 states that the
product of the scalar 0 and any vector equals the vector 0, whereas 1.31 states that
the product of any scalar and the vector 0 equals the vector 0.
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1.31 a number times the vector 0

𝑎0 = 0 for every 𝑎 ∈ 𝐅.

Proof For 𝑎 ∈ 𝐅, we have

𝑎0 = 𝑎(0 + 0) = 𝑎0 + 𝑎0.

Adding the additive inverse of 𝑎0 to both sides of the equation above gives 0 = 𝑎0,
as desired.

Now we show that if an element of 𝑉 is multiplied by the scalar −1, then the
result is the additive inverse of the element of 𝑉.

1.32 the number −1 times a vector

(−1)𝑣 = −𝑣 for every 𝑣 ∈ 𝑉.

Proof For 𝑣 ∈ 𝑉, we have

𝑣 + (−1)𝑣 = 1𝑣 + (−1)𝑣 = (1 + (−1))𝑣 = 0𝑣 = 0.

This equation says that (−1)𝑣, when added to 𝑣, gives 0. Thus (−1)𝑣 is the
additive inverse of 𝑣, as desired.

Exercises 1B

1 Prove that −(−𝑣) = 𝑣 for every 𝑣 ∈ 𝑉.

2 Suppose 𝑎 ∈ 𝐅, 𝑣 ∈ 𝑉, and 𝑎𝑣 = 0. Prove that 𝑎 = 0 or 𝑣 = 0.

3 Suppose 𝑣,𝑤 ∈ 𝑉. Explain why there exists a unique 𝑥 ∈ 𝑉 such that
𝑣 + 3𝑥 = 𝑤.

4 The empty set is not a vector space. The empty set fails to satisfy only one
of the requirements listed in the definition of a vector space (1.20). Which
one?

5 Show that in the definition of a vector space (1.20), the additive inverse
condition can be replaced with the condition that

0𝑣 = 0 for all 𝑣 ∈ 𝑉.

Here the 0 on the left side is the number 0, and the 0 on the right side is the
additive identity of 𝑉.

The phrase a “condition can be replaced” in a definition means that the
collection of objects satisfying the definition is unchanged if the original
condition is replaced with the new condition.
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6 Let ∞ and −∞ denote two distinct objects, neither of which is in 𝐑. Define
an addition and scalar multiplication on 𝐑 ∪ {∞,−∞} as you could guess
from the notation. Specifically, the sum and product of two real numbers is
as usual, and for 𝑡 ∈ 𝐑 define

𝑡∞ =
⎧{{
⎨{{⎩

−∞ if 𝑡 < 0,
0 if 𝑡 = 0,
∞ if 𝑡 > 0,

𝑡(−∞) =
⎧{{
⎨{{⎩

∞ if 𝑡 < 0,
0 if 𝑡 = 0,
−∞ if 𝑡 > 0,

and

𝑡 + ∞ = ∞ + 𝑡 = ∞ + ∞ = ∞,
𝑡 + (−∞) = (−∞) + 𝑡 = (−∞) + (−∞) = −∞,

∞ + (−∞) = (−∞) + ∞ = 0.

With these operations of addition and scalar multiplication, is 𝐑 ∪ {∞,−∞}
a vector space over 𝐑? Explain.

7 Suppose 𝑆 is a nonempty set. Let 𝑉𝑆 denote the set of functions from 𝑆 to 𝑉.
Define a natural addition and scalar multiplication on 𝑉𝑆, and show that 𝑉𝑆

is a vector space with these definitions.

8 Suppose 𝑉 is a real vector space.
• The complexification of 𝑉, denoted by 𝑉𝐂, equals 𝑉×𝑉. An element of

𝑉𝐂 is an ordered pair (𝑢, 𝑣), where 𝑢, 𝑣 ∈ 𝑉, but we write this as 𝑢+ 𝑖𝑣.
• Addition on 𝑉𝐂 is defined by

(𝑢1 + 𝑖𝑣1) + (𝑢2 + 𝑖𝑣2) = (𝑢1 + 𝑢2) + 𝑖(𝑣1 + 𝑣2)

for all 𝑢1, 𝑣1, 𝑢2, 𝑣2 ∈ 𝑉.
• Complex scalar multiplication on 𝑉𝐂 is defined by

(𝑎 + 𝑏𝑖)(𝑢 + 𝑖𝑣) = (𝑎𝑢 − 𝑏𝑣) + 𝑖(𝑎𝑣 + 𝑏𝑢)

for all 𝑎, 𝑏 ∈ 𝐑 and all 𝑢, 𝑣 ∈ 𝑉.

Prove that with the definitions of addition and scalar multiplication as above,
𝑉𝐂 is a complex vector space.

Think of 𝑉 as a subset of 𝑉𝐂 by identifying 𝑢 ∈ 𝑉 with 𝑢+ 𝑖0. The construc-
tion of 𝑉𝐂 from 𝑉 can then be thought of as generalizing the construction
of 𝐂𝑛 from 𝐑𝑛.
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1C Subspaces

By considering subspaces, we can greatly expand our examples of vector spaces.

1.33 definition: subspace

A subset 𝑈 of 𝑉 is called a subspace of 𝑉 if 𝑈 is also a vector space with the
same additive identity, addition, and scalar multiplication as on 𝑉.

Some people use the terminology
linear subspace, which means the
same as subspace.

The next result gives the easiest way
to check whether a subset of a vector
space is a subspace.

1.34 conditions for a subspace

A subset 𝑈 of 𝑉 is a subspace of 𝑉 if and only if 𝑈 satisfies the following
three conditions.

additive identity
0 ∈ 𝑈.

closed under addition
𝑢,𝑤 ∈ 𝑈 implies 𝑢 + 𝑤 ∈ 𝑈.

closed under scalar multiplication
𝑎 ∈ 𝐅 and 𝑢 ∈ 𝑈 implies 𝑎𝑢 ∈ 𝑈.

The additive identity condition above
could be replaced with the condition
that 𝑈 is nonempty (because then tak-
ing 𝑢 ∈ 𝑈 and multiplying it by 0
would imply that 0 ∈ 𝑈 ). However,
if a subset 𝑈 of 𝑉 is indeed a sub-
space, then usually the quickest way
to show that 𝑈 is nonempty is to show
that 0 ∈ 𝑈.

Proof If 𝑈 is a subspace of 𝑉, then 𝑈
satisfies the three conditions above by the
definition of vector space.

Conversely, suppose 𝑈 satisfies the
three conditions above. The first condi-
tion ensures that the additive identity of
𝑉 is in 𝑈. The second condition ensures
that addition makes sense on 𝑈. The third
condition ensures that scalar multiplica-
tion makes sense on 𝑈.

If 𝑢 ∈ 𝑈, then −𝑢 [which equals (−1)𝑢 by 1.32] is also in 𝑈 by the third
condition above. Hence every element of 𝑈 has an additive inverse in 𝑈.

The other parts of the definition of a vector space, such as associativity and
commutativity, are automatically satisfied for 𝑈 because they hold on the larger
space 𝑉. Thus 𝑈 is a vector space and hence is a subspace of 𝑉.

The three conditions in the result above usually enable us to determine quickly
whether a given subset of 𝑉 is a subspace of 𝑉. You should verify all assertions
in the next example.
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1.35 example: subspaces

(a) If 𝑏 ∈ 𝐅, then
{(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝐅4 ∶ 𝑥3 = 5𝑥4 + 𝑏}

is a subspace of 𝐅4 if and only if 𝑏 = 0.

(b) The set of continuous real-valued functions on the interval [0, 1] is a subspace
of 𝐑[0,1].

(c) The set of differentiable real-valued functions on 𝐑 is a subspace of 𝐑𝐑.

(d) The set of differentiable real-valued functions 𝑓 on the interval (0, 3) such
that 𝑓 ′(2) = 𝑏 is a subspace of 𝐑(0,3) if and only if 𝑏 = 0.

(e) The set of all sequences of complex numbers with limit 0 is a subspace of 𝐂∞.

The set {0} is the smallest subspace of
𝑉, and 𝑉 itself is the largest subspace
of 𝑉. The empty set is not a subspace
of 𝑉 because a subspace must be a
vector space and hence must contain at
least one element, namely, an additive
identity.

Verifying some of the items above
shows the linear structure underlying
parts of calculus. For example, (b) above
requires the result that the sum of two
continuous functions is continuous. As
another example, (d) above requires the
result that for a constant 𝑐, the derivative
of 𝑐 𝑓 equals 𝑐 times the derivative of 𝑓.

The subspaces of 𝐑2 are precisely {0}, all lines in 𝐑2 containing the origin,
and 𝐑2. The subspaces of 𝐑3 are precisely {0}, all lines in 𝐑3 containing the origin,
all planes in 𝐑3 containing the origin, and 𝐑3. To prove that all these objects are
indeed subspaces is straightforward—the hard part is to show that they are the
only subspaces of 𝐑2 and 𝐑3. That task will be easier after we introduce some
additional tools in the next chapter.

Sums of Subspaces

The union of subspaces is rarely a sub-
space (see Exercise 12), which is why
we usually work with sums rather than
unions.

When dealing with vector spaces, we are
usually interested only in subspaces, as
opposed to arbitrary subsets. The notion
of the sum of subspaces will be useful.

1.36 definition: sum of subspaces

Suppose 𝑉1,…,𝑉𝑚 are subspaces of 𝑉. The sum of 𝑉1,…,𝑉𝑚, denoted by
𝑉1 + ⋯ + 𝑉𝑚, is the set of all possible sums of elements of 𝑉1,…,𝑉𝑚. More
precisely,

𝑉1 + ⋯ + 𝑉𝑚 = {𝑣1 + ⋯ + 𝑣𝑚 ∶ 𝑣1 ∈ 𝑉1,…, 𝑣𝑚 ∈ 𝑉𝑚}.
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Let’s look at some examples of sums of subspaces.

1.37 example: a sum of subspaces of 𝐅3

Suppose 𝑈 is the set of all elements of 𝐅3 whose second and third coordinates
equal 0, and 𝑊 is the set of all elements of 𝐅3 whose first and third coordinates
equal 0:

𝑈 = {(𝑥, 0, 0) ∈ 𝐅3 ∶ 𝑥 ∈ 𝐅} and 𝑊 = {(0, 𝑦, 0) ∈ 𝐅3 ∶ 𝑦 ∈ 𝐅}.

Then
𝑈 + 𝑊 = {(𝑥, 𝑦, 0) ∈ 𝐅3 ∶ 𝑥, 𝑦 ∈ 𝐅},

as you should verify.

1.38 example: a sum of subspaces of 𝐅4

Suppose

𝑈 = {(𝑥, 𝑥, 𝑦, 𝑦) ∈ 𝐅4 ∶ 𝑥, 𝑦 ∈ 𝐅} and 𝑊 = {(𝑥, 𝑥, 𝑥, 𝑦) ∈ 𝐅4 ∶ 𝑥, 𝑦 ∈ 𝐅}.

Using words rather than symbols, we could say that 𝑈 is the set of elements
of 𝐅4 whose first two coordinates equal each other and whose third and fourth
coordinates equal each other. Similarly, 𝑊 is the set of elements of 𝐅4 whose first
three coordinates equal each other.

To find a description of 𝑈 + 𝑊, consider a typical element (𝑎, 𝑎, 𝑏, 𝑏) of 𝑈 and
a typical element (𝑐, 𝑐, 𝑐, 𝑑) of 𝑊, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐅. We have

(𝑎, 𝑎, 𝑏, 𝑏) + (𝑐, 𝑐, 𝑐, 𝑑) = (𝑎 + 𝑐, 𝑎 + 𝑐, 𝑏 + 𝑐, 𝑏 + 𝑑),

which shows that every element of 𝑈 + 𝑊 has its first two coordinates equal to
each other. Thus

1.39 𝑈 + 𝑊 ⊆ {(𝑥, 𝑥, 𝑦, 𝑧) ∈ 𝐅4 ∶ 𝑥, 𝑦, 𝑧 ∈ 𝐅}.

To prove the inclusion in the other direction, suppose 𝑥, 𝑦, 𝑧 ∈ 𝐅. Then

(𝑥, 𝑥, 𝑦, 𝑧) = (𝑥, 𝑥, 𝑦, 𝑦) + (0, 0, 0, 𝑧 − 𝑦),

where the first vector on the right is in 𝑈 and the second vector on the right is
in 𝑊. Thus (𝑥, 𝑥, 𝑦, 𝑧) ∈ 𝑈 + 𝑊, showing that the inclusion 1.39 also holds in the
opposite direction. Hence

𝑈 + 𝑊 = {(𝑥, 𝑥, 𝑦, 𝑧) ∈ 𝐅4 ∶ 𝑥, 𝑦, 𝑧 ∈ 𝐅},

which shows that 𝑈 + 𝑊 is the set of elements of 𝐅4 whose first two coordinates
equal each other.

The next result states that the sum of subspaces is a subspace, and is in fact the
smallest subspace containing all the summands (which means that every subspace
containing all the summands also contains the sum).
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1.40 sum of subspaces is the smallest containing subspace

Suppose 𝑉1,…,𝑉𝑚 are subspaces of 𝑉. Then 𝑉1 + ⋯ + 𝑉𝑚 is the smallest
subspace of 𝑉 containing 𝑉1,…,𝑉𝑚.

Proof The reader can verify that 𝑉1 + ⋯ + 𝑉𝑚 contains the additive identity 0
and is closed under addition and scalar multiplication. Thus 1.34 implies that
𝑉1 + ⋯ + 𝑉𝑚 is a subspace of 𝑉.

Sums of subspaces in the theory of vec-
tor spaces are analogous to unions of
subsets in set theory. Given two sub-
spaces of a vector space, the smallest
subspace containing them is their sum.
Analogously, given two subsets of a set,
the smallest subset containing them is
their union.

The subspaces 𝑉1,…,𝑉𝑚 are all con-
tained in 𝑉1+⋯+𝑉𝑚 (to see this, consider
sums 𝑣1 + ⋯ + 𝑣𝑚 where all except one
of the 𝑣𝑘’s are 0). Conversely, every sub-
space of 𝑉 containing 𝑉1,…,𝑉𝑚 contains
𝑉1 + ⋯ + 𝑉𝑚 (because subspaces must
contain all finite sums of their elements).
Thus 𝑉1+⋯+𝑉𝑚 is the smallest subspace
of 𝑉 containing 𝑉1,…,𝑉𝑚.

Direct Sums
Suppose 𝑉1,…,𝑉𝑚 are subspaces of 𝑉. Every element of 𝑉1 + ⋯ + 𝑉𝑚 can be
written in the form

𝑣1 + ⋯ + 𝑣𝑚,
where each 𝑣𝑘 ∈ 𝑉𝑘. Of special interest are cases in which each vector in
𝑉1 + ⋯ + 𝑉𝑚 can be represented in the form above in only one way. This situation
is so important that it gets a special name (direct sum) and a special symbol (⊕).

1.41 definition: direct sum, ⊕

Suppose 𝑉1,…,𝑉𝑚 are subspaces of 𝑉.

• The sum 𝑉1 +⋯+𝑉𝑚 is called a direct sum if each element of 𝑉1 +⋯+𝑉𝑚
can be written in only one way as a sum 𝑣1 + ⋯ + 𝑣𝑚, where each 𝑣𝑘 ∈ 𝑉𝑘.

• If 𝑉1 + ⋯ + 𝑉𝑚 is a direct sum, then 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑚 denotes 𝑉1 + ⋯ + 𝑉𝑚,
with the ⊕ notation serving as an indication that this is a direct sum.

1.42 example: a direct sum of two subspaces

Suppose 𝑈 is the subspace of 𝐅3 of those vectors whose last coordinate equals 0,
and 𝑊 is the subspace of 𝐅3 of those vectors whose first two coordinates equal 0:

𝑈 = {(𝑥, 𝑦, 0) ∈ 𝐅3 ∶ 𝑥, 𝑦 ∈ 𝐅} and 𝑊 = {(0, 0, 𝑧) ∈ 𝐅3 ∶ 𝑧 ∈ 𝐅}.

Then 𝐅3 = 𝑈 ⊕ 𝑊, as you should verify.
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1.43 example: a direct sum of multiple subspaces

To produce ⊕ in TEX, type \oplus.Suppose 𝑉𝑘 is the subspace of 𝐅𝑛 of
those vectors whose coordinates are all
0, except possibly in the 𝑘th slot; for example, 𝑉2 = {(0, 𝑥, 0,…, 0) ∈ 𝐅𝑛 ∶ 𝑥 ∈ 𝐅}.
Then

𝐅𝑛 = 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑛,

as you should verify.

Sometimes nonexamples add to our understanding as much as examples.

1.44 example: a sum that is not a direct sum

Suppose

𝑉1 = {(𝑥, 𝑦, 0) ∈ 𝐅3 ∶ 𝑥, 𝑦 ∈ 𝐅},

𝑉2 = {(0, 0, 𝑧) ∈ 𝐅3 ∶ 𝑧 ∈ 𝐅},

𝑉3 = {(0, 𝑦, 𝑦) ∈ 𝐅3 ∶ 𝑦 ∈ 𝐅}.

Then 𝐅3 = 𝑉1 + 𝑉2 + 𝑉3 because every vector (𝑥, 𝑦, 𝑧) ∈ 𝐅3 can be written as

(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 0) + (0, 0, 𝑧) + (0, 0, 0),

where the first vector on the right side is in 𝑉1, the second vector is in 𝑉2, and the
third vector is in 𝑉3.

However, 𝐅3 does not equal the direct sum of 𝑉1,𝑉2,𝑉3, because the vector
(0, 0, 0) can be written in more than one way as a sum 𝑣1 + 𝑣2 + 𝑣3, with each
𝑣𝑘 ∈ 𝑉𝑘. Specifically, we have

(0, 0, 0) = (0, 1, 0) + (0, 0, 1) + (0,−1,−1)

and, of course,
(0, 0, 0) = (0, 0, 0) + (0, 0, 0) + (0, 0, 0),

where the first vector on the right side of each equation above is in 𝑉1, the second
vector is in 𝑉2, and the third vector is in 𝑉3. Thus the sum 𝑉1 + 𝑉2 + 𝑉3 is not a
direct sum.

The symbol ⊕, which is a plus sign
inside a circle, reminds us that we are
dealing with a special type of sum of
subspaces—each element in the direct
sum can be represented in only one way
as a sum of elements from the specified
subspaces.

The definition of direct sum requires
every vector in the sum to have a unique
representation as an appropriate sum.
The next result shows that when deciding
whether a sum of subspaces is a direct
sum, we only need to consider whether 0
can be uniquely written as an appropriate
sum.
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1.45 condition for a direct sum

Suppose 𝑉1,…,𝑉𝑚 are subspaces of 𝑉. Then 𝑉1 + ⋯ + 𝑉𝑚 is a direct sum if
and only if the only way to write 0 as a sum 𝑣1 + ⋯ + 𝑣𝑚, where each 𝑣𝑘 ∈ 𝑉𝑘,
is by taking each 𝑣𝑘 equal to 0.

Proof First suppose 𝑉1 + ⋯ + 𝑉𝑚 is a direct sum. Then the definition of direct
sum implies that the only way to write 0 as a sum 𝑣1+⋯+𝑣𝑚, where each 𝑣𝑘 ∈ 𝑉𝑘,
is by taking each 𝑣𝑘 equal to 0.

Now suppose that the only way to write 0 as a sum 𝑣1 + ⋯ + 𝑣𝑚, where each
𝑣𝑘 ∈ 𝑉𝑘, is by taking each 𝑣𝑘 equal to 0. To show that 𝑉1 + ⋯ + 𝑉𝑚 is a direct
sum, let 𝑣 ∈ 𝑉1 + ⋯ + 𝑉𝑚. We can write

𝑣 = 𝑣1 + ⋯ + 𝑣𝑚

for some 𝑣1 ∈ 𝑉1,…, 𝑣𝑚 ∈ 𝑉𝑚. To show that this representation is unique,
suppose we also have

𝑣 = 𝑢1 + ⋯ + 𝑢𝑚,
where 𝑢1 ∈ 𝑉1,…, 𝑢𝑚 ∈ 𝑉𝑚. Subtracting these two equations, we have

0 = (𝑣1 − 𝑢1) + ⋯ + (𝑣𝑚 − 𝑢𝑚).

Because 𝑣1 − 𝑢1 ∈ 𝑉1,…, 𝑣𝑚 − 𝑢𝑚 ∈ 𝑉𝑚, the equation above implies that each
𝑣𝑘 − 𝑢𝑘 equals 0. Thus 𝑣1 = 𝑢1,…, 𝑣𝑚 = 𝑢𝑚, as desired.

The symbol ⟺ used below means
“if and only if ”; this symbol could also
be read to mean “is equivalent to”.

The next result gives a simple con-
dition for testing whether a sum of two
subspaces is a direct sum.

1.46 direct sum of two subspaces

Suppose 𝑈 and 𝑊 are subspaces of 𝑉. Then

𝑈 + 𝑊 is a direct sum ⟺ 𝑈 ∩ 𝑊 = {0}.

Proof First suppose that 𝑈+𝑊 is a direct sum. If 𝑣 ∈ 𝑈∩𝑊, then 0 = 𝑣+(−𝑣),
where 𝑣 ∈ 𝑈 and −𝑣 ∈ 𝑊. By the unique representation of 0 as the sum of a
vector in 𝑈 and a vector in 𝑊, we have 𝑣 = 0. Thus 𝑈 ∩ 𝑊 = {0}, completing
the proof in one direction.

To prove the other direction, now suppose 𝑈∩𝑊 = {0}. To prove that 𝑈 + 𝑊
is a direct sum, suppose 𝑢 ∈ 𝑈, 𝑤 ∈ 𝑊, and

0 = 𝑢 + 𝑤.

To complete the proof, we only need to show that 𝑢 = 𝑤 = 0 (by 1.45). The
equation above implies that 𝑢 = −𝑤 ∈ 𝑊. Thus 𝑢 ∈ 𝑈∩𝑊. Hence 𝑢 = 0, which
by the equation above implies that 𝑤 = 0, completing the proof.
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Sums of subspaces are analogous to
unions of subsets. Similarly, direct
sums of subspaces are analogous to
disjoint unions of subsets. No two sub-
spaces of a vector space can be disjoint,
because both contain 0. So disjoint-
ness is replaced, at least in the case
of two subspaces, with the requirement
that the intersection equal {0}.

The result above deals only with
the case of two subspaces. When ask-
ing about a possible direct sum with
more than two subspaces, it is not
enough to test that each pair of the
subspaces intersect only at 0. To see
this, consider Example 1.44. In that
nonexample of a direct sum, we have
𝑉1 ∩ 𝑉2 = 𝑉1 ∩ 𝑉3 = 𝑉2 ∩ 𝑉3 = {0}.

Exercises 1C

1 For each of the following subsets of 𝐅3, determine whether it is a subspace
of 𝐅3.
(a) {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐅3 ∶ 𝑥1 + 2𝑥2 + 3𝑥3 = 0}
(b) {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐅3 ∶ 𝑥1 + 2𝑥2 + 3𝑥3 = 4}
(c) {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐅3 ∶ 𝑥1𝑥2𝑥3 = 0}
(d) {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐅3 ∶ 𝑥1 = 5𝑥3}

2 Verify all assertions about subspaces in Example 1.35.

3 Show that the set of differentiable real-valued functions 𝑓 on the interval
(−4, 4) such that 𝑓 ′(−1) = 3 𝑓 (2) is a subspace of 𝐑(−4,4).

4 Suppose 𝑏 ∈ 𝐑. Show that the set of continuous real-valued functions 𝑓 on
the interval [0, 1] such that ∫1

0 𝑓 = 𝑏 is a subspace of 𝐑[0,1] if and only if
𝑏 = 0.

5 Is 𝐑2 a subspace of the complex vector space 𝐂2?

6 (a) Is {(𝑎, 𝑏, 𝑐) ∈ 𝐑3 ∶ 𝑎3 = 𝑏3} a subspace of 𝐑3?
(b) Is {(𝑎, 𝑏, 𝑐) ∈ 𝐂3 ∶ 𝑎3 = 𝑏3} a subspace of 𝐂3?

7 Prove or give a counterexample: If 𝑈 is a nonempty subset of 𝐑2 such that
𝑈 is closed under addition and under taking additive inverses (meaning
−𝑢 ∈ 𝑈 whenever 𝑢 ∈ 𝑈), then 𝑈 is a subspace of 𝐑2.

8 Give an example of a nonempty subset 𝑈 of 𝐑2 such that 𝑈 is closed under
scalar multiplication, but 𝑈 is not a subspace of 𝐑2.

9 A function 𝑓 ∶ 𝐑 → 𝐑 is called periodic if there exists a positive number 𝑝
such that 𝑓 (𝑥) = 𝑓 (𝑥 + 𝑝) for all 𝑥 ∈ 𝐑. Is the set of periodic functions
from 𝐑 to 𝐑 a subspace of 𝐑𝐑? Explain.

10 Suppose 𝑉1 and 𝑉2 are subspaces of 𝑉. Prove that the intersection 𝑉1 ∩ 𝑉2
is a subspace of 𝑉.
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11 Prove that the intersection of every collection of subspaces of 𝑉 is a subspace
of 𝑉.

12 Prove that the union of two subspaces of 𝑉 is a subspace of 𝑉 if and only if
one of the subspaces is contained in the other.

13 Prove that the union of three subspaces of 𝑉 is a subspace of 𝑉 if and only
if one of the subspaces contains the other two.

This exercise is surprisingly harder than Exercise 12, possibly because this
exercise is not true if we replace 𝐅 with a field containing only two elements.

14 Suppose

𝑈 = {(𝑥,−𝑥, 2𝑥) ∈ 𝐅3 ∶ 𝑥 ∈ 𝐅} and 𝑊 = {(𝑥, 𝑥, 2𝑥) ∈ 𝐅3 ∶ 𝑥 ∈ 𝐅}.

Describe 𝑈 + 𝑊 using symbols, and also give a description of 𝑈 + 𝑊 that
uses no symbols.

15 Suppose 𝑈 is a subspace of 𝑉. What is 𝑈 + 𝑈?

16 Is the operation of addition on the subspaces of 𝑉 commutative? In other
words, if 𝑈 and 𝑊 are subspaces of 𝑉, is 𝑈 + 𝑊 = 𝑊 + 𝑈?

17 Is the operation of addition on the subspaces of 𝑉 associative? In other
words, if 𝑉1,𝑉2,𝑉3 are subspaces of 𝑉, is

(𝑉1 + 𝑉2) + 𝑉3 = 𝑉1 + (𝑉2 + 𝑉3)?

18 Does the operation of addition on the subspaces of 𝑉 have an additive
identity? Which subspaces have additive inverses?

19 Prove or give a counterexample: If 𝑉1,𝑉2,𝑈 are subspaces of 𝑉 such that

𝑉1 + 𝑈 = 𝑉2 + 𝑈,

then 𝑉1 = 𝑉2.

20 Suppose
𝑈 = {(𝑥, 𝑥, 𝑦, 𝑦) ∈ 𝐅4 ∶ 𝑥, 𝑦 ∈ 𝐅}.

Find a subspace 𝑊 of 𝐅4 such that 𝐅4 = 𝑈 ⊕ 𝑊.

21 Suppose
𝑈 = {(𝑥, 𝑦, 𝑥 + 𝑦, 𝑥 − 𝑦, 2𝑥) ∈ 𝐅5 ∶ 𝑥, 𝑦 ∈ 𝐅}.

Find a subspace 𝑊 of 𝐅5 such that 𝐅5 = 𝑈 ⊕ 𝑊.

22 Suppose
𝑈 = {(𝑥, 𝑦, 𝑥 + 𝑦, 𝑥 − 𝑦, 2𝑥) ∈ 𝐅5 ∶ 𝑥, 𝑦 ∈ 𝐅}.

Find three subspaces 𝑊1,𝑊2,𝑊3 of 𝐅5, none of which equals {0}, such that
𝐅5 = 𝑈 ⊕ 𝑊1 ⊕ 𝑊2 ⊕ 𝑊3.
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23 Prove or give a counterexample: If 𝑉1,𝑉2,𝑈 are subspaces of 𝑉 such that

𝑉 = 𝑉1 ⊕ 𝑈 and 𝑉 = 𝑉2 ⊕ 𝑈,

then 𝑉1 = 𝑉2.
Hint: When trying to discover whether a conjecture in linear algebra is true
or false, it is often useful to start by experimenting in 𝐅2.

24 A function 𝑓 ∶ 𝐑 → 𝐑 is called even if

𝑓 (−𝑥) = 𝑓 (𝑥)

for all 𝑥 ∈ 𝐑. A function 𝑓 ∶ 𝐑 → 𝐑 is called odd if

𝑓 (−𝑥) = − 𝑓 (𝑥)

for all 𝑥 ∈ 𝐑. Let 𝑉e denote the set of real-valued even functions on 𝐑
and let 𝑉o denote the set of real-valued odd functions on 𝐑. Show that
𝐑𝐑 = 𝑉e ⊕ 𝑉o.
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