
Chapter 18 
Virtual Prototyping of Metal Melt 
Filters: A HPC-Based Workflow 
for Query-Driven Visualization 

Henry Lehmann and Bernhard Jung 

18.1 Introduction 

Recent advancements in additive manufacturing may be a game changer for the 
design of metal melt filters as the variety of 3D-printable filter geometries is vastly 
increased in comparison to conventional manufacturing processes. E.g., flow-guiding 
or surface-increasing elements of different shapes, sizes, and orientations may be 
added to the pores of foam-like filters, the strut shape may be freely varied, or fil-
ters may be designed with controlled variations of pore sizes. In the Collaborative 
Research Center 920 (CRC 920), a combination of additive manufacturing with repli-
cation is successfully employed for the manufacturing of ceramic filters with hollow 
struts based on 3D-printed foam templates [ 1– 4]. The particular foam templates 
for 3D-print are designed based on a geometric modeling approach for conventional 
open-cell PU foams, which allows for the generation of complete filters with adjusted 
strut thickness, pore density, and porosity based on periodic elements of hundreds of 
pores [ 5]. However, the new variety of filter designs, which can be targeted by 3D-
printing technology, implies that a comprehensive exploration of the design space is 
not feasible using physical prototypes only. In this context, we propose a novel work-
flow for virtual prototyping of metal melt filters based on the state-of-the-art methods 
for geometrical modeling, Computational Fluid Dynamics (CFD), compression and 
indexing methods for scientific data, and query-driven visualization. 

A major challenge are the large data volumes produced even by single CFD sim-
ulations of metal melt flow and even more so for the proposed virtual prototyping 
approach where many filter designs need to be evaluated inside a High-Performance 
Computing (HPC) environment. The large data problem is particularly severe during 
the analysis phase, where simulation results are assessed outside of the HPC envi-
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ronment using workstations with much lower computing resources. Furthermore, 
the analysis phase calls for interactive workflows. With data loading times being the 
main bottleneck, the amount of data loaded into memory should therefore be kept as 
small as possible. 

Motivated by these requirements for interactive data analysis, we developed the 
LITE-QA (Lossy In-Situ Tabular Encoding for Query-Driven Analytics) framework 
for data management. During CFD simulations in the HPC environment, LITE-QA 
is used to compress and index the large volumes of simulation data. To support 
the data analysis phase, the framework adds search engine-like capabilities to data 
analysis tasks and allows, e.g., for focused visualizations of filter regions that meet the 
search criteria of the analyst, such as areas with high velocity, vorticity or backflow. 
Crucially, only very small parts of the simulation data, i.e. those parts that meet the 
analyst’s search criteria, need to be loaded from disk. Figure 18.1 gives an overview of 
the proposed HPC-based virtual prototyping workflow and the embedded LITE-QA 
data management framework. 

This chapter is organized as follows: Sect. 18.2 gives a brief overview of LITE-
QA’s data preparation methods (compression and indexing) when run ‘in-situ’, 
i.e. integrated into CFD simulations in the HPC environment. Then, Sect. 18.3 shows 
how the compressed and indexed data can be used in the analysis phase for the cre-
ation of query-driven visualizations. In order to demonstrate the feasibility of the 
proposed approach, Sect. 18.4 presents a virtual prototyping study involving a total of 
84 unconventional filter designs. Finally, Sect. 18.5 gives a summary of the proposed 

Fig. 18.1 HPC-based virtual prototyping workflow for visualization-assisted evaluation of virtual 
filter prototypes. CFD simulations of 84 filter prototypes are run in the HPC environment, where 
the resulting data is compressed and indexed using LITE-QA. The analysis phase outside the HPC 
environment is supported by LITE-QA’s query mechanism for data-efficient, interactive creation 
of visualizations that provide further insights into the melt flow in the various filter variants. As 
a result of the virtual prototyping study, filter designs with improved performance and interesting 
flow characteristics are proposed



18 Virtual Prototyping of Metal Melt Filters: A HPC-Based … 455

virtual prototyping approach and highlights the novel filter designs that performed 
best in the virtual prototyping study. 

18.2 In-Situ Data Compression and Indexing 

High-detail numerical simulations have become an increasingly important tool for 
the development of next-generation metal melt filters. For the CFD simulation of alu-
minum melts, the Lattice-Boltzmann Method (LBM) has been successfully applied 
at the pore-scale level inside porous filter structures [ 6– 9]. The LBM allows for effi-
cient parallelization in HPC systems, and thus allows the simulation of metal melt 
flow on high-resolution voxel grids with periodic boundaries [ 6, 8]. With increasing 
spatial and temporal resolution, LBM simulations are able to quickly generate large 
amounts of data in HPC clusters, easily in the order of hundreds of gigabytes or 
several terabytes and more. Conventional visualization workflows, where all data is 
stored on disk and loaded into main memory of less powerful workstations, lead to 
non-interactive workflows for data analysis and visualization or may even be impos-
sible at all. Instead, the present research proposes novel methods for so-called in-situ 
data preparation, i.e. the reduction and indexing of simulation data while it is still 
residing in the HPC environment. 

18.2.1 Early In-Situ Data Preparation 

The simulation of a highly-porous filters requires large grids, i.e. at least.5123 voxels 
in order to guarantee numerical stability and resolve fine geometric features like the 
struts in the required resolution. Due to the voxel-based discretization of the physical 
domain, the LBM can be setup for simulations of different filters. However, storing 
only the flow field for post-processing already requires.3 × 512MB as 32bit floating 
point for each of the three components of the velocity vectors for each filter. For 
performing a local analysis and visualization of the aluminum melt flow inside a 
filter, a typical data set with five variables, e.g. the flow field and two additional 
properties, requires .≥ 2.5 GB for each filter and for every additional 40 time steps 
already additional 100 GB without compression. 

Using fast algorithms early in the scientific workflow, the LITE-QA framework 
for HPC data management, as shown in Fig. 18.2, pursues two data preparation goals: 

1. Reduction of storage required for high-resolution data during the running CFD 
simulations using fast error-bounded lossy compression, e.g. maximum relative 
error of 1% for decompressed contents, and 

2. Creation of a compressed index for providing efficient access to compressed 
contents, i.e. query-based identification of regions and partial decompression of 
only the data needed for the visualization task.
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Fig. 18.2 The LITE-QA in-situ processing pipeline achieves high compression rates and is run as 
part of the simulations inside the HPC environment. The single steps of in-situ processing are grid 
linearization, data quantization, encoding of grid and index data, and lossless compression of the 
encodings 

Like other in-situ compression methods, e.g. SBD [ 10], ISABELA [ 11], ZFP [ 12], 
SZ [ 13] and temporal extensions of them [ 14, 15], LITE-QA applies lossy compres-
sion and reduces the amount of data written out to the file system. LITE-QA applies 
lossy compression integrated with indexing directly in the simulation processes inside 
the HPC environment. Thus, temporary storage of large data is avoided already early 
in the workflow. By using fast algorithms for compression and indexing ‘in-situ’, 
i.e. in the HPC environment, the load on storage systems and the bandwidth require-
ments for network transfer are reduced, while also preparing the data set for later 
post-processing outside of the HPC environment. By using quantization with a small 
error of e.g. 1% maximum point-wise error, the full-resolution data sets are stored at 
a smaller memory footprint, while the full flexibility for post-hoc visualization and 
analysis is maintained. 

18.2.2 Grid Compression and Index Generation 

LITE-QA uses fast algorithms for grid compression and the generation of a com-
pressed index, which are based on the sequential and differential encoding employed 
in the SBD compression algorithm. However, LITE-QA and SBD differ in the data 
quantization methods used for bounding the point-wise maximum error [ 16, 17]. 
Data quantization in SBD is based on a look-up table estimated from the data in 
the individual subgrids which causes compression artifacts on distributed grids in 
parallel simulations and on high-resolution temporal data [ 18]. Instead, LITE-QA 
compression employs the GLATE (Grid Linearization and Tabular Encoding) com-
pressor which uses a step function for quantization, resulting in stable quantization 
across subgrid boundaries and on high-resolution data. 

LITE-QA employs the data encoding of GLATE, i.e. the discrete quantization 
for linearized numerical data, for the compression of simulation grids in a block-
wise manner and the generation of an index based on binning the quantized values. 
LITE-QA constructs a compact encoding for grid blocks and for index bins [ 18], 
which is designed to support partial decompression of simulation results, while being
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adeuqate for high-degree data reduction using lossless compression techniques on 
those encodings as backend. For lossless compression of encoded grid blocks and 
index bins, the bit-packing codec fastpfor [ 19] and the general purpose lossless 
compressor zstd 1 are used. 

The temporal extension t-GLATE yields an improved compression rate for tempo-
ral data by exploiting the temporal coherence between successive time steps. GLATE 
establishes a trade-off between data accuracy and compression rate. E.g. for a point-
wise maximum error of 1%, the size of the grids is reduced by a factor of five, while 
data indices are reduced by a factor of three as compared to the uncompressed data 
assuming the 32bit floating point data type. 

For the algorithmic details of LITE-QA, GLATE and t-GLATE we refer to the 
original publications [ 16– 18]. In the following, representative results on the com-
pression rates achieved for the metal melt filtration simulations conducted in the 
virtual prototyping study in Sect. 18.4 and, generally, HPC simulations in CRC 920 
are presented. 

18.2.3 In-Situ Compression Performance 

In-situ compression performance is evaluated for an LBM simulation solving an 
incompressible isothermal flow of liquid aluminum inside a computer-generated 
monodisperse filter with porosity 90% and Reynolds number .Re = 90 on  a grid of  
.5123 voxels. The fluid dynamics is based on the Navier-Stokes equations assuming 
a superficial velocity of 6 .cm · s−1. The simulation generates a typical data set for 
visualization, i.e. containing the flow field.u, v, w and two additional properties, the 
velocity magnitude .M and a vortex indicator . Q. The GLATE quantization for grid 
and index compression in LITE-QA is operated at 1% maximum point-wise error, 
which is sufficient for the compression task with respect to local flow visualization. 

Non-temporal Compression Performance 

Figure 18.3 shows the performance for non-temporal compression of grids using 
GLATE. Figure 18.3 (1) compares GLATE’s compression rates without additional 
indexing to ZFP, a state-of-the-art lossy floating point compression algorithm inspired 
by texture compression methods used in graphics hardware [ 12]. ZFP does not gen-
erate a compressed index. Figure 18.3 (2) shows the data size resulting from GLATE 
compression of the simulation variables with and without additional indexing of the 
variables .u, M, Q. For the compression tests, GLATE restricts the relative error to 
1% and ZFP is operated on level 15, which is comparable to a maximum point-wise 
error of 1% [ 17].

1 zstd is a real-time compression algorithm providing high compression ratios and a very fast 
decoder, zstd is available at https://facebook.github.io/zstd/. 
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Fig. 18.3 Non-temporal compression performance on grids for variables.u, v, w, M, Q and indices 
for.u, M, Q. The data is generated using a LBM simulation of liquid aluminum through a computer-
generated filter structure with 90% porosity, superficial velocity 6.cm · s−1 and Reynolds number of 
.Re = 90. (1) GLATE and ZFP achieve at least five fold reduction for compressed grids in average 
for all variables .u, v, w, M, Q. (2) During the more complicated index compression, a three fold 
reduction on compressed index bins is achieved in average, i.e. only .∼12% more storage required 
as compared to the corresponding compressed grids 

On the variables.u, v, w, M, Q, GLATE and ZFP achieve an average compression 
rate of 18.7% and 16.4%. On the index variables .u, M, Q, the average compression 
rate achieved by LITE-QA is 29%. The best index compression is achieved on . M
with 26%. The index bins for the variables .u, M, Q are compressed at a lower rate, 
as compared to the grid blocks. However, the compressed index requires only .∼12% 
more storage as compared to the corresponding compressed grids. 

Temporal Compression Performance 

The t-GLATE temporal compression scheme differentiates between so-called key-
frames and difference-frames. While key-frames are compressed and decompressed 
independently, difference-frames reference the previous frame and are compressed 
with a higher efficiency. The compression efficiency is directly related to the time step 
size .Δt of the simulation and to the amount of difference-frames inserted between 
key-frames. t-GLATE achieves a trade-off between temporal resolution of exported 
data, i.e. multiples of .Δt , and the resulting compression rate by encoding the data 
differences to the last exported frame. The approach for difference encoding in t-
GLATE falls back to encoding absolute values in the case differences become too 
large. Therefore, no decline of compression rate is observed, even when the data is 
exported with a low temporal resolution. t-GLATE is applied to 1024 time steps, 
which have been exported from the aforementioned simulation of liquid aluminum 
using multiples of the time step width .Δt = 9.13 .μs and increasing amounts of 
difference-frames between key-frames.
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Fig. 18.4 Temporal compression performance of t-GLATE for a sequence of 1024 time steps of 
liquid aluminum melt flow through a filter with 90% porosity and superficial velocity 6 .cm · s−1, 
Reynolds number .Re = 90 and time step width .Δt = 9.13 . μs. t-GLATE establishes a trade-off 
between temporal resolution of decompressed data, i.e. multiples .1, 2, 4, 8, 16 of .Δt , difference-
frames per key-frame. fd = 0, 1, 3, 7, 15 and the resulting compression rate 

As shown in Fig. 18.4, t-GLATE yields a compression rate of 8.4–18.7% for all 
time steps with data set variables .u, v, w, M, Q in average. Without inserting any 
difference-frames, the compression rates correspond to non-temporal compression 
using GLATE and are equivalent to the rates shown in Fig. 18.3. For 15 difference-
frames between key-frames, t-GLATE reduces the data set to 8.4% for exporting all 
1024 time steps of the simulation run, i.e. the data set is reduced from 2.5 GB. ×1024 =
2.5 TB to 215 GB. 

18.2.4 Summary 

In-situ data reduction and indexing methods aim at preparing large-scale simulation 
data for later analysis outside of the HPC environment. On non-temporal datasets, 
the GLATE method presented above compresses the LBM simulations to 18.7% in 
average, comparing to state-of-the-art methods such as ZFP. Further, GLATE was 
extended to t-GLATE for temporal datasets where compression rates are improved 
to 8.4% in average, outperforming existing methods. Moreover, LITE-QA combines 
the GLATE data compression with data indexing needed for query-driven analyses. 
Whereas uncompressed indices typically require storage amounts of .≥ 100% in 
addition to the simulation data [ 20], GLATE compression with integrated indexing 
reduces the storage requirements for combined simulation and index data to .∼27– 
35%, while guaranteeing a point-wise maximum error of 1%.
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18.3 Query-Driven Visualization of Melt Flow 

General challenges for the visual exploration of time-dependent scientific data sets 
and batches of CFD simulations include the non-interactive loading times already 
for single time steps of a simulation. Furthermore, a purely visual search for inter-
esting features can be tedious and error-prone as flow-relevant features such as high 
vorticity, high-velocity or backflow occur rather sparsely, often only in a small per-
centage of all grid cells. Addressing these challenges, query-driven visualizations 
replace purely visual search in the full dataset with search engine-like capabilities to 
create visualizations of interesting areas only. The LITE-QA query mechanism, as 
illustrated in Fig. 18.5, operates on the compressed simulation grid data and index 
data generated using the HPC data preparation pipeline described in Sect. 18.2. 

When searching the flow field for interesting regions with specific characteristics, 
e.g., areas with significant backflow or very fast flow, it is favorable to access the 
data in a query-driven manner. Queries make use of the compressed index and are 
steered using so-called range conditions on simulation variables, e.g., on the velocity 
magnitude . M . Using the index, specific spatial locations are efficiently identified 
in the flow field where a range condition .a ≤ M ≤ b is true. Given the selected 
locations from the index, additional data is decompressed and local visualizations 
of the fluid flow are procedurally generated. Multiple visualizations of an selected 
region at different time steps can be created to observe the flow evolution. Similarly, 
comparative visualizations of the same region can be generated for design variants 
of a filter to gain insights into the effects of geometry modifications. 

18.3.1 Querying of Regions in the Flow Field 

The visualizations presented in this section use the unsteady simulation data described 
in Sect. 18.2.3 which contains five variables .u, v, w, M, Q at each grid point of the 
the flow field. Compressed grids and indices were generated in-situ with LITE-QA 

Fig. 18.5 The LITE-QA query processing pipeline integrates a compressed index for realization 
of a query mechanism used to locate grid cells based on range conditions on variables stored in 
the index, e.g. .a ≤ M ≤ b. Given a set of locations, the flow field .u, v, w is decompressed for 
visualization. The mechanism also minimizes data loading times as only data needed to answer the 
query is retrieved from disk
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Fig. 18.6 Compressed data set for flow visualization purposes. The data produced by the numerical 
simulations is stored in a compressed grid for the grid variables.u, v, w, and in a compressed index 
for the index variables.u, M, Q accordingly.. u is stored as compressed grid and index 

during the running simulation, according to the setup as shown in Fig. 18.6. During  
the data preparation, the flow field .u, v, w is stored as a compressed grid, hence 
.u, v, w are called Grid Variables, and the variables .u, M, Q are stored in a com-
pressed index, hence .u, M, Q are called Index Variables. The variable . u is stored 
both in the grid and in the index. 

Figure 18.7 shows three different regions in the flow field at time step 80. The 
regions are identified using range conditions on the index variables, i.e. . u for iden-
tification of backflow, where the stream is redirected against the bulk flow, .M for 
the identification of fast flow and .Q for the identification of vortex-like flow. The 
regions are identified using the following range conditions on the index variables: 

. 

−∞ ≤ u ≤ u0 for backflow with u0 < 0,
m0 ≤ M ≤ +∞ for fast flow and
q0 ≤ Q ≤ +∞ for vortex-like flow.

In the example, the concrete query parameters were determined as quantiles from 
value distributions of the index variables .u, M, Q, i.e. .u0 as the 5% quantile of 
the value distribution for values .u < 0, .m0 as the 85% threshold of the maximum 
velocity, and .q0 based on the 99% quantile of the value distribution of . Q. On the  
simulation grid composed of .5123 voxels, the range conditions on .Q predictably 
returns 1% or about 1.34 million grid cells, whereas the amount of cells returned for 
the queries on. u and.M depend on the characteristics of their distributions at a given 
time step. 

18.3.2 Implementation of Query Mechanism 

The ParaView framework is used as a platform for the implementation of the LITE-
QA query mechanism. ParaView is a powerful open-source application for scientific 
visualization. The central tool for modeling visualizations in ParaView is the so-
called visualization pipeline, which arranges algorithms in a network graph and



462 H. Lehmann and B. Jung

Fig. 18.7 Visualization of regions in the flow field of liquid aluminum melt inside a filter with 90% 
porosity, superficial velocity 6.cm · s−1 and Reynolds number.Re = 90. Three different regions are 
located using range conditions on index variables.u, M, Q, i.e. (1) backflow in form of a vortex in 
the slip stream behind a strut in red, (2) fast flow path through a pore window in orange, and (3) fast 
swirled and vortex-like flow on upstream surface of a strut joint in purple 

Fig. 18.8 ParaView visualization pipeline used to render the aluminum melt flow through a 
computer-generated filter structure with 90% porosity. The pipeline (1) as shown in the graphical 
user interface and (2) displayed as a network flow graph. (3) The pipeline produces the visualization 
consisting of a clipped iso-contour surface and streamlines as 3D tubes. The root of the pipeline is 
the data producer reading from a file 

defines the data flow by mapping inputs and outputs between them. As shown in 
Fig. 18.8, algorithms import and transform data, e.g. obtained from simulation results, 
and perform rendering of 3D objects, e.g. clipped contour surfaces and streamlines 
with tubes wrapped around them for better visibility. 

The LITE-QA query mechanism is implemented using three algorithms for the 
ParaView visualization pipeline, which execute three different query types modeled 
after operations provided by the compressed index. The lqaTable Source algo-
rithm performs the so-called Count Query, the  lqaIndex Source performs the 
so-called Index Query and lqaGrid Source the so-called Grid Query. The LITE-
QA query algorithms act as data producer. Instead of loading complete uncompressed 
data sets from files, they use the data index for localization and decompression of 
only those parts of the simulation grid that are required for the visualization. The 
queries are typically executed in a hierarchical order, as shown in Fig. 18.9: 

1. lqaTable Source determines the value distribution of one index variable, 
e.g. . M , and returns a histogram as a vtkTable. 

2. lqaIndexSource evaluates one or more range conditions on index variables, 
e.g..a ≤ M ≤ b, and returns the grid cell indices. I matching the range conditions 
as a vtkPolyData point cloud.
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Fig. 18.9 LITE-QA query mechanism operating on compressed grids and compressed indices. 
Three query types are implemented as data producers for the ParaView visualization pipeline: 
(1) lqaTable Source performs a count query, which returns a histogram.C, M as vtkTable, 
(2) lqaIndex Source performs an index query, which returns a vtkPolyData point cloud 
representing the indices. I of grid cells whose data values.M match the range condition.a ≤ M ≤ b, 
and (3) lqaGrid Source performs a grid query, which returns a vtkImageData containing 
the decompressed flow field.u, v, w at cell indices. I

3. lqaGrid Source evaluates the range condition according to lqaIndex 
Source and, additionally, decompresses the simulation data at the respective 
grid cells to return the flow field .u, v, w as a vtkImageData. 

18.3.3 Query-Driven Local Visualization 

The generation of the visualization scene is performed using the procedure as shown 
in Fig. 18.10, where the lqaIndex Source and lqaGrid Source algorithms 
are used as a data producer for the visualization pipeline. The range condition for the 
queries is formulated based on the data distribution of the index variables . u, M, Q
as explained in Sect. 18.3.1, which are obtained using a preceding count query using 
lqaTable Source as shown in Fig. 18.9. The locations obtained from the index 
using the range conditions on index variables .u, M, Q usually form clusters, which 
correspond to local phenomena, e.g. backflow, fast preferential flow and vortex-like 
or swirled flow. 

In the example visualization of Fig. 18.10, the point cloud obtained from the 
index is further decomposed into clusters by using an Euclidean clustering algorithm 
from the ParaView toolkit. By performing a threshold operation, one specific cluster 
is selected for visualization based on e.g. the cluster size or a sequential cluster 
index. Based on the points of the selected cluster a partial decompression of the



464 H. Lehmann and B. Jung

Fig. 18.10 ParaView pipeline for query-driven visualizations based on the LITE-QA framework. 
(1) determination of region in the flow field using an index query, e.g..−∞ ≤ u ≤ u0 for backflow, 
(2) spatial clustering of the resulting point cloud and selection of one cluster, (3) partial decompres-
sion of the flow field.u, v, w using a grid query on the selected cluster points, and (4) generation of 
visualization on decompressed data 

flow field.u, v, w is performed, as described in Sect. 18.3.2. Alternatively, in order to 
decompress a larger region of the flow field around the selected cluster, the grid query 
can perform the partial decompression based on a fixed decompression extent, which 
is defined as an axis aligned bounding box with edge length. Δ placed at the geometric 
center point of the selected cluster. The actual visualization task is performed on the 
decompressed data, e.g. flow visualization with stream tracer and 3D tubes. 

18.3.4 Export of Visualization Scenes 

To further support the data analysis, the visualizations of local phenomena can be 
exported to the web and immersive Virtual Reality (VR) environments as shown in 
Fig. 18.11. Once a visualization has been generated using the procedure described 
in Sect. 18.3.3, the scene data can be exported to the web and to immersive VR 
environments using the ExportScene() and SaveData() function from the 
ParaView Python module respectively. For web export, ParaView generates a stand-
alone HTML version of the scene, which uses WebGL for rendering. For VR, the 
scene is exported to files and imported into a distributed rendering system based on 
OpenSceneGraph. 

Iterative Generation of Visualizations 

Using the LITE-QA query mechanism, visualizations can be exported iteratively 
in ParaView, e.g. for creating flow animations of selected regions from temporal 
data sets. Once a region in the flow field has been located in one particular time 
step of the simulation, the visualization pipeline is evaluated using iterative calls 
to the UpdatePipeline(time) and SaveScreenshot() function from the 
ParaView Python module in order to generate frames for an animation at the identified
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Fig. 18.11 Local visualization of a backflow vortex, which has been located using the LITE-QA 
query mechanism in (1) the ParaView graphical user interface. The scene is exported to (2) web 
and (3) immersive VR using the ParaView Python module. An immersive VR application based on 
OpenSceneGraph is run in the XSITE CAVE (eXtreme definition Spatial Immersion and interacTion 
Environment) [ 14, 21], an innovative surround-screen VR environment with an extremely high pixel 
resolution. The visualization is controlled intuitively using real-time optical tracking and hand-held 
interaction devices, e.g., adjustment of parameters and temporal and spatial navigation 

Fig. 18.12 Visualization of local flow evolution over multiple time steps in regions with interesting 
flow properties as identified by the query-mechanism: (1) strong backflow, i.e..u ≤ u0 < 0, (2)  fast  
flow, i.e. .M ≥ m0, and (3) vortex-like flow, i.e. . Q ≥ q0

location in a temporal context. Figure 18.12 shows the temporal evolution of the flow 
of liquid aluminum for the three regions, which are identified in time step 80 using 
range conditions on the index variables .u, M, Q, i.e. a large backflow vortex, fast 
preferential flow paths and vortex-like or swirled flow.
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18.3.5 Summary 

Data indexing as described in the previous section enables the efficient identification 
of regions in the simulation dataset that meet the criteria of user-specified queries. 
Query-driven visualization utilizes this by creating focused visualizations of large-
scale simulations that only include subsets deemed relevant by the analyst such as 
regions with high vorticity or significant backflow. Query-driven visualization is 
also computationally very efficient as only the relevant subset of the full dataset 
needs to be loaded from disk. Besides supporting interactive visualizations of large-
scale simulations in desktop, web, and immersive VR environments, the presented 
approach also supports the automated generation of animations. 

While so far the presented methods for in-situ data preparation and query-driven 
analyses have been presented in the context of single simulations, the next section 
considers their application for virtual prototyping purposes, where a large number 
of filter designs is generated, simulated and analyzed. 

18.4 Virtual Prototyping Study 

In the virtual prototyping scenario presented in this section, a reference filter design 
is systematically varied in order to create a total of 84 filter variants. Metal melt 
flow in each of these filters is simulated using the LBM described in [ 6, 8, 9] and 
simulation data is compressed and indexed with LITE-QA as described in Sect. 18.2. 
Evaluation of the candidate filters involves a combination of statistical analyses 
of global melt flow properties derived directly from the compressed indices, query-
driven visualizations that help to gain insights into the local effects of filter variations 
on the melt flow as well as calculations of global flow characteristics such as filtration 
efficiency and pressure drop directly obtained from the LBM simulations. 

18.4.1 Overview of Investigated Filter Structures 

A total of 84 computer-generated filters are screened for the virtual prototyping sce-
nario. The geometry for the filters is obtained from the procedure of representative 
geometry generation based on a filter skeleton [ 5]. The filter skeletons are gener-
ated from a Laguerre tessellation of periodic sphere packings, which are iteratively 
adjusted until they reflect the topological properties of real Ceramic Foam Filters 
(CFFs), e.g. the number of faces per cell and the edges per face. The filter geometry 
is obtained using isotropic Gaussian smoothing on a sharp discretized representation 
of the strut network embedded into a 3D voxel grid. The reference structures are 
modeled using a strut aspect ratio of one corresponding to CFFs with circular strut



18 Virtual Prototyping of Metal Melt Filters: A HPC-Based … 467

cross section shape as obtained from 3D-printed templates [ 1, 3, 5]. Based on the 
modeling procedure, the new filters are generated in the following three groups: 

1. (. f A) modification of strut shape: 

• . fa—elliptical elongation and flattening of the strut cross section with respect 
to the bulk flow direction controlled by a strut aspect ratio . a, 

• . fab—drop-like strut cross section controlled by a strut aspect ratios . a for the 
upper and . b for the lower half of the strut cross section shape, and 

• . fba—reversed drop-like strut cross section shape. 

2. (. f B) insertion of flow-guiding features: 

• . fw—closing of a total amount of .w randomly chosen pore windows, 
• . fα—insertion of finger-like struts on the downstream surface, downward-
pointing, inclined by angle . α with respect to the bulk flow direction, and 

• . fβ—insertion of finger-like struts on the upstream surface, upward-pointing, 
inclined by angle . β. 

3. (. f C) varying pore size and strut shape within a filter: 

• . fc—continuous thickening of struts from top to bottom, and 
• . fq—systematic arrangements of a total amount of . q size-varying pores. 

Modifications of Strut Shape and Insertion of Flow-Guiding Features 

As shown in Fig. 18.13, all filters in groups (. f A) and (. f B) are designed by modifica-
tion of the strut shape and pore geometry of a reference structure. f ε

1 with 216 pores. 
Reference structures are generated for porosities .ε = 70, 80, 90% which exhibit 
equal-sized pores with circular strut cross section shape, i.e. . f ε

1 corresponds to . fa
with aspect ratio .a = 1 and porosity . ε. 

The geometric modifications of the strut cross section for. fa is directly integrated 
into the modeling procedure based on anisotropic Gaussian smoothing [ 22]. . fab and 
. fba are generated using a voxel-wise image blending operation, in order to merge 
flattened and elongated struts into a drop-like strut shape. 

For modifications. fw,. fα and. fβ , additional flow-guiding features, i.e. closed win-
dows and finger-like struts, are inserted into the strut network prior to the generation 
of the actual filter surface [ 22]. The insertion of flow-guiding features reduces the 
porosity of. fw by 2–5% and for. fα and. fβ by approximately 2–2.6%. As a result of the 
insertion of finger-like struts, the cumulative length of the strut network increases by 
approximately 14.5%. All filters in groups (. f A) and (. f B) are generated for porosities 
.ε = 70, 80, 90%.
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Fig. 18.13 Geometric modifications of the reference structure . f ε
1 that has 216 equal-sized pores. 

Group (. f A) with modifications of the strut shape. fa ,. fab and. fba . For elliptical deformation. fa , the  
strut aspect ratio is controlled by parameter. a, i.e. elongation for.a < 1 and flattening for.a > 1. The  
reference structure . f ε

1 corresponds to .a = 1. For . fab and . fba , an additional parameter . b controls 
the aspect ratio of the lower part of the strut shape. Filters in group (. f B), i.e. . fw , . fα and. fβ , have  
flow-guiding features inserted. For. fw , a total of .w windows are randomly closed. For . fα and. fβ , 
downward- and, resp., upward-pointing finger-like struts are inserted inclined by angle . α and . β
with respect to the bulk flow direction. Images for. fα are reproduced with permission [ 22] 

Modifications with Varying Pore Size and Strut Shape 

The filters in group (. f C) vary pore size and, resp., strut shape along the filter depth. In 
group. fc, the strut width increases from top to bottom while in group. fq , the pore size 
is systematically varied in different layouts (see Fig. 18.14). Filters . fc are generated 
with the filter skeleton of the reference structure . f ε

1 . Filters . fq are generated with 
three new filter skeletons arranging size-varying pores: 

1. With .q = 200 pores, a continuous transition from larger to smaller pores and 
reverse transition from small to large with 32 larger pores, 72 medium-sized 
pores and 96 smaller pores. The cumulative strut length decreases by 7.2% with 
respect to . f ε

1 . 
2. With.q = 265 pores, a continuous transition from larger to smaller pores without 

reverse transition. The cumulative length of the strut network increases by 12.1%. 
3. With .q = 320 pores, an alternating pattern of 32 larger pores and clusters com-

posed of nine smaller pores, which increase the cumulative strut length by 23.2%. 

The filters. fq are generated for porosities.ε = 70, 80, 90%, while the filters. fc are 
generated for porosity .ε = 85%. The porosity value of . fc results from merging two 
reference structures . f 90%1 and . f 80%1 using a voxel-wise image blending operation 
along the filter depth. The procedure accomodates a smooth transition of the strut 
width and the strut shape across both parts of the filter, i.e. one with 90% porosity for 
the top and one with 80% porosity for the bottom. In addition to the transition from 
thin to thick struts, . fc integrates a smooth transition of the strut shape between the 
top and bottom parts of the filter, where the strut shape at the top is controlled by the 
aspect ratio.a = c and the aspect ratio in the bottom is set to.a = 4. The filters. fq are
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Fig. 18.14 Group (. f C) of investigated filters with varying strut thickness. fc and varying pore size 
. fq . Filters . fc accomodate a continuous transition of thin struts with aspect ratio.a = c with. c ≤ 2
at the top to thick struts with fixed aspect ratio.a = 4 in the bottom part of the filter. The filter. fc is 
shown for.c = 1. The  filters. fq are modeled with different layouts of.q = 200, 265, 320 pores with 
varying size, based on new filter skeletons, i.e. transition of large to small pores (a) with and (b) 
without reverse transition, and (c) an alternating pattern of large pores and clusters of small pores. 
The filters . f ε

1 and . fq are generated for porosities .ε = 70, 80, 90% and shown for .ε = 80%. Dark 
blue spheres indicate smaller pores, whereas turquoise indicates larger pores with respect to. f ε

1

generated with circular strut cross section and uniform strut width for the complete 
filter. 

As a consequence of the designs in group (. f C), a variation of the porosity is 
induced in different spatial regions of the filter domain. For . fc (ix–xi) and . fq (ix) 
and (x), the porosity decreases along the filter depth in a uniform way according to 
the increase of strut thickness or the decrease of the pore size. In contrast, for. fq (xi) 
with.q = 320 pores, where large pores alternate with clusters of smaller pores, locally 
increased and decreased porosity is induced on a raster of .4 × 4 × 4 spatial regions 
in an interlaced manner. 

18.4.2 Generation of Simulation Data Sets 

A total of 84 simulation data sets are generated in LBM simulations using the para-
metric modifications as shown in Table 18.1. The 6 modifications in groups (. f A) 
and (. f B) are generated with 4 parameterizations and for porosities.ε = 70, 80, 90% 
each, yielding 72 concrete filter designs. In group (. f C), filters. fq are generated with 
3 parameterizations and porosities.ε = 70, 80, 90% to yield 9 concrete filter designs, 
while filters . fc are generated with 3 parameterizations and fixed porosity .ε = 85% 
for 3 filter designs. 

The filters are evaluated for process conditions present during the removal of 
alumina oxide inclusions from the aluminum melt inside CFFs with 30 PPI as reported 
for a pilot filtration line [ 23]. Therefore, the structures are scaled to meet the pore 
density of the 30 PPI filters [ 9, 22], resulting in a physical domain of .17.5 × 17.5 ×
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Table 18.1 Overview of parametric variations for computer-generated filter structures used to 
generate the simulation data sets for the virtual prototyping scenario. All filters are generated for 
porosities.ε = 70, 80, 90% except for. fc with fixed porosity.ε = 85% 

Modification Parameterization 

(. f A) Strut shape (i) (ii) (iii) (iv) 

– Elliptical struts . fa .a = .0.5 .1 .2 . 4

– Drop-like struts . fab .a = . 1
.b = . 0.25

. 1

. 0.5
. 2
. 0.25

. 2

. 0.5

– Drop-like reversed . fba .a = . 1
.b = . 0.25

. 1

. 0.5
. 2
. 0.25

. 2

. 0.5

(. f B) Flow-guiding features (v) (vi) (vii) (viii) 

– Closed windows . fw .w = .50 .100 .150 . 200

– Finger-like downwards . fα .α = .15◦ .25◦ .35◦ . 45◦

– Finger-like upwards . fβ .β = .135◦ .145◦ .155◦ . 165◦

(. f C) Varying geometry (ix) (x) (xi) 

– Size-varying pores . fq .q = .200 .265 . 320

– Shape-varying struts . fc .c = .0.5 .1 . 2

17.5 .mm, which is discretized on a grid composed of .5123 voxels with a spatial 
resolution .Δx = 34.5 .μm for all data sets. 

Surface Area of Simulated Filters 

The surface area. S of the 84 generated filter samples from groups (. f A), (. f B) and (. f C) 
is  shown in Fig.  18.15. The filters. fa ,. fab,. fba ,. fα,. fβ ,. fw,. fc and. fq are generated with 
parameterizations (i–xi) according to Table 18.1. As can be seen, all modifications 
lead to an increase of the surface area, except. fq (ix), which has a lower surface area 
than the corresponding reference structure . f ε

1 with the same porosity. Filters with 
drop-like strut shape . fab and . fba in parameterizations (i) and (ii), and filters with 
finger-like struts . fα and . fβ exhibit the largest increase. Among filters with porosity 
.ε = 90%, filters with closed windows . fw (viii) have the largest surface. Although 
the filter . fq (xi) has the largest cumulative strut length, its surface area is smaller as 
compared to . fα and . fβ . 

Modeling the Fluid Flow 

The flow through the open-cell structures is assumed to be periodic with a constant 
flow rate driven by an imposed pressure gradient in the .x-direction and adjusted by 
a controller, which monitors the flow rate through the inlet and outlet of the filter, 
while maintaining the prescribed superficial velocity [ 9]. All process simulations 
lie within the steady state, where the viscous losses contribute to at most 60% of
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Fig. 18.15 Surface area . S of the 84 filter prototypes. The filters are referenced (i–xi) according 
to Table 18.1. Left (i–iv): group (. f A) with modified strut shape . fa , . fab and . fba . Middle (v–viii): 
group (. f B) with with flow-guiding features . fα, . fβ and . fw . Right (ix–xi): group (. f C) with size-
varying pores. fq and shape-varying, thickening struts. fc. The reference structures. f ε

1 for porosities 
.ε = 70, 80, 90% are shown as horizontal lines. Colors correspond to the porosity of the respective 
reference structure used for modification, except. fc that has porosity.ε = 85% 

Table 18.2 Characteristics of the investigated aluminum filtration process for the reference struc-
ture . f 80%1 , where the average interstitial velocity is given by .u = uD/ε and the strut width is 
.ds = 636. µm

Dimensionless number Value Definition 

Reynolds number .1.85 × 101 . Re = ρuds/μ

Forchheimer number .1.07 × 100 . Fo = ρuDk1/(μk2)

Interception number .3.15 × 10−2 . d∗
P = dP/ds

Stokes number .1.69 × 10−3 . St = ρPd2Pu/(18μds)

Gravitational number .4.80 × 10−2 . NG = (ρP − ρ) d2Pg/18μu

the total pressure drop losses [ 9, 22]. The process is assumed with an aluminum 
density of .ρ = 2356 .kg · m−3 at a temperature of 730. ◦C, superficial velocity of 
.uD = 1 .cm · s−1, dynamic viscosity .μ = 1.01 · 10−3

.Pa · s−1 and Reynolds number 
.Re = 18.5 as defined in Table 18.2. 

Application of LITE-QA In-Situ Data Preparation 

The data sets are generated using GLATE data compression for the flow field.u, v, w, 
and data indices .u, M, Q as described in Sect. 18.3.1. This choice of data indexing 
allows for the efficient retrieval of flow regions with backflow, high-velocity flow 
and vortex-like flow. GLATE compression is configured to bound the point-wise
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maximum error at 1%. As process simulations lie within the steady state it suffices 
to store only one time step per simulation. 

The in-situ data preparation pipeline is applied during the LBM simulations as 
described in Sect. 18.2. The data sets are compressed to 24.1% in average, where 
the flow fields .u, v, w are compressed to 15.3% in average and the data indices for 
.u, M, Q are compressed to 25.2%. Compared to the unsteady data set used for com-
pression testing, as described in Sect. 18.2.3, the steady solutions are compressed 
stronger due to the lower Reynolds number [ 15]. The overall data size for the sim-
ulations of 84 computer-generated filters is reduced from . 84 × 2.5GB = 212.5GB
to 51.1 GB including the additionally generated indices, i.e. the flow fields . u, v, w

account for 19.3 GB and the data indices .u, M, Q for 31.8 GB. 

18.4.3 Query-Driven Statistical Analyses of Melt Flow 

Several statistical analyses of the melt flow can be performed by queries that only rely 
on the meta-information stored in the header of the LITE-QA compressed indices. 
As the data amounts stored in the header account for only a very small fraction of 
the total index size, data loading times are negligible [ 16]. 

Particularly, count queries, as described in Sect. 18.3.2, return the data inside the 
index header for an index variable, including the number of occurrences of each data 
value in the voxel grid. This data can be used to estimate various statistical quantities 
such as average, median, minimum, maximum, relative frequencies, and histograms. 
Following the approach of [ 24], also the hydraulic tortuosity of the melt flow can be 
calculated from the velocity distribution, accessible over index variable . M , and the 
velocity distribution in principal flow direction, accessible over index variable . u. 

Effect of Filter Design on Flow Characteristics 

Figure 18.16 shows the tortuosity and maximum velocity for all 84 filter designs. 
The maximum velocity.Mmax is presented normalized with respect to the superficial 
velocity .uD . As can be seen, flattened struts . fa with .a > 1 and closed windows . fw
substantially increase both maximum velocity and flow tortuosity with respect to 
the underlying reference structure . f ε

1 . The only filters which decrease both quan-
tities are the filters with drop-like strut shape . fab and . fba . Different arrangements 
of size-varying pores . fq only have marginal effects on the tortuosity, however, the 
maximum velocity increases substantially as the flow is passing through smaller 
pores with a higher porosity. The insertion of finger-like struts slightly reduces the 
maximum velocity for . fα and. fβ while also the flow tortuosity is decreased indicat-
ing a smoothing effect on the flow. The filters . fc, that have porosity .ε = 85% and 
implement a continuous variation of strut width and strut shape, lead to the opposite 
effect, i.e. the maximum velocity and the tortuosity are increased.
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Fig. 18.16 Hydraulic tortuosity . τ and normalized maximum velocity .Mmax/uD computed using 
count queries on index variables .M and . u of the 84 filter prototypes. See Table 18.1 for filter 
parameterizations (i–xi). The reference structures . f ε

1 for porosities .ε = 70, 80, 90% are shown as 
horizontal lines. The filter modifications (i–xi) are colored according to the porosity class of the 
respective reference structure, except. fc that has a porosity of.ε = 85% 

Statistical analyses of the flow field reveal global relationships between design 
modifications and flow characteristics across the complete fluid domain. In order to 
gain insights, how the design modifications influence the flow characteristics locally, 
additional visualizations of the melt flow are generated using the LITE-QA query 
mechanism as described next. 

18.4.4 Query-Driven Comparative Visualization of Melt Flow 

The LITE-QA query mechanism as described in Sect. 18.3 can be used for the auto-
mated creation of melt flow visualizations in specific areas of the filter that exhibit 
interesting flow characteristics. By visualizing the same filter regions for different fil-
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ter variants, insights can be gained about the effects of geometric filter modifications 
on the melt flow. 

In particular, comparative visualizations for the flow in specific filters from group 
(. f A), (. f B) and (. f C) with modified strut shape, inserted flow-guiding features and 
varying pore geometries are generated. The locations for decompression and visual-
ization are obtained from index queries, which are used to identify specific regions 
in the flow using range conditions, and from the filter skeleton directly, e.g. the 
geometric center of a strut or a pore. The visualizations are generated by render-
ing streamlines and iso-contour surfaces using the ParaView visualization pipeline 
described in Sect. 18.3.3. 

Flow Regions in Computer-Generated Filters and CFF Sample 

Figure 18.17 shows visualizations of vortices, which are generated as examples for 
characteristic flow in two datasets, i.e. the reference structure . f 80%1 and a real CFF 
sample with 216 pores and 77.3% porosity obtained from computer tomography 
scanning in a previous study [ 9]. The CFF sample exhibits a pore density, spe-
cific surface area and strut width similar to the reference structure. However, the 
CFF sample also shows several defects, e.g., closed pore windows, cracked struts 
and deformed pores, due to imperfect manufacturing conditions. For each filter, the 
LITE-QA query mechanism, as shown in Fig. 18.10, is used to locate vortex regions, 
i.e. clusters of voxels with high vorticity, inside the flow fields. Five exemplary visu-
alizations are generated for comparing the locations of high-vorticity clusters inside 
the filter geometries. 

For both the computer-generated filter and the real CFF sample, vortices appear 
close to the upstream and downstream surfaces as well as in pore windows that are 
oriented in parallel to the bulk flow direction. As the upstream surface is exposed 
to the direct momentum of the flow, the velocity of vortices is higher as compared 
to vortices on the downstream surface or in pore windows. On the upstream, the 
flow crawls up on the surface of struts or closed windows before passing in another 
direction. On the downstream and in the pore windows, slower vortices appear in the 
slipstream of struts exhibiting less mass exchange with the bulk flow. 

Deformation of Vortex-Like Flow Region 

Figure 18.18 shows a vortex on the upstream surface of the reference structure. f 80%1
and its deformation due to a different porosity. f 90%1 , a filter with elliptical strut shape 
. fa , and a filter with an upward-pointing finger-like strut. fβ . After locating the vortex 
inside the reference structure. f ε

1 using an index query, the visualization is regenerated 
using grid queries for the determined location for the four filter datasets. The camera 
is placed at three different angles showing the flow deformation due to the shape 
modifications in front, back and side view.
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Fig. 18.17 Comparative visualization of vortices in reference structure. f 80%1 and (CT) a real CFF 
sample with porosity of 77.3% obtained from computer tomography scanning. Both filters exhibit 
the same pore density, specific surface area and strut width. Fast vortices appear close to the upstream 
surface. Vortices close to the downstream surface and in pore windows are slower 

The vortex is found next to a small closed pore window in the reference structure 
. f 80%1 , where the flow is redirected and crawling up the strut on the upstream surface. 
While for . f ε

1 with .ε = 90% the window is open, for .ε = 80% the window is closed 
and the vortex region has a larger size. The flow splits in two opposing streams, 
which merge with the bulk flow while passing two opposing lateral pore windows. 
The flattened struts in . fa cause the closing of a second pore window, resulting in 
a stretch of the vortex region along the new upstream surface and an increase of 
the flow velocity. In contrast, the finger-like struts in . fβ result in a decrease of the 
vortex volume, as the flow is redirected before it enters the vortex region. This local 
observation may explain the reduced tortuosity as observed in the global statistical 
analyses of Fig. 18.16. 

Flow Around Struts with Modified Shape 

Figure 18.19 shows the melt flow around a strut of the reference structure . f 80%1 in 
comparison to filters . fa , . fab and. fba with modified strut shape (elliptical, drop-like, 
drop-like reversed). A grid query is used to decompress a cubic region of the flow 
field around the geometric center of a strut which is orthogonal to the bulk flow
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Fig. 18.18 Visualization of a vortex found by a LITE-QA query on the upstream surface of the 
reference structure . f 80%1 and visualizations of the same region in three filter variants. All variants 
deform the vortex region 

Fig. 18.19 Visualization of the flow around struts with modified shape for filters . fa (elliptical), 
. fab (drop-like) and . fba (drop-like reversed) in comparison to the reference structure . f ε

1 (circular 
cross section). The iso-contour surfaces in red show fast backflow in the slipstream of the struts. 
All filters have a porosity of.ε = 80%, unless indicated otherwise
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direction. The camera focuses on the strut center and is directed along the strut axis. 
The iso-contour surfaces in red highlight the fast backflow in the slipstream which 
is computed as the 5% quantile of the distribution for all values .u < 0 in each data 
set. 

As can be seen, for flat elliptical struts . fa with .a > 1, the flow on the upstream 
surface of the struts exhibits increased velocity, as it is forced around the strut. 
The flow in the slipstream of the strut is mostly isolated from the bulk flow con-
stituting a backflow region which increases the flow tortuosity. In contrast, for the 
elongated elliptical shape. fa .(a = 0.5) and the drop-like strut shapes. fab, the flow is 
smoothly directed around the strut, decreasing velocity and tortuosity. Interestingly, 
the reversed drop-like strut shapes . fba , also exhibit decreased velocity and tortuos-
ity. Due to the elongation of the upstream surface without sharp corners, the flow 
velocity on the upstream surface of . fba is lower as compared to . f ε

1 . 

Flow Through Pores with Flow-Guiding Features 

Figure 18.20 shows the melt flow through a pore of the reference structure . f ε
1 in 

comparison to filters . fa , . fab, . fba with modified strut shape and filters . fα, . fβ , . fw
that have flow-guiding features inserted. A grid query is used to decompress a cubic 
region of the flow field around the geometric center of a pore. The camera is rotated 
towards one pore window and directed orthogonal to the bulk flow. The iso-contour 
surfaces in orange highlight the fast preferential flow, which is computed for each 
filter using the 85% threshold of the maximum velocity of . f 80%1 . 

Consistent with the global statistical analyses indicating an increased velocity for 
flattened elliptical struts . fa with .a > 1, the local visualization of . fa .(a = 2) shows 
a higher-velocity flow (orange iso-contour) at the influx of the pore as compared 
to the reference structure . f ε

1 . However, also consistent with the global analyses, 
when the porosity is increased from .ε = 80% to .ε = 90%, even in case of very flat 
struts . fa .(a = 4, .ε = 90%. ) velocity is still smaller as compared to the reference 
structure (absence of orange iso-contour). Similarly, drop-like strut shapes . fab and 
. fba decrease the velocity. 

For the filters. fα and. fβ with finger-like struts, the area of high velocity is deformed 
and the tortuosity is slightly lowered. The insertion of upward-pointing finger-like 
struts can cause a redirection of the flow through lateral windows of the pore. For 
filters . fw with closed windows, statistical analyses of global melt flow indicate an 
substantial increase of tortuosity and velocity. On the one hand, the flow is forced 
through a smaller number of pore windows, while on the other hand, regions behind 
closed windows are formed which are mostly isolated from the bulk flow. The latter 
effect can be observed for . fw .(w = 200) in Fig. 18.20.
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Fig. 18.20 Visualization of the flow through a pore of reference filter. f ε
1 , filters. fa , . fab, . fba with 

modified strut cross section (elliptical, drop-like, drop-like reversed) and filters . fα, . fβ , . fw with 
flow-guiding features (finger-like struts downwards, upwards, closed windows). Regions with high 
velocity are shown as iso-contour surfaces in orange. All shown filters have porosity .ε = 80%, 
except. fa .(a = 4) with.ε = 90% 

Flow Through Size-Varying Pores 

Figure 18.21 compares regions with backflow, high-velocity flow and high-vorticity 
flow for two filters with equal-sized pores and four filters with size-varying pores. 
The filters with equal-sized pores are the reference structure . f 80%1 and the filter 
. fβ .(β = 135◦) with upward-pointing finger-like struts. The three filters . fq are laid 
out with pores of different diameters across the filter. In filter. fc .(c = 2), the effective 
size of pore cavities decreases from top to bottom due to the continuous transition 
from thin to thick struts. 

A grid query is used to decompress a grid slice with a depth of 128 voxels for one 
complete filter height and width showing the flow field along the bulk flow direction. 
Regions with strong backflow, high velocity, and high vorticity in the flow field 
are found with range queries as described in Sect. 18.3.1 and rendered as iso-contour 
surfaces. Additionally, streamlines are seeded inside the flow field regions and traced 
both forwards and backwards along the complete height of the filter. 

For filter . fc .(c = 2) with a continuous transition from thin to thick struts along 
the filter depth, the flow is smoother in the top part, as compared to the bottom, 
where the flow is forced into smaller pores. Almost all backflow, high-velocity and 
high-vorticity regions are concentrated in the lower half of the filter. 

In the filters . fq .(q = 200) and. fq .(q = 265) with continuous pore size transition 
along the filter height, the flow is forced into regions of small pores, i.e. middle region 
of. fq .(q = 200) and bottom region of. fq .(q = 265), where the fast preferential flow 
and vortex-like flow concentrates. In contrast, for the filter . fq .(q = 320) with an
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Fig. 18.21 Visualizations of regions in the flow field for filters . fq with size-varying pores and 
. fc with shape-varying struts in comparison to . fβ with upward-pointing finger-like struts and the 
reference structure. f ε

1 . All shown filters have porosity.ε = 80% 

alternating layout of large and small pores, the regions of fast flow shrink in size as 
the flow can escape into larger pores more easily. Areas of high vorticity are scattered 
across the whole filter. 

The filter. fc with increasingly thicker struts shows the largest amount of backflow 
areas among the filters compared in Fig. 18.21 which explains its high tortuosity. In 
contrast to . fc, the filters . fq do not increase the amount of fast backflow regions. 
Similar to . fq , the flow in the filters . fβ with additional finger-like struts becomes 
smoother, due to the flow redirection through lateral pore windows as shown in 
Fig. 18.20, which can effects the size of the backflow regions. 

18.4.5 Evaluation of Filtration Performance 

The filtration performance of the filters is evaluated based on the filtration coefficient 
. λ and pressure drop.p' which are both directly determined from the LBM simulations 
using the Darcy-Forchheimer law and the conventional depth filtration law. 

The Darcy-Forchheimer law describes a simplified relationship between the pres-
sure drop.p' = dp/dx and the superficial velocity.uD for flow through porous media 
given by
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. 
dp

dx
= − μ

k1
uD − ρ

k2
|uD|uD .

The relationship depends on the Darcy permeability .k1 and the Forchheimer coeffi-
cients. k2, which are required to characterize the contribution of the viscous and iner-
tial losses to the overall pressure drop during the process simulations. The parameters 
are estimated using a computationally efficient approach, which permits comparative 
assessment with a sufficient accuracy [ 9]. 

The filtration coefficient . λ is obtained by fitting the simulated inclusion distribu-
tion with the conventional depth filtration law given by 

. 
dc

dx
= −λc.

The inclusion distribution is obtained by tracking.105 spherical inclusions with diam-
eter .dP = 20 .μm and density .ρP = 3900 .kg · m−3 randomly inserted on the filter 
inlet. The particle transport, characterized as shown in Table 18.2, is simulated cou-
pled with the LBM under consideration of the drag force for 3 residence times, i.e. an 
effective filter depth of 52.6 .mm [ 9]. 

Effect of Filter Design on Filtration Process 

Figure 18.22 shows the filtration coefficient . λ and pressure drop .p' obtained from 
simulations of all 84 filters. See Table 18.1 for geometric filter modifications and 
parameterizations (i–xi). An improvement of filtration performance is assessed when 
the filtration efficiency, measured by . λ, increases without substantial impact on the 
pressure drop.p' as compared to the reference structure. f ε

1 of corresponding porosity. 
From all 84 filters, the filter . fab (iv) with drop-like struts is the only filter which 

both increases the filtration coefficient . λ and at the same time reduces the pressure 
drop.p' with respect to the reference structure. f ε

1 with corresponding porosity. Inter-
estingly, the filter. fa (iv) with very flat elliptical strut shapes.a = 4 and with porosity 
.ε = 90% outperforms the reference structure . f 80%1 with a higher . λ and a lower . p'. 

All filters yield an increase of . λ w.r.t. the respective reference structure . f ε
1 with 

same porosity except . fa (i), i.e. elongated elliptical struts, . fba (i–iv), i.e. inverse 
drop-like struts, and. fq (ix), i.e. size-varying pores with large-small-large transition. 
However, a disproportionate increase of the pressure drop.p' is observed for . fa (iii– 
iv), i.e. flat elliptical struts, and . fw (vii–viii), i.e. 150 or more closed windows. 

The pressure drop increases only moderately for the filters with finger-like struts 
. fα and . fβ and filters with size-varying pores . fq . The filters . fc with transition from 
thin to thick struts and porosity .ε = 85% increase the filtration coefficient . λ, while 
only moderately increasing .p' with respect to the reference structure . f 80%1 . 

Concerning the symmetric shape modifications, the following conclusions can be 
drawn:
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Fig. 18.22 Pressure drop .p' and filtration coefficient . λ of 84 filter prototypes. See Table 18.1 for 
geometric filter modifications and parameterizations (i–xi). Group (. f A): strut shape modifications 
. fa , . fab, . fba with parameterizations (i–iv). Group (. f B): insertion of flow-guiding features . fα, . fβ , 
. fw with parameterizations (v–viii). Group (. f C): varying pore size. fq and strut shape. fc within the 
filter with parameterizations (ix–xi). The reference structures. f ε

1 for porosities.ε = 70, 80, 90% are  
shown as horizontal lines. The filters (i–xi) are shown in colors matching the porosity class of the 
corresponding reference structure, except. fc with fixed porosity.ε = 85% 

• filters with flat elliptical struts . fa .(a > 1) outperform filters with vertically elon-
gated struts . fa . (a < 1)

• filters with drop-like struts. fab outperform filters with reversed drop-like struts. fba
• filters with upward-pointing finger-like struts. fβ outperform filters with downward-
pointing finger-like struts . fα. 

Selection of Top-Performing Filters 

Based on the data shown in Fig. 18.22, a set of top-performing modified filters is 
determined by comparison to the filtration coefficient . λ of the reference structure 
. f 80%1 and the pressure drop .p'

CFF of the 30 PPI CFF sample shown in Fig. 18.17.



482 H. Lehmann and B. Jung

Fig. 18.23 Correlation of pressure drop.p' and filtration coefficient. λ for (1) all filters and, zooming 
in into the blue rectangular area and filtering out less well performing parameterizations, (2) the six 
top-performing filters whose filtration coefficient. λ exceeds that of. f 80%1 and whose pressure drop 
is lower than the pressure drop.p'

CFF of the CFF sample. The six filters are. fc, . fq , . fβ , . fa , . fab and 
. fw with parameterizations as shown in the figure and summarized in Table 18.3. (3) Correlation of 
dimensionless viscous and inertial permeability.k∗

1 and.k∗
2 for the six top-performing filters 

Figure 18.23 (1) shows the correlation of the pressure drop .p' and the filtration 
coefficient . λ for all filters. The vertical straight line shows the pressure drop of the 
CFF sample .p'

CFF. 
In order to select a group of filters with increased performance, first, all filters are 

considered whose filtration coefficient . λ is higher as compared to . f 80%1 and whose 
pressure drop .p' is lower than the pressure drop .p'

CFF of the CFF sample. Second, 
from the considered filters, for each modification one filter is selected, which has 
the highest filtration coefficient. Figure 18.23 (2) shows six top-performing filters 
that are also summarized in Table 18.3. The top-performing filters increase. λ by 4.5– 
29% w.r.t.. f 80%1 . The filters. fa .(a = 4,.ε = 90%. ) and. fab .(a = 2,.b = 0.5,.ε = 80%. )

decrease.p' by 4.7–20.6%, while the other four top-performing filters increase.p' by 
15.9–21.9%. 

Figure 18.23 (3) shows the viscous and inertial permeability.k1 and.k2 for the top-
performing filters. As can be seen, the filters. fa and. fab increase both permeabilities, 
the filter . fc only decreases the inertial permeability and the remaining filters . fw, . fβ
and. fq decrease both.k1 and. k2. Notably, the permeabilities of. fβ and. fq decrease only 
slightly although their cumulative strut lengths, due to new struts and many smaller 
pores, lead to a considerable increase of the surface area by 13.3% and, resp., 9.6% 
as compared to the reference structure . f 80%1 . 

18.4.6 Discussion 

This virtual prototyping study has investigated eight basic modifications of a refer-
ence geometry with several parameterizations each, see Table 18.1, yielding 84 virtual 
filter prototypes in total. For six of the eight modifications, Table 18.3 shows the filter
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Table 18.3 Top-performing filters whose filtration coefficient . λ exceeds that of . f ε
1 and whose 

pressure drop is lower than the pressure drop.p'
CFF of the CFF sample. Filters are ranked by. λ

Ranked 
Modification 

Filter .ε[%] .p'[Pa·s−1] . λ[m−1]

1. Shape-varying, 
thickening struts 

. fc (x).c=1 85 304.2 4.00 

2. Size-varying 
pores, alternating 

. fq (xi).q=320 80 289.0 3.78 

3. Finger-like 
struts upwards 

. fβ (v).β=135◦
80 303.2 3.66 

4. Flattened strut 
cross section 

. fa (iv).a=4 90 198.1 3.62 

5. Drop-like strut 
cross section 

. fab (iv).a=2
b=0.5 80 237.9 3.33 

6. Randomly 
closed windows 

. fw (vi).w=100 80 298.1 3.24 

Reference 
structure 

. f ε
1 80 249.6 3.10 

with the best performing parameterization. Two modifications are not included as 
they perform less well than their counterparts: Upward-pointing finger-like struts out-
perform downward-pointing finger-like struts and drop-like strut shapes outperform 
struts with inverse drop-like shape. 

Table 18.3 ranks the modifications according to the filtration coefficient. λ. The four 
best-ranked modifications yield an increase of the filtration coefficient . λ by 16.7– 
29%, while the other two modifications, i.e. drop-like struts and closed windows, 
yield substantially lower improvements of 4–6%. 

Nonetheless, also the latter modifications show interesting effects when not only 
the filtration coefficient. λ is considered. Drop-like deformations of the strut shape can 
be parameterized such that pressure drop is substantially lower than in the reference 
structure without noteworthy decline of . λ, e.g.  . fab (ii) and (iii) in Fig. 18.22. The  
deliberate closing of pore windows, which are oriented nearly parallel with respect 
to the bulk flow, hinders the formation of large slow vortices in the slipstream of 
struts, as shown in Fig. 18.17. Such observations could inform, e.g., the design of 
filters with more elaborate window-closing policies as compared to the randomized 
window closing of this study. 

Increased complexity of filter manufacturing is a further issue for some of the 
modifications. Filters with very thin struts or articulate flat elliptical or even drop-
like strut cross sections require a higher fidelity for 3D-printing of the polyurethane 
templates needed for filter replication. Coating of struts in an evenly manner also 
becomes more challenging for non-circular strut cross sections. 

Positive results regarding filtration performance but without the potential draw-
backs concerning their manufacturability are obtained for filter . fβ with upward-
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pointing finger-like struts and the filter . fq with an alternating pattern of small and 
large pores. 

The finger-like struts in . fβ in the parametrization shown in Table 18.3 increase 
filtration efficiency by 18% while only marginally reducing the maximum velocity 
and the hydraulic tortuosity of the flow. As illustrated in Fig. 18.20, upward-pointing 
finger-like struts redirect flow through lateral pore windows. This decreases the size 
of vortices in the slipstream behind struts inside pore windows that are approximately 
parallel to the bulk flow. Overall, the insertion of upward-pointing finger-like struts 
substantially increases filtration efficiency, ranked at third place in Table 18.3, while 
also smoothing the flow. 

In . fq of Table 18.3, clusters of nine smaller pores and single larger pores are 
arranged alternately, inducing a variation of locally increased and decreased porosity 
in an interlaced manner. As the flow can escape into nearby larger pores, the maximum 
flow velocity only increases slightly with respect to the reference structure, while the 
tortuosity remains unchanged. In contrast, in the other investigated layouts of size-
varying pores the flow must pass through distinct layers of small pores which causes 
larger high-velocity regions and higher velocity peaks as shown in Fig. 18.21. The  
alternating layout of large pores and clusters of smaller pores yields an improvement 
of . λ by 22% as compared to the reference filter. This is the second-best value of all 
investigated filters, while avoiding potential manufacturing complexities. 

The filter . fc, which shows the best improvement of the filtration coefficient . λ
by 29% within this study, has thin struts in its upper part and further integrates 
an elliptical flattening. Possibly, other techniques than replication of 3D-printed 
polyurethane templates are needed to manufacture this filter with high fidelity. 

18.5 Conclusions 

The advent of additive manufacturing has vastly increased the design space of filters 
for metal melt filtration. Novel filter geometries can be conceived that vary, e.g., in 
strut shape and pore size distribution across the filter or that add flow-guiding or 
surface-increasing features to the pores. Furthermore, all such modifications can be 
parameterized in numerous ways. In order to assess this large space of possible filter 
designs before they are actually manufactured, a virtual prototyping workflow based 
on HPC simulations was presented. 

A major challenge are the large data volumes produced even by single CFD 
simulations of metal melt flow and even more so for virtual prototyping settings where 
many filter designs need to be evaluated. The large data problem is particularly severe 
during the analysis phase, where simulation results are assessed outside of the HPC 
environment, using workstations with much lower computing resources. The LITE-
QA framework was developed to address this large data challenge. Integrated into 
code executed in the HPC environment, the resulting simulation data is compressed 
and indexed. The data reduction rates of combined data compression and compressed 
indexing significantly improve on other state-of-the-art methods. As support for the
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analysis phase, LITE-QA offers query-driven access to the compressed and indexed 
data. This adds search engine-like capabilities to data analysis tasks and allows, e.g., 
for focused visualizations of filter regions that meet the search criteria of the analyst, 
such as areas with high velocity, vorticity or backflow. Crucially, only very small 
parts of the simulation data, i.e. those parts that meet the analyst’s search criteria, 
need to be loaded from disk. In this way, interactive data analyses are enabled even 
for very large scientific data sets. 

Furthermore, a virtual prototyping study including 84 new filter designs for metal-
melt filtration was conducted. The filter designs are created by geometric modifica-
tion of a reference model that emulates the topology, pore density and strut width of 
conventional foam filters used for aluminum filtration. Eight basic geometric mod-
ifications were investigated that alter the strut shape, add flow-guiding features or 
vary pore and strut size within a filter. The modification parameters were systemati-
cally varied and filter geometries were generated for three porosities. An evaluation 
of filter performance based on HPC simulations and LITE-QA data management 
identified the six best-performing filter designs with higher filtration coefficient than 
the reference filter while only having a moderate effect on melt flow pressure. Local 
visualizations of regions with interesting flow properties such as backflow, high 
velocity or high vorticity provide further insights on how the investigated modifica-
tions influence the melt flow. The largest improvement of the filtration coefficient 
by 29% was achieved for a filter with thin struts at the top that increasingly become 
thicker towards the bottom. The thin struts however require high-fidelity 3D-printing 
technology. The next-best performing filter designs do not include particularly thin 
struts or struts of articulate shapes, thus placing lower demands on additive man-
ufacturing processing: A layout where large pores alternate with clusters of small 
pores with 22% improvement and the insertion of upward-pointing finger-like struts 
with 18% improvement of the filtration efficiency. These best-performing virtual fil-
ter prototypes can be seen as promising candidates for additive manufacturing and 
further testing as physical prototypes. 
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