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Modeling and Evaluation 
of the Thermo-mechanical Behavior 
of Filter Materials and Filter Structures 

Martin Abendroth , Stephan Roth , Alexander Malik , Andreas Seupel , 
Meinhard Kuna , and Bjoern Kiefer 

16.1 Introduction 

Metal melt filtration is a technological process used to clean the melt and to calm 
the melt flow during casting. The innovative concept of the multifunctional filters 
studied here centers on complementing the physical removal of impurities (particles) 
by additional cleaning mechanisms enabled by chemical reactions between melt and 
filter material as well as active coatings. 

Figure 16.1 illustrates the principle of metal melt filtration and also shows the 
micrograph of an actual filter cross-section. To design and produce multifunctional 
filters that are able to withstand the very demanding thermo-mechanical conditions to 
be encountered during such filtration processes is a major challenge. These structures 
are, for instance, exposed to large temperature rates and gradients, when the hot 
molten metal hits the filter (thermal shock), which in turn result in thermally-induced 
stresses that can cause damage or, in extreme cases, complete failure. Additional 
stresses are caused by the melt flow, since the filters cause a pressure drop in the 
direction of flow. Even buoyancy related forces can play a role when ceramic filters are 
immersed in metal melt, due to the significant density differences of these materials. 
It must also be emphasized that instead of failing in a brittle manner, ceramic filter 
materials show non-negligible inelastic behavior (plasticity, creep, damage, etc.) at 
temperature levels (of up to 1.600. ◦C) required for steel filtration. 

The foams studied in this research are reticulated foams, which are based on a 
polyurethane foam coated by a ceramic slurry. The coating is later dried and fired, 
whereas the polyurethane pyrolizes and sharp edged cavities remain in the strut [ 2]. 
The sharp edges are potential locations for the initiation of crack growth. The firing 
process also influences the thermo-mechanical properties of the foam. Additional
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Fig. 16.1 Schematic of liquid metal filtration [ 1] and a detail of a ceramic filter with a coating 

(active) coatings can be applied, which allow specific chemical reactions between 
melt and filter surface to take place. These reactions can help to reduce certain 
unwanted elements in the melt. 

In order to be able to provide simulation support for the filter design, a thermo-
mechanical multiscale modeling approach has been pursued, based on state-of-the-art 
methods of theoretical and computational mechanics. The goal here was to enable 
virtual evaluations of the structural integrity and strength of the filters. These are of 
critical importance, since experimental investigations under realistic process condi-
tions are often very difficult, expensive or even impossible to conduct. To this end, 
the modeling efforts have focused on three main aspects: 

1. The generation of open-cell foam-like Representative Volume Elements (RVEs), 
with direct control over geometrical features of the foam morphology 

2. Multiscale Finite Element Analysis (FEA) of the foam behavior that combines 
models relevant for different length-scales with scale-bridging concepts (homog-
enization) 

3. More recently, phase-field modeling of an in situ layer formation during the 
chemical reaction of steel melts and carbon-bonded aluminum oxide filters (reac-
tive filtering phase). 

Finite element analysis is generally suitable to model the structural behavior of 
the foam-like filters on all relevant length-scales. However, such filters consist of 
a large number of three-dimensionally interconnected struts. Even for macroscopi-
cally relatively small filters, the element numbers required for sufficiently accurate 
meshing under full spatial resolution would thus reach orders of magnitude that 
could no longer be reasonably handled, even with modern high-performance com-
puters. Homogenization concepts must therefore be applied, if the goal is to predict 
macroscale properties that are directly influenced by micro- and mesoscale features 
and behavior, see Fig. 16.2. To this end, the proposed approach is to model the 
effective thermo-mechanical behavior of the filter material on the microscopic scale 
(within the struts) via elastoplastic and viscoplastic constitutive models, combined 
with simple damage approaches. These are established models that are available in
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Fig. 16.2 Relevant scales for the three-scale homogenization approach 

many commercial FE programs. On the mesoscale, a representative volume element 
of the foam structure is simulated, in which the detailed geometrical structure is 
spatially discretized with finite elements. The RVE is then loaded via appropriate 
boundary conditions and the numerical analysis results in a model for the effec-
tive thermo-mechanical behavior of the foam-like mesoscale structure that can be 
evaluated at every integration point of a macroscale FE simulation. 

In general, the effective inelastic behavior of such highly porous structures which 
the RVEs represent is very complex and may exhibit volumetric strain hardening 
or softening, and anisotropic non-associated plastic flow behavior, just to name a 
few phenomena typically encountered. Modeling approaches that try to formulate 
appropriate flow potentials and flow rules in phenomenological plasticity models 
are therefore limited in their applicability and accuracy. Classical models include 
the approach of Deshpande and Fleck [ 3] and the Cam-Clay model of Roscoe [ 4], 
and generalizations suggested in Bigoni-Piccolroaz [ 5] and Ehlers [ 6, 7]. There also 
exists a large body of work regarding the Theory of Porous Media (TPM) that is very 
relevant to this problem, see, e.g., [ 8] and the references therein. 

The strategy to link the meso- and macro-scale behavior of the ceramic filters 
followed here, however, is different in nature and can be classified in two categories. 
Firstly, a novel hybrid approach has been developed, in which the flow potentials 
and flow rules are replaced by neural networks, while the classical structure of phe-
nomenological elasto-visco-plasticity models known from continuum mechanics is 
retained. Secondly, direct numerical homogenization via the FE2 method has been 
conducted. In this approach, the explicit formulation of a macroscopic constitu-
tive model is typically not necessary. Macroscopic stress-strain relations are instead 
established by simulating the response of the RVE at each integration point of the 
macroscale FE problem. Nested, but otherwise separate FE simulation are thus per-
formed on two scales, hence the name FE2. However, while greatly reducing the 
degrees of freedom and memory required for the simulation compared to the full 
spatial resolution for a foam structure of technologically relevant size, this approach 
is computational still very extensive. Recently, a lot of research has therefore focused 
on significantly improving the computational efficiency of this method, see [ 9, 10]. 

The generated RVEs are, however, not only used for thermo-mechanical FE sim-
ulations. The underlying digital geometric models can be exported in different for-
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mats. Voxel structures are provided for simulations based on the Lattice-Boltzmann-
Method (LBM), where the flow of the liquid melt through the filter can be analyzed 
[ 11, 12]. The geometric surface of the generic structures can be triangulated and 
exported as standard triangle language (STL) data structures, which are commonly 
used for 3D printing. The printed structures can be analyzed in various experiments 
to measure actual solid- or fluid-mechanical properties. Very importantly, the models 
can also be regarded as digital twins of real foam structures, which have the advantage 
that geometrical and topological properties can be easily varied and studied either 
using numerical or real world experiments. 

Finally, recent continuum thermodynamics-based modeling approaches have been 
devoted to investigating the role of thermo-chemical phenomena as key mechanisms 
enabling the functionalization of carbon-bonded alumina filters for the purification of 
steel melt. In particular, the focus is on the formation of an in situ layer of secondary 
oxides during filtration, which has a high impact on the cleaning efficiency. During 
this reactive filtration phase, a dissolution of alumina from the filter material is 
assumed in the presence of carbon and liquid iron [ 13], where the produced oxygen 
and carbon can diffuse within the melt and nucleate carbon monoxide gas bubbles 
at impurities yielding a cleaning effect based on flotation [ 14, 15]. The formation 
of a dense layer of secondary corundum is proposed as the main reason for the 
termination of the reactive filtration phase [ 16], as it is suspected to suppress further 
carbon supply from the carbon-rich filter to the melt [ 17]. To capture this, a multi-
component/multi-phase phase-field modeling approach is pursued to describe the 
diffusion, phase transitions, and chemical reactions in the system consisting of filter 
and melt material. In a first study following this concept, simulation results for the 
in situ layer formation are presented assuming a simplified filter-melt system. 

16.2 Methods 

The focus of this section is on the numerical methods that have been established to 
generate artificial foam structures, to model the effective thermo-mechanical behav-
ior of the foam filters, and to analyze the formation of in situ layers during steel melt 
filtration with carbon-bonded alumina filters. 

16.2.1 Representative Volume Elements of Foam Structures 

There are several ways to generate RVEs of foam structures. One could use data 
from computed tomography to map realistic structures. However, in order to repro-
duce specific geometrical features and to study their influence on the macroscopic 
behavior, a generic approach is beneficial [ 1]. The process used here starts with gen-
erating a spatially periodic sphere packing. The spheres may be arranged in a lattice 
structure as shown in Fig. 16.3, or randomly, using algorithms proposed in the liter-
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Fig. 16.3 Generic foam structure RVEs with a relative density of.ρrel = 20% and. 2,. 8,.16 and. 216
pores. The foam with two pores is also known as a Kelvin foam and the one with eight pores as the 
Wheire-Phelan foam [ 22] 

ature [ 18– 20]. From the sphere packing, a Laguerre tessellation is generated, which 
contains convex cells around each sphere. But these cells usually exhibit some very 
small facets, which is not observed in real foams. A relaxation procedure is there-
fore applied in order to minimize the total foam surface by topological changes and 
thereby the surface energy [ 21]. The edges of the relaxed foam structure are mapped 
into a 3D voxel grid, where each voxel contains the length of struts within itself as 
a numerical value. This strut density field is smoothed out by a Gaussian filter and 
finally the surface of the foam structure can be represented by an isocontour (level 
set). By changing the value of the standard deviation of the Gaussian filter and/or the 
value for the isocontour, the shape of the struts and the relative density of the generic 
foam can be adjusted [ 1]. 

Subsequently, the generated RVEs can be discretized in different ways with finite 
elements to perform numerical studies. To analyze mechanical properties such as 
elasticity, plasticity or creep behavior, the struts are meshed using hexahedral ele-
ments as was shown in [ 1, 23], where sharp edge cavities had to be taken into account 
for analyzing the fracture mechanical behavior. The same geometries are also used 
for fluid mechanical simulations, utilizing fine meshed voxel grids (see Fig. 16.4) 
and assigning either solid or fluid properties to the individual elements [ 11]. Further-
more, the closed surfaces of the individual RVEs can be exported as STL-files, which 
may be used to feed 3D printers [ 24, 25] or being analyzed by software tools like 
MeshLab to estimate the surface area or topological properties such as the number 
of cell windows [ 11]. 

16.2.2 Hybrid Homogenization Approach 

In our notation, homogenized quantities are denoted by an overbar. Homogenized 
stresses .σ̄ and strains . ε̄ are then introduced as the volume-averaged microscopic 
stress . σ and strain . ε field, i.e., 

.σ̄ := 1

V

{
V

σ dV, ε̄ := 1

V

{
V

ε dV . (16.1)
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All foam RVEs considered in this research, see the examples in Fig. 16.3, are peri-
odic in all three spatial dimensions. For the mechanical analyses periodic boundary 
conditions are applied, since this gives the optimum response [ 26]. The local dis-
placements . u at a position . x on the RVE boundary .∂V depend on the macroscopic 
strain . ε̄ and a fluctuation . ũ

.u = ε̄x + ũ at ∂V . (16.2) 

The fluctuations are periodic 

.ũ(x−) = ũ(x+) (16.3) 

at homologous points .x− and .x+ at the opposing boundaries of the RVE. The fluc-
tuations can be eliminated from (16.2) yielding 

.u(x+) − u(x−) = ε̄(x+ − x−) , (16.4) 

which is implemented as multi point constraints for all sets of homologous points at 
the RVE boundary. In case of non-periodic meshes a technique developed by Storm 
et al. [ 27] may be applied. 

Elastic Properties and Failure Limit Surfaces for Foam RVEs 

To predict the effective elastic properties and failure limit surfaces local stress fields 
are determined for six linearly independent strain controlled load cases, denoted by 
an upper index . k in parentheses 

.ε̄
(k)
i = ε0 δ

(k)
i . (16.5) 

. ε̄
(k)
i denotes the effective strain state for load case. k in Voigt notation, whereas.ε0 is a 

small scalar strain value for which no inelastic response of the RVE is expected. Since 
.ε̄

(k)
i has only a single non-zero component .δ(k)

i , we can determine the .k th column of 
the effective stiffness tensor in Voigt notation using 

.C̄ik = σ̄
(k)
i

ε̄0
. (16.6) 

For a failure limit surface the local stress fields .σ (k)(x) for each load case . k are 
computed. Here, . x denotes the position within the model. Then, for an arbitrary 
effective stress state . σ̄ the corresponding strain state is .ε̄ = C̄

−1 : σ̄ . The resulting 
local stress field can be computed using the superposition principle
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.σ (x) =
6∑

k=1

σ (k)(x)λ(k) with λ(k) = ε̄
(k)
k

ε0
. (16.7) 

Different failure criteria may be applied, depending on the material. Just to name a 
few, there are the maximum principal stress criterion, where. σf(σ̄ ) = max [σ1(x)] ≥
σc, or the maximum equivalent stress criterion with.σf(σ̄ ) = max

[
σeq(x)

] ≥ σc, and 
the Weibull stress criterion for brittle ceramics, where.σf(σ̄ ) = σW (σ (x)) ≥ σc. The  
equivalent stress is defined as 

.σeq =
/
1

2

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
, (16.8) 

and the Weibull stress using the principle of independent action (PIA) 

.σW =
⎡
⎢⎣

nip∑
n=1

Vn

V0

3∑
i=1

/
σ

(n)
i +

|||σ (n)
i

|||
2

\m⎤
⎥⎦

1
m

(16.9) 

expressed by the sorted principal stresses .σ1 ≥ σ2 ≥ σ3. 
In general, failure limit surfaces are defined as implicit functions 

.ϕ(σ̄ ) = σf(σ̄ ) − σc = 0 , (16.10) 

where the microscopic loading state depends on the macroscopic stresses .σf(σ̄ ). To  
obtain their shape for a specific failure criterion on the microscale, these functions 
need to be evaluated for many different macroscopic stress states. The following 
approach takes samples in stress space in a systematical way. A direction in stress 
space is defined by 

.N = I√
3
sin(α) + N̂√

2
cos(α), (16.11) 

with .α ∈ [− 1
2π, 1

2π
]
denoting the angle between the stress direction and .π -plane. 

The deviatoric part is defined as 

. N̂ =
3∑

i=1

λ̂iM i , with M i = ni ⊗ ni and, λ̂i =
⎡
⎢⎣

cos(θ) − sin(θ)√
3

2√
3
sin(θ)

− sin(θ)√
3

− cos(θ)

⎤
⎥⎦ ,

(16.12) 

where. n denotes the eigendirections of the stress tensor,.θ ∈ [−π
6 , π

6

]
the Lode angle 

and. I the second order identity tensor. The angles . α and. θ can be obtained from the
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corresponding stress tensor . σ̄ and its invariants 

.I1 = tr (σ̄ ) , J2 = 1

2
s̄ : s̄, J3 = det (s̄) with s̄ = σ̄ − 1

3
I1 I (16.13) 

using 

. sin α = I1√
3||σ̄|| and sin(3θ) = 3

√
3

2

J3

J (3/2)
2

. (16.14) 

This concept of defining a direction.N can be used to any second order tensor and will 
be applied for different purposes in this chapter. Equation (16.11) a priori  satisfies 
.||N|| = 1 and a critical effective stress can be defined .σ̄ c = λcN with .λc expressed 
as 

.λc = σc

σf(N)
. (16.15) 

Similar approaches have been applied by Zhang et al. [ 28] and Storm et al. [ 29] for  
different realizations of Kelvin foams. 

Fig. 16.4 Stress distribution in a F216 foam RVE loaded by an effective shear load case. Here, the 
FE mesh is made up by cubic voxels for a specific strut geometry and relative density of.ρrel = 10%
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A suitable failure criterion for a fracture mechanical analysis is the coplanar 
equivalent stress intensity factor (SIF) 

.Kco =
/
K 2

I + K 2
I I + 1

1 − ν
K 2

I I I . (16.16) 

It takes the local stress-state at the crack tip into account caused by superposition 
of mixed mode loading .KI , .KI I and .KI I I [ 30]. For a homogeneous isotropic bulk 
material the three local SIFs .Ki can be related to the J-integral using 

.J = KiYi j K j = 1 − ν2

E

[
K 2

I + K 2
I I

]+ 1 + ν

E
K 2

I I I . (16.17) 

Therein,. E and. ν denote Young’s modulus and Poisson’s ratio, respectively. Further-
more, .Yi j is the Irwin matrix for a homogeneous isotropic material 

.Yi j = 1

E

⎡
⎣1 − ν2 0 0

0 1 − ν2 0
0 0 1 + ν

⎤
⎦ . (16.18) 

The interaction integral.J int
j and the inverted Irwin matrix together with the unit value 

SIF .k0 are used to separate the SIFs . Ki

.Ki = Y−1
i j J int

j

1

k0
. (16.19) 

The scalar valued interaction integral for mode .m is then defined as 

.J int
m = lim

┌→0

{
┌

Mm
i j niq jd┌, (16.20) 

with 

.Mm
i j = σklε

m
klδi j − σiku

m
k, j − σm

ik uk, j , (16.21) 

as the superposition of the actual fields of stress.σkl , strain.εkl and displacement gra-
dient.uk,i with their corresponding auxiliary fields.σm

kl , .ε
m
kl and.umk,i , respectively. The 

auxiliary fields are the a priori  known near crack tip solutions for pure mode. m load-
ing causing a unit value SIF. k0. To evaluate the interaction integrals a finite element 
model of a Kelvin foam as shown in Fig. 16.5 is utilized. Additional sub-models in 
form of tube like crack models (white mesh in Fig. 16.5 right) are used to compute 
the interaction integrals along the corresponding crack fronts. The sub-models get as 
boundary conditions the interpolated displacements of the global Kelvin cell model. 
More details about this particular modeling approach are given in Settgast et al. [ 30].
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Fig. 16.5 Finite element model of the Kelvin foam including the sharp edged strut cavities and 
a detail of the mesh (black grid) together with the submodels (white grid) for the calculations of 
stress intensity factors [ 30] 

Hybrid Constitutive Model Incorporating Neural Networks 

In this section a hybrid constitutive model for a macroscopic foam structure is derived. 
For the sake of simplicity the described model is restricted to elastic-plastic material 
behavior in a small strain setting. The strain rate tensor is additively split into an 
elastic and a plastic part 

. ˙̄ε = ˙̄εel + ˙̄εpl . (16.22) 

Hooke’s law is used to relate stress and strain rate 

. ˙̄σ = C̄ : ˙̄εel , (16.23) 

where the components of the effective stiffness tensor .C̄ can be determined by at 
most 6 linear independent load cases as described in detail in [ 31]. A yield function 
on the macroscale . φ̄ is defined, where the norm of the effective stress is compared 
with a value, which is predicted by a neural network . NNφ̄

.φ̄ = ||σ̄|| − NNφ̄
(
α, θ, ε̄plq

)
. (16.24) 

The input values for the network are two angles describing the stress direction. N =
σ̄/||σ̄||, where . α denotes the angle between stress direction and .π -plane and . θ the 
Lode angle, see (16.14). In other words for a given stress direction and accumulated 
plastic strain .ε̄plq = { t

0 ||˙̄εpl|| dt internal variable, the neural network .NNφ̄ predicts 
the stress amplitude .||σ̄|| required to achieve plastic flow.
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In general, foams often show non-associated plastic flow, which would require a 
second dissipation potential for the constitutive description, from which the plastic 
flow direction is derived. Here, it is assumed that the eigendirections of stress and 
plastic flow are coaxial, which holds for isotropic foams. The plastic strain rate is 
defined as 

. ˙̄εpl = ˙̄λ N̄
ε

with ˙̄λ = ||˙̄εpl|| (16.25) 

and the direction of plastic flow is given using (16.11) via two different angles . αε

and . θε, which are predicted by a second neural network 

.

[
αε

θε

]
= NNε

(
α, θ, ε̄plq

)
, (16.26) 

which gets the same arguments as .NNφ̄ . The Karush-Kuhn-Tucker loading and 
unloading conditions 

.φ̄ ≤ 0, ˙̄λ ≥ 0, ˙̄λφ̄ = 0 (16.27) 

complete the model. Details of the implementation of such a model into FE codes 
are given in Malik et al. [ 32] and Settgast et al. [ 33]. 

Generation of Training Data and Neural Network Training 

The process for the generation of sample data for the neural network training 
is independent of the choice of the RVE. Using values for .α ∈ [−π/2, π/2], 
.θ ∈ [−π/6, π/6] and.λ ∈ [0, 1] a unit direction in stress or strain space is defined 
according to Eqs. (16.11) and (16.12). For isotropic foams the eigendirections . nk

coincide with the three base vectors. The effective loads for the RVE are defined as 

.σ̄ = λ σmax N̄ or ε̄ = λ εmax N̄, (16.28) 

where.σmax and.εmax denote a maximum amplitude either in stress or strain space. For 
each loading direction a number of.nλ effective stress and strain tensors are computed 
using the FEM. The norm of the effective stress tensor is determined as target for the 
training of .NNφ̄ . The effective plastic strain is determined using . ε̄pl = ε − C̄

−1 : σ̄

and the effective strain rate is approximated by the finite difference between two 
subsequent increments indicated by the indices .n − 1 and . n

. ˙̄εpl
n ≈ Δε̄pl

n

Δt
= ε̄pl

n − ε̄
pl
n−1

tn − tn−1
. (16.29)
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The internal state variable .ε̄
pl
q is summed up incrementally using 

. ε̄plq

|||
n

=
n∑

i=1

||||||Δε̄
pl
i

|||||| . (16.30) 

The angles .αε and .θε are derived using (16.14) from the effective plastic strain 
rate, or. α and. θ are either given if a stress controlled RVE simulation is performed or 
derived from the simulated effective stress tensor using (16.14) for a strain controlled 
simulation. The data base of training samples used by Malik et al. [ 32] was generated 
using.nα = 39, .nθ = 19 and.nλ = 20 variations for . α, . θ and. λ. The neural networks 
are fully connected feed forward neural networks containing a layer of input units 
(or neurons), one or more hidden layers and a layer of output units. The numbers 
of units for the input and output layer depend on the problem, whereas the number 
of hidden layers and units can be chosen freely. Each hidden neuron with index . i
represents a sigmoidal activation function depending on the input . xi , which is the 
sum of weighted outputs of the neurons from the previous network layer plus a bias 

. f (xi ) = 1

1 + e−xi
with xi =

∑
k

wk f (xk) + bi . (16.31) 

The weights .wk and biases .bi are the free parameters of the network, which are 
determined during a training process. The necessary number of neurons within the 
hidden layers depend on the complexity of the function which the network is supposed 
to represent. A good approximation quality can be achieved if the number of free 
parameters of the neural network corresponds approximately to the square root of the 
number of training samples. To supervise the training process, the training data are 
split into two different batches. 90% of the data are used for the network training and 
the remaining 10% are solely used for the validation of the approximation quality, 
see Fig. 16.6. The numerical realization of the neural networks, the training and 
validation process is done with the Python package FFNET [ 34]. It allows especially 
the conversion of the neural network into Fortran code, which can be integrated in 
user material routines (UMAT) for the finite element program Abaqus (Fig. 16.6). 

An alternative homogenization approach to model the inelastic behavior of foam 
structures is the FE2 method. The concept of FE2 is to run separate microscale FE 
simulations of the RVE on each macro material point. Recently, an efficient mono-
lithic formulation was proposed by Lange et al. [ 10]. The FE2 method is supposed 
to produce most accurate homogenized results, however, it is still computational 
expensive compared to the presented hybrid approach, which resorts to training data 
that has been computed offline before. 

In order to be able to capture size effects of foam structures [ 35] within the scale 
transition, higher gradient homogenization schemes have to be considered. Micro-
morphic theories [ 36, 37] allow to model these effects by extending the continuum 
model at the macro scale with additional degrees of freedom. Which of the available
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Fig. 16.6 a Accuracy of a trained network. b Evolution of training and validation mean square 
error during the learning process [ 32] 

theories is the most dominant in the considered foam structures is part of ongoing 
research [ 38, 39]. 

16.2.3 Phase-Field Modeling 
of Multi-component/Multi-phase Systems 

The phase-field method is a versatile tool to model the microstructure evolution 
of multi-phase systems, see [ 40] for an overview. Moreover, phase-field modeling 
approaches have been applied to various coupled problems such as electrochemistry 
[ 41], chemically reactive systems with phase separation [ 42] and, very recently, 
to chemo-mechanics focusing on various aspects [ 43– 48]. Available commercial 
multi-component/multi-phase simulation tools such as DICTRA employ a sharp 
interface description. The intentionally restricted applicability to 1D-problems could 
be justified so far by the number of practically relevant cases [ 49]. In addition, 
DICTRA has access to the mobility database of the Thermo-Calc software necessary 
to describe the diffusion processes. Furthermore, Thermo-Calc is directly called in 
order to determine the existing phases [ 49, 50]. However, the advantage of the phase-
field method is its straightforward application to 2D and 3D-problems covering the 
evolution of complex phase-interface topologies in a diffusive sense. 

Recently, a unifying framework for phase-field modeling of multi-component/mul-
ti-phase chemo-mechanics has been proposed by Svendsen et al. [51]. Our phase-field 
approach is based on a mixture theory assuming.i = [1, . . . , M] components, where 
their individual masses.mi sum up to the  total mass. m. The constitution of the mixture 
is characterized by the mass fractions .ci of the components which obey additional 
sum relations. In addition, order parameters .v j are defined as mass fractions to
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distinguish . j = [1, . . . , K ] phases, e.g., different aggregate states. The following 
relations hold 

.

M∑
i=1

mi = m, ci = mi

m
, v j = m j

m
,

M∑
i=1

ci = 1,
K∑
j=1

v j = 1 . (16.32) 

The evolution of the component mass fractions and the order parameters are described 
by coupled, generalized Cahn-Hilliard and Allen-Cahn type equations [ 52], respec-
tively. The phase-field model considers the gradients.∇ci and.∇v j in order to capture 
the influence of phase interfaces in a diffusive sense. We derive the balance equa-
tions and necessary constitutive relations on the basis of an extended Coleman-Noll 
procedure for generalized continua as proposed by Hütter [ 53]. After introducing 
the conventional mass balance and diffusion equations, a gradient-extended energy 
balance is exploited in the framework of the thermodynamics of internal variables 
yielding the desired Cahn-Hilliard and Allen-Cahn equations. Thermodynamically 
consistent relations for the dissipative mechanisms are derived with help of a dis-
sipation potential approach. Especially, we focus on the incorporation of chemical 
conversion processes based on the theory of equilibrium reactions. In Sect. 16.2.3, 
the phase-field model is re-cast into a mixed rate variational setting as proposed by 
Miehe [ 43, 54, 55] which enables a proper numerical treatment using finite elements. 

Field Equations for Phase-Field Models 

The mass balances of the single components can be cast into diffusion equations 

.ρ ċi = −∇ · hi + hi ∀ x ∈ B, i = [1, . . . , M] , (16.33) 

where . ρ is the mass density of the mixture in the current configuration [ 56]. The 
global mass conservation yields 

.ρ̇ + ρ ∇ · u̇ = 0 ∀ x ∈ B (16.34) 

for the evolution of the density, where . u̇ denotes the material (barycentric) velocity 
of the mixture. In order to ensure the balance of total mass we employ restrictions 
on the flux and source terms .hi and .hi [ 51], respectively, 

.0 =
M∑
i=1

hi , 0 =
M∑
i=1

hi . (16.35) 

The energy balance is discussed for the special case of mass transport and phase 
transition assuming isothermal conditions. The global balance for a spatial region. P
convecting with the material body .B reads
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.

{
P

ρė dv =
{

∂P

⎡
⎣ M∑

i=1

ċi ∏i +
K∑
j=1

v̇ j Φ j

⎤
⎦ · n da, (16.36) 

with. e being the mass specific internal energy and a flux of generalized power acting 
on the boundary .∂P with outward unit normal . n. Therein, .∏i and .Φ j are power-
conjugated microstresses to. ci and. v j , respectively. Applying the divergence theorem 
to (16.36), we obtain the localized energy balance 

.ė = 1

ρ

M∑
i=1

[
∏i · ∇ċi + ∇ · ∏i ċi

]+ 1

ρ

K∑
j=1

[
Φ j · ∇v̇ j + ∇ · Φ j v̇ j

]
. (16.37) 

The generalized flux terms introduce the gradients .∇ċi and .∇v̇ j into the energy 
balance. Next, the second law of thermodynamics is considered based on a balance 
of entropy and Gibbs’ fundamental equation [ 57, 58]. We assume a local entropy 
balance of the general form 

.ρ η̇ = −∇ · j + π ∀ x ∈ B, (16.38) 

where the restriction .π ≥ 0 on the source term states the second law of thermody-
namics [ 57]. The mass specific entropy is denoted as . η. 

The entropy flux. j and the source . π are specified following the formalism of the 
thermodynamics of internal variables as comprehensively described by Lebon et al. 
[ 58]. To this end, the internal energy. e is exchanged by the Helmholtz free energy. ψ

applying the established Legendre transformation.e = ψ + ϑ η. The time derivative 
of the latter yields the localized Gibbs fundamental equation 

.η̇ = 1

ϑ

[
ė − ψ̇ − η ϑ̇

] ∀ x ∈ B, (16.39) 

which can be exploited to specify the terms of the entropy balance (16.38) [  57, 58]. 
The free energy depends on the temperature . ϑ , and additionally on the deformation 
gradient which is convenient for a chemo-mechanical extension [ 43, 51]. However, 
we introduce the following set of constitutive state variables 

.z := {
ϑ, ci ,∇ci , v j ,∇v j

}
, (16.40) 

and the free energy function 

.ψ = ψ̂
(
z
)

(16.41) 

for the mass transport and phase transition processes. Note that this set of vari-
ables can be extended by kinematic deformation measures in case of chemo-thermo-
mechanical processes. Here, we finally specify the Gibbs equation (16.39) inserting
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the time derivative of the free energy (16.41) together with the local energy balance 
(16.37) and the diffusion equations (16.33) as  

. ϑ ρ η̇ = − ρ
[
η + ∂ϑψ̂

]
ϑ̇ +

M∑
i=1

[
∏i − ρ ∂∇ci ψ̂

]
· ∇ċi

+
K∑
j=1

[
∇ · Φ j − ρ ∂v j ψ̂

]
v̇ j +

K∑
j=1

[
Φ j − ρ ∂∇v j ψ̂

]
· ∇v̇ j

+
M∑
i=1

[
1
ρ

∇ · ∏i − ∂ci ψ̂
] [−∇ · hi + hi

] ∀x ∈ B . (16.42) 

Following the Coleman-Noll argumentation [ 53], the terms in brackets in (16.42) 
having rates of state variables as pre-factors could be chosen so that their dissipative 
contribution vanishes completely. On the other hand, to discuss the remaining terms 
in view of (16.38) some dissipative mechanisms could be additionally introduced as 
discussed by Hütter [ 53]. We define energetic constitutive relations for the entropy 
and the microstresses 

.η = −∂ϑψ̂ , (16.43) 

.∏i = ρ ∂∇ci ψ̂ , i = [1, . . . , M] , (16.44) 

.Φ j = ρ ∂∇v j ψ̂ , j = [1, . . . , K ] , (16.45) 

and find additional balance equations 

.μi = ∂ci ψ̂ − 1

ρ
∇ · ∏i ∀x ∈ B , i = [1, . . . , M] , (16.46) 

.ϕ j = ρ ∂v j ψ̂ − ∇ · Φ j ∀x ∈ B , j = [1, . . . , K ] , (16.47) 

where .μi and .ϕ j are generalized chemical potentials and dissipative microforces 
of the phase transition, respectively. The chemical potential yields the classical def-
inition .μi = ∂ci ψ̂ for vanishing gradient terms in the free energy. As mentioned 
by Hütter [ 53], the additional balance equations (16.46)–(16.47) appear naturally 
without an a priori  introduction of microforce balances as preferred by Gurtin [ 52]. 
Furthermore, boundary conditions based on microtractions can be prescribed which 
includes as a special case the generalized (trivial) boundary conditions utilized by 
Svendsen et al. [ 51]. 

Applying the sum relations (16.32) and (16.35) to the remaining terms in (16.42) 
yields 

.ϑ ρ η̇ = −
K−1∑
j=1

ϕ̃ j v̇ j +
M−1∑
i=1

μ̃i ∇ · hi −
M−1∑
i=1

μ̃i hi , (16.48)
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where the relative chemical potentials.μ̃i and relative microforces.ϕ̃ j are introduced 

.μ̃i := μi − μM , i = [1, . . . , M − 1] , (16.49) 

.ϕ̃ j := ϕ j − ϕK , j = [1, . . . , K − 1] . (16.50) 

The mass flux term in (16.48) can be expressed as a pure convective contribution 
[ 57] and a source term which allows to specify 

.D := ϑ π = −
K−1∑
j=1

ϕ̃ j v̇ j −
M−1∑
i=1

∇μ̃i · hi −
M−1∑
i=1

μ̃i hi ≥ 0 . (16.51) 

We interpret .D as the dissipation. To ensure .D ≥ 0, the microforces .ϕ̃ j , the  mass  
fluxes .hi and the mass sources/sinks .hi must be chosen accordingly. The latter are 
related to chemical conversion processes which is addressed in the following. 

The source terms.hi are specified for .P parallel chemical reactions written in the 
generalized format 

.

M∑
i=1

να
i Xi ⇌ 0, α = [1, . . . , P] . (16.52) 

Therein, .Xi denotes the chemical formula of the component . i . According to the 
stoichiometry, a prefactor.να

i for every component. i appears depending on the reaction 
. α. Here, we follow the convention 

.να
i =

⎧⎪⎨
⎪⎩

< 0 for reactant,

> 0 for product,

= 0 for inert component.

(16.53) 

Due to the stoichiometric relations and the mass conservation, the mass of compo-
nents taking part in a chemical reaction . α can only change proportional to a single 
conversion rate density . rα . According to [ 56] we decided for linear relations 

.hi =
P∑

α=1

Mi ν
α
i r

α, i = [1, . . . , M] , (16.54) 

where .Mi is the molar mass of component . i . 
With the specific source terms (16.54) at hand, the dissipation (16.51) reads 

.D = −
K−1∑
j=1

ϕ̃ j v̇ j −
M−1∑
i=1

∇μ̃i · hi +
P∑

α=1

Aα rα ≥ 0 . (16.55)
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Therein the pre-factors of the conversion rate densities .rα can be combined to the 
affinity of the reaction 

.Aα := Âα (μ̃i ) = −
M−1∑
i=1

Mi ν
α
i μ̃i , α = [1, . . . , P] , (16.56) 

i.e., its driving force. 
In order to ensure positive dissipation, linear Onsager-relations could be chosen 

between the conjugated variables in (16.55) as established by the thermodynamics 
of irreversible processes, see  [  56, 57]. In view of the desired variational setting, 
however, we proceed with a dissipation potential approach. For details we refer 
to the paper of Miehe [ 54] and the literature therein. In this spirit, a mass specific 
dissipation potential . φ with the rate . ż as variables and state variables . z as additional 
parameters is introduced 

.φ = φ̂
(
ż; z) . (16.57) 

The potential . φ is convex w.r.t. its arguments and zero at . ż = 0. A set of generalized 
dual dissipative forces . Z is derived as 

.Z := ρ ∂ żφ̂ . (16.58) 

The part of the dissipation (16.55) proportional to . ż can be rewritten 

.Dż = Z · ż . (16.59) 

The mentioned properties of the dissipation potential . φ ensure.Dż ≥ 0. Moreover, a 
dual dissipation potential .φ∗ can be defined 

.φ∗ = φ̂∗ (Z; z) , ż = ρ ∂Zφ̂
∗ . (16.60) 

using a proper Legendre transformation [ 54]. 
In particular we choose 

.φ = φ̂
(
v̇ j
) =

K−1∑
j=1

1

2
β j v̇

2
j , (16.61) 

.φ∗ = φ̂∗ (∇μ̃i , A
α) =

M−1∑
a=1

M−1∑
b=1

1

2
∇μ̃a · Mab · ∇μ̃b +

P∑
α

1

2
kα
[
Aα
]2

. (16.62)
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The viscosity parameters .β j and the parameters .kα of the conversion rate densities 
are positive numbers. The Onsager-mobility tensors .Mab obey .Mab = Mba . The  
microforces .ϕ̃ j are derived from . φ, whereas the fluxes .hi and the conversion rates 
.rα stem from the dual potentials 

.ϕ̃ j = −ρ ∂v̇ j φ̂ = −ρ β j v̇ j , j = [1, . . . , K − 1] , (16.63) 

.hi = −ρ ∂∇μ̃i φ̂
∗ = −ρ

M−1∑
b=1

M ib · ∇μ̃b, i = [1, . . . , M − 1] , (16.64) 

.rα = ρ ∂Aα φ̂∗ = ρ kα Aα, α = [1, . . . , P] . (16.65) 

The source terms finally read 

.hi = −ρ ∂μ̃i φ̂
∗ = ρ

P∑
α

Mi ν
α
i k

α Aα, i = [1, . . . , M − 1] . (16.66) 

At this point, the balance equations (16.33), (16.46), (16.47) and the constitutive 
relations (16.44), (16.45), (16.63)–(16.65) are combined to generate the field equa-
tions. These form the basis for the variational formulation. For the specific problems 
to be analyzed we assume that.ρ = ρ0, i.e., the density of the mixture keeps its initial 
value and is additionally constant over the whole domain. Furthermore, we set.u̇ = 0. 
The field equations are written in terms of variational derivatives which are defined 
as 

.δx f̂ := ∂x f̂ − ∇ · ∂∇x f̂ , f = f̂ (x,∇x) . (16.67) 

Therewith the final field equations read 

.ρ0 ċi = −ρ0 δμ̃i φ̂
∗ ∀ x ∈ B , i = [1, . . . , M − 1] , (16.68) 

.ρ0 μ̃i = ρ0 δci ψ̃ ∀ x ∈ B , i = [1, . . . , M − 1] , (16.69) 

. − ρ0δv̇ j φ̂ = ρ0 δv j ψ̃ ∀ x ∈ B , j = [1, . . . , K − 1] . (16.70) 

Note that.2 [M − 1] and.K − 1 equations need to be solved due to the sum relations of 
the mass fractions. Moreover, the equations (16.70) have the structure of generalized 
Allen-Cahn equations . Combining (16.69) with (16.68) yields generalized Cahn-
Hilliard equations . In the previous set of equations, relative quantities w.r.t. the last 
component .M or last phase .K are denoted by a tilde, e.g., 

.∂ci ψ̃ := ∂ci ψ̂ − ∂cM ψ̂ , i = [1, . . . , M − 1] , (16.71)
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whose variational derivatives read 

.δci ψ̃ := δci ψ̂ − δcM ψ̂ , i = [1, . . . , M − 1] . (16.72) 

Finally, the boundary conditions are specified 

.ci = c̄i , ∀ x ∈ ∂Bc, −ρ0 ∂∇μ̃i φ̂
∗ · n = h̄i , ∀ x ∈ ∂Bh, (16.73) 

.μ̃i = ¯̃μi , ∀ x ∈ ∂Bμ, ρ0 ∂∇ci ψ̃ · n = ∏̄i , ∀ x ∈ ∂B∏, (16.74) 

.v j = v̄ j , ∀ x ∈ ∂Bv, ρ0 ∂∇v j ψ̃ · n = ϕ̄ j , ∀ x ∈ ∂Bϕ (16.75) 

with prescribed values at the respective boundaries marked with a bar. 

Mixed Rate-Type Variational Setting 

Following Miehe [ 54, 55], the field equations (16.68)–(16.70) appear as the Euler-
Lagrange equations of a variational problem based on the mixed rate potential 

.∏∗ (ċi , μ̃i , v̇ j
) = d

dt
E (ci , v j

)+ D∗ (ċi , μ̃i , v̇ j
)− P∗

ext

(
ċi , μ̃i , v̇ j

)
. (16.76) 

The energy storage functional, the  dissipation functional and load functional of 
external dead loads read 

.E (ci , v j
) =

{
B

ρ0 ψ̂
(
ci ,∇ci , v j ,∇v j

)
dv, (16.77) 

.D∗ (ċi , μ̃i , v̇ j
) =

{
B

[
ρ0 φ̂

(
v̇ j
)−

M−1∑
i=1

ρ0 μ̃i ċi − ρ0 φ̂∗ (μ̃i ,∇μ̃i )

]
dv, (16.78) 

. P∗
ext

(
ċi , μ̃i , v̇ j

) =
{

∂Bh

M∑
i=1

ċi h̄i da +
{

∂B∏

M−1∑
i=1

μ̃i ∏̄i da

+
{

∂Bϕ

K∑
j=1

v̇ j ϕ̄ j da . (16.79) 

The three-field mixed variational principle is given by 

.
{
ċi , μ̃i , v̇ j

} = arg

(
inf
ċi ,v̇ j

sup
μ̃i

∏∗ (ċi , μ̃i , v̇ j
))

. (16.80) 

The necessary condition for stationary points reads .δ ∏∗ (ċi , v̇ j , μ̃i
) = 0, where 

.δ ∏∗ (ċi , μ̃i , v̇ j
)
denotes the first variation of the rate potential. We allow arbitrary 

variations of the defined field variables, except at boundaries where the field vari-
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ables are fixed. Note that variations of.δċi and.δv̇ j are restricted by the sum relations 
(16.32). Therefore, we finally find (16.68)–(16.70) as the  Euler-Lagrange equations. 

For the numerical treatment via the finite element method, a time incremental 
counterpart of the variational principle is derived as explained in detail by Miehe et 
al. [ 43, 55]. For discretization in time, an Euler-backward scheme is utilized. The 
spatial discretization is performed by iso-parametric finite elements with low-order, 
C0-continuous shape functions for all considered primary field variables, which are 
the mass fractions. ci , the chemical potentials.μ̃i and the order parameters. v j . The final 
non-linear system of algebraic equations to be solved for any time point . t is handled 
with a monolithic Newton-scheme. Due to the variational structure, the considered 
problem provides an inherently symmetric tangent matrix as pointed out in [ 43, 55]. 

16.3 Results and Applications 

16.3.1 Application of Foam Models 

The generic foam structures described in Sect. 16.2.1 were widely used within the 
CRC 920 either as geometric models in numerical simulations or as 3D printed 
structures to conduct specific experiments. Foam RVEs were used to simulate the 
influence of foam morphology on effective properties (hydraulic turtuosity, viscous 
and inertial permeability, filtration coefficient) related to metal melt filtration [ 11]. 
Asad et al. [ 59] investigated the immersion process of a ceramic filter in a steel melt. 
Lehmann et al. [ 12] used the RVEs as base structures and investigated the influence 
of specific geometric modifications like additional struts, closed foam windows or 
streamlined strut cross sections on effective hydraulic properties and filtration per-
formance. 3D printed filter structures based on the RVEs have been used by Wetzig 
et al. [ 60] for real world filtration experiments, whereas Bock-Seefeld et al. [ 25] 
and Herdering et al. [ 24, 61] used the RVEs to produce polymer filter templates for 
customized ceramic foam structures to estimate filtration efficiency, structural filter 
strength, and integrity. A comparison of mechanical properties between generic and 
real foam structures performed by Settgast et al. [ 62] proved the high accuracy of 
the generic foam models. 

16.3.2 Thermo-mechanical Behavior of Foams and Filter 
Structures 

The generation procedure of the foam model allows modifications of the strut shape as 
explained in Sect. 16.2.1. The influence of the strut shapes on the elastic properties 
was investigated by Storm et al. [ 63] on spatial periodic Kelvin cells. The corre-
sponding FE-models were either build from beam or 3D elements. We found that
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Fig. 16.7 Comparison of a generic foam structure (left) with a relative density of.e = 20%, and a  
CT-scan image (right) of a 10ppi foam sample. For better comparison, all elements of the generated 
model lying outside the bounding cylinder (.d = 20mm,.h = 20mm), are removed [ 1] 

beam models systematically underestimate the stiffness of foams, since the additional 
reinforcement of the foam nodes cannot be represented by beam elements. However, 
volumetric models follow almost perfectly the Gibson-Ashby relation [64, 65] for the  
relative elastic modulus depending on the relative density as .Ē/E = [ρ̄/ρ]2 = ρ2

rel. 
Furthermore, Storm et al. [ 66] investigated the influence of the strut shape on the 

strength of a foam. The cross section radius of the struts was varied according to a 
hyperbolic equation along their longitudinal axis, where .re/rm defines the ratio of 
the strut radii at the end and the middle of the strut. A ratio .re/rm = 1 characterizes 
a strut with constant cross section along its axis. Struts with .re/rm > 1 have thicker 
foam nodes and the cross sections become smaller towards the strut centers, which is 
the typical form in real struts as shown in Fig. 16.7. Interestingly, an optimal ratio can 
be found for.re/rm ≈ 1.4 maximizing the bending strength of the struts, illustrated in 
the corresponding Fig. 16.8a. The curvature of struts measured in terms of the ratio 
between length and curvature radius.l0/rc has only a minor influence on the strength 
of foams, which is shown in Fig. 16.8b. 

Further results from Storm et al. [ 66] include the comparison of continuum and 
hybrid models, where only the foam nodes where meshed using continuum elements, 
whereas large parts of the struts are modeled using beam elements. The hybrid models
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Fig. 16.8 Influence of the a material distribution along the strut axis (hyperboloid end to middle 
radius .re/rm ) and  b strut curvature (strut length to curvature radius .l0/rc) on the norm of critical 
deviatoric stress in.π -plane for continuum and beam models of the Kelvin cell [ 66] 

show an elastic behavior comparable to the continuum models, but the numerical 
effort required to compute them is considerably reduced. 

Small sharp edged cavities remain along the center line of the struts due to the 
production process. It was found that the influence of the cavities does not have a 
significant effect on the elastic properties of the foams as long as the relative density 
remains constant [ 31]. 

Failure limit surfaces allow the assessment of strength of filter structures utiliz-
ing different failure criteria. Firstly, we determined yield surfaces analytically for 
Kelvin cells where the struts are assumed to follow the Euler-Bernoulli beam theory. 
Using this model, results for different failure criteria as von Mises, maximum absolute 
principal, maximum principal and principal stress criterion with tension compression 
asymmetry have been calculated [ 29]. Storm et al. [ 31] studied the influence of geo-
metrical variations for a Kelvin cell foam topology. These investigations considered 
the change of cross-section shape of the struts, strut curvature and pore anisotropy. 
All these features influence the elastic properties significantly. For the generic and 
almost isotropic foam structure F216 as shown in Fig. 16.3, investigations tackling 
failure assessment have been conducted using the von Mises criterion, considering 
different relative densities and strut geometries [ 1]. Two examples of yield surfaces 
of the F216 foam RVE are displayed in Figs. 16.9 and 16.10 for a von Mises and 
Weibull failure criterion, respectively. The macroscopic failure surface for a local von 
Mises criterion, as shown in Fig. 16.9, is point symmetric with respect to the origin. 
The shape of the meridian cross section depends on the Lode angle . θ . For a Lode 
angle .θ = 0 the maximum.J2-value is located where the hydrostatic stress vanishes 
(.I1 = 0). For negative or positive Lode angles the maximum is shifted towards the 
negative and positive hydrostatic stress values, respectively. The rightmost diagram 
shows cross sections for different angles . α (cf. (16.11)) projected onto the devia-
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Fig. 16.9 Failure limit surfaces for a F216 foam RVE with a relative density of 20% for a von 
Mises criterion. (Left) limit surfaces in principal stress space. (Center) meridian cut for different 
Lode angles. θ . (Right) hydrostatic cuts at different angles. α

Fig. 16.10 Failure limit surfaces for a F216 foam RVE with a relative density of 20% for a Weibull 
criterion. (Left) limit surfaces in principal stress space. (Center) meridian cut for different Lode 
angles. θ . (Right) hydrostatic cuts at different angles. α

toric plane. For.α = 0, which implies a pure deviatoric stress state, the cross section 
exhibits a hexagonal shape, whereas for positive or negative angles the cross section 
transforms towards a triangular shape but with opposite orientation. To the authors 
knowledge, for such shapes of failure surfaces no closed form analytical description 
is available in literature. 

The failure surface for the Weibull criterion (cf. Fig. 16.10) given at a failure 
probability of.63.2% shows a strong asymmetry with respect to the hydrostatic stress 
axis. The strength in hydrostratic compression is much higher than in hydrostatic 
tension. The ratio between compressive and tensile strength depends on the relative 
density of the foam. The meridian cross sections show a similar contour as for the von 
Mises criterion, but the maximum value for negative Lode angles exceeds the one 
for positive Lode angles. In general the maxima of the meridian cross sections are 
observed for negative hydrostatic stress values (.I1 < 0) and exceed the ones of the von 
Mises criteria. The cross section shapes for constant angles . α vary from an almost 
circular shape for .α = 0.425 to triangular shapes down to .α ≈ −0.125. Around 
.α ≈ −0.25 an almost hexagonal shape is observed, before for further decreasing 
. α values the shape morphs again towards a triangle, but with opposite orientation 
compared to those for positive angles . α.
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Fig. 16.11 SIFs along the sharp edged cavity within the four-sided strut loop of a Kelvin cell 
having the normal (001) under effective a uniaxial tension .σ̄11 = 1/16MPa and b shear loading 
.σ̄13 = 1/16MPa [ 30] 

The spatial orientation of non-isotropic foam RVEs with respect to the principal 
directions of the effective stress tensor has an influence on the shape of the cor-
responding failure surfaces and has been investigated by Zhang and Storm for the 
special case of orthotropic Kelvin cells [ 28, 29]. For RVEs containing an increasing 
number of randomly arranged pores the effective behavior tends towards isotropy 
and the orientation of the RVE becomes negligible. 

The sharp edged cavities remaining from the production process required a frac-
ture mechanical analysis, conducted by Settgast et al. [ 30]. With help of the inter-
action integral (16.19), the SIFs are computed for each point along the sharp edges 
of a Kelvin cell as illustrated in Fig. 16.5. Since the FE analysis is linear elastic, 
any load case and therewith the corresponding SIFs can be constructed by a scaled 
superposition of these six independent base load cases. It was found that the fracture 
limit surfaces always enclose the failure limit surfaces for a von Mises or a maximum 
principal stress criterion using credible values obtained by experiments for the con-
sidered material. From these observations it can be concluded that the local failure is 
preferably triggered by a critical principal stress on the outer strut surface rather than 
by the stress concentration at the crack front inside the strut cavities. Figure 16.11 
shows exemplary the values of the three SIFs along the local parametric coordinate. lpc
of a sharp edge around a square shaped foam window for an effective shear loading. 

A more critical scenario is thermal shock loading, which occurs at the beginning 
of the casting process when the melt enters the filter, which may cause the filter to fail 
even before the melt filtration process starts. Here, the sharp edged cavities are poten-
tially the most critical locations. The occuring stress intensity factors or J-integral 
values depend strongly on the material properties of the foams bulk material. The 
dependencies of the maximal J-integral value .J+ along all cavity edges on thermal 
conductivity . h, relative density .ρrel and RVE length . l are presented in Fig. 16.12.
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Fig. 16.12 a .J+(h) for .ρrel = 10%, .l = 4mm and different .E(ϑ), b .J+(ρrel) for 
.h = 2000Wm−2K−1 and.l = 4mm and c .J+(l) for.h = 2000Wm−2K−1 and.ρrel = 10% taken 
from [ 23] 

.J+ depends strongly on the thermal conductivity . h with an almost quadratic 
dependence .J+ ∝ h2, because the increasing heat flux leads to higher temperature 
gradients and therefore higher thermal stresses as well as a higher fracture mechan-
ical loading at the crack front. The influence of the different elastic moduli of the 
three considered filter materials slightly increases with an increasing heat transfer 
coefficient. If the relative density.ρrel is increased the size of the sharp-edged cavities 
does not change. However, the outer surface area.Ao of the foam increases and there-
with the heat flux and the fracture mechanical loading at the cracks, with. J+ ∝ ρ

1/κ
rel

with the value of the denominator of the exponent .κ ≿ 1. The largest impact on . J+
is observed for a changing size of the RVE. It is a combination of two effects. First 
the crack size changes linearly with the cell size and.J ∝ l. The second effect is that 
the foam surface area .Ao ∝ l2. Both effects result in an almost cubic dependence 
.J+ ∝ l3. The detailed material parameters and the temperature dependent elastic 
moduli as well as the loading conditions can be found in reference [ 23]. 

In some applications, e.g., continuous casting, the ceramic foam filter is subjected 
to a permanent loading caused by the molten metal for more than a couple of minutes. 
For that reason, it is important to estimate the long time behavior of the material at 
high temperatures. In Settgast et al. [ 67] the creep properties of foams are compared 
with the creep properties of the bulk material. The following stress-time dependent 
creep law was assumed 

. ˙̄εcreq =
[
σ̄eq

Ā

]n
tm , (16.81) 

for the macro scale, wherein the effective equivalent creep strain rate . ˙̄εcreq depends 

on the effective equivalent stress .σ̄eq, the structure specific effective stress factor . Ā, 
with exponent . n and time . t with its corresponding exponent . m. When applying the 
same creep law for the bulk material at the micro scale, a good agreement between 
experimental and simulated creep curves is achieved for uniaxial loading at elevated
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Fig. 16.13 Comparison of 
creep curves of three tested 
and simulated foam samples 
for uniaxial loading 
(.σ̄ = 0.1MPa and 
.ϑ = 1350 ◦C [  62] 

temperature (cf. Fig. 16.13). Interestingly, the exponents . n and .m are the same for 
the local and homogenized constitutive material laws. The ratio between effective 
and local stress factor 

.
Ā

A
∝ n

/
ε̇creq

˙̄εcreq
∝ ρ

a/n
rel (16.82) 

depends on the structure via exponent. a and the relative density.ρrel of the foam. The 
exponent . a is used to describe the proportionality 

.

˙̄εcreq
ε̇creq

∝
[

1

ρrel

]a
, (16.83) 

which is fitted by multiple FE analyses where the relative density is varied. Assuming 
a constant relative density the creep rate can be minimized if the strut cross sections 
are constant along the strut axis [ 62, 67]. 

Utilizing an FE2 approach in a monolithic setting, proposed by Lange et al. [ 10], 
for which a separate microscale FE simulation of the RVE is run on each macro 
material point, the influence of foam morphology on the strength and mechanical 
creep behavior can be investigated during realistic filtration scenarios. In [ 22] a  
flow-through filter application (cf. Fig. 16.14) was investigated. As foam RVE the 
Wheire-Phelan cell is utilized, because of less computational costs compared to the 
F216 foam RVE. The filter causes a pressure drop and therewith mechanical forces 
inside the filter. For a constant volumetric flow rate but increasing relative density
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Fig. 16.14 Deformation of a filter during a flow through scenario utilizing the FE2 homogenization 
approach [ 22] 

(a) (b) 

Fig. 16.15 Macroscopic stress-strain curves for a uniaxial loading .ε̄22, and  b biaxial loading 
.ε̄11 = ε̄22, where damage is considered.. E and.σY denote the elastic modulus and yield stress for a 
local von Mises plasticity model, respectively [ 33] 

the pressure drop increases, which can be described by the Darcy-Forchheimer law. 
The developed model allows the prediction of elastic and creep deformations for 
realistic filtration scenarios. The shape of the foam struts has almost no influence 
on the elastic deflection for a constant relative density. However, with an increasing 
relative density .ρrel the deflection decreases. An increasing Reynolds number of the 
flow leads to an increasing deflection, due to the larger pressure drop [ 11, 22]. In 
Fig. 16.14 the deformation including creep after one hour of a flow through filtration 
scenario is illustrated with the underlying FE2-micro model. 

The hybrid approach described in Sect. 16.2.2 employing neural networks was 
developed to further reduce the computational costs. First, the feasibility of this 
approach was examined in 2D on a Kelvin cell by Settgast et al. [ 68]. The model 
was then extended by a damage formulation [ 33, 69]. In Fig. 16.15 stress-strain 
curves are compared from simulations using a fully discretized RVE, with those 
predicted by the proposed hybrid approach. The hybrid approach can reproduce the 
RVE simulations almost exactly, even if elastic unloading is taken into account. Also 
the material degradation due to damage can be reproduced. For these simulations a 
speed-up factor of .4000 compared to the fully resolved RVE was achieved. 

Malik et al. [ 32] extended the hybrid approach to model also 3D material behavior. 
As RVE a Wheire-Phelan foam as shown in Fig. 16.3 is used. The corresponding yield 
surface was identified and its evolution due to strain hardening could be depicted, 
which is displayed in Fig. 16.16. The comparison of simulations using a fully dis-
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(a) 

(b) 

(d) (e) 

(c) 

Fig. 16.16 Determined yield surfaces of the investigated Wheire-Phelan RVE for different values 
of.ε̄plq = 0.005,.0.05,.0.1,.0.15,.0.2,.0.25 utilizing the approximated yield function.NNϕ in principal 

stress space. The thin lines indicate the yield surfaces for different values of.ε̄plq . The symbols. σ1,. σ2
and.σ3 denote the three principal stresses. a represents the 3D yield surface, b shows the meridian cut 
with marked deviatoric cutting lines c, d, and  e along the hydrostatic axis in.I σ

1 -direction without, 
negative and positive hydrostatic part, respectively taken from [ 32] 

cretized RVE with the results of the hybrid approach was conducted as well. Good 
agreement was achieved (cf. Fig. 16.17) for different load cases and even for cyclic 
loading, despite the fact that information on cyclic load cases have not been part 
of the training data set for the neural networks. It should be emphasized that the 
flexibility of the neural networks allows the exact reproduction of the short.σ̄11-drop 
after reaching the maximum load in the elastic regime before hardening, as noticed 
in the simulations using fully resolved RVEs. 

16.3.3 Verification of the Phase-Field Model 

In order to verify the FE-implementation we consider a reactive two phase/two com-
ponent system, where a dissociation reaction 

.A2 ⇌ 2A (16.84) 

between the fictitious chemical components.A2 (diatomic,.i = 1) and. A (monoatomic, 
.i = M = 2) can occur. The free energy of the mixture is chosen according to a regular 
solution model with binary interactions 

.ψ = ψ̂bul,id (ci , v1) + ψ̂bul,ex (ci , v1) + ψ̂int,c (∇ci , v1) + ψ̂int,v (v1,∇v1) (16.85)
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Fig. 16.17 Stress-strain curves of proportional a uniaxial tension.Δε11 = 0.1, Δε22 = Δε33 = 0, 
b uniaxial compression.Δε11 = − 0.1, Δε22 = Δε33 = 0, c deviatoric shear. Δε11 = − 2Δε22 =
− 2Δε33 and d cyclic deviatoric loading.Δε11 = − 2Δε22 = − 2Δε33 [ 32] 

with the specific contributions 

. ψ̂bul,id (ci , v1) =
M∑
i=1

ci
Mi

[ [
p (v1) μ01

i + [1 − p (v1)]μ
02
i

]

+ Rϑ ln

(
ci
Mi

M̃

)]
, (16.86) 

.ψ̂bul,ex (ci , v1) = M̃
M−1∑
i=1

M∑
k=i+1

ci ck
MiMk

[
p (v1) L

01
ik + [1 − p (v1)] L

02
ik

]
, (16.87)
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.ψ̂int,c (∇ci , v1) = 1

2

M∑
i=1

|∇ci |2
[
p (v1) α01

i + [1 − p (v1)]α
02
i

]
, (16.88) 

.ψ̂int,v (v1,∇v1) = E┌

[
6

L
g(v1) + 3

4
L |∇v1|2

]
. (16.89) 

Therein, .ψbul,id and .ψbul,ex denote the phase dependent energy parts of the ideal 
solution and excess model, respectively. Moreover, .ψint,c and .ψint,v comprise the 
interface energies between phases characterized either by different component mass 
fractions. ci or order parameters. v j . The order parameter.v2 is directly substituted by 
.v2 = 1 − v1 in the given energy. Moreover, .v1 appears via the interpolation function 
.p (v1) which mixes the chemical potentials of the pure substances in the respective 
phases. Furthermore, the double well function .g(v1) ensures extrema of the bulk 
energy at .v1 = 0 and . v1 = 1

.p (v1) = 3v2
1 − 2v3

1, (16.90) 

.g(v1) = v2
1 [1 − v1]

2 . (16.91) 

The molar mass of the mixture 

.M̃ =
[

M∑
i=1

ci
Mi

]−1

(16.92) 

appears in the logarithmic term of ideal solution and in the excess energy in order to 
be consistent with a description in molar fractions, as used, e.g., by Bai et al. [ 47]. 
The mobility tensors are simplified as .Mab = Mab I . A constant conversion rate . k1

for reaction (16.84) is considered. The studied model parameters are summarized in 
Table 16.1. 

In Fig. 16.18a, the normalized bulk energies 

.ψ̄
j
bul = ψ

j
bul,id + ψ

j
bul,ex

R ϑ
M2 (16.93) 

are plotted for .v1 = 1 (phase 1) and .v1 = 0 (phase 2). By arguments of equilibrium 
thermodynamics, possible final states of the model system are known for different ini-
tial component/phase compositions which can be illustrated with help of Fig. 16.18a. 
We firstly assume that the mass fraction of.A2 is homogeneous across the domain with 
.c1 = 0.92 at the beginning. The bulk energies can be read off at point 0 in Fig. 16.18a. 
For a fixed composition, i.e., no chemical reaction, the energy of the system can be 
minimized, if the system is allowed to decompose into sub-regions with compo-
sitions given by the common tangent construction (dotted line in Fig. 16.18a) and 
mass fractions according to the lever rule [ 70]. The energetic state of the system with 
decomposed phases can be found on the common tangent, i.e., point 2 in Fig. 16.18a. 
During a simulation, this behavior is only observable if the initial order parameter is
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Table 16.1 Model parameters of the verification example (dissociation reaction & phase separation) 

Parameter Meaning Unit Value 

.R ϑ Universal gas constant 
. · temperature 

J. /mol 10.0 

.ρ0 Reference mass 
density 

kg./m3 1.0 

.M1,.M2 Molar mass kg. /mol 2.0, 1.0 

.μ01
1 ,.μ02

1 Chem. pot. phase 
1/phase 2 

J. /mol 10.0, 15.0 

.μ01
2 ,.μ02

2 Chem. pot. phase 
1/phase 2 

J. /mol 0.0,. −5.0 

.L01
12,.L

02
12 Interaction coeff. 

phase 1/phase 2 
J. /mol 25.0, 0.0 

.M11 Mobility (.kgm2). /(J s) 1.0 

.α01
1 =.α02

1 Gradient parameter in 
phase 1/phase 2 

(J.m2)./kg 2.0 

.α01
2 = α02

2 Gradient parameter in 
both phases 

(J.m2)./kg 0.0 

.β1 Viscosity parameter (J s)./kg 2.5 

.k1 Conversion rate .mol2/ (Jkg s) . 1.0 · 10−6

. ν11 , .ν
1
2 Stoichiometric 

coefficients 
.− .−1, 2  

.E┌ Surface energy (J m)./kg 5.0 

.L Length parameter m 0.5 

not constant .v1 = 0 or .v1 = 1 throughout the system, i.e., an initial perturbation is 
necessary. For chemically reactive systems, the mass fractions can evolve, e.g., along 
the energetic states 1-2-3, until the global minimum of the bulk energy which is point 
4 in Fig.  16.18a, with a homogeneous composition and stable phase 2 everywhere. 
At the intermediate point 3, phase 1 vanishes completely. 

For the 2D-simulation, a square domain is considered with edge length.l0 = 10m. 
As mentioned, the initial mass fraction .c1 of .A2 is homogeneously prescribed: 

.c1 (x, t = 0) = 0.92 ∀x ∈ B . (16.94) 

For the order parameter .v1 the following initialization is chosen to realize a pertur-
bation: 

.v1 =
{
0.1 for x ≤ 5 m

0.9 for x > 5 m .
(16.95)



16 Modeling and Evaluation of the Thermo-mechanical Behavior … 419

Fig. 16.18 Energy landscapes of the verification example: a Bulk energies of the considered phases, 
and b time evolution of system averaged energy contributions. Numbers refer to bulk energies at 
particular time points 

Trivial Neumann boundary conditions are assumed for the mass flux as well as for 
the microtractions at all boundaries. The domain is discretized by 100. ×100 = 10. 4

quadrilateral finite elements of equal size. 
The process to reach energetic minimum highly depends on the chosen model 

parameters. For the considered case, phase transition and diffusion proceed much 
faster than the chemical reaction. In Fig. 16.18b, the evolution of different contribu-
tions to the system’s whole energy are plotted over time. The specific energies are 
illustrated as normalized quantities .ψ̄k given by 

.ψ̄k = M2

{
B ρ0 ψ̂k (x) dv

ρ0 V R ϑ
, (16.96) 

where the index. k refers to the terms defined in Eqs. (16.85)–(16.89). The bulk energy 
.ψ̄bul is introduced as the sum of the ideal solution and excess parts,.ψ̄bul,id and.ψ̄bul,ex, 
respectively. Furthermore, .ψ̄ is the normalized total free energy. 

The numbers 0–4 in Fig. 16.18b belong to specific states of the system’s bulk 
energy and time points which are correspondingly highlighted in the energy landscape 
Fig. 16.18a. Additionally, the spatial distribution of the order parameter .v1 and the 
mass fraction.c1 of.A2 are plotted in Fig. 16.20 at these time points. The plots belong 
to cuts along the.x-axis at.y = 0. These reduced representations contain the full field 
information of the considered primary variables since the fields just vary along. x for 
the specific problem as shown in Fig. 16.19 for a particular time point. 

According to Fig. 16.18b, the total free energy of the system is monotonously 
minimized during time evolution until the final energetic state 4 which matches 
the expectation from equilibrium consideration as highlighted in Fig. 16.18a. The 
following intermediate states of interest should be discussed. From point 0 to 1, the 
interface energy .ψ̄int,v is quickly decreased, see Fig. 16.18b, in order to relax the 
initially sharp gradient of .v1 to a typical .tanh-shape of the interface [ 71], compare
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Fig. 16.19 Spatial distribution of a the order parameter and b the mass fraction.c1 of component 
.A2 at time point 2 marked in Fig. 16.18 

Fig. 16.20 Spatial distribution of a the order parameter and b the mass fraction.c1 of component 
.A2 at time points 0–4 marked in Fig. 16.18

Fig. 16.20a. The second gradient energy.ψ̄int,c participates, too, but the change is not 
visible in the diagrams since the chosen gradient parameter seems to have a lower 
energetic effect. The considered domain consists of two distinct phases at point 1, but 
the energetic state and the mass fraction.c1 in the phases are still above the common 
tangent and far away from the intermediate equilibrium constitution according to 
Fig. 16.20b. Due to the high mobility of diffusion and the slow conversion rate of 
the chemical reaction, the common tangent is reached at point 2 while the overall 
composition does not change during this short time span. The interface has moved 
to.x ≈ 3 mm yielding a larger region of.v1 = 1 according to the lever rule. The mass 
fractions.c1 in the phases located at the left and the right from the interface exhibit the 
expected equilibrium values at the common tangent. From point 2 to 3 in Fig. 16.18b, 
the chemical reaction becomes dominant which decreases the overall mass fraction 
.c1 of.A2 shifting the bulk energy along the common tangent as additionally illustrated 
in Fig. 16.18a. Correspondingly, the domain of phase 1 shrinks, see Fig. 16.20a, but
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the mass fractions far from the interface keep the equilibrium values, see Fig. 16.20b. 
At point 3, the interface starts to decay which is visible as the jump-like change in 
the interface energy .ψ̄int,v in Fig. 16.18b. The common tangent is left and phase 2 
becomes stable during the rest of the purely reactive process. The mass fraction . c1
takes a constant value across the spatial domain and the reaction decreases.c1 to 0.13 
as shown in Fig. 16.20b. This state is found at the global energetic minimum marked 
as point 4 in Fig. 16.18a. Here, the affinity .A1 ∝ μ̃1 as driving force of the reaction 
consequently vanishes which defines the (dynamic) chemical equilibrium.

The obtained final state of the simulation matches the equilibrium thermodynam-
ics solution, where intermediate evolution steps towards the chemical equilibrium 
are in qualitative accordance with our expectations explained above. The proposed 
two phase/two component problem is a versatile benchmark example to verify the 
numerical treatment relying at least on knowledge and solutions of equilibrium ther-
modynamics. For the same purpose similar simplified problems have been discussed 
in recent literature especially for Cahn-Hilliard type problems [ 47, 55]. Such addi-
tional cases have been successfully tested, too, e.g., chemical reaction during spin-
odal decomposition (Cahn-Hilliard type) for fixed phase 1. However, in this paper we 
focused on simultaneously active chemical reaction and phase transition for the sake 
of brevity. We conclude that our FE-implementation of the multi-component/multi-
phase model yields trustworthy results and can be utilized for more complex prob-
lems. 

16.4 Conclusions 

Along the road tools have been developed to virtually design foam structures. These 
models can be used in simulations to predict and analyze their thermo-mechanical 
properties. Using additive manufacturing methods the models can be physically real-
ized and used in experimental investigations regarding filtration phenomena. The 
conducted numerical investigations provide insights into structure-property rela-
tions of filter structures, but can now also contribute statements about the behavior 
of the entire foam structure in a homogenized manner. Different homogenization 
approaches can be applied to efficiently predict effective elastic, plastic, creep, frac-
ture, and damage properties of foam structures under loading conditions in metal melt 
filtration applications. Geometric and topological variations of foams are discussed to 
improve the thermo-mechanical integrity and the filtration efficieny. Further, thermo-
chemical phenomena of filtration processes, as the formation of in-situ layers can be 
modeled with developed phase-field models. These new models are able to describe 
diffusion, phase transition, and chemical reactions in the multi-component/multi-
phase systems. The in-situ layer formation affects the reactive filtration phase. The 
knowledge about the kinetics of this effects is very valuable. The developed mod-
eling tools and approaches are not restricted to applications regarding metal melt 
filtration. They can be applied in many different fields of thermo-chemo-mechanics 
and research on porous media or meta materials.
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