Skip to main content

Surgical Management of Hereditary Kidney Cancer Syndromes

  • Chapter
  • First Online:
Integrating Multidisciplinary Treatment for Advanced Renal Cell Carcinoma

Abstract

Hereditary kidney cancer accounts for 5–8% of all diagnosed kidney cancer. Afflicted patients are often at risk for developing bilateral, multifocal tumors throughout their lifetime. Over a dozen tumor-predisposing genes have been identified, each resulting in a unique clinical syndrome that, in almost all instances, also has extrarenal manifestations. In this chapter, we discuss the common hereditary renal cancers, for each describing their underlying genetic alteration; clinical phenotype; and management in the localized setting. By understanding the biological footprint of unique genetic signatures, specific surgical decision-making and, in some cases, medical therapy has been employed based on a patient’s germline alteration. While incomplete, the precision-based approach towards managing hereditary kidney cancer can serve as a model with which to apply to sporadic renal cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ball MW, Linehan WM. Genetics of renal cell carcinoma. In: Diagnosis and surgical management of renal tumors. Cham: Springer; 2019. p. 39–54.

    Google Scholar 

  2. Haas NB, Nathanson KL. Hereditary kidney cancer syndromes. Adv Chronic Kidney Dis. 2014;21(1):81–90.

    Article  PubMed  Google Scholar 

  3. Schmidt LS, Linehan WM, editors. Seminars in oncology. Amsterdam: Elsevier; 2016.

    Google Scholar 

  4. Ball MW, Shuch BM. Inherited kidney cancer syndromes. Curr Opin Urol. 2019;29(4):334–43.

    Article  PubMed  Google Scholar 

  5. Geynisman DM, Maranchie JK, Ball MW, Bratslavsky G, Singer EA. A 25 year perspective on the evolution and advances in an understanding of the biology, evaluation and treatment of kidney cancer. Urol Oncol. 2021;39(9):548–60.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gomella PT, Linehan WM, Ball MW. Precision surgery and kidney cancer: knowledge of genetic alterations influences surgical management. Gene. 2021;12(2):261.

    Article  CAS  Google Scholar 

  7. Ornstein DK, Lubensky IA, Venzon D, Zbar B, Linehan WM, Walther MM. Prevalence of microscopic tumors in normal appearing renal parenchyma of patients with hereditary papillary renal cancer. J Urol. 2000;163(2):431–3.

    Article  CAS  PubMed  Google Scholar 

  8. Metcalf MR, Cheaib JG, Biles MJ, Patel HD, Peña VN, Chang P, et al. Outcomes of active surveillance for young patients with small renal masses: prospective data from the DISSRM registry. J Urol. 2021;205(5):1286–93.

    Article  PubMed  Google Scholar 

  9. Zhu Q, Wu X, Huang Y, Tang M, Wu L. Clinicopathologic features of succinate dehydrogenase deficiencient renal cell carcinoma. Int J Clin Exp Pathol. 2020;13(6):1403–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lloyd KM, Dennis M. Cowden’s disease. A possible new symptom complex with multiple system involvement. Ann Intern Med. 1963;58:136–42.

    Article  PubMed  Google Scholar 

  11. Neumann H, Wiestler O. Clustering of features of von Hippel-Lindau syndrome: evidence for a complex genetic locus. Lancet. 1991;337(8749):1052–4.

    Article  CAS  PubMed  Google Scholar 

  12. Hippel EV. Die anatomische Grundlage der von mir beschriebenen “sehr seltenen Erkrankung der Netzhaut”. Albrecht Von Graefes Arch Ophthalmol. 1911;79(2):350–77.

    Article  Google Scholar 

  13. Lindau A. Zur Frage der Angiomatosis retinae und ihrer Hirnkomplikationen. Acta Ophthalmol. 1926;4(1-2):193–226.

    Article  Google Scholar 

  14. Latif F, Tory K, Gnarra J, Yao M, Duh F-M, Orcutt ML, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.

    Article  CAS  PubMed  Google Scholar 

  15. Knudson AG Jr. Genetics of human cancer. Annu Rev Genet. 1986;20(1):231–51.

    Article  PubMed  Google Scholar 

  16. Linehan WM, Walther MM, Zbar B. The genetic basis of cancer of the kidney. J Urol. 2003;170(6):2163–72.

    Article  CAS  PubMed  Google Scholar 

  17. Gomella PT, Shin P, Srinivasan R, Linehan WM, Ball MW. Obstructive azoospermia secondary to bilateral epididymal cystadenomas in a patient with von Hippel-Lindau. Urol Case Rep. 2019;27:100922.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maher ER, Webster AR, Richards FM, Green JS, Crossey PA, Payne SJ, et al. Phenotypic expression in von Hippel-Lindau disease: correlations with germline VHL gene mutations. J Med Genet. 1996;33(4):328–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hes F, Zewald R, Peeters T, Sijmons R, Links T, Verheij J, et al. Genotype-phenotype correlations in families with deletions in the von Hippel-Lindau (VHL) gene. Hum Genet. 2000;106(4):425–31.

    Article  CAS  PubMed  Google Scholar 

  20. Nordstrom-O’Brien M, van der Luijt RB, van Rooijen E, van den Ouweland AM, Majoor-Krakauer DF, Lolkema MP, et al. Genetic analysis of von Hippel-Lindau disease. Hum Mutat. 2010;31(5):521–37.

    PubMed  Google Scholar 

  21. Gomella PT, Sanford TH, Pinto PA, Bratslavsky G, Metwalli AR, Linehan WM, et al. Long-term functional and oncologic outcomes of partial adrenalectomy for pheochromocytoma. Urology. 2020;140:85–90.

    Article  PubMed  Google Scholar 

  22. Sanford T, Gomella PT, Siddiqui R, Su D, An JY, Bratslavsky G, et al. Long term outcomes for patients with von Hippel-Lindau and Pheochromocytoma: defining the role of active surveillance. Urol Oncol. 2021;39(2):134.

    Article  Google Scholar 

  23. Linehan WM, Ricketts CJ. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nat Rev Urol. 2019;16(9):539–52.

    Article  CAS  PubMed  Google Scholar 

  24. Duan DR, Pause A, Burgess WH, Aso T, Chen D, Garrett KP, et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995;269(5229):1402–6.

    Article  CAS  PubMed  Google Scholar 

  25. Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science. 1995;269(5229):1444–6.

    Article  CAS  PubMed  Google Scholar 

  26. Pause A, Lee S, Worrell RA, Chen DY, Burgess WH, Linehan WM, et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci. 1997;94(6):2156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kamura T, Koepp D, Conrad M, Skowyra D, Moreland R, Iliopoulos O, et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science. 1999;284(5414):657–61.

    Article  CAS  PubMed  Google Scholar 

  28. Maxwell PH, Wiesener MS, Chang G-W, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.

    Article  CAS  PubMed  Google Scholar 

  29. Jaakkola P, Mole DR, Tian Y-M, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72.

    Article  CAS  PubMed  Google Scholar 

  30. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.

    Article  CAS  PubMed  Google Scholar 

  31. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Motzer R, Hutson T, Tomczak P, Michaelson M, Bukowski R, Rixe O, et al. Phase III randomized trial of sunitinib malate (SU11248) versus interferon-alfa (IFN-α) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2006;24(18):3.

    Article  Google Scholar 

  33. Courtney KD, Choueiri TK. Updates on novel therapies for metastatic renal cell carcinoma. Therap Adv Med Oncol. 2010;2(3):209–19.

    Article  CAS  Google Scholar 

  34. Jonasch E, Donskov F, Iliopoulos O, Rathmell WK, Narayan VK, Maughan BL, et al. Belzutifan for renal cell carcinoma in von Hippel–Lindau disease. N Engl J Med. 2021;385(22):2036–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Srinivasan R, Donskov F, Iliopoulos O, Rathmell WK, Narayan V, Maughan BL, et al. Phase 2 study of belzutifan (MK-6482), an oral hypoxia-inducible factor 2α (HIF-2α) inhibitor, for Von Hippel-Lindau (VHL) disease-associated clear cell renal cell carcinoma (ccRCC). J Clin Oncol. 2021;39:4555.

    Article  Google Scholar 

  36. Walther MM, Thompson N, Linehan W. Enucleation procedures in patients with multiple hereditary renal tumors. World J Urol. 1995;13(4):248–50.

    Article  CAS  PubMed  Google Scholar 

  37. Herring JC, Enquist EG, Chernoff A, Linehan WM, Choyke PL, Walther MM. Parenchymal sparing surgery in patients with hereditary renal cell carcinoma: 10-year experience. J Urol. 2001;165(3):777–81.

    Article  CAS  PubMed  Google Scholar 

  38. Bratslavsky G, Liu JJ, Johnson AD, Sudarshan S, Choyke PL, Linehan WM, et al. Salvage partial nephrectomy for hereditary renal cancer: feasibility and outcomes. J Urol. 2008;179(1):67–70.

    Article  PubMed  Google Scholar 

  39. Boris R, Proano M, Linehan WM, Pinto PA, Bratslavsky G. Robot assisted partial nephrectomy for multiple renal masses: feasibility and results of initial experience. J Urol. 2009;182(4):1280.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Metwalli AR, Linehan WM. Nephron-sparing surgery for multifocal and hereditary renal tumors. Curr Opin Urol. 2014;24(5):466.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hankins RA, Walton-Diaz A, Truong H, Shih J, Bratslavsky G, Pinto PA, et al. Renal functional outcomes after robotic multiplex partial nephrectomy: the National Cancer Institute experience with robotic partial nephrectomy for 3 or more tumors in a single kidney. Int Urol Nephrol. 2016;48(11):1817–21.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Walther MM, Lubensky IA, Venzon D, Zbar B, Linehan WM. Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von Hippel-Lindau disease, sporadic renal cell carcinoma and no renal disease: clinical implications. J Urol. 1995;154(6):2010–5.

    Article  CAS  PubMed  Google Scholar 

  43. Singer EA, Vourganti S, Lin KY, Gupta GN, Pinto PA, Rastinehad AR, et al. Outcomes of patients with surgically treated bilateral renal masses and a minimum of 10 years of followup. J Urol. 2012;188(6):2084–8.

    Article  PubMed  Google Scholar 

  44. Baiocco JA, Metwalli AR. Multiplex partial nephrectomy, repeat partial nephrectomy, and salvage partial nephrectomy remain the primary treatment in multifocal and hereditary kidney cancer. Front Oncol. 2017;7:244.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Watson MJ, Sidana A, Diaz AW, Siddiqui MM, Hankins RA, Bratslavsky G, et al. Repeat robotic partial nephrectomy: characteristics, complications, and renal functional outcomes. J Endourol. 2016;30(11):1219–26.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pierorazio PM, Johnson MH, Ball MW, Gorin MA, Trock BJ, Chang P, et al. Five-year analysis of a multi-institutional prospective clinical trial of delayed intervention and surveillance for small renal masses: the DISSRM registry. Eur Urol. 2015;68(3):408–15.

    Article  PubMed  Google Scholar 

  47. Alam R, Patel HD, Riffon MF, Trock BJ, Uzosike A, Chang P, et al. Intermediate-term outcomes from the DISSRM registry: a prospective analysis of active surveillance in patients with small renal masses. Alexandria: American Society of Clinical Oncology; 2017.

    Google Scholar 

  48. Chahoud J, McGettigan M, Parikh N, Boris RS, Iliopoulos O, Rathmell WK, et al. Evaluation, diagnosis and surveillance of renal masses in the setting of VHL disease. World J Urol. 2021;39(7):2409–15.

    Article  PubMed  Google Scholar 

  49. Walther MM, Choyke PL, Glenn G, Lyne JC, Rayford W, Venzon D, et al. Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol. 1999;161(5):1475–9.

    Article  CAS  PubMed  Google Scholar 

  50. Poston CD, Jaffe GS, Lubensky IA, Solomon D, Zbar B, Linehan WM, et al. Characterization of the renal pathology of a familial form of renal cell carcinoma associated with von Hippel-Lindau disease: clinical and molecular genetic implications. J Urol. 1995;153(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  51. Park BK, Kim CK, Park SY, Shen SH. Percutaneous radiofrequency ablation of renal cell carcinomas in patients with von Hippel Lindau disease: indications, techniques, complications, and outcomes. Acta Radiol. 2013;54(4):418–27.

    Article  PubMed  Google Scholar 

  52. Yang B, Autorino R, Remer EM, Laydner HK, Hillyer S, Altunrende F, et al. Probe ablation as salvage therapy for renal tumors in von Hippel-Lindau patients: the Cleveland Clinic experience with 3 years follow-up. Urol Oncol. 2013;31(5):686–92.

    Article  PubMed  Google Scholar 

  53. Allasia M, Soria F, Battaglia A, Gazzera C, Calandri M, Caprino MP, et al. Radiofrequency ablation for renal cancer in Von Hippel-Lindau syndrome patients: a prospective cohort analysis. Clin Genitourin Cancer. 2017. https://doi.org/10.1016/j.clgc.2017.07.027.

  54. Wessendorf J, König A, Heers H, Mahnken AH. Repeat percutaneous radiofrequency ablation of T1 renal cell carcinomas is safe in patients with Von Hippel-Lindau disease. Cardiovasc Intervent Radiol. 2021;44(12):2022–5.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chan VW, Lenton J, Smith J, Jagdev S, Ralph C, Vasudev N, et al. Multimodal image-guided ablation on management of renal cancer in Von-Hippel-Lindau syndrome patients from 2004 to 2021 at a specialist centre: a longitudinal observational study. Eur J Surg Oncol. 2021;48(3):672–9.

    Article  PubMed  Google Scholar 

  56. Park SY, Park BK, Kim CK, Lee HM, Jeon SS, Seo SI, et al. Percutaneous radiofrequency ablation of renal cell carcinomas in patients with von Hippel Lindau disease previously undergoing a radical nephrectomy or repeated nephron-sparing surgery. Acta Radiol. 2011;52(6):680–5.

    Article  PubMed  Google Scholar 

  57. Gomella PT, Linehan WM, Ball MW. Salvage surgery after percutaneous ablation of renal mass in solitary kidney in a patient with Von Hippel-Lindau. Clin Genitourin Cancer. 2019;17(3):e482–4.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kowalczyk KJ, Hooper HB, Linehan WM, Pinto PA, Wood BJ, Bratslavsky G. Partial nephrectomy after previous radio frequency ablation: the National Cancer Institute experience. J Urol. 2009;182(5):2158–63.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zbar B, Tory K, Merino M, Schmidt L, Glenn G, Choyke P, et al. Hereditary papillary renal cell carcinoma. J Urol. 1994;151(3):561–6.

    Article  CAS  PubMed  Google Scholar 

  60. Zbar B, Glenn G, Lubensky I, Choyke P, Walther MM, Magnusson G, et al. kidney cancer: hereditary papillary renal cell carcinoma: clinical studies in 10 families. J Urol. 1995;153(3S):907–12.

    Article  CAS  PubMed  Google Scholar 

  61. Schmidt L, Duh F-M, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  62. Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18(14):2343–50.

    Article  CAS  PubMed  Google Scholar 

  63. Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS, Davis C, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016;374(2):135–45.

    Article  PubMed  Google Scholar 

  64. Schmidt LS, Nickerson ML, Angeloni D, Glenn GM, Walther MM, Albert PS, et al. Early onset hereditary papillary renal carcinoma: germline missense mutations in the tyrosine kinase domain of the met proto-oncogene. J Urol. 2004;172(4 Pt 1):1256–61.

    Article  PubMed  Google Scholar 

  65. Ball MW, An JY, Gomella PT, Gautam R, Ricketts CJ, Vocke CD, et al. Growth rates of genetically defined renal tumors: implications for active surveillance and intervention. J Clin Oncol. 2020;38(11):1146.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Roy C, Sauer B, Lindner V, Lang H, Saussine C, Jacqmin D. MR Imaging of papillary renal neoplasms: potential application for characterization of small renal masses. Eur Radiol. 2007;17(1):193–200.

    Article  PubMed  Google Scholar 

  67. Motzer RJ, Jonasch E, Agarwal N, Alva A, Baine M, Beckermann K, et al. Kidney cancer, version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2022;20(1):71–90.

    Article  Google Scholar 

  68. Sidana A, Srinivasan R. Therapeutic strategies for hereditary kidney cancer. Curr Oncol Rep. 2016;18(8):50.

    Article  PubMed  Google Scholar 

  69. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peña-Llopis S, Vega-Rubín-de-Celis S, Liao A, Leng N, Pavía-Jiménez A, Wang S, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 2012;44(7):751–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Farley MN, Schmidt LS, Mester JL, Pena-Llopis S, Pavia-Jimenez A, Christie A, et al. A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol Cancer Res. 2013;11(9):1061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Popova T, Hebert L, Jacquemin V, Gad S, Caux-Moncoutier V, Dubois-d’Enghien C, et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet. 2013;92(6):974–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rai K, Pilarski R, Cebulla C, Abdel-Rahman M. Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin Genet. 2016;89(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  74. Walpole S, Pritchard AL, Cebulla CM, Pilarski R, Stautberg M, Davidorf FH, et al. Comprehensive study of the clinical phenotype of germline BAP1 variant-carrying families worldwide. J Natl Cancer Inst. 2018;110(12):1328–41.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pilarski R, Carlo M, Cebulla C, Abdel-Rahman M. BAP1 tumor predisposition syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editors. GeneReviews. Seattle: University of Washington; 1993.

    Google Scholar 

  76. Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A. 2014;111(1):285–90.

    Article  CAS  PubMed  Google Scholar 

  77. Daou S, Hammond-Martel I, Mashtalir N, Barbour H, Gagnon J, Iannantuono NV, et al. The BAP1/ASXL2 histone H2A deubiquitinase complex regulates cell proliferation and is disrupted in cancer. J Biol Chem. 2015;290(48):28643–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, Tanji M, et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature. 2017;546(7659):549–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Joseph RW, Kapur P, Serie DJ, Eckel-Passow JE, Parasramka M, Ho T, et al. Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer. 2014;120(7):1059–67.

    Article  CAS  PubMed  Google Scholar 

  80. Joseph RW, Kapur P, Serie DJ, Parasramka M, Ho TH, Cheville JC, et al. Clear cell renal cell carcinoma subtypes identified by BAP1 and PBRM1 expression. J Urol. 2016;195(1):180–7.

    Article  CAS  PubMed  Google Scholar 

  81. Minardi D, Lucarini G, Milanese G, Di Primio R, Montironi R, Muzzonigro G. Loss of nuclear BAP1 protein expression is a marker of poor prognosis in patients with clear cell renal cell carcinoma. Urol Oncol. 2016;34(8):338.e11–8.

    Article  CAS  PubMed  Google Scholar 

  82. Campbell SC, Uzzo RG, Karam JA, Chang SS, Clark PE, Souter L. Renal mass and localized renal cancer: evaluation, management, and follow-up: AUA guideline: part II. J Urol. 2021;206(2):209–18.

    Article  PubMed  Google Scholar 

  83. Star P, Goodwin A, Kapoor R, Conway RM, Long GV, Scolyer RA, et al. Germline BAP1-positive patients: the dilemmas of cancer surveillance and a proposed interdisciplinary consensus monitoring strategy. Eur J Cancer. 2018;92:48–53.

    Article  CAS  PubMed  Google Scholar 

  84. Birt AR, Hogg GR, Dubé WJ. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol. 1977;113(12):1674–7.

    Article  CAS  PubMed  Google Scholar 

  85. Binet O, Robin J, Vicart M, Ventura G, Beltzer-Garelly E. Fibromes périfolliculaires polypose colique familiale pneumothorax spontanés familiaux. Ann Dermatol Venereol. 1986;113:928–30.

    Google Scholar 

  86. Roth JS, Rabinowitz AD, Benson M, Grossman ME. Bilateral renal cell carcinoma in the Birt-Hogg-Dubé syndrome. J Am Acad Dermatol. 1993;29(6):1055–6.

    Article  CAS  PubMed  Google Scholar 

  87. Toro JR, Glenn G, Duray P, Darling T, Weirich G, Zbar B, et al. Birt-Hogg-Dubé syndrome: a novel marker of kidney neoplasia. Arch Dermatol. 1999;135(10):1195–202.

    Article  CAS  PubMed  Google Scholar 

  88. Schmidt LS, Linehan WM. FLCN: the causative gene for Birt-Hogg-Dubé syndrome. Gene. 2018;640:28–42.

    Article  CAS  PubMed  Google Scholar 

  89. Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. Cancer Cell. 2002;2(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  90. Zbar B, Alvord WG, Glenn G, Turner M, Pavlovich CP, Schmidt L, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dubé syndrome. Cancer Epidemiol Biomark Prev. 2002;11(4):393–400.

    Google Scholar 

  91. Khoo SK, Kahnoski K, Sugimura J, Petillo D, Chen J, Shockley K, et al. Inactivation of BHD in sporadic renal tumors. Cancer Res. 2003;63(15):4583–7.

    CAS  PubMed  Google Scholar 

  92. Davis CF, Ricketts CJ, Wang M, Yang L, Cherniack AD, Shen H, et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell. 2014;26(3):319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu M, Si S, Li Y, Schoen S, Xiao GQ, Li X, et al. Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression. Oncotarget. 2015;6(32):32761–73.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nakamura M, Yao M, Sano F, Sakata R, Tatenuma T, Makiyama K, et al. A case of metastatic renal cell carcinoma associated with Birt-Hogg-Dubé syndrome treated with molecular-targeting agents. Hinyokika Kiyo. 2013;59(8):503–6.

    PubMed  Google Scholar 

  95. Gijezen LM, Vernooij M, Martens H, Oduber CE, Henquet CJ, Starink TM, et al. Topical rapamycin as a treatment for fibrofolliculomas in Birt-Hogg-Dubé syndrome: a double-blind placebo-controlled randomized split-face trial. PLoS One. 2014;9(6):e99071.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Benusiglio PR, Giraud S, Deveaux S, Méjean A, Correas JM, Joly D, et al. Renal cell tumour characteristics in patients with the Birt-Hogg-Dubé cancer susceptibility syndrome: a retrospective, multicentre study. Orphanet J Rare Dis. 2014;9:163.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Leter EM, Koopmans AK, Gille JJ, van Os TA, Vittoz GG, David EF, et al. Birt-Hogg-Dubé syndrome: clinical and genetic studies of 20 families. J Invest Dermatol. 2008;128(1):45–9.

    Article  CAS  PubMed  Google Scholar 

  98. Houweling AC, Gijezen LM, Jonker MA, van Doorn MB, Oldenburg RA, van Spaendonck-Zwarts KY, et al. Renal cancer and pneumothorax risk in Birt-Hogg-Dubé syndrome; an analysis of 115 FLCN mutation carriers from 35 BHD families. Br J Cancer. 2011;105(12):1912–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Toro JR, Wei MH, Glenn GM, Weinreich M, Toure O, Vocke C, et al. BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dubé syndrome: a new series of 50 families and a review of published reports. J Med Genet. 2008;45(6):321–31.

    Article  CAS  PubMed  Google Scholar 

  100. Pavlovich CP, Walther MM, Eyler RA, Hewitt SM, Zbar B, Linehan WM, et al. Renal tumors in the Birt-Hogg-Dubé syndrome. Am J Surg Pathol. 2002;26(12):1542–52.

    Article  PubMed  Google Scholar 

  101. Hes O, Petersson F, Kuroda N, Hora M, Michal M. Renal hybrid oncocytic/chromophobe tumors - a review. Histol Histopathol. 2013;28(10):1257–64.

    PubMed  Google Scholar 

  102. Menko FH, van Steensel MA, Giraud S, Friis-Hansen L, Richard S, Ungari S, et al. Birt-Hogg-Dubé syndrome: diagnosis and management. Lancet Oncol. 2009;10(12):1199–206.

    Article  CAS  PubMed  Google Scholar 

  103. Motzer RJ, Jonasch E, Boyle S, Carlo MI, Manley B, Agarwal N, et al. NCCN guidelines insights: kidney cancer, version 1.2021: featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 2020;18(9):1160–70.

    Article  Google Scholar 

  104. Stamatakis L, Metwalli AR, Middelton LA, Marston LW. Diagnosis and management of BHD-associated kidney cancer. Familial Cancer. 2013;12(3):397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gupta S, Kang HC, Ganeshan D, Morani A, Gautam R, Choyke PL, et al. The ABCs of BHD: an in-depth review of Birt-Hogg-Dubé syndrome. AJR Am J Roentgenol. 2017;209(6):1291–6.

    Article  PubMed  Google Scholar 

  106. Ghosh S, Farver CF. Birt-Hogg-Dubé syndrome. Radiology. 2021;2021:211972.

    Google Scholar 

  107. Gormley TS, Van Every MJ, Moreno AJ. Renal oncocytoma: preoperative diagnosis using technetium 99m sestamibi imaging. Urology. 1996;48(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  108. Pavlovich CP, Grubb RL 3rd, Hurley K, Glenn GM, Toro J, Schmidt LS, et al. Evaluation and management of renal tumors in the Birt-Hogg-Dube syndrome. J Urol. 2005;173(5):1482–6.

    Article  PubMed  Google Scholar 

  109. Bourneville D. Sclerose tubereuse der circonvolutions cerebrales: idiotie et epilepsie hemiplegique. Arch Neurol. 1880;1:81–91.

    Google Scholar 

  110. Kwiatkowski DJ, Whittemore VH, Thiele EA. Tuberous sclerosis complex: genes, clinical features and therapeutics. Hoboken: Wiley; 2011.

    Google Scholar 

  111. European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993;75(7):1305–15.

    Article  Google Scholar 

  112. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805–8.

    Article  PubMed  Google Scholar 

  113. Fleury P, de Groot W, Delleman J, Verbeeten B, Frankenmolen-Witkiezwicz I. Tuberous sclerosis: the incidence of familial versus sporadic cases. Brain and Development. 1980;2:107–17.

    Article  CAS  PubMed  Google Scholar 

  114. Henske EP, Cornejo KM, Wu CL. Renal cell carcinoma in tuberous sclerosis complex. Gene. 2021;12(10):1585.

    Article  CAS  Google Scholar 

  115. Gupta S, Kang HC, Faria SC, Choyke PL, Kundra V. Tuberous sclerosis complex (TSC): renal and extrarenal imaging. Acad Radiol. 2021;29(3):439–49.

    Article  PubMed  Google Scholar 

  116. Janssens P, Van Hoeve K, De Waele L, De Rechter S, Claes KJ, Van de Perre E, et al. Renal progression factors in young patients with tuberous sclerosis complex: a retrospective cohort study. Pediatr Nephrol. 2018;33(11):2085–93.

    Article  PubMed  Google Scholar 

  117. Rakowski SK, Winterkorn EB, Paul E, Steele DJ, Halpern EF, Thiele EA. Renal manifestations of tuberous sclerosis complex: incidence, prognosis, and predictive factors. Kidney Int. 2006;70(10):1777–82.

    Article  CAS  PubMed  Google Scholar 

  118. Sampson JR, Maheshwar MM, Aspinwall R, Thompson P, Cheadle JP, Ravine D, et al. Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am J Hum Genet. 1997;61(4):843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Guo J, Tretiakova MS, Troxell ML, Osunkoya AO, Fadare O, Sangoi AR, et al. Tuberous sclerosis–associated renal cell carcinoma: a clinicopathologic study of 57 separate carcinomas in 18 patients. Am J Surg Pathol. 2014;38(11):1457–67.

    Article  PubMed  Google Scholar 

  120. Yang P, Cornejo KM, Sadow PM, Cheng L, Wang M, Xiao Y, et al. Renal cell carcinoma in tuberous sclerosis complex. Am J Surg Pathol. 2014;38(7):895–909.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gupta S, Jimenez RE, Herrera-Hernandez L, Lohse CM, Thompson RH, Boorjian SA, et al. Renal neoplasia in tuberous sclerosis: a study of 41 patients. Mayo Clin Proc. 2021;96(6):1470–89.

    Article  CAS  PubMed  Google Scholar 

  122. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412(2):179–90.

    Article  CAS  PubMed  Google Scholar 

  123. Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell. 2012;47(4):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bissler JJ, Kingswood JC, Radzikowska E, Zonnenberg BA, Frost M, Belousova E, et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2013;381(9869):817–24.

    Article  CAS  PubMed  Google Scholar 

  125. Amin S, Lux A, Calder N, Laugharne M, Osborne J, O'Callaghan F. Causes of mortality in individuals with tuberous sclerosis complex. Dev Med Child Neurol. 2017;59(6):612–7.

    Article  PubMed  Google Scholar 

  126. Eijkemans MJ, van der Wal W, Reijnders LJ, Roes KC, van Waalwijk, van Doorn-Khosrovani SB, Pelletier C, et al. Long-term follow-up assessing renal angiomyolipoma treatment patterns, morbidity, and mortality: an observational study in tuberous sclerosis complex patients in the Netherlands. Am J Kidney Dis. 2015;66(4):638–45.

    Article  PubMed  Google Scholar 

  127. Flum AS, Hamoui N, Said MA, Yang XJ, Casalino DD, McGuire BB, et al. Update on the diagnosis and management of renal angiomyolipoma. J Urol. 2016;195(4):834–46.

    Article  PubMed  Google Scholar 

  128. Pea M, Bonetti F, Martignoni G, Henske EP, Manfrin E, Colato C, et al. Apparent renal cell carcinomas in tuberous sclerosis are heterogeneous: the identification of malignant epithelioid angiomyolipoma. Am J Surg Pathol. 1998;22(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  129. Krueger DA, Northrup H. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49(4):255–65.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Seyam RM, Bissada NK, Kattan SA, Mokhtar AA, Aslam M, Fahmy WE, et al. Changing trends in presentation, diagnosis and management of renal angiomyolipoma: comparison of sporadic and tuberous sclerosis complex-associated forms. Urology. 2008;72(5):1077–82.

    Article  PubMed  Google Scholar 

  131. Steiner MS, Goldman SM, Fishman EK, Marshall FF. The natural history of renal angiomyolipoma. J Urol. 1993;150(6):1782–6.

    Article  CAS  PubMed  Google Scholar 

  132. van Baal JG, Smits NJ, Keeman JN, Lindhout D, Verhoef S. The evolution of renal angiomyolipomas in patients with tuberous sclerosis. J Urol. 1994;152(1):35–8.

    Article  PubMed  Google Scholar 

  133. Ouzaid I, Autorino R, Fatica R, Herts BR, McLennan G, Remer EM, et al. Active surveillance for renal angiomyolipoma: outcomes and factors predictive of delayed intervention. BJU Int. 2014;114(3):412–7.

    Article  PubMed  Google Scholar 

  134. Yamakado K, Tanaka N, Nakagawa T, Kobayashi S, Yanagawa M, Takeda K. Renal angiomyolipoma: relationships between tumor size, aneurysm formation, and rupture. Radiology. 2002;225(1):78–82.

    Article  PubMed  Google Scholar 

  135. Boorjian SA, Sheinin Y, Crispen PL, Lohse CM, Kwon ED, Leibovich BC. Hormone receptor expression in renal angiomyolipoma: clinicopathologic correlation. Urology. 2008;72(4):927–32.

    Article  PubMed  Google Scholar 

  136. Boorjian SA, Frank I, Inman B, Lohse CM, Cheville JC, Leibovich BC, et al. The role of partial nephrectomy for the management of sporadic renal angiomyolipoma. Urology. 2007;70(6):1064–8.

    Article  PubMed  Google Scholar 

  137. Heidenreich A, Hegele A, Varga Z, von Knobloch R, Hofmann R. Nephron-sparing surgery for renal angiomyolipoma. Eur Urol. 2002;41(3):267–73.

    Article  PubMed  Google Scholar 

  138. Bissler JJ, Nonomura N, Budde K, Zonnenberg BA, Fischereder M, Voi M, et al. Angiomyolipoma rebound tumor growth after discontinuation of everolimus in patients with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis. PLoS One. 2018;13(9):e0201005.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Geynisman DM, Kadow BT, Shuch BM, Boorjian SA, Matin SF, Rampersaud E, et al. Sporadic angiomyolipomas growth kinetics while on everolimus: results of a phase II trial. J Urol. 2020;204(3):531–7.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Reed WB, Walker R, Horowitz R. Cutaneous leiomyomata with uterine leiomyomata. Acta Derm Venereol. 1973;53(5):409–16.

    Article  CAS  PubMed  Google Scholar 

  141. Launonen V, Vierimaa O, Kiuru M, Isola J, Roth S, Pukkala E, et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A. 2001;98(6):3387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.

    Article  CAS  PubMed  Google Scholar 

  143. Menko FH, Maher ER, Schmidt LS, Middelton LA, Aittomaki K, Tomlinson I, et al. Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment. Familial Cancer. 2014;13(4):637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Webster BR, Rompre-Brodeur A, Daneshvar M, Pahwa R, Srinivasan R. Kidney cancer: from genes to therapy. Curr Probl Cancer. 2021;45(4):100773.

    Article  PubMed  Google Scholar 

  145. Gellera C, Uziel G, Rimoldi M, Zeviani M, Laverda A, Carrara F, et al. Fumarase deficiency is an autosomal recessive encephalopathy affecting both the mitochondrial and the cytosolic enzymes. Neurology. 1990;40(3):495–9.

    Article  CAS  PubMed  Google Scholar 

  146. Yang Y, Valera V, Sourbier C, Vocke CD, Wei M, Pike L, et al. A novel fumarate hydratase-deficient HLRCC kidney cancer cell line, UOK268: a model of the Warburg effect in cancer. Cancer Genet. 2012;205(7-8):377–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bateman NW, Tarney CM, Abulez T, Soltis AR, Zhou M, Conrads K, et al. Proteogenomic landscape of uterine leiomyomas from hereditary leiomyomatosis and renal cell cancer patients. Sci Rep. 2021;11(1):9371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Srinivasan R, Ricketts CJ, Sourbier C, Linehan WM. New strategies in renal cell carcinoma: targeting the genetic and metabolic basis of disease. Clin Cancer Res. 2015;21(1):10–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Smit DL, Mensenkamp AR, Badeloe S, Breuning MH, Simon ME, van Spaendonck KY, et al. Hereditary leiomyomatosis and renal cell cancer in families referred for fumarate hydratase germline mutation analysis. Clin Genet. 2011;79(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  150. Schmidt LS, Linehan WM. Hereditary leiomyomatosis and renal cell carcinoma. Int J Nephrol Renov Dis. 2014;7:253–60.

    Article  Google Scholar 

  151. Lu E, Hatchell KE, Nielsen SM, Esplin ED, Ouyang K, Nykamp K, et al. Fumarate hydratase variant prevalence and manifestations among individuals receiving germline testing. Cancer. 2021;128(4):675–84.

    Article  PubMed  Google Scholar 

  152. Menko FH, Maher ER, Schmidt LS, Middelton LA, Aittomäki K, Tomlinson I, et al. Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment. Familial Cancer. 2014;13(4):637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Al-Shinnag M, Marfan H, Susman R, Wakeling J, Gustafson S, Wood S, et al. Birt-Hogg-Dube syndrome and hereditary leiomyomatosis and renal cell carcinoma syndrome: an effective multidisciplinary approach to hereditary renal cancer predisposing syndromes. Front Oncol. 2021;11:738822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur Urol. 2016;70(1):93–105.

    Article  PubMed  Google Scholar 

  155. Nikolovski I, Carlo MI, Chen YB, Vargas HA. Imaging features of fumarate hydratase-deficient renal cell carcinomas: a retrospective study. Cancer Imaging. 2021;21(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Paschall AK, Nikpanah M, Farhadi F, Jones EC, Wakim PG, Dwyer AJ, et al. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome: Spectrum of imaging findings. Clin Imaging. 2020;68:14–9.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Chaurasia A, Gopal N, Dehghani Firouzabadi F, Yazdian Anari P, Wakim P, Ball MW, et al. Role of ultra-high b-value DWI in the imaging of hereditary leiomyomatosis and renal cell carcinoma (HLRCC). Abdom Radiol. 2022;48(1):340–9.

    Article  Google Scholar 

  158. Gardie B, Remenieras A, Kattygnarath D, Bombled J, Lefevre S, Perrier-Trudova V, et al. Novel FH mutations in families with hereditary leiomyomatosis and renal cell cancer (HLRCC) and patients with isolated type 2 papillary renal cell carcinoma. J Med Genet. 2011;48(4):226–34.

    Article  CAS  PubMed  Google Scholar 

  159. Nikpanah M, Paschall AK, Ahlman MA, Civelek AC, Farhadi F, Mirmomen SM, et al. 18Fluorodeoxyglucose-positron emission tomography/computed tomography for differentiation of renal tumors in hereditary kidney cancer syndromes. Abdom Radiol. 2021;46(7):3301–8.

    Article  Google Scholar 

  160. Srinivasan R, Su D, Stamatakis L, Siddiqi MM, Singer E, Shuch B, et al. 5 Mechanism based targeted therapy for hereditary leimyomatosis and renal cell cancer (HLRCC) and sporadic papillary renal cell carcinoma interim results from a phase 2 study of bevacizumab and erlotinib. Eur J Cancer. 2014;50:8.

    Article  Google Scholar 

  161. Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peczkowska M, Morrison CD, et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet. 2004;74(1):153–9.

    Article  CAS  PubMed  Google Scholar 

  162. Merino MJ, Ricketts CJ, Moreno V, Yang Y, Fan TWM, Lane AN, et al. Multifocal renal cell carcinomas with somatic IDH2 mutation: report of a previously undescribed neoplasm. Am J Surg Pathol. 2021;45(1):137–42.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Ricketts CJ, Shuch B, Vocke CD, Metwalli AR, Bratslavsky G, Middelton L, et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol. 2012;188(6):2063–71.

    Article  CAS  PubMed  Google Scholar 

  164. Yong C, Stewart GD, Frezza C. Oncometabolites in renal cancer. Nat Rev Nephrol. 2020;16(3):156–72.

    Article  CAS  PubMed  Google Scholar 

  165. Fang Z, Sun Q, Yang H, Zheng J. SDHB suppresses the tumorigenesis and development of ccRCC by inhibiting glycolysis. Front Oncol. 2021;11:639408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Aggarwal RK, Luchtel RA, Machha V, Tischer A, Zou Y, Pradhan K, et al. Functional succinate dehydrogenase deficiency is a common adverse feature of clear cell renal cancer. Proc Natl Acad Sci U S A. 2021;118:39.

    Article  Google Scholar 

  167. Sulkowski PL, Oeck S, Dow J, Economos NG, Mirfakhraie L, Liu Y, et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature. 2020;582(7813):586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  169. Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, Latif F, et al. Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst. 2008;100(17):1260–2.

    Article  CAS  PubMed  Google Scholar 

  170. Kumar R, Bonert M, Naqvi A, Zbuk K, Kapoor A. SDH-deficient renal cell carcinoma - clinical, pathologic and genetic correlates: a case report. BMC Urol. 2018;18(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Fuchs TL, Maclean F, Turchini J, Vargas AC, Bhattarai S, Agaimy A, et al. Expanding the clinicopathological spectrum of succinate dehydrogenase-deficient renal cell carcinoma with a focus on variant morphologies: a study of 62 new tumors in 59 patients. Mod Pathol. 2021;35(6):836–49.

    Article  PubMed  Google Scholar 

  172. Gill AJ, Hes O, Papathomas T, Šedivcová M, Tan PH, Agaimy A, et al. Succinate dehydrogenase (SDH)-deficient renal carcinoma: a morphologically distinct entity: a clinicopathologic series of 36 tumors from 27 patients. Am J Surg Pathol. 2014;38(12):1588.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Carlo MI, Hakimi AA, Stewart GD, Bratslavsky G, Brugarolas J, Chen Y-B, et al. Familial kidney cancer: implications of new syndromes and molecular insights. Eur Urol. 2019;76(6):754–64.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Pilarski R, Eng C. Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome. J Med Genet. 2004;41(5):323–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J, et al. Inherited mutations in PTEN that are associated with breast cancer, Cowden disease, and juvenile polyposis. Am J Hum Genet. 1997;61(6):1254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mester J, Eng C. Estimate of de novo mutation frequency in probands with PTEN hamartoma tumor syndrome. Genet Med. 2012;14(9):819–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mester JL, Zhou M, Prescott N, Eng C. Papillary renal cell carcinoma is associated with PTEN hamartoma tumor syndrome. Urology. 2012;79(5):1187.e1–7.

    Article  PubMed  Google Scholar 

  178. Shuch B, Ricketts CJ, Vocke CD, Komiya T, Middelton LA, Kauffman EC, et al. Germline PTEN mutation Cowden syndrome: an underappreciated form of hereditary kidney cancer. J Urol. 2013;190(6):1990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nelen MR, Kremer H, Konings IB, Schoute F, van Essen AJ, Koch R, et al. Novel PTEN mutations in patients with Cowden disease: absence of clear genotype-phenotype correlations. Eur J Hum Genet. 1999;7(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  181. Jackson CE, Norum RA, Boyd SB, Talpos GB, Wilson SD, Taggart RT, et al. Hereditary hyperparathyroidism and multiple ossifying jaw fibromas: a clinically and genetically distinct syndrome. Surgery. 1990;108(6):1006–12; discussion 12-3.

    CAS  PubMed  Google Scholar 

  182. van der Tuin K, Tops CMJ, Adank MA, Cobben JM, Hamdy NAT, Jongmans MC, et al. CDC73-related disorders: clinical manifestations and case detection in primary hyperparathyroidism. J Clin Endocrinol Metab. 2017;102(12):4534–40.

    Article  PubMed  Google Scholar 

  183. Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet. 2002;32(4):676–80.

    Article  CAS  PubMed  Google Scholar 

  184. Iacobone M, Carnaille B, Palazzo FF, Vriens M. Hereditary hyperparathyroidism–a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbeck's Arch Surg. 2015;400(8):867–86.

    Article  Google Scholar 

  185. Vocke CD, Ricketts CJ, Ball MW, Schmidt LS, Metwalli AR, Middelton LA, et al. CDC73 germline mutation in a family with mixed epithelial and stromal tumors. Urology. 2019;124:91–7.

    Article  PubMed  Google Scholar 

  186. Xie WL, Lian JY, Li B, Tian XY, Li Z. Mixed epithelial and stromal tumor of kidney with renal vein extension: an unusual case report and review of literature. Histol Histopathol. 2017;32(4):361–9.

    PubMed  Google Scholar 

  187. Sidhar SK, Clark J, Gill S, Hamoudi R, Crew AJ, Gwilliam R, et al. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum Mol Genet. 1996;5(9):1333–8.

    Article  CAS  PubMed  Google Scholar 

  188. Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature. 2011;480(7375):94–8.

    Article  CAS  PubMed  Google Scholar 

  189. Lang M, Vocke CD, Ricketts CJ, Metwalli AR, Ball MW, Schmidt LS, et al. Clinical and molecular characterization of microphthalmia-associated transcription factor (MITF)-related renal cell carcinoma. Urology. 2021;149:89–97.

    Article  PubMed  Google Scholar 

  190. Nguyen KA, Syed JS, Espenschied CR, LaDuca H, Bhagat AM, Suarez-Sarmiento A, et al. Advances in the diagnosis of hereditary kidney cancer: initial results of a multigene panel test. Cancer. 2017;123(22):4363–71.

    Article  CAS  PubMed  Google Scholar 

  191. Stoehr CG, Walter B, Denzinger S, Ghiorzo P, Sturm RA, Hinze R, et al. The microphthalmia-associated transcription factor p.E318K mutation does not play a major role in sporadic renal cell tumors from Caucasian patients. Pathobiology. 2016;83(4):165–9.

    Article  CAS  PubMed  Google Scholar 

  192. Liu N, Qu F, Shi Q, Zhuang W, Ma W, Yang Z, et al. Nephron-sparing surgery for adult Xp11.2 translocation renal cell carcinoma at clinical T1 stage: a multicenter study in China. Ann Surg Oncol. 2021;28(2):1238–46.

    Article  PubMed  Google Scholar 

  193. Cohen AJ, Li FP, Berg S, Marchetto DJ, Tsai S, Jacobs SC, et al. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979;301(11):592–5.

    Article  CAS  PubMed  Google Scholar 

  194. Woodward ER. Familial non-syndromic clear cell renal cell carcinoma. Curr Mol Med. 2004;4(8):843–8.

    Article  CAS  PubMed  Google Scholar 

  195. Woodward ER, Skytte AB, Cruger DG, Maher ER. Population-based survey of cancer risks in chromosome 3 translocation carriers. Genes Chromosomes Cancer. 2010;49(1):52–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Ball .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gopal, N., Webster, B., Antony, M., Ball, M.W. (2023). Surgical Management of Hereditary Kidney Cancer Syndromes. In: McKay, R.R., Singer, E.A. (eds) Integrating Multidisciplinary Treatment for Advanced Renal Cell Carcinoma. Springer, Cham. https://doi.org/10.1007/978-3-031-40901-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40901-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40900-4

  • Online ISBN: 978-3-031-40901-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics