Skip to main content

Quantitative MRI of the Kidneys: Rationale and Challenges

  • Chapter
  • First Online:
Advanced Clinical MRI of the Kidney
  • 323 Accesses

Abstract

Assessment of renal function has remained a challenge for modern medicine, as neither laboratory tests nor imaging diagnostics provide adequate information on kidney status. In recent years, multiparametric renal magnetic resonance imaging (MRI) has provided a strategy whereby several noninvasive sequences are employed to study the structure and function of the kidney in a single MR scan session to quantify renal hemodynamics, oxygenation, and tissue composition (fibrosis, inflammation, and edema) without using ionizing radiation.

This chapter outlines the multiparametric renal MRI techniques that provide noninvasive measures of relevance to the pathophysiology of kidney disease. These comprise techniques for morphometric measures of total kidney volume (TKV); measures of biophysical tissue composition such as T1/T2 relaxometry mapping, diffusion-weighted imaging (DWI), and less commonly used methods of magnetization transfer (MT), T1ρ, quantitative susceptibility mapping (QSM), and MR elastography (MRE); measures of hemodynamics including MR angiography and phase contrast MRI, arterial spin labeling (ASL) perfusion, and dynamic contrast-enhanced (DCE) MRI; and measures of renal oxygenation such as blood oxygen level dependent (BOLD). Current evidence is described regarding the use of multiparametric renal MRI in the clinical setting to study acute kidney injury, chronic kidney disease, and renal transplantation. Challenges remaining for the wider evaluation of clinical adoption are outlined, including standardized acquisition protocols and efficient strategies for data analysis. It can be hoped that multiparametric renal MRI may be used to assist clinicians in the diagnostics, monitoring, and treatment of kidney diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bae KT, Commean PK, Lee J. Volumetric measurement of renal cysts and parenchyma using MRI: phantoms and patients with polycystic kidney disease. J Comput Assist Tomogr. 2000;24(4):614–9.

    Article  CAS  PubMed  Google Scholar 

  2. Christensen RH, Lundgren T, Stenvinkel P, Brismar TB. Renal volumetry with magnetic resonance imaging. Acta Radiol Open. 2017;6(9):2058460117731120.

    PubMed  PubMed Central  Google Scholar 

  3. Will S, Martirosian P, Wurslin C, Schick F. Automated segmentation and volumetric analysis of renal cortex, medulla, and pelvis based on non-contrast-enhanced T1- and T2-weighted MR images. MAGMA. 2014;27(5):445–54.

    Article  CAS  PubMed  Google Scholar 

  4. Dekkers IA, de Boer A, Sharma K, Cox EF, Lamb HJ, Buckley DL, et al. Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI. MAGMA. 2020;33(1):163–76.

    Article  PubMed  Google Scholar 

  5. Berchtold L, Friedli I, Crowe LA, Martinez C, Moll S, Hadaya K, et al. Validation of the corticomedullary difference in magnetic resonance imaging-derived apparent diffusion coefficient for kidney fibrosis detection: a cross-sectional study. Nephrol Dial Transplant. 2020;35(6):937–45.

    Article  PubMed  Google Scholar 

  6. Blondin D, Lanzman RS, Mathys C, Grotemeyer D, Voiculescu A, Sandmann W, et al. [Functional MRI of transplanted kidneys using diffusion-weighted imaging]. Rofo. 2009;181(12):1162–1167.

    Google Scholar 

  7. Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, et al. Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant. 2018;33(suppl_2):ii29–40.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Friedli I, Crowe LA, Berchtold L, Moll S, Hadaya K, de Perrot T, et al. New magnetic resonance imaging index for renal fibrosis assessment: a comparison between diffusion-weighted imaging and T1 mapping with histological validation. Sci Rep. 2016;6:30088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hueper K, Hartung D, Gutberlet M, Gueler F, Sann H, Husen B, et al. Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy. Invest Radiol. 2012;47(7):430–7.

    Article  PubMed  Google Scholar 

  10. Ljimani A, Caroli A, Laustsen C, Francis S, Mendichovszky IA, Bane O, et al. Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGMA. 2020;33(1):177–95.

    Article  CAS  PubMed  Google Scholar 

  11. Mao W, Zhou J, Zeng M, Ding Y, Qu L, Chen C, et al. Intravoxel incoherent motion diffusion-weighted imaging for the assessment of renal fibrosis of chronic kidney disease: a preliminary study. Magn Reson Imaging. 2018;47:118–24.

    Article  PubMed  Google Scholar 

  12. Zhao J, Wang ZJ, Liu M, Zhu J, Zhang X, Zhang T, et al. Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted MRI. Clin Radiol. 2014;69(11):1117–22.

    Article  CAS  PubMed  Google Scholar 

  13. de Boer A, Villa G, Bane O, Bock M, Cox EF, Dekkers IA, et al. Consensus-based technical recommendations for clinical translation of renal phase contrast MRI. J Magn Reson Imaging. 2022;55(2):323–35.

    Article  PubMed  Google Scholar 

  14. Nery F, Buchanan CE, Harteveld AA, Odudu A, Bane O, Cox EF, et al. Consensus-based technical recommendations for clinical translation of renal ASL MRI. MAGMA. 2020;33(1):141–61.

    Article  PubMed  Google Scholar 

  15. Jiang K, Ferguson CM, Ebrahimi B, Tang H, Kline TL, Burningham TA, et al. Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis. Radiology. 2017;283(1):77–86.

    Article  PubMed  Google Scholar 

  16. Hectors SJ, Bane O, Kennedy P, El Salem F, Menon M, Segall M, et al. T1rho mapping for assessment of renal allograft fibrosis. J Magn Reson Imaging. 2019;50(4):1085–91.

    Article  PubMed  Google Scholar 

  17. Xie L, Bennett KM, Liu C, Johnson GA, Zhang JL, Lee VS. MRI tools for assessment of microstructure and nephron function of the kidney. Am J Physiol Renal Physiol. 2016;311(6):F1109–F24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie L, Lee VS, Wei H, Qi Y, Gurley SB, Johnson GA, et al. Quantitative susceptibility mapping of kidney injury in a model of ischemia reperfusion. ISMRM conference; May 2016; Singapore. 2016.

    Google Scholar 

  19. Hueper K, Khalifa AA, Brasen JH, Vo Chieu VD, Gutberlet M, Wintterle S, et al. Diffusion-weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging. 2016;44(1):112–21.

    Article  PubMed  Google Scholar 

  20. Kirpalani A, Hashim E, Leung G, Kim JK, Krizova A, Jothy S, et al. Magnetic resonance elastography to assess fibrosis in kidney allografts. Clin J Am Soc Nephrol. 2017;12(10):1671–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim JK, Yuen DA, Leung G, Jothy S, Zaltzman J, Ramesh Prasad GV, et al. Role of magnetic resonance elastography as a noninvasive measurement tool of fibrosis in a renal allograft: a case report. Transplant Proc. 2017;49(7):1555–9.

    Article  CAS  PubMed  Google Scholar 

  22. Serai SD, Yin M. MR elastography of the abdomen: basic concepts. Methods Mol Biol. 2021;2216:301–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mendichovszky I, Pullens P, Dekkers I, Nery F, Bane O, Pohlmann A, et al. Technical recommendations for clinical translation of renal MRI: a consensus project of the cooperation in science and technology action PARENCHIMA. MAGMA. 2020;33(1):131–40.

    Article  CAS  PubMed  Google Scholar 

  24. Ljimani A, Caroli A, Laustsen C, Francis S, Mendichovszky IA, Bane O, et al. Correction to: consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGMA. 2020;33(1):197–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bane O, Mendichovszky IA, Milani B, Dekkers IA, Deux JF, Eckerbom P, et al. Consensus-based technical recommendations for clinical translation of renal BOLD MRI. MAGMA. 2020;33(1):199–215.

    Article  PubMed  Google Scholar 

  26. Daniel AJ, Buchanan CE, Allcock T, Scerri D, Cox EF, Prestwich BL, et al. Automated renal segmentation in healthy and chronic kidney disease subjects using a convolutional neural network. Magn Reson Med. 2021;86(2):1125–36.

    Article  PubMed  Google Scholar 

  27. Langner T, Ostling A, Maldonis L, Karlsson A, Olmo D, Lindgren D, et al. Kidney segmentation in neck-to-knee body MRI of 40,000 UK biobank participants. Sci Rep. 2020;10(1):20963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perrone RD, Mouksassi MS, Romero K, Czerwiec FS, Chapman AB, Gitomer BY, et al. Total kidney volume is a prognostic biomarker of renal function decline and progression to end-stage renal disease in patients with autosomal dominant polycystic kidney disease. Kidney Int Rep. 2017;2(3):442–50.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tangri N, Hougen I, Alam A, Perrone R, McFarlane P, Pei Y. Total kidney volume as a biomarker of disease progression in autosomal dominant polycystic kidney disease. Can J Kidney Health Dis. 2017;4:2054358117693355.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fogo AB. Mechanisms of progression of chronic kidney disease. Pediatr Nephrol. 2007;22(12):2011–22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li A, Yuan G, Hu Y, Shen Y, Hu X, Hu D, et al. Renal functional and interstitial fibrotic assessment with non-Gaussian diffusion kurtosis imaging. Insights Imaging. 2022;13(1):70.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jellis CL, Kwon DH. Myocardial T1 mapping: modalities and clinical applications. Cardiovasc Diagn Ther. 2014;4(2):126–37.

    PubMed  PubMed Central  Google Scholar 

  33. Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008;52(19):1574–80.

    Article  PubMed  Google Scholar 

  34. Hoad CL, Palaniyappan N, Kaye P, Chernova Y, James MW, Costigan C, et al. A study of T(1) relaxation time as a measure of liver fibrosis and the influence of confounding histological factors. NMR Biomed. 2015;28(6):706–14.

    Article  CAS  PubMed  Google Scholar 

  35. Hueper K, Peperhove M, Rong S, Gerstenberg J, Mengel M, Meier M, et al. T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice. Eur Radiol. 2014;24(9):2252–60.

    Article  PubMed  Google Scholar 

  36. Breidthardt T, Cox EF, Squire I, Odudu A, Omar NF, Eldehni MT, et al. The pathophysiology of the chronic cardiorenal syndrome: a magnetic resonance imaging study. Eur Radiol. 2015;25(6):1684–91.

    Article  PubMed  Google Scholar 

  37. Wu J, Shi Z, Zhang Y, Yan J, Shang F, Wang Y, et al. Native T1 mapping in assessing kidney fibrosis for patients with chronic glomerulonephritis. Front Med (Lausanne). 2021;8:772326.

    Article  PubMed  Google Scholar 

  38. European Society of Radiology (ESR). Magnetic resonance fingerprinting—a promising new approach to obtain standardized imaging biomarkers from MRI. Insights Imaging. 2015;6(2):163–5.

    Article  Google Scholar 

  39. Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med. 1989;10(1):135–44.

    Article  CAS  PubMed  Google Scholar 

  40. Wang F, Jiang R, Takahashi K, Gore J, Harris RC, Takahashi T, et al. Longitudinal assessment of mouse renal injury using high-resolution anatomic and magnetization transfer MR imaging. Magn Reson Imaging. 2014;32(9):1125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang F, Katagiri D, Li K, Takahashi K, Wang S, Nagasaka S, et al. Assessment of renal fibrosis in murine diabetic nephropathy using quantitative magnetization transfer MRI. Magn Reson Med. 2018;80(6):2655–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR Biomed. 2017;30(4):e3569.

    Article  Google Scholar 

  43. Xie L, Sparks MA, Li W, Qi Y, Liu C, Coffman TM, et al. Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice. NMR Biomed. 2013;26(12):1853–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bechler E, Stabinska J, Thiel T, Jasse J, Zukovs R, Valentin B, et al. Feasibility of quantitative susceptibility mapping (QSM) of the human kidney. MAGMA. 2021;34(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Yu Y, Liu X, Tang X, Xu F, Zhang M, et al. Evaluation of renal fibrosis by mapping histology and magnetic resonance imaging. Kidney Dis (Basel). 2021;7(2):131–42.

    Article  PubMed  Google Scholar 

  46. Fine LOC, Norman JT. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl. 1998;65:74–8.

    Google Scholar 

  47. Venkatachalam MA, Griffin KA, Lan RP, Geng H, Saikumar P, Bidani AK. Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol. 2010;298(5):F1078–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neugarten J, Golestaneh L. Blood oxygenation level-dependent MRI for assessment of renal oxygenation. Int J Nephrol Renov Dis. 2014;7:421–35.

    Article  Google Scholar 

  49. Pruijm M, Hofmann L, Piskunowicz M, Muller ME, Zweiacker C, Bassi I, et al. Determinants of renal tissue oxygenation as measured with BOLD-MRI in chronic kidney disease and hypertension in humans. PLoS One. 2014;9(4):e95895.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang JL, Morrell G, Rusinek H, Sigmund EE, Chandarana H, Lerman LO, et al. New magnetic resonance imaging methods in nephrology. Kidney Int. 2014;85(4):768–78.

    Article  PubMed  Google Scholar 

  51. Michaely HJ, Metzger L, Haneder S, Hansmann J, Schoenberg SO, Attenberger UI. Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int. 2012;81(7):684–9.

    Article  CAS  PubMed  Google Scholar 

  52. Pruijm M, Mendichovszky IA, Liss P, Van der Niepen P, Textor SC, Lerman LO, et al. Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol Dial Transplant. 2018;33(suppl_2):ii22–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li LP, Milani B, Pruijm M, Kohn O, Sprague S, Hack B, et al. Renal BOLD MRI in patients with chronic kidney disease: comparison of the semi-automated twelve layer concentric objects (TLCO) and manual ROI methods. MAGMA. 2020;33(1):113–20.

    Article  PubMed  Google Scholar 

  54. Cox EF, Buchanan CE, Bradley CR, Prestwich B, Mahmoud H, Taal M, et al. Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease. Front Physiol. 2017;8:696.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Piskunowicz M, Hofmann L, Zuercher E, Bassi I, Milani B, Stuber M, et al. A new technique with high reproducibility to estimate renal oxygenation using BOLD-MRI in chronic kidney disease. Magn Reson Imaging. 2015;33(3):253–61.

    Article  PubMed  Google Scholar 

  56. Liu P, Xu F, Lu H. Test-retest reproducibility of a rapid method to measure brain oxygen metabolism. Magn Reson Med. 2013;69(3):675–81.

    Article  CAS  PubMed  Google Scholar 

  57. Wang C, Zhang R, Jiang L, Wang R, Zhang X, Wang H, et al. MRI-based evaluation of renal oxygenation under the influence of carbogen breathing. ISMRM conference; May 2016; Singapore. 2016.

    Google Scholar 

  58. Liss P, Cox EF, Eckerbom P, Francis ST. Imaging of intrarenal haemodynamics and oxygen metabolism. Clin Exp Pharmacol Physiol. 2013;40(2):158–67.

    Article  CAS  PubMed  Google Scholar 

  59. Hueper K, Gutberlet M, Rong S, Hartung D, Mengel M, Lu X, et al. Acute kidney injury: arterial spin labeling to monitor renal perfusion impairment in mice-comparison with histopathologic results and renal function. Radiology. 2014;270(1):117–24.

    Article  PubMed  Google Scholar 

  60. Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, et al. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant. 2018;33(suppl_2):ii15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mora-Gutierrez JM, Garcia-Fernandez N, Slon Roblero MF, Paramo JA, Escalada FJ, Wang DJ, et al. Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging. 2017;46(6):1810–7.

    Article  PubMed  Google Scholar 

  62. Rossi C, Artunc F, Martirosian P, Schlemmer HP, Schick F, Boss A. Histogram analysis of renal arterial spin labeling perfusion data reveals differences between volunteers and patients with mild chronic kidney disease. Invest Radiol. 2012;47(8):490–6.

    Article  PubMed  Google Scholar 

  63. Tan H, Koktzoglou I, Prasad PV. Renal perfusion imaging with two-dimensional navigator gated arterial spin labeling. Magn Reson Med. 2014;71(2):570–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Buchanan CE, Mahmoud H, Cox EF, McCulloch T, Prestwich BL, Taal MW, et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrol Dial Transplant. 2020;35(6):955–64.

    Article  PubMed  Google Scholar 

  65. Dong J, Yang L, Su T, Yang X, Chen B, Zhang J, et al. Quantitative assessment of acute kidney injury by noninvasive arterial spin labeling perfusion MRI: a pilot study. Sci China Life Sci. 2013;56(8):745–50.

    Article  PubMed  Google Scholar 

  66. Buchanan C, Mahmoud H, Cox E, Noble R, Prestwich B, Kasmi I, et al. Multiparametric MRI assessment of renal structure and function in acute kidney injury and renal recovery. Clin Kidney J. 2021;14(8):1969–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Heusch P, Wittsack HJ, Blondin D, Ljimani A, Nguyen-Quang M, Martirosian P, et al. Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging. 2014;40(1):84–9.

    Article  PubMed  Google Scholar 

  68. Tao Ren C-LW, Chen L-H, Xie S-S, Cheng Y, Fu Y-X, Oesingmann N, de Oliveira A, Zuo P-L, Yin J-Z, Xia S, Shen W. Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. Magn Reson Imaging. 2016;34:908–14.

    Article  PubMed  Google Scholar 

  69. Zollner FG, Zimmer F, Klotz S, Hoeger S, Schad LR. Functional imaging of acute kidney injury at 3 tesla: investigating multiple parameters using DCE-MRI and a two-compartment filtration model. Z Med Phys. 2015;25(1):58–65.

    Article  PubMed  Google Scholar 

  70. Woodard T, Sigurdsson S, Gotal JD, Torjesen AA, Inker LA, Aspelund T, et al. Segmental kidney volumes measured by dynamic contrast-enhanced magnetic resonance imaging and their association with CKD in older people. Am J Kidney Dis. 2015;65(1):41–8.

    Article  PubMed  Google Scholar 

  71. Sugiyama K, Inoue T, Kozawa E, Ishikawa M, Shimada A, Kobayashi N, et al. Reduced oxygenation but not fibrosis defined by functional magnetic resonance imaging predicts the long-term progression of chronic kidney disease. Nephrol Dial Transplant. 2020;35(6):964–70.

    Article  CAS  PubMed  Google Scholar 

  72. Marticorena Garcia SR, Grossmann M, Bruns A, Durr M, Tzschatzsch H, Hamm B, et al. Tomoelastography paired with T2* magnetic resonance imaging detects lupus nephritis with normal renal function. Invest Radiol. 2019;54(2):89–97.

    Article  PubMed  Google Scholar 

  73. Morozov D, Bar L, Sochen N, Cohen Y. Modeling of the diffusion MR signal in calibrated model systems and nerves. NMR Biomed. 2013;26(12):1787–95.

    Article  PubMed  Google Scholar 

  74. de Boer A, Pieters TT, Harteveld AA, Blankestijn PJ, Bos C, Froeling M, et al. Validation of multiparametric MRI by histopathology after nephrectomy: a case study. MAGMA. 2021;34(3):377–87.

    Article  PubMed  Google Scholar 

  75. Bane O, Hectors SJ, Gordic S, Kennedy P, Wagner M, Weiss A, et al. Multiparametric magnetic resonance imaging shows promising results to assess renal transplant dysfunction with fibrosis. Kidney Int. 2020;97(2):414–20.

    Article  CAS  PubMed  Google Scholar 

  76. Dillman JR, Benoit SW, Gandhi DB, Trout AT, Tkach JA, VandenHeuvel K, et al. Multiparametric quantitative renal MRI in children and young adults: comparison between healthy individuals and patients with chronic kidney disease. Abdom Radiol (NY). 2022;47(5):1840–52.

    Article  PubMed  Google Scholar 

  77. Sugiyama S, Yoshida A, Hieshima K, Kurinami N, Jinnouchi K, Tanaka M, et al. Initial acute decline in estimated glomerular filtration rate after sodium-glucose Cotransporter-2 inhibitor in patients with chronic kidney disease. J Clin Med Res. 2020;12(11):724–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu B, Huang C, Fan X, Li F, Zhang J, Song Z, et al. Application of MR imaging features in differentiation of renal changes in patients with stage III type 2 diabetic nephropathy and normal subjects. Front Endocrinol (Lausanne). 2022;13:846407.

    Article  PubMed  Google Scholar 

  79. Li XS, Zhang QJ, Zhu J, Zhou QQ, Yu YS, Hu ZC, et al. Assessment of kidney function in chronic kidney disease by combining diffusion tensor imaging and total kidney volume. Int Urol Nephrol. 2022;54(2):385–93.

    Article  CAS  PubMed  Google Scholar 

  80. Lang ST, Guo J, Bruns A, Durr M, Braun J, Hamm B, et al. Multiparametric quantitative MRI for the detection of IgA nephropathy using tomoelastography, DWI, and BOLD imaging. Invest Radiol. 2019;54(10):669–74.

    Article  CAS  PubMed  Google Scholar 

  81. MacAskill CJ, Erokwu BO, Markley M, Parsons A, Farr S, Zhang Y, et al. Multi-parametric MRI of kidney disease progression for autosomal recessive polycystic kidney disease: mouse model and initial patient results. Pediatr Res. 2021;89(1):157–62.

    Article  PubMed  Google Scholar 

  82. Zhang J, Zhang LJ. Functional MRI as a tool for evaluating interstitial fibrosis and prognosis in kidney disease. Kidney Dis (Basel). 2020;6(1):7–12.

    Article  PubMed  Google Scholar 

  83. Han Q, Lu Y, Wang D, Zhao Y, Li X, Mei N, et al. Assessment of dynamic hepatic and renal imaging changes in COVID-19 survivors using T1 mapping and IVIM-DWI. Abdom Radiol (NY). 2022;47(5):1817–27.

    Article  PubMed  Google Scholar 

  84. Dennis A, Wamil M, Alberts J, Oben J, Cuthbertson DJ, Wootton D, et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open. 2021;11(3):e048391.

    Article  PubMed  Google Scholar 

  85. Raman B, Cassar MP, Tunnicliffe EM, Filippini N, Griffanti L, Alfaro-Almagro F, et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine. 2021;31:100683.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Inoue T, Kozawa E, Ishikawa M, Fukaya D, Amano H, Watanabe Y, et al. Comparison of multiparametric magnetic resonance imaging sequences with laboratory parameters for prognosticating renal function in chronic kidney disease. Sci Rep. 2021;11(1):22129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Srivastava A, Cai X, Lee J, Li W, Larive B, Kendrick C, et al. Kidney functional magnetic resonance imaging and change in eGFR in individuals with CKD. Clin J Am Soc Nephrol. 2020;15(6):776–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kolhe NV, Fluck RJ, Selby NM, Taal MW. Acute kidney injury associated with COVID-19: a retrospective cohort study. PLoS Med. 2020;17(10):e1003406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cox E, Luther T, Eckerbom P, Weis J, Palm F, Frithiof R, et al., editors. Inflammation and reduced cortical perfusion in kidneys of critically ill Covid-19 patients. International Society for Magnetic Resonance in Medicine; 2022.

    Google Scholar 

  90. Hultström M, Lipcsey M, Wallin E, Larsson IM, Larsson A, Frithiof R. Severe acute kidney injury associated with progression of chronic kidney disease after critical COVID-19. Crit Care. 2021;25(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  91. van der Hoek S, Stevens J. Current use and complementary value of combining in vivo imaging modalities to understand the renoprotective effects of sodium-glucose cotransporter-2 inhibitors at a tissue level. Front Pharmacol. 2022;13:837993.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zanchi A, Burnier M, Muller ME, Ghajarzadeh-Wurzner A, Maillard M, Loncle N, et al. Acute and chronic effects of SGLT2 inhibitor Empagliflozin on renal oxygenation and blood pressure control in nondiabetic normotensive subjects: a randomized, placebo-controlled trial. J Am Heart Assoc. 2020;9(13):e016173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. de Boer A, Harteveld AA, Stemkens B, Blankestijn PJ, Bos C, Franklin SL, et al. Multiparametric renal MRI: an intrasubject test-retest repeatability study. J Magn Reson Imaging. 2021;53(3):859–73.

    Article  PubMed  Google Scholar 

  94. Gooding KM, Lienczewski C, Papale M, Koivuviita N, Maziarz M, Dutius Andersson AM, et al. Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol. BMC Nephrol. 2020;21(1):242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Francis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Francis, S. (2023). Quantitative MRI of the Kidneys: Rationale and Challenges. In: Serai, S.D., Darge, K. (eds) Advanced Clinical MRI of the Kidney. Springer, Cham. https://doi.org/10.1007/978-3-031-40169-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40169-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40168-8

  • Online ISBN: 978-3-031-40169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics