Skip to main content

T1ρ Mapping and Its Applications for Assessment of Renal Fibrosis

  • Chapter
  • First Online:
Advanced Clinical MRI of the Kidney
  • 304 Accesses

Abstract

In renal MRI, measurement of the spin-lattice relaxation time of water molecules in the rotating frame (T1ρ) may provide a valuable biomarker for kidney fibrosis. Due to the sensitivity of T1ρ to the interactions of free water molecules to macromolecules such as collagen, there is substantial interest in mapping T1ρ for noninvasive imaging of renal fibrosis, which is accompanied by collagen deposition. Unlike other MRI-based markers of tissue fibrosis, T1ρ is not affected by blood flow, perfusion, or inflammation, which enhances its attractiveness as a noninvasive and specific biomarker of kidney fibrosis. In this chapter, we will discuss the physical principles of T1ρ mapping, different pulse sequence implementations, data acquisition and analysis methods, followed by an overview of emerging applications of T1ρ imaging of kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Redfield AG. Nuclear magnetic resonance saturation and rotary saturation in solids. Phys Rev. 1955;98(6):1787–809.

    Article  CAS  Google Scholar 

  2. Look DC, Lowe IJ. Nuclear magnetic dipole—dipole relaxation along the static and rotating magnetic fields: application to gypsum. J Chem Phys. 1966;44(8):2995–3000.

    Article  CAS  Google Scholar 

  3. Hartmann SR, Hahn EL. Nuclear double resonance in the rotating frame. Phys Rev. 1962;128(5):2042–53.

    Article  CAS  Google Scholar 

  4. Santyr GE, Henkelman RM, Bronskill MJ. Spin locking for magnetic resonance imaging with application to human breast. Magn Reson Med. 1989;12(1):25–37.

    Article  CAS  PubMed  Google Scholar 

  5. Wang L, Regatte RR. T1ρ MRI of human musculoskeletal system. J Magn Reson Imaging. 2015;41(3):586–600.

    Article  PubMed  Google Scholar 

  6. Hectors SJ, et al. Splenic T1rho as a noninvasive biomarker for portal hypertension. J Magn Reson Imaging. 2020;52(3):787–94.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rauscher I, et al. Evaluation of T1rho as a potential MR biomarker for liver cirrhosis: comparison of healthy control subjects and patients with liver cirrhosis. Eur J Radiol. 2014;83(6):900–4.

    Article  PubMed  Google Scholar 

  8. van Oorschot JW, et al. Endogenous assessment of diffuse myocardial fibrosis in patients with T1rho - mapping. J Magn Reson Imaging. 2017;45(1):132–8.

    Google Scholar 

  9. Hectors SJ, et al. T1rho mapping for assessment of renal allograft fibrosis. J Magn Reson Imaging. 2019;50(4):1085–91.

    Article  PubMed  Google Scholar 

  10. Hu G, et al. Comparison of T1 mapping and T1rho values with conventional diffusion-weighted imaging to assess fibrosis in a rat model of unilateral ureteral obstruction. Acad Radiol. 2019;26(1):22–9.

    Article  PubMed  Google Scholar 

  11. Rapacchi S, et al. Towards the identification of multi-parametric quantitative MRI biomarkers in lupus nephritis. Magn Reson Imaging. 2015;33(9):1066–74.

    Article  PubMed  Google Scholar 

  12. He X, et al. Estimation of single-kidney glomerular filtration rate without exogenous contrast agent. Magn Reson Med. 2014;71(1):257–66.

    Article  PubMed  Google Scholar 

  13. Wheaton AJ, et al. In vivo quantification of T1rho using a multislice spin-lock pulse sequence. Magn Reson Med. 2004;52(6):1453–8.

    Article  PubMed  Google Scholar 

  14. Chen W. Errors in quantitative T1rho imaging and the correction methods. Quant Imaging Med Surg. 2015;5(4):583–91.

    PubMed  PubMed Central  Google Scholar 

  15. Witschey WR 2nd, et al. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. J Magn Reson. 2007;186(1):75–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mitrea BG, et al. Paired self-compensated spin-lock preparation for improved T1ρ quantification. J Magn Reson. 2016;268:49–57.

    Article  CAS  PubMed  Google Scholar 

  17. Wang F, et al. Spin-lock relaxation rate dispersion reveals spatiotemporal changes associated with tubulointerstitial fibrosis in murine kidney. Magn Reson Med. 2020;84(4):2074–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chopra S, McClung RED, Jordan RB. Rotating-frame relaxation rates of solvent molecules in solutions of paramagnetic ions undergoing solvent exchange. J Magn Reson. 1984;59(3):361–72.

    CAS  Google Scholar 

  19. Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010;6(11):643–56.

    Article  PubMed  Google Scholar 

  20. Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant. 2015;15(4):863–86.

    Article  CAS  PubMed  Google Scholar 

  21. Nicholson ML, et al. Early measurement of interstitial fibrosis predicts long-term renal function and graft survival in renal transplantation. Br J Surg. 1996;83(8):1082–5.

    Article  CAS  PubMed  Google Scholar 

  22. Nankivell BJ, et al. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349(24):2326–33.

    Article  CAS  PubMed  Google Scholar 

  23. Srivastava A, et al. The prognostic value of histopathologic lesions in native kidney biopsy specimens: results from the Boston kidney biopsy cohort study. J Am Soc Nephrol. 2018;29(8):2213–24.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Centers for Disease Control and Prevention. Chronic kidney disease in the United States, 2021. 2021.

    Google Scholar 

  25. Khan H, et al. Prevalence and risk factors for early chronic allograft nephropathy in a live related renal transplant program. J Nephropathol. 2014;3(2):69–79.

    PubMed  PubMed Central  Google Scholar 

  26. Ishida H, et al. Preventive effect of early introduction of everolimus and reduced-exposure tacrolimus on renal interstitial fibrosis in de novo living-donor renal transplant recipients. Clin Exp Nephrol. 2019;24:288.

    Article  Google Scholar 

  27. Lv W, et al. Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol. 2018;820:65–76.

    Article  CAS  PubMed  Google Scholar 

  28. Korbet SM, Volpini KC, Whittier WL. Percutaneous renal biopsy of native kidneys: a single-center experience of 1,055 biopsies. Am J Nephrol. 2014;39(2):153–62.

    Article  PubMed  Google Scholar 

  29. Furness PN, et al. Protocol biopsy of the stable renal transplant: a multicenter study of methods and complication rates. Transplantation. 2003;76(6):969–73.

    Article  PubMed  Google Scholar 

  30. Elshafie M, Furness PN. Identification of lesions indicating rejection in kidney transplant biopsies: tubulitis is severely under-detected by conventional microscopy. Nephrol Dial Transplant. 2012;27(3):1252–5.

    Article  PubMed  Google Scholar 

  31. Wang YX, et al. T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary duct ligation model. Radiology. 2011;259(3):712–9.

    Article  PubMed  Google Scholar 

  32. Serai SD. Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging. Pediatr Radiol. 2021;52:217.

    Article  PubMed  Google Scholar 

  33. Allkemper T, et al. Evaluation of fibrotic liver disease with whole-liver T1rho MR imaging: a feasibility study at 1.5 T. Radiology. 2014;271(2):408–15.

    Article  PubMed  Google Scholar 

  34. Hectors SJ, et al. T1rho mapping for assessment of renal allograft fibrosis. J Magn Reson Imaging. 2019;50:1085.

    Article  PubMed  Google Scholar 

  35. Singh A, et al. T1rho MRI of healthy and fibrotic human livers at 1.5 T. J Transl Med. 2015;13:292.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nankivell BJ, et al. The causes, significance and consequences of inflammatory fibrosis in kidney transplantation: the Banff i-IFTA lesion. Am J Transplant. 2018;18(2):364–76.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao F, et al. MR T1rho as an imaging biomarker for monitoring liver injury progression and regression: an experimental study in rats with carbon tetrachloride intoxication. Eur Radiol. 2012;22(8):1709–16.

    Article  PubMed  Google Scholar 

  38. Zhao F, et al. Collagen deposition in the liver is strongly and positively associated with T1rho elongation while fat deposition is associated with T1rho shortening: an experimental study of methionine and choline-deficient (MCD) diet rat model. Quant Imaging Med Surg. 2020;10(12):2307–21.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Friedli I, et al. New magnetic resonance imaging index for renal fibrosis assessment: a comparison between diffusion-weighted imaging and T1 mapping with histological validation. Sci Rep. 2016;6:30088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee CU, et al. MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol. 2012;19(7):834–41.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marticorena Garcia SR, et al. Multifrequency magnetic resonance elastography for the assessment of renal allograft function. Invest Radiol. 2016;51(9):591–5.

    Article  PubMed  Google Scholar 

  42. Streitberger KJ, et al. High-resolution mechanical imaging of the kidney. J Biomech. 2014;47(3):639–44.

    Article  PubMed  Google Scholar 

  43. Gennisson JL, et al. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol. 2012;38(9):1559–67.

    Article  PubMed  Google Scholar 

  44. Leung G, et al. Could MRI be used to image kidney fibrosis? A review of recent advances and remaining barriers. Clin J Am Soc Nephrol. 2017;12(6):1019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the Preclinical PET Imaging Facility and Biomedical Magnetic Resonance Center at Washington University School of Medicine in St. Louis. This work was supported by National Institutes of Health (NIH) Grants R01DK110622, R01DK111861, R01DK129888, and R41DK129138. E. J. Baldelomar also received support by NIH Grant TL1TR002344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavia Bane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bane, O., Lewis, S. (2023). T1ρ Mapping and Its Applications for Assessment of Renal Fibrosis. In: Serai, S.D., Darge, K. (eds) Advanced Clinical MRI of the Kidney. Springer, Cham. https://doi.org/10.1007/978-3-031-40169-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40169-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40168-8

  • Online ISBN: 978-3-031-40169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics