Skip to main content

Pancreatic Islet Adaptation and Failure in Obesity

  • Reference work entry
  • First Online:
Metabolic Syndrome

Abstract

Type 2 diabetes is the major comorbidity associated with metabolic syndrome and compromises health and quality of life for those incurred the disease. Metabolic syndrome is considered to increase the risk of type 2 diabetes by causing insulin resistance and increasing the influx of nutrition to pancreatic islets. This chapter summarizes evidence indicating that the adaptability of pancreatic islets to insulin resistance is critical to prevent the development of type 2 diabetes and describes how pancreatic islets transition from adaptive to maladaptive status during the development of type 2 diabetes. In brief, pancreatic islets increase the efficiency of insulin secretion and beta cell mass to meet increased demand from insulin resistance. Functional adaptation occurs early and is robust compared with a mild increase in beta cell mass. However, functional adaptation to increase insulin output itself contributes to beta cell dysfunction if prolonged. In addition, nutritional load (gluco-, glucolipotoxicity) and signals from other tissues affected by metabolic syndrome activate stress responses in pancreatic islets. Evidence indicates the presence of multiple stress and maladaptive responses in human islets affected by type 2 diabetes (e.g., ER stress, mitochondrial dysfunction, oxidative stress, inflammation, amyloid deposition, and autophagy dysfunction). Expansion of beta cell mass compensates for beta cell dysfunction, but beta cell mass declines when stress continues leading to overt hyperglycemia and type 2 diabetes. Glucagon secretion is also dysregulated in metabolic syndrome and type 2 diabetes. However, it is currently unclear how the alteration in glucagon modifies pathogenesis of type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hart NJ, Powers AC. Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions. Diabetologia. 2019;62(2):212–22.

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez-Diaz R, Molano RD, Weitz JR, Abdulreda MH, Berman DM, Leibiger B, et al. Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metab. 2018;27(3):549–58. e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46(1):3–19.

    Article  CAS  PubMed  Google Scholar 

  4. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104(6):787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rai V, Quang DX, Erdos MR, Cusanovich DA, Daza RM, Narisu N, et al. Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures. Mol Metab. 2020;32:109–21.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson JD. On the causal relationships between hyperinsulinaemia, insulin resistance, obesity and dysglycaemia in type 2 diabetes. Diabetologia. 2021;64(10):2138–46.

    Article  CAS  PubMed  Google Scholar 

  7. Page MM, Johnson JD. Mild suppression of hyperinsulinemia to treat obesity and insulin resistance. Trends Endocrinol Metab. 2018;29(6):389–99.

    Article  CAS  PubMed  Google Scholar 

  8. Esser N, Utzschneider KM, Kahn SE. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia. 2020;63(10):2007–21.

    Article  PubMed  Google Scholar 

  9. Koh HE, Cao C, Mittendorfer B. Insulin clearance in obesity and type 2 diabetes. Int J Mol Sci. 2022;23(2):596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab. 2017;6(9):943–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen C, Chmelova H, Cohrs CM, Chouinard JA, Jahn SR, Stertmann J, et al. Alterations in beta-cell calcium dynamics and efficacy outweigh islet mass adaptation in compensation of insulin resistance and prediabetes onset. Diabetes. 2016;65(9):2676–85.

    Article  CAS  PubMed  Google Scholar 

  12. Henquin JC. Influence of organ donor attributes and preparation characteristics on the dynamics of insulin secretion in isolated human islets. Physiol Rep. 2018;6(5):e13646.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weir GC, Butler PC, Bonner-Weir S. The beta-cell glucose toxicity hypothesis: attractive but difficult to prove. Metabolism. 2021;124:154870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holman RR, Clark A, Rorsman P. beta-cell secretory dysfunction: a key cause of type 2 diabetes. Lancet Diabetes Endocrinol. 2020;8(5):370.

    Article  PubMed  Google Scholar 

  15. Prentki M, Matschinsky FM, Madiraju SR. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013;18(2):162–85.

    Article  CAS  PubMed  Google Scholar 

  16. Matschinsky FM. Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes. 2002;51(Suppl 3):S394–404.

    Article  CAS  PubMed  Google Scholar 

  17. Haythorne E, Lloyd M, Walsby-Tickle J, Tarasov AI, Sandbrink J, Portillo I, et al. Altered glycolysis triggers impaired mitochondrial metabolism and mTORC1 activation in diabetic beta-cells. Nat Commun. 2022;13(1):6754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Merrins MJ, Corkey BE, Kibbey RG, Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metab. 2022;34(7):947–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalwat MA, Scheuner D, Rodrigues-Dos-Santos K, Eizirik DL, Cobb MH. The pancreatic ss-cell response to secretory demands and adaption to stress. Endocrinology. 2021;162(11):bqab173.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boland BB, Rhodes CJ, Grimsby JS. The dynamic plasticity of insulin production in beta-cells. Mol Metab. 2017;6(9):958–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alarcon C, Wicksteed B, Rhodes CJ. Exendin 4 controls insulin production in rat islet beta cells predominantly by potentiation of glucose-stimulated proinsulin biosynthesis at the translational level. Diabetologia. 2006;49(12):2920–9.

    Article  CAS  PubMed  Google Scholar 

  22. Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient regulation of pancreatic islet beta-cell secretory capacity and insulin production. Biomol Ther. 2022;12(2):335.

    CAS  Google Scholar 

  23. Kreutzberger AJB, Kiessling V, Doyle CA, Schenk N, Upchurch CM, Elmer-Dixon M, et al. Distinct insulin granule subpopulations implicated in the secretory pathology of diabetes types 1 and 2. elife. 2020;9:e62506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weir GC, Laybutt DR, Kaneto H, Bonner-Weir S, Sharma A. Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes. 2001;50(Suppl 1):S154–9.

    Article  CAS  PubMed  Google Scholar 

  25. Irles E, Neco P, Lluesma M, Villar-Pazos S, Santos-Silva JC, Vettorazzi JF, et al. Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes. Mol Cell Endocrinol. 2015;404:46–55.

    Article  CAS  PubMed  Google Scholar 

  26. Glynn E, Thompson B, Vadrevu S, Lu S, Kennedy RT, Ha J, et al. Chronic glucose exposure systematically shifts the oscillatory threshold of mouse islets: experimental evidence for an early intrinsic mechanism of compensation for hyperglycemia. Endocrinology. 2016;157(2):611–23.

    Article  CAS  PubMed  Google Scholar 

  27. Liu YQ, Jetton TL, Leahy JL. beta-Cell adaptation to insulin resistance. Increased pyruvate carboxylase and malate-pyruvate shuttle activity in islets of nondiabetic Zucker fatty rats. J Biol Chem. 2002;277(42):39163–8.

    Article  CAS  PubMed  Google Scholar 

  28. Liu YQ, Tornheim K, Leahy JL. Fatty acid-induced beta cell hypersensitivity to glucose. Increased phosphofructokinase activity and lowered glucose-6-phosphate content. J Clin Invest. 1998;101(9):1870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gupta D, Jetton TL, LaRock K, Monga N, Satish B, Lausier J, et al. Temporal characterization of beta cell-adaptive and -maladaptive mechanisms during chronic high-fat feeding in C57BL/6NTac mice. J Biol Chem. 2017;292(30):12449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gonzalez A, Merino B, Marroqui L, Neco P, Alonso-Magdalena P, Caballero-Garrido E, et al. Insulin hypersecretion in islets from diet-induced hyperinsulinemic obese female mice is associated with several functional adaptations in individual beta-cells. Endocrinology. 2013;154(10):3515–24.

    Article  CAS  PubMed  Google Scholar 

  31. Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Meneur C, Bernal-Mizrachi E. Natural history of beta-cell adaptation and failure in type 2 diabetes. Mol Asp Med. 2015;42:19–41.

    Article  CAS  Google Scholar 

  32. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429(6987):41–6.

    Article  CAS  PubMed  Google Scholar 

  33. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell. 2007;12(5):817–26.

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki H, Saisho Y, Inaishi J, Itoh H. Revisiting regulators of human beta-cell mass to achieve beta-cell-centric approach toward type 2 diabetes. J Endocr Soc. 2021;5(10):bvab128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mezza T, Muscogiuri G, Sorice GP, Clemente G, Hu J, Pontecorvi A, et al. Insulin resistance alters islet morphology in nondiabetic humans. Diabetes. 2014;63(3):994–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shirakawa J, Togashi Y, Basile G, Okuyama T, Inoue R, Fernandez M, et al. E2F1 transcription factor mediates a link between fat and islets to promote beta cell proliferation in response to acute insulin resistance. Cell Rep. 2022;41(1):111436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shirakawa J, Tajima K, Okuyama T, Kyohara M, Togashi Y, De Jesus DF, et al. Luseogliflozin increases beta cell proliferation through humoral factors that activate an insulin receptor- and IGF-1 receptor-independent pathway. Diabetologia. 2020;63(3):577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. El Ouaamari A, Dirice E, Gedeon N, Hu J, Zhou JY, Shirakawa J, et al. SerpinB1 promotes pancreatic beta cell proliferation. Cell Metab. 2016;23(1):194–205.

    Article  PubMed  Google Scholar 

  39. Bonner-Weir S, Deery D, Leahy JL, Weir GC. Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes. 1989;38(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  40. Porat S, Weinberg-Corem N, Tornovsky-Babaey S, Schyr-Ben-Haroush R, Hija A, Stolovich-Rain M, et al. Control of pancreatic beta cell regeneration by glucose metabolism. Cell Metab. 2011;13(4):440–9.

    Article  CAS  PubMed  Google Scholar 

  41. Kassem S, Bhandari S, Rodriguez-Bada P, Motaghedi R, Heyman M, Garcia-Gimeno MA, et al. Large islets, beta-cell proliferation, and a glucokinase mutation. N Engl J Med. 2010;362(14):1348–50.

    Article  CAS  PubMed  Google Scholar 

  42. Moulle VS, Ghislain J, Poitout V. Nutrient regulation of pancreatic beta-cell proliferation. Biochimie. 2017;143:10–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Katz LS, Brill G, Zhang P, Kumar A, Baumel-Alterzon S, Honig LB, et al. Maladaptive positive feedback production of ChREBPbeta underlies glucotoxic beta-cell failure. Nat Commun. 2022;13(1):4423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Imai Y, Cousins RS, Liu S, Phelps BM, Promes JA. Connecting pancreatic islet lipid metabolism with insulin secretion and the development of type 2 diabetes. Ann N Y Acad Sci. 2020;1461(1):53–72.

    Article  CAS  PubMed  Google Scholar 

  45. Moulle VS, Vivot K, Tremblay C, Zarrouki B, Ghislain J, Poitout V. Glucose and fatty acids synergistically and reversibly promote beta cell proliferation in rats. Diabetologia. 2017;60(5):879–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Langlois A, Dumond A, Vion J, Pinget M, Bouzakri K. Crosstalk communications between islets cells and insulin target tissue: the hidden face of iceberg. Front Endocrinol (Lausanne). 2022;13:836344.

    Article  PubMed  Google Scholar 

  47. Evans RM, Wei Z. Interorgan crosstalk in pancreatic islet function and pathology. FEBS Lett. 2022;596(5):607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gomez-Banoy N, Guseh JS, Li G, Rubio-Navarro A, Chen T, Poirier B, et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nat Med. 2019;25(11):1739–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao H, Luo Z, Jin Z, Ji Y, Ying W. Adipose tissue macrophages modulate obesity-associated beta cell adaptations through secreted miRNA-containing extracellular vesicles. Cell. 2021;10(9):2451.

    Article  CAS  Google Scholar 

  50. Fernandez-Millan E, Guillen C. Multi-organ crosstalk with endocrine pancreas: a focus on how gut microbiota shapes pancreatic beta-cells. Biomol Ther. 2022;12(1):104.

    CAS  Google Scholar 

  51. Butcher MJ, Hallinger D, Garcia E, Machida Y, Chakrabarti S, Nadler J, et al. Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia. 2014;57(3):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mezza T, Ferraro PM, Di Giuseppe G, Moffa S, Cefalo CM, Cinti F, et al. Pancreaticoduodenectomy model demonstrates a fundamental role of dysfunctional beta cells in predicting diabetes. J Clin Invest. 2021;131(12):e146788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Pettiti M, Natali A, et al. Predominant role of reduced beta-cell sensitivity to glucose over insulin resistance in impaired glucose tolerance. Diabetologia. 2003;46(9):1211–9.

    Article  CAS  PubMed  Google Scholar 

  54. Cohrs CM, Panzer JK, Drotar DM, Enos SJ, Kipke N, Chen C, et al. Dysfunction of persisting beta cells is a key feature of early type 2 diabetes pathogenesis. Cell Rep. 2020;31(1):107469.

    Article  CAS  PubMed  Google Scholar 

  55. Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell. 2012;150(6):1223–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Amo-Shiinoki K, Tanabe K, Hoshii Y, Matsui H, Harano R, Fukuda T, et al. Islet cell dedifferentiation is a pathologic mechanism of long-standing progression of type 2 diabetes. JCI Insight. 2021;6(1):e143791.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Eizirik DL, Pasquali L, Cnop M. Pancreatic beta-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 2020;16(7):349–62.

    Article  CAS  PubMed  Google Scholar 

  58. Spijker HS, Song H, Ellenbroek JH, Roefs MM, Engelse MA, Bos E, et al. Loss of beta-cell identity occurs in type 2 diabetes and is associated with islet amyloid deposits. Diabetes. 2015;64(8):2928–38.

    Article  CAS  PubMed  Google Scholar 

  59. Chen CW, Guan BJ, Alzahrani MR, Gao Z, Gao L, Bracey S, et al. Adaptation to chronic ER stress enforces pancreatic beta-cell plasticity. Nat Commun. 2022;13(1):4621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tesi M, Bugliani M, Ferri G, Suleiman M, De Luca C, Bosi E, et al. Pro-inflammatory cytokines induce insulin and glucagon double positive human islet cells that are resistant to apoptosis. Biomol Ther. 2021;11(2):320.

    CAS  Google Scholar 

  61. Wu M, Lee MYY, Bahl V, Traum D, Schug J, Kusmartseva I, et al. Single-cell analysis of the human pancreas in type 2 diabetes using multi-spectral imaging mass cytometry. Cell Rep. 2021;37(5):109919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Imai Y, Dobrian AD, Morris MA, Nadler JL. Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab. 2013;24(7):351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dai C, Kayton NS, Shostak A, Poffenberger G, Cyphert HA, Aramandla R, et al. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets. J Clin Invest. 2016;126(5):1857–70.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wigger L, Barovic M, Brunner AD, Marzetta F, Schoniger E, Mehl F, et al. Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes. Nat Metab. 2021;3(7):1017–31.

    Article  CAS  PubMed  Google Scholar 

  65. Ngara M, Wierup N. Lessons from single-cell RNA sequencing of human islets. Diabetologia. 2022;65(8):1241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Avrahami D, Wang YJ, Schug J, Feleke E, Gao L, Liu C, et al. Single-cell transcriptomics of human islet ontogeny defines the molecular basis of beta-cell dedifferentiation in T2D. Mol Metab. 2020;42:101057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fang Z, Weng C, Li H, Tao R, Mai W, Liu X, et al. Single-cell heterogeneity analysis and CRISPR screen identify key beta-cell-specific disease genes. Cell Rep. 2019;26(11):3132–44. e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Son J, Ding HX, Farb TB, Efanov AM, Sun JJ, Core JL, et al. BACH2 inhibition reverses beta cell failure in type 2 diabetes models. J Clin Investig. 2021;131(24):e153876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nichols CG, York NW, Remedi MS. ATP-sensitive potassium channels in hyperinsulinism and type 2 diabetes: inconvenient paradox or new paradigm? Diabetes. 2022;71(3):367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Merovci A, Tripathy D, Chen X, Valdez I, Abdul-Ghani M, Solis-Herrera C, et al. Effect of mild physiologic hyperglycemia on insulin secretion, insulin clearance, and insulin sensitivity in healthy glucose-tolerant subjects. Diabetes. 2021;70(1):204–13.

    Article  CAS  PubMed  Google Scholar 

  71. Yuan T, Rafizadeh S, Gorrepati KD, Lupse B, Oberholzer J, Maedler K, et al. Reciprocal regulation of mTOR complexes in pancreatic islets from humans with type 2 diabetes. Diabetologia. 2017;60(4):668–78.

    Article  CAS  PubMed  Google Scholar 

  72. Shalev A. Minireview: thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell. Mol Endocrinol. 2014;28(8):1211–20.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gerst F, Jaghutriz BA, Staiger H, Schulte AM, Lorza-Gil E, Kaiser G, et al. The expression of aldolase B in islets is negatively associated with insulin secretion in humans. J Clin Endocrinol Metab. 2018;103(12):4373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Prentki M, Peyot ML, Masiello P, Madiraju SRM. Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic beta-cell. Diabetes. 2020;69(3):279–90.

    Article  CAS  PubMed  Google Scholar 

  75. Weir GC. Glucolipotoxicity, beta-cells, and diabetes: the emperor has no clothes. Diabetes. 2020;69(3):273–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Al-Mrabeh A, Zhyzhneuskaya SV, Peters C, Barnes AC, Melhem S, Jesuthasan A, et al. Hepatic lipoprotein export and remission of human type 2 diabetes after weight loss. Cell Metab. 2020;31(2):233–49. e4

    Article  CAS  PubMed  Google Scholar 

  77. Horii T, Kozawa J, Fujita Y, Kawata S, Ozawa H, Ishibashi C, et al. Lipid droplet accumulation in beta cells in patients with type 2 diabetes is associated with insulin resistance, hyperglycemia and beta cell dysfunction involving decreased insulin granules. Front Endocrinol (Lausanne). 2022;13:996716.

    Article  PubMed  Google Scholar 

  78. Brusco N, Sebastiani G, Di Giuseppe G, Licata G, Grieco GE, Fignani D, et al. Intra-islet insulin synthesis defects are associated with endoplasmic reticulum stress and loss of beta cell identity in human diabetes. Diabetologia. 2023;66(2):354–66.

    Article  CAS  PubMed  Google Scholar 

  79. Xin Y, Dominguez Gutierrez G, Okamoto H, Kim J, Lee AH, Adler C, et al. Pseudotime ordering of single human beta-cells reveals states of insulin production and unfolded protein response. Diabetes. 2018;67(9):1783–94.

    Article  CAS  PubMed  Google Scholar 

  80. Kulkarni A, Muralidharan C, May SC, Tersey SA, Mirmira RG. Inside the beta cell: molecular stress response pathways in diabetes pathogenesis. Endocrinology. 2022;164(1):bqac184.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dodson M, Shakya A, Anandhan A, Chen J, Garcia JGN, Zhang DD. NRF2 and diabetes: the good, the bad, and the complex. Diabetes. 2022;71(12):2463–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Las G, Oliveira MF, Shirihai OS. Emerging roles of beta-cell mitochondria in type-2-diabetes. Mol Asp Med. 2020;71:100843.

    Article  CAS  Google Scholar 

  83. Stiles L, Shirihai OS. Mitochondrial dynamics and morphology in beta-cells. Best Pract Res Clin Endocrinol Metab. 2012;26(6):725–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, et al. Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia. 2005;48(2):282–9.

    Article  CAS  PubMed  Google Scholar 

  85. Aichler M, Borgmann D, Krumsiek J, Buck A, MacDonald PE, Fox JEM, et al. N-acyl taurines and acylcarnitines cause an imbalance in insulin synthesis and secretion provoking beta cell dysfunction in type 2 diabetes. Cell Metab. 2017;25(6):1334–47 e4.

    Article  CAS  PubMed  Google Scholar 

  86. Goldfine AB, Fonseca V, Jablonski KA, Chen YD, Tipton L, Staten MA, et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2013;159(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kataria Y, Ellervik C, Mandrup-Poulsen T. Treatment of type 2 diabetes by targeting interleukin-1: a meta-analysis of 2921 patients. Semin Immunopathol. 2019;41(4):413–25.

    Article  PubMed  Google Scholar 

  88. Gupta D, Leahy JL. Islet amyloid and type 2 diabetes: overproduction or inadequate clearance and detoxification? J Clin Invest. 2014;124(8):3292–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee YH, Kim J, Park K, Lee MS. Beta-cell autophagy: mechanism and role in beta-cell dysfunction. Mol Metab. 2019;27S:S92–S103.

    PubMed  Google Scholar 

  90. Pearson GL, Gingerich MA, Walker EM, Biden TJ, Soleimanpour SA. A selective look at autophagy in pancreatic beta-cells. Diabetes. 2021;70(6):1229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aguayo-Mazzucato C, Andle J, Lee TB Jr, Midha A, Talemal L, Chipashvili V, et al. Acceleration of beta cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 2019;30(1):129–42. e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Montemurro C, Nomoto H, Pei L, Parekh VS, Vongbunyong KE, Vadrevu S, et al. IAPP toxicity activates HIF1alpha/PFKFB3 signaling delaying beta-cell loss at the expense of beta-cell function. Nat Commun. 2019;10(1):2679.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Capozzi ME, D’Alessio DA, Campbell JE. The past, present, and future physiology and pharmacology of glucagon. Cell Metab. 2022;34(11):1654–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Martinez MS, Manzano A, Olivar LC, Nava M, Salazar J, D’Marco L, et al. The role of the alpha cell in the pathogenesis of diabetes: a world beyond the mirror. Int J Mol Sci. 2021;22(17):9504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Omar-Hmeadi M, Lund PE, Gandasi NR, Tengholm A, Barg S. Paracrine control of alpha-cell glucagon exocytosis is compromised in human type-2 diabetes. Nat Commun. 2020;11(1):1896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dai XQ, Camunas-Soler J, Briant LJB, Dos Santos T, Spigelman AF, Walker EM, et al. Heterogenous impairment of alpha cell function in type 2 diabetes is linked to cell maturation state. Cell Metab. 2022;34(2):256–68 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Suleiman M, Marselli L, Cnop M, Eizirik DL, De Luca C, Femia FR, et al. The role of beta cell recovery in type 2 diabetes remission. Int J Mol Sci. 2022;23(13):7435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumi Imai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Imai, Y., El Ladiki, D., Peachee, S.J. (2023). Pancreatic Islet Adaptation and Failure in Obesity. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-031-40116-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40116-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40115-2

  • Online ISBN: 978-3-031-40116-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics