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Abstract Current climate models are known to systematically overestimate the rate
of deep water formation at high latitudes in response to too deep and too frequent
deep convection events. We propose in this study to investigate a misrepresentation
of deep convection in Hydrostatic Primitive Equation (HPE) ocean and climate
models due to the lack of constraints on vertical dynamics. We discuss the potential
of the Location Uncertainty (LU) stochastic representation of geophysical flow
dynamics to help in the process of re-introducing some degree of non-hydrostatic
physics in HPE models through a pressure correction method. We then test our ideas
with idealized Large Eddy Simulations (LES) of buoyancy driven free convection
with the CROCO modeling platform. Preliminary results at LES resolution exhibit
a solution obtained with our Quasi-nonhydrostatic (Q-NH) model that tends toward
the reference non-hydrostatic (NH) model. As compared to a pure hydrostatic
setting, our Q-NH solution exhibits vertical convective plumes with larger horizontal
structure, a better spatial organization and a reduced intensity of their associated
vertical velocities. The simulated Mixed Layer Depth (MLD) deepening rate is
however too slow in our Q-NH experiment as compared to the reference NH, a
behaviour that opposes to that of hydrostatic experiments of producing too fast MLD
deepening rate. These preliminary results are encouraging, and support future efforts
in the direction of enriching coarse resolution, hydrostatic ocean and climate models
with a stochastic representation of non-hydrostatic physics.
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1 Introduction

Deep ocean convection is a crucial mechanism for large scale ocean circulation and
climate. It controls the rate of deep ocean water masses formation, sequestrating
atmospheric properties such as heat and carbon in the abyssal ocean. In the North
Atlantic basin, deep ocean convection in the Labrador Sea and the Nordic Seas
is part of the large scale Atlantic Meridional Overturning Circulation (AMOC),
an oceanic metric with many climate implications (Zhang et al. 2019). Coarse
resolution (i.e. .Δx ∼ O(100) km) climate models are known to overestimate the
rate of deep water formation at high latitudes in response to too deep and too
frequent convective events (Heuzé 2017; 2021), a bias that is expected to worsen
with next generation climate models with ocean components at higher resolution
(Masson-Delmotte et al. 2021). Among other possibilities (e.g. preconditioning,
air-sea interactions), we explore in this paper the possible misrepresentation of
deep ocean convection in current climate models in response to their hydrostatic
formulation.

Ocean modulus of current climate models solve the Hydrostatic Primitive
Equations (HPE), a simplified version of the full Navier-Stokes equations (NS).
Geophysical fluids have specific characteristics that allow some approximations
from the general NS, leading to drastic simplifications in their numerical imple-
mentation which, in turn, allow us to model the global ocean at climate scales (i.e.
for several decades/centuries) with the currently available computational resources.
Among those approximations is the hydrostatic balance which arises from the
relatively thin thickness of the ocean (.H ∼ O(1) km) as compared to the horizontal
extension of its large scale dynamics (.L ∼ O(1000) km for gyres and .L ∼
O(10 − 100) km for ocean mesoscale eddies). The aspect ratio .δ = H

L is thus
orders of magnitude smaller than unity. Scaling the vertical velocity .W = δU ,
with U the typical horizontal velocity of the flow, leads to small contribution of
vertical acceleration as compared to horizontal components. For a regime satisfying
such a scaling, only vertical pressure gradients are able to balance gravitational
acceleration in the vertical component of the NS equations, and the system can be
simplified as:

. ∂tu + ∇ · (uu) − f v = − 1

ρ0
∂xp + Fu + Du, . (1a)

∂tv + ∇ · (uv) + f u = − 1

ρ0
∂yp + Fv + Dv, . (1b)

0 = − 1

ρ0
∂zp − b, (1c)

where .u = (u, v,w) is the three-dimensional velocity field, .f = 2Ωsin(θ) is the
traditional Coriolis pseudo-force, p is pressure, .b = ρ−ρ0

ρ0
g is the buoyancy defined

for Boussinesq fluids (i.e. when density .ρ is replaced by its constant value .ρ0,
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unless multiplied by gravity in which case it is expressed as density anomaly .
ρ−ρ0

ρ0
),

and .F and .D are forcing and dissipative processes, respectively. Equations (1a)–
(1c) are the HPE momentum equations used in current climate models. From a
numerical viewpoint, using HPE instead of general NS or other Non-Hydrostatic
(NH) sets of equation greatly simplifies the procedure as only (1a) and (1b) have
to be stepped forward in time for each discretized ocean layers, while (1c) is
used (diagnostically) to obtain the pressure field through vertical integration of
density variations subject to gravitational acceleration. In HPE models, convection
is part of the parameterized (i.e. unresolved) three-dimensional turbulence and
mixing processes which are encapsulated in .Du,v . Usually, these operators are
formulated with a down-gradient approach, where the vertical fluxes of a scalar
.θ are parameterized as .w′θ ′ = −Kθ∂zθ , with .θ the local, resolved field. Several
models can be used to estimate the dissipation coefficient .Kθ (e.g. TKE (Gaspar
et al. 1990), GLS (Umlauf and Burchard 2003), KPP (Large et al. 1994)), but in case
of convection, this coefficient is usually set to an unrealistically large value (0.1 to
10 m.

2s.−1) to quickly restore static instabilities associated with convective processes
and avoid model instabilities. More recently, Giordani et al. (2020) proposed an
oceanic application of the eddy-diffusivity mass-flux formulation initially derived
by the atmospheric community (e.g., Hourdin et al. 2006, Suselj et al. 2019),
which allows a better representation of vertical advective fluxes associated with
convection. The approximations leading to HPE are likely to be satisfied in most of
the ocean where vertical velocities are small and their spatial patterns are of small
scales. However, for the case of deep ocean convection where vertical velocities
can reach .W ∼ O(10 cm s−1) and over horizontal scales of .L ∼ O(1 km), such
approximations become questionable. In case such approximations turn out to be
violated, it becomes necessary to find ways of re-introducing some form of non-
hydrostasy within HPE.

Klingbeil and Burchard (2013) have proposed a direct implementation of full
non-hydrostatic effects into an HPE model through a pressure correction method.
Instead of solving the full three-dimentional velocity field equations

. ∂tu + ∇ · (uu) − f v + f̃ w = − 1

ρ0
∂xp + Fu + Du, . (2a)

∂tv + ∇ · (uv) + f u = − 1

ρ0
∂yp + Fv + Dv, . (2b)

∂tw + ∇ · (uw) − f̃ u = − 1

ρ0
∂zp − b + Fw + Dw, (2c)

where .f̃ = 2Ωcos(θ) is the non-traditional Coriolis pseudo-force (shown for
consistency but not considered in the following), and non-hydrostatic contributions
are shown in blue. To avoid the complexity of solving a three dimensional Poisson
equation to recover the non-hydrostatic pressure (as usually done in NH pressure
correction methods, e.g. Marshall et al. 1997) Klingbeil and Burchard (2013)
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proposed to account for non-hydrostatic pressure correction through a vertical
integration of a so-called non-hydrostatic buoyancy, i.e. following the strategy of
HPE models. This strategy offers a general implementation of NH physics in HPE,
but still suffers from numerical instabilities in the case of strongly non-hydrostatic
dynamics. For the case of deep ocean convection, it can be shown that further
simplifications can be made by only accounting for the horizontal viscosity acting
on the vertical velocities in the computation of the NH pressure correction (through
vertical integration ; Pierre Garreau, personal communication). As will be shown
later through the analysis of different idealized Large Eddy Simulations (LES),
HPE models tend to produce convective plumes near the grid size of the model,
leading to unstructured (on the horizontal) convective cells. From one grid point to
the next, vertical velocities could be of opposite sign leading to intense horizontal
gradients. Including a horizontal viscous operator on the HPE vertical velocities
(we recall here that in HPE vertical velocities are diagnosed from the horizontal
velocity field though continuity) leads to a broadening of the convective plumes
and a more realistic horizontal organization. In other words, when convective
plumes start to form, they ‘entrain’ the neighboring points thus communicating
horizontally their vertical momentum. Such a process can be seen as a simplified
entrainment/detrainment mechanism discussed by Giordani et al. (2020) for the case
of edddy-diffusivity mass-flux parameterization. In the present study, we consider
the approach of Klingbeil and Burchard (2013) as a starting point and discuss a
strategy to extend this idea in the context of a stochastic parameterization. The
results presented here are all obtained at LES resolution, such that a clear connection
with climate scale regimes is still lacking. However, these results provide a first step
toward the development of robust stochastic parameterization for climate models,
which will be the subject of dedicated studies.

The paper is organized as follow. In Sect. 2 we briefly recall the Location
Uncertainty (LU; Mémin 2014, Bauer et al. 2020, Resseguier et al. 2017) frame-
work used to represent the inertial and dissipative effects on vertical momentum
(underlined terms in (2c)) as a result of a strong noise regime or for application
to flow dynamics where the hydrostatic approximation becomes questionable.
Section 3 is dedicated to the numerical implementation of the stochastic, non-
hydrostatic pressure correction into the terrain-following Coastal and Regional
Ocean Community (CROCO), along with the description of the simulations we have
conducted. Preliminary results are described and discussed in Sect. 4. We summarize
our paper and provide some perspectives for further work in Sect. 5.

2 Stochastic Formulation of Direct Non-hydrostatic Pressure
Correction

Following Mémin (2014), the stochastic version of the horizontal momentum
equation (in vector notation) reads:
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.Dtuh + f k × (uhdt + σdBH
t ) = − 1

ρ0
∇H (pdt + dpσ

t ), (3)

with .uh = (u, v, 0), .Dt the stochastic transport operator defined as:

.Dtuh = dtuh + (u	dt + σdB t ) ·∇ uh − 1

2
∇ · (a∇uh)dt, (4)

with .u	 the incompressible (i.e. .∇ · σdB t = 0) modified advection defined as:

.u	 = u − 1

2
∇ · a (5)

where .u = (uh,w) is the three dimensional velocity field, .σdB t represents the
stochastic flow and .a its associated variance tensor. The term .

1
2∇ · a can be

interpreted as an equivalent of the Stokes drift for an inhomogeneous random fast
component .σdB t (Bauer et al. 2020).

The introduction of the stochastic pressure .dpσ
t in (3) requires some discussion.

This stochastic pressure is associated with the small scale velocity component
encoded through the noise. Following Resseguier et al. (2017), for smooth-in-time
momentum equation subject to a classical deterministic large scale momentum
equation, its (three dimensional) gradient can be expressed as:

. − 1

ρ0
∇dpσ

t = (σdB t ) ·∇ u + f × σdB t (6)

such that its interpretation (and scalling) should be related to the processes the
stochastic formulation aims at representing. In the context of large scale modelling
parameterization such as Tucciarone et al. (2023), the stochastic Primitive Equations
they derived is meant to represent the effects of meso (and potentially submeso)
scale eddies onto the large scale gyre circulation. The usual hydrostatic arguments
are thus used, such that the vertical gradient of the stochastic pressure is identically
zero (i.e. .∂zdpσ

t = 0) and its horizontal gradient is strictly balanced by the
stochastic Coriolis pseudo-force. Here, we are interested in relaxing the hydrostatic
approximation on the noise structure, but retaining it for the smooth-in-time,
resolved flow, and derive the stochastic equation for the vertical momentum. As a
first step in this direction, we will not include the contribution of the non-traditional
Coriolis pseudo-force. After some manipulations, we obtain the following equation
for the vertical momentum:

.(−1

2
∇ · a) · ∇wdt −1

2
∇ · (a∇w)dt + σdB t ·∇w = (− 1

ρ0
∂zp − b)dt − 1

ρ0
∂zdp

σ
t ,

(7)

Black terms in (7) are associated with hydrostatic physics and terms in blue are
the different stochastic contributions that emerge when applying non-hydrostatic
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thinkings on the stochastic noise. The left-hand side terms corresponds to the
vertical acceleration with a scaling such that the noise vertical acceleration is
strong compared to the large-scale vertical acceleration terms. Note that the two
underlined terms in (7) are Brownian terms emerging from the stochastic pressure
formulation (6) on the right-hand side and from the vertical velocity transport by
the noise on the left-hand side. The two other blue terms on the LHS are associated
with modified advection and dissipation (projected on the vertical velocity w) that
emerged through the three dimensional generalization of (4):

.Dtu = dtuh + u ·∇ uh + (−1

2
∇ · adt + σdB t ) ·∇ u − 1

2
∇ · (a∇u)dt, (8)

where the material derivative of vertical velocities associated with the resolved flow
(i.e. .dtw + u · ∇w) has been neglected.

The noise being given (and calibrated from data or a known relation), from (7), it
is thus possible to compute the various Brownian terms on the LHS, then to integrate
vertically the results to obtain a 3D map of the modified pressure field as a result of
the noise transport. Separating safely the martingale part (Brownian terms) from the
smooth-in-time components (“.dt” terms), we have

.dpσ
t (z) = dpσ

t |z=η + ρ0

∫ η

z

(σdB t ·∇w) dz′, (9)

for the martingale component, and

.p(z)dt = p|z=ηdt + ρ0g(η − z)dt

+ ρ0

∫ η

z

⎛
⎜⎜⎜⎝bdt −

(
(
1

2
∇ · a) · ∇wdt + 1

2
∇ · (a∇w)dt

)

︸ ︷︷ ︸
bNH

⎞
⎟⎟⎟⎠ dz′, (10)

for the smooth-in-time component. The three last terms on the RHS of (10) can be
compared to the deterministic non-hydrostatic pressure correction of Klingbeil and
Burchard (2013), although the material derivative ofw associated with resolved flow
is not included in our stochastic formulation. It can be noted that our formulation
involves a 3D diffusion of the vertical velocity ensuing from the noise action
as well as the contribution of the modified Ito-Stokes term arising from the
spatial inhomogeneity of the noise. Both (9) and (10) should be integrated with
appropriate boundary conditions at .η to incorporate fast and smooth-in-time surface
pressure contributions (such as surface waves or atmospheric pressure loading,
respectively), but such contributions can be neglected at first approximation without
loss of generality. Results of (9) and (10) can then be used to feedback onto the
horizontal momentum equation (3) solved by an hydrostatic model. Assuming a
strict separation of the martingale part and the smooth-in-time component, only (10)
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is assumed to feedback onto the resolved flow. The martingale components are
assumed to balance each other, thus not affecting the resolved flow. This assumption
can be interpreted as a Large Eddy Simulation (LES) -like approach, as discussed
by Bauer et al. (2020).

As a preliminary step, we will further simplify the structure of the variance tensor
.a in order to reduce the second and third terms on the RHS of (10) to a simple
Laplacian viscosity—induced here by the noise contribution. This simplification
is motivated in the following. In the LU framework, the strength of the noise is
measured by its (one-point co-) variance, such that

.a(x, t)
Δ= q̆(x, x, t), (11)

with .q̆(x, x, t) a matrix kernel defined as

.q̆(x, x, t)
Δ=

∫
Ω

σ̆ (x, x′, t)σ̆ (x, x′, t)T dx′, (12)

with .σ̆ (·, ·, t) a bounded matrix kernel defining the correlation deterministic integral
operator .σ t : L2(Ω) → L2(Ω)

.σ tf (x)
Δ=

∫
Ω

σ̆ (x, y, t)f (y)dy, ∀f ∈ (L2(Ω)). (13)

(See, e.g. Bauer et al. 2020, Mémin 2014, Resseguier et al. 2017, for further
details). Although the previous definition of the noise is general, it is possible,
through the Mercer’s theorem, to express the noise variance as a spectral decom-
position of the form:

.a(x, t) =
∑
n∈N

λn(t)φn(x, t)φT
n (x, t), (14)

where .φn(x, t) define an orthonormal eigenfunction basis of the correlation oper-
ator, .σ t , with .λn(t) their corresponding eigenvalues. For a stationary noise, this
reduces to a classical POD (or EOF) decomposition, in which the eigenfunctions
are the solution of the eigenvalue problem

.

∫
Ω

K(x, x′)φn(x
′)dx′ = λnφn(x) (15)

with .K the two-point correlation tensor.
The next step is to assume isotropy and homogeneity of the noise structure, in

which case the Fourier modes .φn = e2πik·x are a natural choice to satisfy (15),
which implies (Berkooz et al. 1993):

.K =
∑
n

λne
2πik·xe−2πik·x′

. (16)
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Under isotropic condition, the variance of the divergence-free noise is constant and
diagonal, such that the first term associated with .bNH in (10) is identically zero, and
the noise induced dissipation reduces to:

.
1

2
∇ · (a∇w) = νΔw, (17)

with .ν the isotropic, homogeneous noise induced momentum dissipation. Through
vertical integration of (17), we recover part of the non-hydrostatic pressure correc-
tion proposed by Klingbeil and Burchard (2013), which in the present case mimic
entrainement/detrainement of convective plumes leading to changes in their spatial
organization. This modified HPE will be termed Quasi-Nonhydrostatic (Q-NH),
by analogy with the Quasi-Hydrostatic (QH) of Marshall et al. (1997) where non-
traditional Coriolis terms are added into the HPE.

3 Numerical Implementation and Simulations

Our objective is to implement this stochastic, non-hydrostatic pressure correction
in the hydrostatic kernel of the Coastal and Regional Ocean Community model
(CROCO ; http://www.croco-ocean.org). CROCO is a new ocean model that builds
upon the structure of the ROMS-AGRIF primitive equation solver (Shchepetkin
and McWilliams 2005, Debreu et al. 2012). The non-hydrostatic, non-Boussinesq
(NQB ; Auclair et al. 2018) capabilities of CROCO will also be used to construct a
reference simulation for validation (see Table 1). We review in the following some
important steps for the implementation of the stochastic pressure correction within
CROCO, discuss their implications and how we treat the pressure correction within
the hydrostatic CROCO kernel.

3.1 Stochastic, Non-hydrostatic Pressure Correction

In its hydrostatic mode, CROCO computes .
p
ρ0
, from which horizontal gradients

directly feed the baroclinic horizontal momentum equation (i.e. (2a) and (2b)). Our
strategy is to include the NH pressure correction via a modified density/buoyancy
field, such that the pressure field becomes:

.
p(z)

ρ0
= p|z=η

ρ0
+

∫ η

z

(ρ − ρ0) − bNH

ρ0
g dz′, (18)

with .bNH collecting the different contributions of the vertical momentum equation
(.w_trends) contributing in the pressure correction, normalized by gravity:

http://www.croco-ocean.org
http://www.croco-ocean.org
http://www.croco-ocean.org
http://www.croco-ocean.org
http://www.croco-ocean.org
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.bNH = 1

g

∑
w_trends, (19)

where the horizontal dissipation of vertical velocity (e.g. Eq. (17)) is computed
along sigma coordinates. Our strategy is similar to Delorme et al. (2021), who
derived a Quasi-Hydrostatic version of CROCO by including the non-traditional
Coriolis effects through buoyancy correction.

Let us note that .bNH is abusively denoted through a buoyancy variable, however
it corresponds to corrections brought by the noise to the usual hydrostatic pressure.
Such a correction should not be interpreted as an actual modification of the
density/buoyancy field of the stratified ocean. Thus, the stochastic contribution is
not included in the specific treatment of baroclinic-barotropic mode coupling of
CROCO, which aims at accounting for the non-uniform density field for the prop-
agation of gravity waves (Gill 1982), ultimately reducing the usual mode-coupling
error associated with mode-splitting schemes (Shchepetkin and McWilliams 2005).
In other words, we do not expect this ‘non-hydrostatic buoyancy’ to affect gravity
wave’s propagation.

Finally, CROCO uses a third-order predictor-corrector (LF-AM3) time-stepping
scheme for tracers and baroclinic momentum. This scheme consists of a Leapfrog
(LF) predictor with 3rd-order Adams-Moulton (AM) interpolation. It also uses split-
explicit techniques to robustly couple the slow, baroclinic and the fast, barotropic
modes associated with the time evolving non-linear free surface. A complete
description of the several stages of CROCO time-stepping can be found in Section 5
of Shchepetkin and McWilliams (2005). This predictor-corrector, split-explicit
scheme implies some tendency terms of the baroclinic mode are computed twice
to step forward baroclinic momentum and tracer equations from time step t to time
step .t + Δt . The first computation is performed at the prediction stage, and the
second computation is performed at the correction stage. These tendencies include
pressure gradients. To avoid double counting the stochastic pressure correction and
for stability reasons, the modified non-hydrostatic buoyancy is computed only at the
correction stage.

3.2 Numerical Experiments

The numerical experiments we used to test our stochastic non-hydrostatic pressure
correction are oceanic deep convection events. The configuration is inspired by
free convection studies (e.g. Souza et al. 2020) where an horizontally uniform
surface cooling is applied to a constantly stratified, horizontally uniform ocean.
Although our interest is on deep ocean convection rather than mixed layer free
convection, we have adopted an horizontally uniform setting (as usually done in
free convection) instead of a horizontally structured system as proposed earlier
by, e.g. Marshall and Schott (1999), where surface cooling is confined within a
specified region (usually a disc). This setting allows the analysis of interacting
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Fig. 1 Illustration of the 3D
structure of the simulation
after three days of simulation
in a non-hydrostatic setting.
The color shading is
temperature
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convective plumes with non-convective environment. However, such configurations
are usually conducted at coarser resolution and oriented toward process studies
of the geostrophic organization of convective plumes. Here, our focus is on
parameterization and we wish to start with simplified settings in order to capture the
essence of deep convection dynamics; interactions with a prescribed background,
non-convective environment is left for further work.

From this horizontally uniform and vertically constant stratified initial condition,
the model is stepped forward in time on a 100.×100.×100 discretized grid points
with isotropic resolution of 10 meters, and exposed to a constant (in time and space)
cooling rate of .QT = −500 W m.

−2 heat flux (Fig. 1). This leads to a cooling of
upper ocean layers, which ultimately become unstable through static instabilities as
a result of a negative buoyancy frequency .(N2 = − g

ρ
∂zb) < 0, thus undergoing

convection. The current settings are run with no Coriolis forcing, i.e. .f = 0 s.−1;
inclusion of Coriolis effects will be the subject of further work. The model is
initialized with stochastic perturbations on ocean upper layers temperature decaying
with depth (following Souza et al. 2020) to trigger the formation of convective
plumes

.T (x, y, z)|t=0 = T (z) +
10∑

(m,n)=0

(
e2π(k·x+φn,m)

)
N (0, 1) ∗

√
σ 2 ∗ e40z/Nz (20)

with .T (z) = T |z=0 −αz, .T |z=0 = 3 K and .α is a constant defined as .α = 1.9e−6

g∗(αT /ρ0)

(.αT = 0.2048 K−1 is the thermal coefficient, .g = 9.81 m s−2 is gravity and .ρ0 =
1024 kg m−3 is reference density). The second term on the RHS of (20) is the
stochastic perturbation defined as the sum of plane waves with random phase .φm,n
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Table 1 Summary of the experiments and their numerical details. NBQ stands for the non-
hydrostatic, non-Boussinesq CROCO kernel of Auclair et al. (2018); NH, Hydro and Q-NH stand
for Non-Hydrostatic, Hydrostatic and Quasi-Nonhydrostatic; WENO5 and C4 for the 5-th order
and the 4th-order centred advection schemes; KPP for the K-Profil Parameterization of Large et al.
(1994)

Name Kernel Hz adv Vert. adv Closure (.Δx, .Δz) .Δt .νw

NH NBQ WENO5 WENO5 – (10, 10m) 2.5 s (implicit)

Hydro Hydro WENO5 C4 KPP (10, 10m) 2.5 s –

Q-NH Hydro WENO5 C4 KPP (10, 10m) 2.5 s .1 m2s−1

and of amplitude .N ∗ √
σ 2, where .N is a Gaussian white noise distribution and

.σ 2 = 10−8 K2 represents the variance of the stochastic perturbations. The random
phases are drawn from an uniform distribution over the range [0, 1].

This configuration has been integrated forward in time to produce several
numerical experiments in order to assess the performance of our implementation.
It includes a pure Non-Hydrostatic (NH), which make use of the non-hydrostatic
non-Boussinesq capabilities of CROCO (NBQ, Auclair et al. 2018), and a pure
hydrostatic (Hydro) reference experiments. We then compare the solution produced
by our Quasi-Nonhydrostatic (Q-NH) experiment, which includes the stochastic
pressure correction, with the solutions produced by Hydro and NH.

For both Q-NH and Hydro, the KPP (Large et al. 1994) closure scheme is used
to represent vertical sub-grid scale mixing. As stated in introduction, this scheme
mimics vertical fluxes through a dissipative down-gradient operator. In the case of
static instability associated with convective events, the dissipation coefficient is set
to .Kθ = 0.1 m2s−1 in CROCO. Sensitivity tests (not shown) using TKE (Gaspar
et al. 1990) closure scheme instead revealed that the choice of the closure scheme
has little effect on the solution produced by our Hydro experiment.

Horizontal dissipation of vertical velocity in Q-NH is set to .νw = 1 m2s−1,
which corresponds to high values of dissipation estimated through a Smagorinsky-
like approach .νSmago = α

2Δ2
xy

(
(∂xw)2 + (∂yw)2

)
, with .Δxy = 10 m the horizontal

resolution of our configuration, and .α = 0.2. Table 1 summarizes the different
experiments, along with some numerical details.

Finally, note that all three experiments are conducted at the same isotropic
resolution of 10m. Evaluating the performance of our Q-NHmodel for climate scale
regimes (i.e. with horizontal resolution much coarser than vertical resolution) will
be the subject of further work.

4 Results

We show on Fig. 2 snapshots of the vertical velocities as simulated by NH, Hydro
and Q-NH after 3 days of simulation. Obviously, the NH experiment produces
weaker and larger scale structures as compared to the two other experiments. It
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Fig. 2 Horizontal (top) and vertical (bottom) sections of vertical velocities for the Non-
Hydrostatic (NH, left), the Hydrostatic (Hydro, center) and the Quasi-Nonhydrostatic (Q-NH,
right) run. Snapshots are shown after 3 days of simulation with all other components (forcing,
dissipation, stratification, resolution) held constant

is noticeable, however, that the amplitude of w in Q-NH is reduced as compared
to Hydro, with larger scale structures of the convective plumes. In the Hydro
experiment, plumes are localized near the grid scale and exhibit almost an order of
magnitude larger vertical velocities as compared to the NH reference. The reduced
vertical velocities in Q-NH and broadening of the associate spatial scale of the
plumes can be interpreted as a result of the entrainment/detrainment mechanism,
which is here simply represented as a purely horizontal viscous stress on vertical
velocities.

Aside from vertical velocities, it is also instructive to analyse the consequence for
the temperature profile, an indication of the capability of convection in producing
deep water masses. Figure 3 shows the horizontally averaged temperature vertical
profile, along with the rate of the Mixed Layer Depth (MLD) deepening, for
the different experiments. A first remarkable result is the similarity between the
temperature profiles produced by all the experiments within the MLD (i.e. .z <

−300m). Additional tests (not shown) indeed reveal the very weak sensitivity to
numerical implementation (i.e. non-hydrosatic, hydrostatic with different vertical
mixing schemes), as well as the level of dissipation. The most noticeable differences
between the experiments appear at the base of the mixed layer. In particular, the
consequences of too strong vertical velocities in Hydro is to produce too deep water
masses with a too strong penetrative convection (i.e. the envelop at the base of
the mixed layer where water masses are warmer than their initial state). Although
vertical velocities in Q-NH remain significantly larger than those produced by NH,
the effects of horizontal viscous forces on the vertical velocities is to significantly
damp the penetration of convective plumes bellow the mixed layer, inducing a
strong reduction of water masses formation. The reduction of penetrative convection
induces significant biases in the deepening rate of the MLD (Fig. 3, right panel).
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Fig. 3 Horizontally averaged temperature profiles (left) and deepening rate of the mixed layer
depth (MLD, right) for the different runs at the end of the 3-day long simulations. Deepening
MLD rate are compared to the analytical estimates of Marshall and Schott (1999) and Souza et al.
(2020)

In Q-NH, MLD seats between the theoretical predictions of Marshall and Schott
(1999) and that of Souza et al. (2020), where the former do not consider penetrative
convection in their scaling while the latter do. That MLD is too shallow in Q-NH,
as compared to NH, is likely a consequence of too strong dissipation imposed to the
system. We note, however, that we have only considered the dissipative, rectification
contribution (i.e. smooth-in-time) of the stochastic transport as a result of the strict
separation assumption between martingale and smooth-in-time components. Further
work are required to evaluate how the Brownian part of the stochastic transport
impact the deepening of the MLD.

5 Conclusion and Perspectives

In this study, we detailed the first steps toward a full stochastic parameterization of
deep ocean convection along with their implementation in the general circulation
model CROCO. Our preliminary results, which consist of an approximation of the
horizontal noise structure as homogeneous and isotropic, led us to recover part of
the derivation provided by Klingbeil and Burchard (2013) in a deterministic case.
Our results are encouraging, and we are now in a position of extending the current
analysis to a fully consistent stochastic framework.

The first step in this direction will be to implement the stochastic pressure
noise contribution which comes in pair with the idealized Laplacian horizontal
viscosity action on vertical velocities in the context of an hydrostatic simulation of
deep ocean convection (i.e. Eq. (9)). Following previous work of Pierre Dérian and
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Etienne Mémin (’Hyper-viscosity’ noise for transport under location uncertainty),
we will consider a simplified expression of the stochastic transport of vertical
velocity to construct our stochastic pressure noise. This approach is meant to obtain
the stochastic transport associated with Laplacian or hyper-viscosity dissipation as
usually implemented in OGCM. With these considerations, it is possible to express
the stochastic transport of (9) as:

.σdB t ·∇ w =
∑

k

γkλkek(x) (21)

with .ek a basis, defined here as Daubechies wavelets, .γk denotes independent
normally distributed variables, and .λk are the wavelet coefficients defined as:

.λk =
〈√

2εdt |ν1/2∇w|; ek

〉
L2

, (22)

with .ε a scaling factor controlling the ratio of variance created by the noise
to energy dissipation. Accounting for the stochastic pressure would also require
considerations for the Brownian components of the stochastic transport in the
horizontal momentum advection. These steps are part of further works to achieve
a full, consistent implementation of LU transport in CROCO.
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