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Abstract As planetary flows are characterised by interaction of phenomenons in a
huge range of scales, it is unaffordable today to resolve numerically the complete
ocean dynamics. In this work, a stochastic version of primitive equations are
implemented into the NEMO community ocean model to assess the capability of
the so-called Location Uncertainty framework in representing the small scales of
the ocean flows.

Keywords Stochastic parametrization · Ocean modelling

1 Introduction

Numerical resolution of planetary flows is nowadays a key tool to investigate
possible future climates. The Ocean is a key actor of climate regulation and its
evolution is for that reason of major interest. High resolution simulations are
however extremely expensive and their usage remains limited to small domains.
Large-scale simulations remain the primary tool to investigate future states of
the Ocean (and of the Atmosphere as well). These simulations however do not
resolve the complex interdependence of mesoscale and sub-mesoscale dynamics
that characterises the global circulation, and thus great care must be put in the choice
of the parametrization of all the scales that are too small to be efficiently resolved.
Recent approaches incorporate noise terms to the dynamics of the flow with the goal
of modelling the unresolved (and parametrised) processes, including small-scale
turbulence, boundary value and scale coarsening uncertainty, as well as discretiza-
tion and numerical errors. Rigorously justified methodologies have been introduced
by Mémin [1] and Holm [2], providing a theoretically consistent stochastic large
scale representation of the Navier-Stokes equations [3] conserving either energy
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or circulation, respectively. Both models rely on a stochastic decomposition of the
Lagrangian trajectory into a smooth-in-time component induced by the large scale
velocity and a random fast-evolving uncorrelated part. From such models, a large-
scale representation with a stochastic definition of the small-scale effect emerges
naturally. Moreover, compared to classical large-scale deterministic modelling, the
additional degree of freedom brought by the stochastic component allows us to
devise new intermediate models [4, 5, 6, 7, 8]. The Location Uncertainty (LU)
approach [1] has been tested within the barotropic quasi-geostrophic model, the
rotating shallow water model and the surface quasi-geostrophic model, where it has
proven to be more accurate in structuring the large-scale flow [4], reproducing long-
term statistics [9] and providing a good trade-off between model error representation
and ensemble spread [10, 11] This work investigates the benefits of such model in
the hydrostatic primitive equations, following the work of [12] in which noise based
on Empirical Orthogonal Functions (EOF) was proposed. Here, a more elaborate
noise defined from a Dynamics Mode Decomposition (DMD) strategy is proposed.

2 Location Uncertainty (LU)

The Location Uncertainty principle consists in describing the trajectory .Xt of a fluid
particle with a stochastic decomposition of the Lagrangian trajectory, represented
with the following stochastic differential equation (SDE):

.dXt = v (Xt , t) dt + σ (Xt , t) dBt , (1)

where .X : Ω × R+ → Ω is the fluid flow map, i.e. the trajectory followed by fluid
particles starting at initial map .X|t=0 = x0 of the bounded domain .Ω ⊂ R3. The
first component, .v (Xt , t), acts as the smooth-in-time component of the (Lagrangian)
velocity of the flow, which is correlated both in space and time and associated with
the integration of the equations of motion. The second component, .σ (Xt , t) dBt ,
is a stochastic contribution (referred to as noise) that accounts for the processes
that cannot be resolved at a given resolution or that have been neglected through
a given numerical or physical modelling approximation. To completely define this
last component, let H be the Hilbert space, .H = (

L2 (S) , Rd
)
, the space of square

integrable functions over .S with value in .Rd , with the inner product .〈f ,g〉H =∫
S(f †g) dx and induced norm .‖f ‖H = √〈f ,f 〉H , and let T be a finite time,

.T < +∞. In this framework .{Bt }0≤t≤T is defined as an .H−valued (cylindrical)
Brownian motion [13]:

.Bt =
∑

i∈N

β̂iei , (2)
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where .(ei )i∈N is a Hilbertian orthonormal basis of H and .(β̂i)i∈N is a
sequence of independent standard Brownian motions on a stochastic basis
.(Ω,F , (Ft )t∈[0,T ], P). The noise is then properly defined as the application of
an Hilbert-Schmidt symmetric integral kernel .σ tf (x) = ∫

S σ̆ (x, y, t) f (y) dy to
the .H−valued cylindrical Wiener process .B as

. (σ tdBt )
i (x) =

∫

S
σ̆ik (x, y, t) dBk

t (y) dy, (3)

where the Einstein summation notation is adopted. The role of the integrable kernel
.σ̆ is to impose a fast/small scale spatial correlation. It leads to the covariance
tensor .Q

.Qij (x, y, t, s) = IE
[
(σ tdBt (x))i (σ tdBs (y))j

]

= δ (t − s) dt
∫

S
σ̆ik (x, z, t) σ̆kj (z, y, s) dz,

of the centred Gaussian process .σ tdBt ∼ N (0,Q). The diagonal components of the
covariance tensor per unit of time, defined as .a(x, t)δ(t − t ′)dt = Q(x, x, t, t ′), are
referred to as the variance tensor. This tensor provides a measure of the strength of
the noise. Notably, the variance tensor has the dimension of a viscosity in .m2s−1 and
is symmetric and positive definite. The operator .a is a compact auto-adjoint positive
definite operator on H , that admits hence eigenfunctions .ξn (·, t) with (strictly)
positive eigenvalues .λn (t) satisfying .

∑
n∈IN λn (t) < +∞. As a consequence,

the noise and the variance tensor .a can be expressed (with another sequence of
independent standard Brownian motions) through the spectral representation

.σ tdBt (x) =
∑

n∈IN
λ1/2 (t) ξn (x, t) dβn. (4)

a (x, t) =
∑

n∈IN
λ (t) ξn (x, t) ξ†n (x, t) . (5)

This noise term is centred, however a modification can be applied in order to
consider a Lagrangian displacement of the form

.dXt = [v (Xt , t) − σ tYt (x)] dt + σ tdB̃t (Xt ) . (6)

In contrast with (1), this decomposition sees the contribution of a centred Wiener
process .̃Bt that is drifted by a correlated component .σ tYt (x). A proof of this
statement can be given with Girsanov theorem, as a new probability measure .̃P can
be built in such a way that a non centred Wiener process as
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.̃Bt = Bt +
∫ t

0
Ys ds, (7)

where .{Yt }t is a random process shifting the process .̃Bt , remains centred on
.{Ω,F , P̃, {Ft }0≤t≤T }. The new definition of the noise reads then

.σ tdBt (x) = σ tdB̃t (x) − σ tYt (x) dt, (8)

with .{B̃t }t a .̃P−Wiener process. All the arguments provided in the following will
hold for this process under .̃P, but the usage of a drifted noise is of paramount
importance when the phenomenon to be modelled displays a non-zero time average
and the physical processes involved cannot be regarded as completely uncorrelated,
like in the case of ocean eddies and gyres. In the following, Eq. (6) will define our
Lagrangian trajectory and the tilde notation will be dropped for simplicity.

3 Stochastic Boussinesq Equations

Within the Location Uncertainty formalism the evolution of a random tracer q

transported along the stochastic flow is described by the stochastic Reynolds
transport theorem, introduced in [1]. The rate of change of a scalar q, integrated
within the volume .Vt , is described by

.d
∫

Vt

q (x, t) dx =
∫

Vt

{
Dt q + q∇ · [

v� dt + σ tdBt

]}
(x, t) dx, (9)

and summarised by the operator

.Dt q = dt q + [
v� dt + σ t dBt

] ·∇q − 1

2
∇ · (a∇q) dt. (10)

In this formula, the first component of the right-hand side is the increment in time
at a fixed location of the process q, that is .dt q = q (Xt , t + dt) − q (Xt , t), playing
the role of a derivative in time for a non differentiable process. Encased in the
square brackets there is the stochastic advection displacement, composed of a time
correlated modified advection .v� and a fast evolving, time uncorrelated noise .σ t dBt ,
both advecting the scalar q. Under the probability measure .̃P the velocity .v� is
defined as

.v� = v − 1

2
∇ · a + σ ∗

t (∇ · σ t ) − σ tYt , (11)

where .v is the resolved component of the velocity, .vs = 1
2∇ · a is the effective

transport velocity resulting from the noise inhomogeneities and the last term is
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the Girsanov drift due to a non centred noise. With this operator it is possible to
formulate the Boussinesq equations under location uncertainty as done in [12] and
reported below, split into horizontal and vertical equations using the convention
.v = (u, w) and with the buoyancy defined as .b = −g

ρ−ρ0
ρ0

.

. Horizontalmomentum :

Dtu+f e3 ×
(
u dt+1

2
σ tdBH

t

)
=∇H

(
−p′+ν

3
∇ · v

)
dt−∇Hdp

σ
t . (12)

Verticalmomentum :
Dtw = ∂

∂z

(
−p′ + ν

3
∇ · v

)
dt − ∂

∂z
dpσ

t + b dt . (13)

Temperatureandsalinity :
Dt T = κT ΔT dt, . (14)

Dt S = κSΔS dt, . (15)

Incompressibility :
∇ · [

v − vs
] = 0, ∇ · σ tdBt = 0, ∇ · σ tYt = 0. (16)

Equationofstate :
b = b (T , S, z) . (17)

In this formulation Temperature T and Salinity S are introduced as active tracers
and transported along the stochastic flow, thus impacting the stochastic transport
of momentum through the equation of state. The term .dpσ

t in Eqs. (12) and (13)
is a martingale term representing (under the measure .̃P) a zero-mean turbulent
pressure related to the noise, termed stochastic pressure. From this starting point,
Primitive equations can be achieved through a hydrostatic hypothesis on the vertical
acceleration equation, resulting in the two conditions

. − ∂p′

∂z
+ b = 0 and

∂ dpσ
t

∂z
= 0, (18)

the first one being the usual hydrostatic balance, the second being the result of
the uniqueness of the semi-martingale decomposition. In this work and within the
scaling used in [12], the stochastic pressure is constant along depth and is supposed
to be in a pure geostrophic balance [10, 14], thus not impacting the rate of change
of momentum. In this hydrostatic setting the vertical component of momentum is
a diagnostic variable computed through integration of the incompressibility condi-
tion (16), and the large scale pressure .p′ is obtained through vertical integration of
the buoyancy term.
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4 Methods

The proposed method is implemented in the level-coordinate free-surface primitive
equation model NEMO [15] in a double-gyre configuration consisting of a .45◦
degrees rotated beta plane centred at .∼30◦N, .3180 km long, .2120 km wide and
.4 km deep, bounded by vertical walls and with a flat bottom. Seasonal winds and
buoyancy changes are imposed as external forcings to induce the creation of a
strong jet that separates a cold sub-polar gyre from a warm sub-tropical gyre. The
complete details of this configuration are given in [16, 17], and the parameters of
the simulation were chosen accordingly to the reference papers. The only change is
in the values of eddy viscosity and diffusivity, enhanced of a factor five to suppress
aliasing in the salinity field observed for smaller values (see Table 1 for an overview
of their values). In order to assess the benefits brought by this stochastic approach,
two purely deterministic simulations at different resolutions, 1/27.◦ (R27d) and 1/3.◦
(R3d), are compared to a stochastic simulation at 1/3.◦ (R3LU). Each simulation
consists of 10 years of data, collected every 5 days and averaged over the 5 days.
The R27d simulation has been spun-up for 100 years before collecting data for the
LU framework. Similarly, an additional 1/9.◦ deterministic simulation has been spun
up for 100 years in similar conditions in order to construct an initial state for the
deterministic and stochastic 1/3.◦ simulations.

4.1 High Resolution Data Filtering

The high resolution data used to force the low resolution stochastic model need to be
filtered before being used, in order to avoid the injection of energy scales that can
jeopardise the stability of the simulation. The low resolution velocity fluctuations
are obtained through spatial filtering of high resolution temporal fluctuations. First,
a time average is defined on the high resolution fields as

.u t
HR

(x) = 1

T

∫

T

uHR (x, t) dt, (19)

Table 1 Parameters of the model experiments

R27d R3d R3LU

Horizontal resolution 1/27◦ (3.9 km) 1/3◦ (35.3 km) 1/3◦ (35.3 km)

Horizontal grid points 540×810 60×90 60×90

Vertical levels 30 30 30

Time step 5 min 20 min 20 min

Eddy viscosity −5×10−9 m4s−1 −5×10−12 m4s−1 −5×10−12 m4s−1

Eddy diffusivity −5×10−10 m4s−1 1500 m2s−1 1500 m2s−1
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so to obtain with Reynolds decomposition the high resolution fluctuations:

.u′
HR

(x, t) = uHR (x, t) − u t
HR

(x) . (20)

The corresponding low resolution fluctuations are obtained through a band-pass
filter as .u′

LR
= (G1 − G2) u′

HR
, where .G represents a Gaussian filter. These filtered

fields have a smaller amount of energy compared to the original snapshots, and they
are re-scaled to this amount as

.u′
LR

=
∥∥∥u′

HR

∥∥∥
2∥∥∥∥

[
(G1 − G2)u′

HR

]↓
LR

∥∥∥∥
2

[
(G1 − G2)u′

HR

]↓
LR

, (21)

where the downward arrow represents downscaling towards low resolution. The
result of this procedure sees the velocity fluctuations have the same spatial structure
as before but enhanced level of energy.

4.2 Off-Line Noise Modelling Through DMD

Dynamical Mode Decomposition is a methodology [19] to construct a proxy linear
dynamical system to describe an unknown non-linear dynamics. In this paper
DMD is applied to the evolution in time of the velocity fluctuations, that is thus
approximated as

.u′ (x, ti+1) ∼ Au′ (x, ti ) . (22)

Such (finite dimensional) linear dynamical system is known to have a general
solution:

.u′ (x, t) =
N∑

m=1

bm exp (μmt)φm (x) , (23)

where .φm (x) ∈ Cd are the eigenvectors of A associated to the eigenvalues .μm ∈ C
and .bm ∈ C are amplitudes. In particular .μm = σm + iωm, the real part .σm is the
growth rate of the mode and .ωm is the periodic frequency of the mode m. Since the
initial data are real valued fields, the eigenvectors, eigenvalues and amplitudes will
be two-by-two complex conjugate, that is .φ2p = φ2p+1. Following the successful
proposition of [18], we split the DMDmodes into correlated and uncorrelated modes
in order to define the Girsanov drift through the slow component of the dynamics
and the random noise through the fast component. The two sets of modes, .Mu for
the uncorrelated noise and .Mc for the correlated part are defined as
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Fig. 1 Illustration of the selection of the DMD modes. On the left, frequencies of the modes are
plotted on the unitary circle; they are coloured differently to represent their characteristic physical
time scale. At this point, a threshold .τc = 25d is chosen to differentiate the correlated from the
uncorrelated modes. On the right, over violet background are plotted the correlated modes, over
orange background the uncorrelated modes. The amplitude threshold for the correlated mode .Cc

is set to zero, while for uncorrelated modes .Cu is set to 2. The grey dots represent the set of
uncorrelated modes below this threshold, that are thus discarded

. Mu =
{
m ∈ [1, N] : |μm| ∼ 1, |ωm| >

π

τc

, |bm| ≥ Cu

}
, . (24)

Mc =
{
m ∈ [1, N] : |μm| ∼ 1, |ωm| ≤ π

τc

, |bm| ≥ Cc

}
, (25)

where .τc is a temporal separation scale between correlated and uncorrelated
(usually set to a value for which a spectral gap is observed and fixed here
to twentyfive days) and .Cu, .Cc are empirical cut-off of amplitudes. A visual
representation of the aforementioned procedure is given in Fig. 1. As the DMD
modes are not orthogonal, a scaling is applied to avoid spurious effects and to make
sure that the reconstructed data corresponds to an orthogonal projection onto the
subspaces spanned by the set of modes contained in .Mu and .Mc. The procedure
reads as follow:

– Construct the Gramian matrix G of components .gm,n = 〈φm,φn〉H
, with .m, n ∈

M;
– Invert the Gramian matrix and compute the dual set of modes .Φ∗ = G−1Φ;
– define the amplitudes as the initial state data on the dual set of modes: .ϕm =

〈u′ (x, t0) ,φ∗
m〉

H
φm.

Such procedure is applied for .M = Mu and .M = Mc separately.
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4.3 On-Line Noise Reconstruction

Inside the NEMO core, during the simulation, the noise and Girsanov drift are
defined as:

.σ t,θdBt = √
τθ

∑

m∈Mu

exp (iωmt)ϕm (x) dβm, . (26)

σ tYt = u t +
∑

m∈Mc

exp (iωmt)ϕm (x) , (27)

with .ξm = √
τθϕm. In Eqs. (26) and (27) .τθ is the process decorrelation time. It is

supposed to be different for each component evolving in the system, as momentum,
temperature and salinity do not diffuse with the same decorrelation time. The
subscript .θ can thus indicate momentum .u, temperature T or salinity S and the
corresponding noise and variance will be indicated as .σ t,θdBt (x) and .aθ (x, t). The
different decorrelation times are difficult to characterize precisely (as they depends
in space), but their ratio can be justified by physical reasoning. The decorrelation
times are chosen in such a way that .τu = Δt , .τT = κT

κu
Δt and .τS = κS

κu
Δt , where

.Δt is the simulation time step and .κ the molecular diffusion coefficients. Each
(eigen) frequency .ωn comes in pairs and each pair of complex Brownian motion are
conjugates. The real and imaginary parts of the Brownian motion are independent.
As such, both the noise and Girsanov drift are real-valued fields. The variance tensor
of such noise remains stationary:

.aθ (x) = τθ

∑

m∈Mu

ϕm (x)ϕ†
m (x) . (28)

After construction with the offline data through Eqs. (26) and (27), the noise
.σ t,θdBt is constrained to live on the tangent space of the isopycnal surfaces. This
procedure is operationally implemented as the application of an isopycnal projection
operator .Pρ

.Pρ = I − ∇ρ (∇ρ)T

|∇ρ|2 (29)

to the noise. Being the density function of temperature and salinity, .ρ = ρ (T , S, z),
the isopycnal projection operator carries information about the current state of the
simulation. The projected noise .σ tdB

ρ
t (x) = Pρ σ tdBt (x) is thus strongly tied to

the evolution of the flow density.
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5 Results

In this work we analyse the result of a single realisation. Qualitatively speaking,
a coarser resolution simulation is far from being as representative as the fine
resolution simulation, as can be seen in both Figs. 2 and 3, where the leftmost panel
contains results from the R27 deterministic simulation, the centre panel contains
the R3 deterministic simulation and the rightmost panel contains the R3 stochastic
simulation. The effect of the forcing is manifested in the R27 simulation in a jet
current roughly aligned with latitude (tilted by a 45 degrees angle in the domain
frame). The presence of this structure and of a secondary and smaller jet stream, is
visible in the reference papers [16, 17]. This feature is absent in the R3 deterministic

simulation. Figure 2 depicts the average relative vorticity .ζ
10Y = (

∂xv − ∂yu
)
/f

10Y

and shows primarily the difference between a high resolution simulation and a
coarse resolution simulation. In the centre panel, representing the deterministic low
resolution simulation R3d, there is no sign of the characteristic jet that can be seen
in the left panel as a strong contraposition of opposite sign vorticity. Viscosity on
the boundary creates a sequence of alternating bands of opposite vorticity, related
to jet separation problem in low resolution simulations [20]. The stochastic R3LU
simulation conversely presents a much better representation of the dynamics, as a
jet can now be identified clearly. The time averaged sea surface height, represented
in Fig. 3 shows for the high resolution simulation the characteristic geostrophic
properties of the jet stream: the northern, cold sub-polar gyre is characterised by
a smaller height than the southern, warm sub-tropical gyre. This characteristic is
not visible in the deterministic low resolution simulation R3d, where one can only
find the effects of the boundary, while the stochastic R3LU simulation presents

Fig. 2 10-years averaged relative vorticity .ζ = (
∂xv − ∂yu

)
/f at the surface layer of the model

for deterministic high-resolution (1/27.◦, left), for deterministic low resolution (1/3.◦, middle) and
for stochastic low resolution (1/3.◦, right)
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Fig. 3 10-years averaged sea surface height for deterministic high-resolution (1/27.◦, left), for
deterministic low resolution (1/3.◦, middle) and for stochastic low resolution (1/3.◦, right)

Fig. 4 10-years averaged kinetic energy for deterministic high-resolution (1/27.◦, left), for deter-
ministic low resolution (1/3.◦, middle) and for stochastic low resolution (1/3.◦, right)

a much more faded picture of this process, which is not as intense as in the
R27d but definitely present. Viscosity on the left boundary provides a strong
constraint to the dynamics, biasing the representation of the jet stream in both low-
resolution cases. Figure 4 shows the ten years average of kinetic energy, .KE10Y =(
u2 + v2

)
/2

10Y
. From this picture is clear that, while the stochastic simulation

includes much more features when compared to its deterministic counterpart, it is
still suffering the influence of the boundary, affecting the position of the jet stream
separation. Figure 5 shows the vertical profiles of horizontally averaged temperature
at different times for the three simulation, . T

x,y
(z, t) = 1

A

∫
A

T (x, y, z, t) dxdy.
The deterministic high resolution profile is plotted in green, the deterministic low
resolution profile is plotted in orange and the stochastic low resolution simulation is
plotted in dark red. From this plot it is difficult to assess the benefits of the stochastic
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Fig. 5 Vertical profile of temperature at 5 equidistant points in time. In red, the stochastic
simulation, in orange the deterministic simulation, in green the reference R27 simulation

formalism to the temperature equation, as the stochastic and deterministic low
resolutions simulation are close. However, no spurious vertical mixing is observed.
This corresponds to an improvement with respect to [12], and is brought by the
new methodology for noise generation detailed in the previous section. In particular,
constraining the noise on the isopycnal surfaces tangent planes considerably reduces
the spurious mixing in POD as well. Furthermore, the projection operator has the
effect of localising the effects of the noise on the jet region. From a quantitative
point of view the simulations are compared using the Root Mean Square

.RMS(fM) =
√

E
[
(fM)2

]
, (30)

providing a measure of the energy content for the variable .fM, and the Root Mean
Square Error

.RMSE(fM) =
√

E
[
(
[
fR27

]↓
M

− fM)2
]
, (31)
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Table 2 Comparison of the
values obtained with the
diagnostic

.ζ . 12

(
u2 + v2

)
T

.RMS(f
t
) R27d 3.25e.−06 18.48e.−02 6.72

R3d 4.30e.−07 1.69e.−02 6.56

R3LU 1.62e.−06 9.21e.−02 6.56

.RMSE(f
t
) R3d 3.67e.−06 17.17e.−02 0.58

R3LU 4.18e.−06 16.46e.−02 0.54
GRE R3d 547.78 2987.56 27.46

R3LU 2.92 1.46 7.49

Boldface is used to highlight the best performance accord-
ing to the metric.

that in turns describes the energy content of the errors. In all previous equations the
expected value is considered to be taken in the volume, i.e. .E [f ] = 1

V

∫
V

f dV .

Finally, defining .f
t = 1

T

∫
T

f dt the time average and .σ 2
f = 1

T

∫
T
(f − f

t
)2 dt the

time variance, the Relative Gaussian Entropy [21] (GRE) at a single point

.GRE = 1

2

[
(f

t

R27 − f
t

M)2

σ 2
f,M

+ σ 2
f,R27

σ 2
f,M

− 1 − ln

(
σ 2

f,R27

σ 2
f,M

)]

, (32)

measures with a single criterion both the mean and variance reconstructions. The
first term on the right-hand side of GRE represents the error in the mean weighted
by the variance of the model. The remaining terms measure the error in model
variability and is referred to as “dispersion”. The lower this criterion the better
the reconstruction. It can be observed from (32) that this criterion is minimal
if, for all points, the mean is perfectly reconstructed and if the variance of the
reference equals the one of the coarse model tested. These quantitative measures
have been evaluated for the mean component of three quantities, namely vorticity
.ζ , the horizontal energy of the flow .

1
2

(
u2 + v2

)
and temperature T . The values of

the proposed metrics for each simulation are given in Table 2. Figure 6 provides a
visual representation of the behaviour of the fluctuations around the mean states of
vorticity and energy, where the fluctuations are computed in time in a Reynolds
splitting fashion, .f ′ = f − f

t
. The first 2 years can be considered as the

time required for some adjustment of the filtered and downsampled 1/9.◦ initial
condition. It can be outlined that, while the deterministic simulation cannot sustain
the initial level of variability, its stochastic counterpart shows opposite behaviour,
maintaining a higher variability. Concerning the benefits of the stochastic model to
the dynamical quantities .ζ and .

1
2

(
u2 + v2

)
, all the presented results show that the

stochastic model outperforms the deterministic simulation. The mean flow contains
much more energy than the deterministic counterpart, as stated by higher values
of .RMS(f

t
), the .RMSE(f

t
) of the average fields seems to be reduced , with the

exception of vorticity, for which a systematic bias in the positioning of the jet stream
jeopardise the computation of the .RMSE. In other words the .L2 norm is lower for
a null vorticity field than for a vorticity field exhibiting clearly a meaningful jet
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Fig. 6 Comparison between the fluctuations Root Mean Square (in space) along 10 years. In blue,
the fluctuation RMS for the deterministic high resolution simulation (R27d). In green, the low
resolution stochastic simulation (R3LU), in orange the low resolution deterministic simulation
(R3d). The solid line shows for the three cases the values of vorticity, with corresponding scale on
the left; the dotted line shows for the three cases the values of Energy, with corresponding scale on
the right

but with bias. The corresponding fluctuations show a higher RMS in time during
the whole simulation, thus the stochastic simulation is energetically closer to the
high resolution simulation. The distance between the stochastic simulation and the
high resolution simulation, as measured by the GRE, is lower for both vorticity and
energy when compared to a deterministic simulation. The effect of the stochastic
parametrisation to the distribution of temperature T is of more difficult assessment,
as the metrics show very similar behaviours. The distance measured by the GRE is
lower than for the stochastic case, as much as the corresponding RMSE. However,
the RMS of the mean temperature are very similar between deterministic and
stochastic simulation. A comparison of the temperature fluctuations RMS in time
(similar to that of Fig. 6 and not presented in this paper) confirms this similarity by
showing no sensible difference between the simulations.

6 Conclusions

The considered stochastic model has been implemented in the ocean model NEMO.
A dynamical mode decomposition based noise was considered and has been shown
to be beneficial to improve the variability of the coarse resolution models and to
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represent temporal statistics in a more accurate fashion. The intrinsic variability of
the model has been greatly enhanced for dynamical variables as vorticity and energy,
as much as the qualitative behaviour of both long time average and time-snapshots
appearance. The same benefits do not seem to apply to thermodynamic quantities
like temperature.
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