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Abstract Sea surface temperature (SST) is a critical factor in the global climate
system and plays a key role in many marine processes. Understanding the variability
of SST is therefore important for a range of applications, including weather and
climate prediction, ocean circulation modeling, and marine resource management.
In this study, we use machine learning techniques to analyze SST anomaly (SSTA)
data from the Mediterranean Sea over a period of 33 years. The objective is to best
explain the temporal variability of the SSTA extremes. These extremes are revealed
to be well explained through a non-linear interaction between multi-scale processes.
The results contribute to better unveil factors influencing SSTA extremes, and the
development of more accurate prediction models.

Keywords Sea surface temperature · Machine learning · Stochastic models ·
Extremes

1 Introduction

Sea surface temperature (SST) is a critical parameter in the global climate system
[1, 2] and plays a vital role in many marine processes, including ocean circulation,
evaporation, and the exchange of heat and moisture between the ocean and
atmosphere [3, 4, 5].

In recent years, particular attention has been attracted by marine heat waves,
when SST largely exceeds the local expected average values [6, 7]. Extreme SST
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can cause coral bleaching [8, 9], with cascading effects on the entire ecosystem.
Additionally, localized events affect the amount of atmospheric moisture available,
to impact precipitation patterns and the likelihood of drought or flooding in certain
regions [10]. Better uncovering factors contributing to these extreme events is
therefore of great importance to help predicting and mitigating their impacts.

The SST dynamics compound many processes that interact across a continuum
of spatio-temporal scales. A first-order approximation of such a system was
initially introduced by [11, 12]. Hasselmann pioneered a two-scale stochastic
decomposition, to represent the interactions between slow and fast variables. In this
study, we focus on SSTA data collected in the Mediterranean Sea, and examine
the potential of machine learning techniques to derive relevant dynamical models.
Focus is given on the seasonal modulation of the SSTA and we wish to unveil factors
influencing the temporal variability of SSTA extremes. The proposed analysis builds
on Hasselmann’s assumption that the variability of the SSTA can be decomposed
into slow and fast components. The slow variables mostly follows the seasonal
cycle, while the fast variables are linked to rapid processes, e.g. the wind variability.
We thus approximate the probability density function of the SSTA data, using a
stochastic differential equation in which the drift function represents the seasonal
cycle and the diffusion function represents the envelope of the fast SSTA response.

The paper is organized as follows. We start by introducing the general under-
lying state space model of the SST anomaly. Rather than directly presenting
the stochastic model, we first assume that an underlying deterministic ordinary
differential equation (ODE) can represent the non-periodic variability of the SSTA.
Considering a phase space reconstruction setting, we use the neural embedding of
dynamical systems (NbedDyn) framework [13, 14] for this task. We then discuss the
limitations of such a representation, and present the stochastic model. We conclude
by summarizing our findings and potential future directions.

2 Method

Let us assume the following state-space model

.żt = f (zt ). (1)

xt = H(zt ) (2)

where .t ∈ [0,+∞] is time. The variables .zt ∈ R
s and .xt ∈ R

n represent the
state variables and the SST anomaly observations respectively. f and .Ht are the
dynamical and observation operators. The impact of noise on the dynamics and
observation models is omitted for simplicity of the presentation.
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2.1 Deterministic Model Hypothesis

The NbedDyn Framework If we assume that .zt is asymptotic to a limit-set .L ⊂
R

s and that the observations model is not an embedding [15], The NbedDyn model
allows one to jointly derive a geometric reconstruction of the unseen phase space
from partial observations and a corresponding dynamical model. For any given
operator .H of a deterministic dynamical system, Takens theorem [16] guarantees
that such an augmented space exists. However, instead of using a delay embedding,
NbedDyn defines a .dE-dimensional augmented space with states .ut ∈ R

dE as
follows:

.uT
t = [xT

t , yT
t ] (3)

where .yt ∈ R
dE−r are stated as the latent states and T represents the matrix

transpose. They account for the unobserved components of the true state .zt .

The augmented state ut is assumed to satisfy the following state space model:

.u̇t = fθ1(ut). (4)

xt = (Gut) (5)

where G is a projection matrix that satisfies xt = Gut. The dynamical operator fθ1

belongs to a given family of neural network operators parameterized by a parameter
vector θ1. In this work, we follow [14] and use a linear quadratic parameterization
of fθ1 . This particular parameterization allows us to guarantee boundedness of the
ODE (4) using the Schlegel boundedness theorem [17]. A linear quadratic ODE
model can be written as follows:

.u̇t = fθ1(ut) = c + Lut + [uT
t Q

(1)ut , . . . ,uT
t Q

(dE)ut ]T (6)

where c ∈ R
dE , L ∈ R

dE×dE and Q(i) = [qi,j,k]dE

j,k=1, i = 1, . . . , dE . The above

approximate model is shifted according to ūt = ut − m with m ∈ R
dE . The

approximate dynamical equation of the shifted state can be written as:

. ˙̄ut = d + Aūt + [ūT
t Q

(1)ut , . . . , ūT
t Q

(dE)ūt ]T (7)

with

.d = c + Lm + [mT Q(1)m, . . . ,mT Q(s)m]T (8)

and
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.A =
(

aij

)
=

(
lij +

s∑
k=1

(qi,j,k + qi,k,j )mk

)
(9)

Given an observation time series of size N +1 {xt0 , . . . , xtN }, the training setting
comes to jointly learning the model parameters θ1 = {c,L,Q1,Q2, · · · ,QdE ,m}
and the latent states yt according to the following constrained optimization problem

.

θ̂1, {ŷti
}i=N−1
i=0 = arg min

θ1,{yti
}

N∑
i=1

‖xti − GΦθ1,ti

(
uti−1

) ‖2

+ λ1‖uti − Φθ1,ti (uti−1)‖2
+ λ2C1
+ λ3C2

(10)

with Φθ1,t (ut−1) = ut−1 + ∫ t

t−1 fθ1(uw)dw is the flow of the ODE (6)
(in our work, this flow is approximated using a Runge Kutta 4 scheme)
and C1 = ∑s

i,j,k=1 ‖qi,j,k + qi,k,j + bj,i,k + bj,k,i + bk,i,j + bk,j,i‖2 and
C2 = ∑s

i=1 Max(αi, 0)/Max(αi + 1, 0) where αi, i = 1, . . . , dE the eigenvalues
of the matrix As = 1

2 (A + AT ). The variables λ1,2,3 are constant weighting
parameters. The first constraint C1 steams from the energy-preserving condition of
the quadratic non-linearity. It forces the contribution of the quadratic terms of fθ1

to the fluctuation energy to sum up to zero. The second constraint, C2, ensures that
the eigenvalues of As are negative. Satisfying these constraints guarantees that the
model fθ1 is bounded through the existence of a monotonically attracting trapping
region that includes the limit-set revealed by the minimization of the forecasting
loss. Similarly to the Takens delay embedding technique, the sequence:

.Rt0,tN = {ûT
ti

= [xT
ti
, ŷT

t ] with ti = t0, . . . , tN } (11)

represents a geometric reconstruction of the phase space. In addition to this
reconstruction, the NbedDyn model can be used to forecast new observations by
determining an initial condition of the unobserved component yt and performing
a numerical integration of the ODE model (6). We infer the initial condition using
a minimization of an objective function similar to (10), but only with respect to
the latent states yt . This minimization can be seen as a variational data assimilation
problem, with partial observations of the state-space variables and known dynamical
and observation models [18].

Related Works Related state-of-the-art techniques mainly rely on the reconstruc-
tion of a phase space using delay embedding [16]. This includes both traditional
parametric and non-parametric modeling techniques [19, 20] as well as recurrent
neural networks (RNNs). The latter family of methods includes both simple RNN
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parameterizations of dynamical systems, as well as latent space inference techniques
that are built on an approximation of a posterior distribution that requires the
parameterization of a delay embedding [21, 22, 23].

The interest of the NbedDyn framework in contrast to delay embedding based
approaches resides in the fact that we do not exploit either a delay embedding or an
explicit modeling of the inference model (i.e., the reconstruction of the latent states
given the observed time series). As such, our scheme only involves the selection
of the class of ODEs of interest. This model reduces the complexity of the overall
scheme to the complexity of the ODE representation and guarantees the consistency
of the reconstructed latent states w.r.t. the learnt ODE.

2.2 Stochastic Model Hypothesis: The Stochastic NbedDyn

When using phase space reconstruction techniques, one should not forget about
the assumptions that this theory is built on. For any embedding to work, we are
assuming that the dynamical model in (1) exists and can be represented by an
ordinary differential equation [15]. For several realistic applications, this ODE may
not exist or can have an extremely large dimension. In geoscience, for instance,
the dimension of a state space variable can reach .s ≈ O(109). In these situations,
reconstructing such an high-dimensional phase space becomes significantly more
challenging. In practice, the model returned by any embedding technique can be
complemented by an appropriate closure. The form of this closure term can be
deterministic using for example the framework of [24] or stochastic through an
appropriate calibration of a noise forcing.

When considering SST anomaly data, after calibration of the neural embedding
model, an unpredictable, high frequency residual remains. Based on Hasselmann’s
idea, we assume this residual component represents the effect of fast-scale pro-
cesses, e.g. passages of atmospheric and oceanic eddies. To first order, it can be
represented as a modulated white noise. Indeed, this residual, shown in Fig. 3,
exhibits correlations with the slow-scale SST anomaly data.

To model stochastic SST anomalies, the deterministic NbedDyn model described
above is first optimized, and further complemented (6) with a stochastic forcing as
follows:

.

{
u̇t = fθ1(ut ) + gθ2(ut )ξ t

xt = Gut
(12)

with .ξ t is a white noise. We derive the parameters of the model (12), as follows.
Given an observation time series of size .N + 1 .{xt0 , . . . , xtN }, similarly to the
deterministic case, we optimize the diffusion parameters .θ2 to minimize the forecast
of the observations. In addition to the diffusion parameters, we also reconstruct a
noise realization .ξ rec that generates the observations process under (12). Overall,
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the optimization problem can be written as follows:

.

θ̂2, {ξ̂ rec

ti
}i=N−1
i=0 = arg min

θ2,ξ
rec

T∑
t=1

‖xt − GΦθ,t

(
ut−1, ξ

rec
t−1)

∥∥2

Subject to

⎧⎨
⎩
ut = Φθ,t (ut−1, ξ

rec)

Gut = xt

Rξ recξ rec (τ ) = 0 for all τ �= 0

(13)

with .{ξ̂ rec

ti
}i=N−1
i=0 is the noise realization that minimizes the objective function

in (13) and .Φθ,t :

.Φθ,t (ut−1, ξ
rec) = ut−1 +

∫ t

t−1
fθ (uw)dw +

∫ t

t−1
gθ (uw)ξ rec

w dw

the solution of the stochastic model. This solution is approximated in this work
using an Euler-Maruyama scheme, which makes the model converge to an Ito SDE.

In practice, we use the following regularized optimization problem:

.

θ̂2, ξ̂
rec = arg min

θ2,ξ
rec

T∑
t=1

‖xt − GΦθ,t

(
ut−1, ξ

rec)
∥∥2

+ λ4C3
+ λ5C4
+ λ6C5

(14)

with .C3 = ‖Rξ recξ rec (τ )‖2, .C4 = Var(Φθ,t (ut−1, ξ
samp)), .C5 = ‖Φθ,t (ut−1, ξ

rec)−
E[Φθ,t (ut−1, ξ

samp)]‖2 and .ξ samp is a sampled Gaussian white noise. The variables
.λ4,5,6 are constant weighting parameters. The first constraint .C3 makes the recon-
structed noise path white. The second and third constraints, .C4,5, ensure that the
SDE generalizes to sampled white noises. Specifically .C3 makes an ensemble of
trajectories generated from sampled white noise close to the trajectory generated
from the reconstructed noise and .C2 reduces the spread of the ensemble around the
trajectory simulated from the reconstructed noise.

After optimization, we can couple the optimization problems (10) and (14) and
calibrate jointly all the model parameters .θ1, θ2, yt , ξ

rec. This fine tuning step is not
essential but allows both the drift and diffusion parameters of the model to adapt to
each other.
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3 Numerical Experiments

3.1 Data

Sea Surface Temperature Anomalies (SSTA) in the Mediterranean Sea correspond
to the Ligurian Sea at .8.6◦E, 43.8◦N. The anomalies are computed based on a yearly
average of the annual 99th percentile of the SST reanalysis [25, 26]. The time series
is made up of daily SST anomaly measurements from 1987 to 2019.We use the daily
data from 1987 to 2014 as training data. Figure 3e illustrates the time series. These
time series include a seasonal cycle and non-periodic high temperature extremes in
the summer.

3.2 Analysis of the Deterministic Model

In this first experiment, we investigate if the deterministic neural embedding model
is able to model the non-periodic variability of the SSTA extremes. For this purpose,
we test 3 models with dimensions of the embedding ranging from 1 to 10.

Analysis of the Embeddings The choice of the dimension .dE is linked to the
number of independent variables that can be used to model the dynamics using, in
our context, a bounded autonomous linear quadratic ODE. We start by studying the
direct impact of .dE on the performance of the NbedDyn model. Figure 1 shows
the impact of .dE on the training error between the observations and the model
simulation. Other criteria could be used (please refer to [13, 14] for a more in
depth analysis of this parameters on other case studies), but overall, the training
error provides a direct measure of the effectiveness of the embedding dimension
in the training phase. The first evaluation of the training error reported in Fig. 1

Fig. 1 Mean training error at
convergence. We report the
mean training error at
convergence of the
deterministic NbedDyn
model for different
dimensions .dE of the
embedding. This error is
averaged over the training
time series, and we highlight
here both the mean and
standard deviations
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corresponds to .dE equal to the dimension of the measurements, i.e. .dE = 1.
In this experiment, no latent states .yt are used and the embedding .ut = xt . In
such situations, the ODE model can not perfectly fit the data. Furthermore, at this
particular value of .dE , the models are more likely to display a bad asymptotic
behavior. As the dimension increases, this training error decreases which confirms
better modeling abilities using the NbedDyn model. In the following, we study the
models with .dE = 3, 6 and 10.

Asymptotic Properties of the Models We evaluate the asymptotic behavior of the
deterministic models for .dE = 3, 6 and 10. For this purpose, we run the nbedDyn
models for a period of 27 years. The resulting simulation is visualized with respect
to the reconstructed phase space (11) of the training data in Fig. 2. Overall, the

Fig. 2 Asymptotic solution of the deterministic models. We visualize the simulation of the
deterministic models with respect to the reconstructed phase space. The models with .dE = 3, 6
and 10 are given in figure (a), (b) and (c) respectively. For .dE > 3, we project the simulation and
the reconstructed phase space into .R3
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models are only able to reproduce the seasonal cycle of the SST anomaly data. Other
experiments (not shown here) suggest that even a farther increase of the dimension
of the embedding does not allow the model to capture the non-periodic behavior of
the SST anomaly extremes.

Analysis of the Training Residuals To further investigate the asymptotic behav-
ior of the deterministic models, we visualize in Fig. 3 the training residual
.{xti − GΦθ,ti (uti−1) with ti = t0, . . . , tN }. When the dimension of the embedding
increases above .dE = 1, a qualitative and quantitative change in the residual error
is present. This is due to the fact that a two-dimensional ODE (in .R) is needed
to capture the oscillations of the seasonal cycle of the SSTA. However, when the
dimension of the embedding increases above 2, no clear qualitative or quantitative
change is present. Furthermore, the residual is much more high frequency than
the training SSTA data, which suggests that the errors are due to a missing high
frequency scales that can not be modeled using the standard deterministic model.

Based on these considerations, and motivated by Hasselmann’s works on stochas-
tic climate models with applications on SST anomaly data, we proposed the
stochastic NbedDyn model. In this framework, the SST residual of Fig. 3 is modeled
as a stochastic forcing.

3.3 Analysis of the Stochastic Model

We focus our analysis on the model with .dE = 6. We add a stochastic forcing to the
neural embedding model (the parameters of the diffusion function .gθ2 are optimized
according to Appendix 1). Figure 4 shows the reconstructed phase space under
this new model, as well as a model simulation of 27 years. When compared to the
simulations of the deterministic model in Fig. 2, the stochastic model is able to cover
the whole reconstructed phase space, including the regions with high temperature
extremes. This shows that including the high frequency forcing is crucial for the
model to capture the non-periodic behavior of the extremes.

These observations are further illustrated in the simulation example given in
Fig. 5. The stochastic model is able to produce an ensemble of SST anomaly
trajectories that reproduce the non-periodic variability of the extremes. Furthermore,
the trajectories generated from a sampled white noise match the one of the
reconstructed noise, which validates the proposed training procedure.

We can also discuss the marginal PDF of the stochastic model and compare it to
the one computed from the data in Fig. 6. The PDF of the model is computed over a
simulation of 109 years. Overall, the model is able to correctly model the high SST
anomalies (in the summer), including the non-periodic extremes that form the tail of
the distribution. The negative SST anomalies (in the winter) are not approximated
as good as in the summer case. This is due to the fact that the model flattens the
PDF in the winter by generating trajectories that have more spread (as highlighted
in the ensemble prediction experiment in Fig. 5). We did not investigate this problem



256 S. Ouala et al.

Fig. 3 Training residual and corresponding training data. We visualize the training residual for
.dE = 1 in (a), .dE = 3 in (b), .dE = 6 in (c) and .dE = 10 in (d). Corresponding training data are
given in (e)
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Fig. 4 Simulation of the
stochastic model. We
visualize a stochastic model
simulation and compare it to
the reconstructed phase space.
Both the model simulation
and reconstructions are
projected into .R3

Fig. 5 Ensemble simulation of the stochastic model. We visualize an ensemble simulation of
the stochastic model, both in the training (a) and test (b) sets. The simulation in the training
set is carried to compare trajectories computed from a sampled noise to the one issued from the
reconstructed noise .ξ rec

Fig. 6 PDF of the data and
the stochastic model. We
compare the marginal PDF of
the stochastic model with the
one of the data

within the present study. However, we can make the PDF sharper in the winter by
forcing the diffusion of the model to be closer to zero during this season.
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4 Conclusion

In this work, we examined the potential of machine learning techniques to derive
relevant dynamical models of sea surface temperature anomaly data in the Mediter-
ranean Sea. We focused on the seasonal modulation of SSTA extremes and used
a neural embedding model to reconstruct the phase space of SSTA data. We then
added a stochastic forcing term to account for the missing high frequency variability.
Our results contribute to the understanding of the factors influencing SSTA extremes
and the development of more accurate prediction models. In particular, the analysis
highlights the importance of including these fast high-frequency scales in the
modeling of SSTA data.

One potential avenue for future work is to investigate the white noise hypothesis
in comparison to other types of stochastic models, such as those based on colored
noise or fractional Brownian motion. Furthermore, it would be interesting to apply
the methodology to other regions and compare the results to evaluate the local
impacts of the fast-scales on the slower ones. The ability of using this model as
an emulator and studying its predictive skills with respect to standard ocean data
assimilation based systems is also a promising perspective.

Finally, and from a methodological point of view, this work highlights the impor-
tance of complementing models that are returned by an embedding methodology.
Specifically, and as discussed in Sect. 2.2, in complex applications such as the ones
in geosciences, the dimension of the underlying state variables is likely to be huge
and defining ways of complementing reduced order models through appropriate
closure terms is mandatory in order to capture the variability of the data. Analysing
the residual of the model fitting procedure is a natural way to define and optimize
this closure terms.

Appendix 1: Training

The trainable parameters of the deterministic NbedDyn models i.e. the linear
quadratic ODE and initial conditions of the latent states are initially sampled from a
uniform distribution. The training of all models is carried using the Adam optimizer.
We use a varying learning rate (from 0.1 to 0.001) in all the experiments to speed
up the training. Regarding the weighting parameters .{λi}i=3

i=1, we set .λ1 = 1 during
all the training. The weights responsible for the boundedness constraints were set at
higher values in the beginning of the training i.e. .λ2 = 100 and .λ3 = 1000 and
then reduced to .λ2 = 1 when .λ3C2 = 0. The training is stopped using cross-
validation. Regarding the stochastic forcing, the parameters of the diffusion are
initially sampled from a uniform distribution and the noise path ξ rec is initialized
from a standard normal distribution. We use a learning rate of 0.001 and the
weighting parameters {λi}i=6

i=4 to one during all the training. We finished the training
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with a fine tuning step, in which all the parameters of the model are optimized jointly
with a learning rate of 0.0001.

Appendix 2: Parameterization of the Diffusion Function

The diffusion function .gθ2 : RdE −→ R
dE×dN where .dN is the dimension of the

noise. In our experiment, we parameterized this function using a fully connected
neural networks with 2 hidden layers with a sigmoid activation and 400 neurones
per hidden layer. The dimension of the noise .dN is set to the dimension of the state
.ut .
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