Skip to main content

Nanocarriers: Potential Vehicles for Managed Delivery of Bioactive Compounds in Therapeutics

  • Chapter
  • First Online:
Microbial Bioactive Compounds
  • 111 Accesses

Abstract

In recent years, the medical industry has used nanomaterials extensively in large part due to the fast advancement of nanotechnology. They are ideally suited for the target-specific and precisely controlled delivery of micro- and macromolecules in disease therapy due to their unique physical and chemical properties, which include minimized size, customized surface features, robust interactions with ligands, high carrier ability, and ease of adhering with both hydrophilic and hydrophobic substances. They have also shown outstanding promise pertaining to clinical applications with the goal of fine-tuning bioavailability, bio efficacy, and pharmacokinetics. The primary challenges in therapeutics include absorption, post-administration stability, and bioavailability of drugs and other bioactive compounds. Some crucial medications have limited gastrointestinal absorption and permeability in their bioactive state, get sometimes inactivated by pH and temperature changes, and produce disastrous off-target and unwanted side effects. Certain studies have also found that active efflux systems impact the assimilation of some currently integrated substances by causing structural changes across the gut wall. Furthermore, gut bacteria and/or enzymes degrade the fragile components of active chemicals into a range of metabolites, each with a distinct bioactivity from the original chemical molecule. By virtue of nanocarrier-mediated dispersion, their solubilization potential improved, absorption pathways altered, and metabolic breakdown by gut bacteria and enzymes substantially decreased. Combining nanobiotechnology with existing therapeutic procedures has proven beneficial in bringing novel and previously rejected bioactive compounds to the market to treat an extensive range of illnesses and disorders. As a result, we anticipate that nanotechnology will play a bigger role in disease diagnosis and treatment in years to come, perhaps assisting in the resolution of obstacles in present medical procedures. This chapter provides a thorough examination of the techniques and applications of nanoengineered delivery systems, as well as the pharmacokinetic features and drug-delivery mechanisms of these nanocarriers. The potential downsides, problems, future improvements, and applications of nanocarriers in clinical care are addressed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin H-S (2018) Nano-based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:1–33

    Article  Google Scholar 

  2. Portero A, Remunan-Lopez C, Criado M, Alonso M (2002) Reacetylated chitosan microspheres for controlled delivery of anti-microbial agents to the gastric mucosa. J Microencapsul 19:797–809

    Article  CAS  PubMed  Google Scholar 

  3. Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16:1576–1581

    Article  PubMed  Google Scholar 

  4. De Campos AM, Sánchez A, Alonso MJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224:159–168

    Article  PubMed  Google Scholar 

  5. Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C (2012) Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release 157:383–390

    Article  CAS  PubMed  Google Scholar 

  6. Silva MM, Calado R, Marto J, Bettencourt A, Almeida AJ, Gonçalves L (2017) Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs 15:370–386

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pistone S, Goycoolea FM, Young A, Smistad G, Hiorth M (2017) Formulation of polysaccharide-based nanoparticles for local administration into the oral cavity. Eur J Pharm Sci 96:381–389

    Article  CAS  PubMed  Google Scholar 

  8. Liu S, Yang S, Ho PC (2018) Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci 13:72–81

    Article  PubMed  Google Scholar 

  9. Elseoud WSA, Hassan ML, Sabaa MW, Basha M, Hassan EA, Fadel SM (2018) Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int J Biol Macromol 111:604–613

    Article  Google Scholar 

  10. Shah AA, Gupta A (2021) Antioxidants in health and disease with their capability to defend pathogens that attack apple species of Kashmir. In: Ekiert HM, Ramawat KG, Arora J (eds) Plant antioxidants and health. Reference series in phytochemistry. Springer, Cham

    Google Scholar 

  11. Hansen K, Kim G, Desai KG, Patel H, Olsen KF, Curtis-Fisk J, Tocce E, Jordan S, Schwendeman SP (2015) Feasibility investigation of cellulose polymers for mucoadhesive nasal drug delivery applications. Mol Pharm 12:2732–2741

    Article  CAS  PubMed  Google Scholar 

  12. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102–111

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mohan A, Narayanan S, Sethuraman S, Krishnan UM (2014) Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. Bio Med Res Int 2014:1–14

    Google Scholar 

  15. Dimov N, Kastner E, Hussain M, Perrie Y, Szita N (2017) Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci Rep 7:120–145

    Article  Google Scholar 

  16. Patil NH, Devarajan PV (2016) Insulin-loaded alginic acid nanoparticles for sublingual delivery. Drug Deliv 23:429–436

    Article  CAS  PubMed  Google Scholar 

  17. Haque S, Md S, Sahni JK, Ali J, Baboota S (2014) Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res 48:1–12

    Article  PubMed  Google Scholar 

  18. Menzel C, Jelkmann M, Laffleur F, Bernkop-Schnürch A (2017) Nasal drug delivery: design of a novel mucoadhesive and in situ gelling polymer. Int J Pharm 517:196–202

    Article  CAS  PubMed  Google Scholar 

  19. Román JV, Galán MA, del Valle EMM (2016) Preparation and preliminary evaluation of alginate crosslinked microcapsules as potential drug delivery system (DDS) for human lung cancer therapy. Biomed Phys Eng Expr 2:035015

    Article  Google Scholar 

  20. Rauti R, Musto M, Bosi S, Prato M, Ballerini L (2019) Properties and behavior of carbon nanomaterials when interfacing neuronal cells: how far have we come? Carbon 143:430–446

    Article  CAS  Google Scholar 

  21. Beg S, Rahman M, Jai A, Saini S, Hasnain MS, Swain S (2018) Emergence in the functionalized carbon nanotubes as smart nanocarriers for drug delivery applications. Fullerenes, Graphenes and Nanotubes: a Pharmaceutical Approach 2018:105–133. Editor A M Grumezescu

    Article  Google Scholar 

  22. Liang F, Chen B (2009) A review on biomedical applications of single-walled carbon nanotubes. Curr Med Chem 17:10–24

    Article  Google Scholar 

  23. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater Weinheim 22:734–738

    Article  Google Scholar 

  24. Li D, Chen X, Wang H, Liu J, Zheng M, Fu Y (2017) Cetuximab-conjugated nanodiamonds drug delivery system for enhanced targeting therapy and 3D Raman imaging. J Biophotonics 10:1636–1646

    Article  CAS  PubMed  Google Scholar 

  25. Cai W, Gao H, Chu C, Wang X, Wang J (2017) Engineering phototheranostic nanoscale metal–organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces 9:2040–2051

    Article  CAS  PubMed  Google Scholar 

  26. Mao D, Hu F, Kenry JS, Wu W, Ding D, Kong D, Liu B (2018) Metal–organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv Mater 30:1706831

    Article  Google Scholar 

  27. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C (2018) Nanoparticles of metal–organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mater 30:1707365

    Article  Google Scholar 

  28. Gandara-Loe J, Ortuño-Lizarán I, Fernández-Sanchez L, Alió JL, Cuenca N, Vega-Estrada A, Silvestre-Albero J (2019) Metal–organic frameworks as drug delivery platforms for ocular therapeutics. ACS Appl Mater Interfaces 11:1924–1931

    Article  CAS  PubMed  Google Scholar 

  29. Sava Gallis DF, Butler KS, Agola JO, Pearce CJ, McBride AA (2019) Antibacterial countermeasures via metal–organic framework-supported sustained therapeutic release. ACS Appl Mater Interfaces 11:7782–7791

    Article  CAS  PubMed  Google Scholar 

  30. Chen B, Yang Z, Zhu Y, Xia Y (2014) Zeoliticimidazolate framework materials: recent progress in synthesis and applications. J Mater Chem A 2:16811–16831

    Article  CAS  Google Scholar 

  31. Vasconcelos IB, da Silva TG, Militão GCG, Soares TA, Rodrigues NM (2012) Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Adv 2:9437–9442

    Article  CAS  Google Scholar 

  32. Sun C-Y, Qin C, Wang X-L, Yang G-S, Shao K-Z (2012) Zeoliticimidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans 41:6906–6909

    Article  CAS  PubMed  Google Scholar 

  33. Zhuang J, Kuo C-H, Chou L-Y, Liu D-Y, Weerapana E, Tsung C-K (2014) Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 8:2812–2819

    Article  CAS  PubMed  Google Scholar 

  34. Taylor-Pashow KML, Della Rocca J, Xie Z, Tran S, Lin W (2009) Post synthetic modifications of iron-carboxylate nanoscale metal−organic frameworks for imaging and drug delivery. J Am Chem Soc 131:14261–14263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X-G, Dong Z-Y, Cheng H, Wan S-S, Chen W-H (2015) A multifunctional metal–organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale 7:16061–16070

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Li P, Modica JA, Drout RJ, Farha OK (2018) Acid resistant mesoporous metal–organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J Am Chem Soc 140:5678–5681

    Article  CAS  PubMed  Google Scholar 

  37. He C, Lu K, Liu D, Lin W (2014) Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 136:5181–5184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lian X, Huang Y, Zhu Y, Fang Y, Zhao R (2018) Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy. Angew Chem Int Ed 57:5725–5730

    Article  CAS  Google Scholar 

  39. Pohlmann AR, Weiss V, Mertins O, Da Silveira NP, Guterres SS (2002) Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. Eu J Pharma Sci 16:305–312

    Article  Google Scholar 

  40. Radhika PR, Sasikanth, Sivakumar T (2011) Nanocapsules: A new approach in drug delivery. Int J Pharm Sci Res 2:1426–1429

    CAS  Google Scholar 

  41. Chiang CS, Hu SH, Liao BJ, Chang YC, Chen SY (2014) Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomed 10:99–107

    Article  CAS  Google Scholar 

  42. Baran ET, Özer N, Hasirci V (2002) Poly (hydroxybutyrate-co-hydroxyvalerate) nanocapsules as enzyme carriers for cancer therapy: an in vitro study. J Microencapsul 19:363–376

    Article  CAS  PubMed  Google Scholar 

  43. Kim CS, Mout R, Zhao Y, Yeh Y-C, Tang R, Jeong Y, Duncan B, Hardy JA, Rotello VM (2015) Co-delivery of protein and small molecule therapeutics using nanoparticle-stabilized nanocapsules. Bioconjug Chem 26:950–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rawat M, Singh D, Saraf S, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29:1790–1798

    Article  CAS  PubMed  Google Scholar 

  45. Sukhorukov GB, Rogach AL, Garstka M, Springer S, Parak WJ, Munõz-Javier A, Kreft O, Skirtach AG, Susha AS, Ramaye Y (2007) Multifunctionalized polymer microcapsules: novel tools for biological and pharmacological applications. Small 3:944–955

    Article  CAS  PubMed  Google Scholar 

  46. Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J (1985) Smith PA new class of polymers: starburst-dendritic. Polym J 17:117–132

    Article  CAS  Google Scholar 

  47. Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem 50:2003–2004

    Article  CAS  Google Scholar 

  48. Elham A, Sedigheh FA, Abolfaz A, Morteza M, Hamid TN, Sang WJ, Younes H, Kazem N, Roghiyeh P (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247

    Article  Google Scholar 

  49. Vandamme TF, Brobeck L (2005) Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 20:23–38

    Article  Google Scholar 

  50. Jones CF, Campbell RA, Franks Z, Gibson CC, Thiagarajan G, Vieira-de-Abreu A, Sukavaneshvar S, Mohammad SF, Li DY, Ghandehar H, Weyrich AS, Brooks BD, Grainger DW (2012) Cationic PAMAM dendrimers disrupt key platelet functions. Mol Pharm 9:1599–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khandare JJ, Jayan S, Singh A, Chandna P, Yang W, Vorsa N, Minko T (2006) Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug Chem 17:1464–1472

    Article  CAS  PubMed  Google Scholar 

  52. Chittasupho C, Anuchapreeda S, Sarisuta N (2017) CXCR4 targeted dendrimer foranti-cancer drug delivery and breast cancer cell migration inhibition. Eur J Pharm Biopharm 119:310–321

    Article  CAS  PubMed  Google Scholar 

  53. Gupta L, Sharma AK, Gothwal A, Khan MS, Khinchi MP, Qayum A, Singh SK, Gupta U (2017) Dendrimer encapsulated and conjugated delivery of berberine: a novel approach mitigating toxicity and improving in vivo pharmacokinetics. Int J Pharm 528:88–99

    Article  CAS  PubMed  Google Scholar 

  54. Saovapakhiran A, D'Emanuele A, Attwood D, Penny J (2009) Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug Chem 20:693–701

    Article  CAS  PubMed  Google Scholar 

  55. Patri AK, Kukowska-Latallo JF, Baker Jr JR (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57:2203–2214

    Article  CAS  PubMed  Google Scholar 

  56. Zhong Q, Krishna Rao KSV (2016) Recent advances in stimuli-responsive poly (amidoamine) dendrimer nanocarriers for drug delivery. Indian J Adv Chem Sci 4:195–207

    CAS  Google Scholar 

  57. Yamashita S, Katsumi H, Hibino N, Isobe Y, Yagi Y, Kusamori K, Sakane T, Yamamoto A (2017) Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases. J Control Release 262:10–17

    Article  CAS  PubMed  Google Scholar 

  58. Iordana NA, Gabriela R, Alina D, Loredana EN, Chiriac AP (2017) Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24:539–557

    Article  Google Scholar 

  59. Sunasee R, Wattanaarsakit P, Ahmed M (2012) Biodegradable and nontoxic nanogels as nonviral gene delivery systems. Bioconjug Chem 23:1925–1933

    Article  CAS  PubMed  Google Scholar 

  60. Li R, Wu W, Song H (2016) Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery. Acta Biomater 41:282–292

    Article  CAS  PubMed  Google Scholar 

  61. Yang H, Choi J, Park J (2014) Differentiation of endothelialprogenitor cells into endothelial cells by heparin-modified supramolecular pluronic nanogels encapsulating bFGF and complexed withVEGF165 genes. Biomaterials 35:4716–4728

    Article  CAS  PubMed  Google Scholar 

  62. Tyagi R, Lala S, Verma AK, Nandy AK, Mahato SB, Maitra A, Basu MK (2005) Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis. J Drug Target 13:161–171

    Article  CAS  PubMed  Google Scholar 

  63. Qiu L, Zheng C, Jin Y, Zhu K (2007) Polymeric micelles as nanocarriers for drug delivery. Expert Opin Ther Pat 17:819–830

    Article  CAS  Google Scholar 

  64. Kataoka K (2004) Smart polymeric micelles as nanocarriers for gene and drug delivery. In: International Conference on MEMS, NANO and Smart Systems (ICMENS’04), pp. 4–5

    Google Scholar 

  65. Li Y, Zhang T, Liu Q, He J (2019) PEG-Derivatized dual-functional Nanomicelles for improved cancer therapy. Front Pharmacol 10(808):1–14

    Google Scholar 

  66. Singh D, Singh R, Singh P, Gupta RS (2009) Effects of embelin on lipid peroxidation and free radical scavenging activity against liver damage in rats. Basic Clin Pharmacol Toxicol 105:243–248

    Article  CAS  PubMed  Google Scholar 

  67. Bhandari U, Jain N, Pillai KK (2007) Further studies on antioxidant potential and protection of pancreatic beta-cells by Embeliaribes in experimental diabetes. Exp Diabetes Res 2007:15803

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li Y, Li D, Yuan S, Wang Z, Tang F, Nie R (2013) Embelin induced MCF-7 breast cancer cell apoptosis and blockade of MCF-7 cells in the G2/M phase via the mitochondrial pathway. Oncol Lett 5:1005–1009

    Article  CAS  PubMed  Google Scholar 

  69. Chitra M, Sukumar E, Suja V, Devi CS (1994) Antitumor, anti-inflammatory and analgesic property of embelin, a plant product. Chemotherapy 40:109–113

    Article  CAS  PubMed  Google Scholar 

  70. Huang Y, Lu J, Gao X, Li J, Zhao W, Sun M et al (2012) PEG derivatized embelin as a dual functional carrier for the delivery of paclitaxel. Bioconjug Chem 23:1443–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lu J, Huang Y, Zhao W, Marquez RT, Meng X, Li J (2013) PEG derivatized embelin as a nanomicellar carrier for delivery of paclitaxel to breast and prostate cancers. Biomaterials 34:1591–1600

    Article  CAS  PubMed  Google Scholar 

  72. Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K (1991) Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 51:3229–3236

    CAS  PubMed  Google Scholar 

  73. Francis MF, Cristea M, Winnik F (2005) Exploiting the vitamin B12 pathway to enhance oral drug delivery via polymeric micelles. Biomacromolecules 6:2462–2467

    Article  CAS  PubMed  Google Scholar 

  74. Lukyanov AN, Hartner WC, Torchilin VP (2004) Increased accumulation of PEG–PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 4:187–193

    Article  Google Scholar 

  75. Kwon G, Suwa S, Yokoyama M, Okano T, Sakurai Y, Kataoka K (1994) Enhanced tumor accumulation and prolonged circulation times of micelle forming poly(ethylene oxide-aspartate)block copolymer-adriamycin conjugates. J Control Release 29:17–23

    Article  CAS  Google Scholar 

  76. Lei Y, Sheldon BW, Webster TJ (2010) Nanophase ceramics for improved drug delivery: current opportunities and challenges. Am Ceram Soc Bull 89:24–33

    Google Scholar 

  77. Armatas GS, Kanatzidis MG (2006) Mesostuctured germanium oxide with cubic pore symmetry. Nature 441:1122–1125

    Article  CAS  PubMed  Google Scholar 

  78. Luo D, Han E, Belcheva N, Saltzman WM (2004) A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J Control Rel 95:333–341

    Article  CAS  Google Scholar 

  79. Jain TK, Roy I, De TK, Maitra A (1998) Nanometer silica particles encapsulating active compounds: A novel ceramic drug carrier. J Am Chem Soc 120:11092–11095

    Article  CAS  Google Scholar 

  80. Fadeel B, Garc’ıa-Bennett AE. (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–374

    Article  CAS  PubMed  Google Scholar 

  81. Singh D, Singh S, Sahu J, Srivastava S, Sing RM (2016) Ceramic nanoparticles: recompense, cellular uptake and toxicity concerns. Artif Cells Nanomed Biotechnol 44:401–409

    Article  CAS  PubMed  Google Scholar 

  82. Johnson AK, Zawadzka AM, Deobald LA (2008) Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanopart Res 10:1009–1025

    Article  CAS  Google Scholar 

  83. Sarath Chandra V, Baskar G, Suganthi R (2012) Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release. ACS Appl Mater Interfaces 4:1200–1210

    Article  CAS  PubMed  Google Scholar 

  84. Panseri S, Cunha C, D’Alessandro T (2012) Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J Nanobiotechnol 10:32

    Article  CAS  Google Scholar 

  85. Goyal AK, Khatri K, Mishra N (2009) Development of self-assembled nanoceramic carrier construct(s) for vaccine delivery. J Biomater Appl 24:65–84

    Article  CAS  PubMed  Google Scholar 

  86. Roy I, Ohulchanskyy T, Pudavar H (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 125:860–7865

    Article  Google Scholar 

  87. Chen Y, Chen H, Ma M (2011) Double mesoporous silica shelled spherical/ellipsoidal nanostructures: synthesis and hydrophilic/hydrophobic anticancer drug delivery. J Mater Chem 21:5290–5298

    Article  CAS  Google Scholar 

  88. Saraf S (2009) Process optimization for the production of nanoparticles for drug delivery applications. Expert Opin Drug Deliv 6:187–196

    Article  CAS  PubMed  Google Scholar 

  89. Chingunpituk J (2007) Nanosuspension technology for drug delivery. Walailak J Scie Tech 4:139–153

    Google Scholar 

  90. Nagarwal RC, Kumar R, Dhanawat M, Das N, Pandit JK (2011) Nanocrystal technology in the delivery of poorly soluble drugs : an overview. Curr Drug Deliv 8:398–406

    Article  CAS  PubMed  Google Scholar 

  91. Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18:113–120

    Article  CAS  PubMed  Google Scholar 

  92. Gao Y, Li Z, Sun M, Guo C, Yu A, Xi Y (2011) Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv 18:131–142

    Article  CAS  PubMed  Google Scholar 

  93. Prabhakar C, Krishna KB (2011) A review on nanosuspensions in drug delivery. Int J Pharma Bio Sci 2:549–558

    CAS  Google Scholar 

  94. McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticle. Prog Mole Bio Trans Sci (2011) 104: 571–572. Elsevier, New York, NY, USA

    Google Scholar 

  95. Constantinides PP, Chaubal MV, Shorr R (2008) Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Del Rev 60:757–767

    Article  CAS  Google Scholar 

  96. Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29–37

    Article  CAS  PubMed  Google Scholar 

  97. Shan XQ, Liu CS, Li FQ, Ouyang C, Gao Q, Zheng KS (2015) Nanoparticles vs. nanofibers: a comparison of two drug delivery systems on assessing drug release performance in vitro. Designed Monomers and Poly 18:678–689

    Article  CAS  Google Scholar 

  98. Thuy TTN, Chiranjit G, Seong-Gu H, Noppavan C, Jun SP (2012) Porous core/sheath composite nanofibers fabricated bycoaxial electrospinning as a potential mat for drug release system. Int J Pharm 439:296–306

    Article  Google Scholar 

  99. Tatsuya O, Kengo T, Satoru K (2010) Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J Control Release 143:258–264

    Article  Google Scholar 

  100. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  101. Che G, Lakshmi B, Martin C, Fisher E, Ruoff RS (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10:260–267

    Article  CAS  Google Scholar 

  102. Hassan MA, Yeom BY, Wilkie A, Pourdeyhimi B, Khan SA (2013) Fabrication of nanofiber melt blown membranes and their filtration properties. J Membr Sci 427:336–344

    Article  CAS  Google Scholar 

  103. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptideamphiphile nanofibers. Science 294:1684–1688

    Article  CAS  PubMed  Google Scholar 

  104. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  CAS  PubMed  Google Scholar 

  105. Wen C-Y, Wu L-L, Zhang Z-L, Liu Y-L, Wei S-Z, Hu J, Tang M, Sun E-Z, Gong Y-P, Yu J (2013) Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano 8:941–949

    Article  PubMed  Google Scholar 

  106. Zamani M, Prabhakaran MP, Ramakrishna S (2013) Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine 8:2997–3017

    PubMed  PubMed Central  Google Scholar 

  107. Liu S, Zhou G, Huang Y, Xie Z, Jing X (2003) Biodegradable electrospun fibers as drug delivery system for local cancer treatment: a rugged path to the bright future: original research article: biodegradable electrospun fibers for drug delivery. J Control Release 2014:52–53

    Google Scholar 

  108. Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, Noppe M, Brewster ME (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J controlled release: official journal of the Controlled Release Society 92:349–360

    Article  CAS  Google Scholar 

  109. Dashdorj U, Reyes MK, Unnithan AR, Tiwari AP, Tumurbaatar B, Park CH, Kim CS (2015) Fabrication, and characterization of electrospunzein/ag nanocomposite mats for wound dressing applications. Int J Bio Macromol 80:1–7

    Article  CAS  Google Scholar 

  110. Singh M, Movia D, Mahfoud OK, Volkov Y, Prina-Mello A (2013) Silver nanowires as prospective carriers for drug delivery in cancer treatment: an in vitro biocompatibility study on lung adenocarcinoma cells and fibroblasts. Eur J Nanomed 5:195–204

    Article  CAS  Google Scholar 

  111. Martínez-Banderas AI, Aires A, Quintanilla M, Holguín-Lerma JA, Lozano-Pedraza C, Teran FJ, Moreno JA (2019) ́ Perez JE, Ooi BS, Ravasi T, Merzaban JS, Cortajarena AL, Kosel J, iron-based Core-Shell nanowires for combinatorial drug delivery and Photothermal and magnetic therapy. ACS Appl Mater Interfaces 11:43976–43988

    Article  PubMed  Google Scholar 

  112. Shana X, Liub C, Lic F, Ouyanga C, Gaoa Q, Zheng K (2015) Nanoparticles vs nanofibers: a comparison of two drug delivery systems on assessing drug release performance in vitro. Designed Monomers and Polymers 18:678–689

    Article  Google Scholar 

  113. Shen S, Wu Y, Liu Y, Wu D (2017) High drug-loading nanomedicines: Progress, current status, and prospects. Int J Nanomedicine 12:4085–4109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dwaine FE, Christopher GT (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3:655–663

    Article  Google Scholar 

  115. Abbaspourrad A, Datta SS, Weitz DA (2013) Controlling release from pH responsive microcapsules. Langmuir 29:12697–12702

    Article  CAS  PubMed  Google Scholar 

  116. Oluwole DO, Nyokong T (2015) Physicochemical behavior of nanohybrids of mono and tetra substituted carboxyphenoxyphthalocyanine covalently linked to GSH-CdTe/CdS/ZnS quantum dots. Polyhedron 87:8–16

    Article  CAS  Google Scholar 

  117. Schneider R, Schmitt F, Frochot C, Fort Y, Lourette N, Guillemin F (2005) Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorg Med Chem 13:2799–2808

    Article  CAS  PubMed  Google Scholar 

  118. Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release 100:247–256

    Article  CAS  PubMed  Google Scholar 

  119. Ju J, Chen W (2015) Graphene quantum dots as fluorescence probes for sensing metal ions: synthesis and applications. Curr Org Chem 19:1150–1162

    Article  CAS  Google Scholar 

  120. Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S, Zhu Y (2017) Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 13:1602225

    Article  Google Scholar 

  121. Justin R, Tao K, Román S, Chen D, Xu Y, Geng X, Ross IM, Grant RT, Pearson A, Zhou G (2016) Photoluminescent and superparamagnetic reduced graphene oxide–iron oxide quantum dots for dual modality imaging, drug delivery and photothermal therapy. Carbon 97:54–70

    Article  CAS  Google Scholar 

  122. Biswas A, Khandelwal P, Das R, Salunke G, Alam A, Ghorai S, Chattopadhyay S, Poddar P (2017) Oxidant mediated one-step complete conversion of multi-walled carbon nanotubes to graphene quantum dots and their bioactivity against mammalian and bacterial cells. J Mater Chem B 5:785–796

    Article  CAS  PubMed  Google Scholar 

  123. Zhang H (2016) Onivyde for the therapy of multiple solid tumors. Onco Targets 9:3001–3007

    Article  CAS  Google Scholar 

  124. Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, Ansell S, Du X, Hope MJ, Madden TD et al (2019) The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol 14:1084–1087

    Article  CAS  PubMed  Google Scholar 

  125. Silverman JA, Deitcher SR (2013) Marqibo(R) (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharm 71:555–564

    Article  CAS  Google Scholar 

  126. Komlosh A, Weinstein V, Loupe P, Hasson T, Timan B, Konya A, Alexander J, Melamed-Gal S, Nock S (2019) Physicochemical and biological examination of two Glatiramer acetate products. Biomedicine 7:49

    CAS  Google Scholar 

  127. Venkatakrishnan K, Liu Y, Noe D, Mertz J, Bargfrede M, Marbury T, Farbakhsh K, Oliva C, Milton A (2014) Pharmacokinetics and pharmacodynamics of liposomal mifamurtide in adult volunteers with mild or moderate renal impairment. Br J Clin Pharm 77:986–997

    Article  CAS  Google Scholar 

  128. Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Transl Med 4:e10143

    Article  PubMed  PubMed Central  Google Scholar 

  129. Choi YH, Han HK (2018) Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 48:43–60

    Article  CAS  PubMed  Google Scholar 

  130. Bullivant JP, Zhao S, Willenberg BJ, Kozissnik B, Batich CD, Dobson J (2013) Materials characterization of Feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int J Mol Sci 14:17501–17510

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kaduk JA, Dmitrienko AO, Gindhart AM, Blanton TN (2017) Crystal structure of paliperidone palmitate (INVEGA SUSTENNA®), C39H57FN4O4. Powder Diffract 32:222–227

    Article  CAS  Google Scholar 

  132. Lyseng-Williamson KA, Keating GM (2009) Ferric Carboxymaltose. Drugs 69:739–756

    Article  CAS  PubMed  Google Scholar 

  133. Kim MT, Chen Y, Marhoul J, Jacobson F (2014) Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem 25:1223–1232

    Article  CAS  PubMed  Google Scholar 

  134. Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR (2019) Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 14:93–126

    Article  CAS  PubMed  Google Scholar 

  135. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71

    Article  Google Scholar 

  137. Chelle P, Yeung CHT, Croteau SE, Lissick J, Balasa V, Ashburner C, Park YS, Bonanad S, Megías-Vericat JE, Nagao A et al (2020) Development and validation of a population-pharmacokinetic model for Rurioctacog alfa Pegol (Adynovate®): A report on behalf of the WAPPS-Hemo investigators ad hoc subgroup. Clin Pharmacokinet 59:245–256

    Article  CAS  PubMed  Google Scholar 

  138. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99–105

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Patel HN, Patel PM (2013) Dendrimer applications - A review. Int J Pharma Bio Sci 4:454–463

    CAS  Google Scholar 

  141. Wang X, Wang C, Zhang Q, Cheng Y (2016) Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery. Chem Commun (Camb) 52:978–981

    Article  CAS  PubMed  Google Scholar 

  142. Sendi P, Proctor RA (2009) Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol 17:54–58

    Article  CAS  PubMed  Google Scholar 

  143. Bhirde AA, Patel S, Sousa AA, Patel V, Molinolo AA, Ji Y, Leapman RD, Gutkind JS, Rusling JF (2010) Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomed (Lond Engl) 5:1535–1546

    Article  CAS  Google Scholar 

  144. Kharlamov AN, Feinstein JA, Cramer JA, Boothroyd JA, Shishkina EV, Shur V (2017) Plasmonic photothermal therapy of atherosclerosis with nanoparticles: long-term outcomes and safety in NANOM-FIM trial. Futur Cardiol 13:345–363

    Article  CAS  Google Scholar 

  145. Zhou J, Li M, Lim WQ, Luo Z, Phua SZF, Huo R, Li L, Li K, Dai L, Liu J et al (2018) A transferrin-conjugated hollow Nanoplatform for redox-controlled and targeted chemotherapy of tumor with reduced inflammatory reactions. Theranostics 8:518–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Madamsetty VS, Pal K, Keshavan S, Caulfield TR, Dutta SK, Wang E, Fadeel B, Mukhopadhyay D (2019) Development of multi-drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. Nanoscale 11:22006–22018

    Article  CAS  PubMed  Google Scholar 

  147. Costa J, Silva N, Sarmento B, Pintado M (2015) Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur J Clin Microbiol Infect Dis 34:1255–1262

    Article  CAS  PubMed  Google Scholar 

  148. Luo Y, Li M, Hu G, Tang T, Wen J, Li X, Wang L (2018) Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO2 nanocomposites. Mater Res Bull 97:428–435

    Article  CAS  Google Scholar 

  149. Huang J, Deng Y, Ren J, Chen G, Wang G, Wang F, Wu X (2018) Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery. Carbohydr Polym 186:54–63

    Article  CAS  PubMed  Google Scholar 

  150. Wang C, Jin J, Sun Y, Yao J, Zhao G, Liu Y (2017) In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite. Chem Eng J 327:774–782

    Article  CAS  Google Scholar 

  151. Ruzycka-Ayoush M, Kowalik P, Kowalczyk A, Bujak P, Nowicka AM, Wojewodzka M, Kruszewski M, Grudzinski IP (2021) Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells. Cancer Nano 12:1–27

    Google Scholar 

  152. Peynshaert K, Soenen SJ, Manshian BB, Doak SH, Braeckmans K, De Smedt SC (2017) Coating of quantum dots strongly defines their effect on lysosomal health and autophagy. Acta Biomater 48:195–205

    Article  CAS  PubMed  Google Scholar 

  153. Wang Y, Yang C, Hu R, Toh HT, Liu X, Lin G (2015) Assembling Mn: ZnSe quantum dots-siRNA nanoplexes for gene silencing in tumor cells. Biomater Sci 3:192–202

    Article  CAS  PubMed  Google Scholar 

  154. Demir GM, Ilhan M, Akkol EK (2017) Effect of paclitaxel loaded chitosan nanoparticles and quantum dots on breast cancer. PRO 1:1074

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, A.A., Gupta, A. (2023). Nanocarriers: Potential Vehicles for Managed Delivery of Bioactive Compounds in Therapeutics. In: Soni, R., Suyal, D.C., Morales-Oyervides, L. (eds) Microbial Bioactive Compounds. Springer, Cham. https://doi.org/10.1007/978-3-031-40082-7_8

Download citation

Publish with us

Policies and ethics