Skip to main content

Radon and Metals

  • Chapter
  • First Online:
Indoor Air Quality
  • 162 Accesses

Abstract

The focus of this chapter are on radon, the substance with the highest carcinogenic potential indoors, and metals (especially heavy metals). They are presented individually in detail. In addition to a brief description of the chemical–physical characteristics and the use of the substance, an overview of main health risks and, in particular, references to further scientific literature are given. In the foreground, however, are extensive presentations of the occurrence of the substances in indoor air and in sedimented dust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adgate JL, Mongin SJ, Pratt GC, Zhang J, Field MP, Ramachandran G, Sexton K (2007) Relationships between personal, indoor, and outdoor exposures to trace elements in PM2.5. Sci Total Environ 386:21–32

    Article  CAS  Google Scholar 

  • Ajrouche R, Ielsch G, Cléro E, Roudier C, Gay D, Guillevic J, Laurier D, Le Tertre A (2017) Quantitative health risk assessment of indoor radon: a systematic review. Radiat Prot Dosim 177:69–77

    Article  CAS  Google Scholar 

  • Al Hejami A, Davis M, Prete D, Lu J, Wang S (2020) Heavy metals in indoor settled dusts in Toronto, Canada. Sci Total Environ 703:134895

    Article  CAS  Google Scholar 

  • Alcock R, Wajrak M, Oosthuizen J (2022) Assessment of the effectiveness of ventilation controls in managing airborne and surface lead levels at a newly commissioned indoor shooting range. Int J Environ Res Public Health 19:11711

    Article  CAS  Google Scholar 

  • Ali N, Eqani SAMAS, Nazar E, Alhakamy NA, Rashid MI, Shahzad K, Zeb J, Shen H, Ismail IMI, Albar HMSA (2021) Arsenic and lead in the indoor residential settings of different socio-economic status; assessment of human health risk via dust exposure. Environ Sci Pollut Res Int 28:13288–13299

    Article  CAS  Google Scholar 

  • Almeida SM, Faria T, Martins V, Canha N, Diapouli E, Eleftheriadis K, Manousakas MI (2022) Source apportionment of children daily exposure to particulate matter. Sci Total Environ 835:155349

    Article  CAS  Google Scholar 

  • Baloch RM, Maesano CN, Christoffersen J, Banerjee S, Gabriel M, Csobod É, de Oliveira FE, Annesi-Maesano I (2020) Indoor air pollution, physical and comfort parameters related to schoolchildren's health: data from the European SINPHONIE study. Sci Total Environ 739:139870

    Article  CAS  Google Scholar 

  • Barthi R, Sharma R (2022) Effect of heavy metal: an overview. Mat Today Proc 51:880–885

    Article  Google Scholar 

  • Bright DA, Richardson GM, Dodd M (2006) Do current standards of practice in Canada measure what is relevant to human exposure at contaminated sites? I: a discussion of soil particle size and contaminant partitioning in soil. Hum Ecol Risk Assess 12:591–605

    Article  CAS  Google Scholar 

  • Camilleri R, Vella AJ, Harrison RM, Aquilina NJ (2022) Source apportionment of indoor PM2.5 at a residential urban background site in Malta. Atmos Environ 278:119093

    Article  CAS  Google Scholar 

  • Carpi A, Chen Y-F (2001) Gaseous elemental mercury as an indoor air pollutant. Environ Sci Technol 35:4170–4173

    Article  CAS  Google Scholar 

  • Chen J (2019) Risk assessment for radon exposure in various indoor environments. Radiat Prot Dosim 185:143–150

    Article  CAS  Google Scholar 

  • Chen H, Lu X, Li LY (2014) Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmos Environ 88:172–182

    Article  CAS  Google Scholar 

  • Chen QY, DesMarais T, Costa M (2019) Metals and mechanisms of carcinogenesis. Ann Rev Pharmacol Toxicol 59:537–554

    Article  CAS  Google Scholar 

  • Cheng ES, Egger S, Hughes S, Weber M, Steinberg J, Rahman B, Worth H, Ruano-Ravina A, Rawstorne P, Yu XQ (2021) Systematic review and meta-analysis of residential radon and lung cancer in never-smokers. Eur Respir Rev 30:200230

    Article  Google Scholar 

  • Cinelli G, De Cort M, Tollefsen T (eds) (2019) European Atlas of Natural Radiation, Publication Office of the European Union. Luxembourg. https://publications.jrc.ec.europa.eu/repository/handle/JRC116795

    Google Scholar 

  • CLS (Columbia Law School Health Justice Advocacy) (2019) Literature review: overview of childhood lead poisoning and its health effects. https://web.law.columbia.edu/sites/default/files/microsites/clinics/health-advocacy/literature_review_health_effects_final_july_2019_1.pdf

  • Dams R, Vandecasteele C, Desmet B, Helsen M, Nagels M, Vermeir G, Yu ZQ (1987) Element concentrations in the air of an indoor shooting range. Sci Total Environ 77:1–13

    Article  Google Scholar 

  • Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Rosario AS, Tirmarche M, Tomásek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 330:223

    Article  CAS  Google Scholar 

  • Darus FM, Nasir RA, Sumari SM, Ismail ZS, Omara NA (2012) Heavy metals composition of indoor dust in nursery schools building. Proc Soc Behav Sci 38:169–175

    Article  Google Scholar 

  • Davis EA, Ou JY, Chausow C, Verdeja MA, Divver E, Johnston JD, Beard JD (2020) Associations between school characteristics and classroom radon concentrations in Utah’s public schools: a project completed by university environmental health students. Int J Environ Res Public Health 17:5839

    Article  Google Scholar 

  • Demmler M, Nowak D, Schierl R (2009) High blood lead levels in recreational indoor-shooters. Int Arch Occup Environ Health 82:539–542

    Article  Google Scholar 

  • Denu RA, Maloney J, Tomasallo CD, Jacobs NM, Krebsbach JK, Schmaling AL, Perez E, Bersch AJ, LeCaire TJ, Meiman JG, Malecki KM, LoConte NK (2019) Survey of radon testing and mitigation by Wisconsin residents, landlords, and school districts. WMJ 118:169–176

    Google Scholar 

  • Doyi INY, Isley CF, Soltani NS, Taylor MP (2019) Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environ Int 133(Pt A):105125

    Article  CAS  Google Scholar 

  • Doyi INY, Strezov V, Isley CF, Yazdanparast T, Taylor MP (2020) The relevance of particle size distribution and bioaccessibility on human health risk assessment for trace elements measured in indoor dust. Sci Total Environ 733:137931

    Article  CAS  Google Scholar 

  • ECHA (2023) Different scientific reports. Helsinki, Finland. Searched online

    Google Scholar 

  • EFSA (2010) Scientific Opinion on Lead in Food. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J 8:1570

    Google Scholar 

  • Fesenbeck I, Frank G, Naber C, Wilhelm C (2017) Radon in Baden-Württemberg schools. Final report. https://www.lubw.baden-wuerttemberg.de/documents/10184/701474/Abschlussbericht+Radon+in+Schulen+KIT/097bd07c-251b-4377-9f90-6d12961197e3 [in German]

  • Fojtikova I, Navratilova RK (2014) Influence of energy-saving measures on the radon concentration in some kindergartens in the Czech Republic. Radiat Prot Dosim 160:149–153

    Article  CAS  Google Scholar 

  • Fromme H, Büscher O, Matzen W, Drasch G, Roscher E, Nitschke L (2012) Indoor air contamination after the breakage of mercury-containing compact fluorescent lamps (CFLs). Gefahrstoffe-Reinhaltung der Luft 71:215–220. [in German]

    Google Scholar 

  • Garetano G, Stern AH, Robson M, Gochfeld M (2008) Mercury vapor in residential building common areas in communities where mercury is used for cultural purposes versus a reference community. Sci Total Environ 397:131–139

    Article  CAS  Google Scholar 

  • Gillett RW, Keywood MD, Galbally IE (2010) Indoor project – Persistent organic pollutants and metals. Report prepared for Commonwealth of Australia, Canberra

    Google Scholar 

  • Giraldo-Osorio A, Ruano-Ravina A, Varela-Lema L, Barros-Dios JM, Pérez-Ríos M (2020) Residential radon in central and South America: a sytematic review. Int J Environ Res Public Health 17:4550

    Article  CAS  Google Scholar 

  • Greenberg NB, Meyer R, Derazne ES (2022) The integrated effect of various small arm weapons and ammunition types on the airborne lead levels. Air Qual Atmos Health 15:1913–1921

    Article  CAS  Google Scholar 

  • Gruber V, Baumann S, Wurm G, Ringer W, Alber O (2021) The new Austrian indoor radon survey (ÖNRAP 2, 2013-2019): Design, implementation, results. J Environ Radioact 233:106618

    Article  CAS  Google Scholar 

  • Gustafsson Å, Krais AM, Gorzsás A, Lundh T, Gerde P (2018) Isolation and characterization of a respirable particle fraction from residential house-dust. Environ Res 161:284–290

    Article  CAS  Google Scholar 

  • Gyamfi O, Sorenson PB, Darko G, Ansah E, Bak JL (2022) Human health risk assessment of exposure to indoor mercury vapour in a Ghanaian artisanal small-scale gold mining community. Chemosphere 241:125014

    Article  Google Scholar 

  • Harrison JD (2021) Lung cancer risk and effective dose coefficients for radon: UNSCEAR review and ICRP conclusions. J Radiol Prot 41(2)

    Google Scholar 

  • Huang M, Wang W, Chan CY, Cheung KC, Man YB, Wang X, Wong MH (2014) Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal(loid)s in outdoor and indoor particles from urban centers of Guangzhou, China. Sci Total Environ 479–480:117–124

    Article  Google Scholar 

  • Hudson PJ, Vogt RL, Brondum J, Witherell L, Myers G, Paschal DC (1987) Elemental mercury exposure among children of thermometer plant workers. Pediatrics 79:935–938

    Article  CAS  Google Scholar 

  • IAEA (International Atomic Energy Agency) (2014) Radiation protection and safety of radiation sources: International basic safety standards. General Safety Requirements Part 3. Vienna, Austria. https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf

  • IARC (1988) Man-made mineral fibres and radon. IARC Monographs on the evaluation of the carcinogenic risks to humans, Vol. 43. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Man-Made-Mineral-Fibres-And-Radon-1988

  • IARC (2012) Arsenic, metals, fibres, and dusts. IARC Monographs on the evaluation of carcinogenic risks to humans 100 C: 219–309. Lyon, France. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Arsenic-Metals-Fibres-And-Dusts-2012

    Google Scholar 

  • ICRP (2014) Radiological protection against radon exposure. ICRP Publication 126. Ann. ICRP 43. https://journals.sagepub.com/doi/pdf/10.1177/ANIB_43_3

  • Ikegami M, Yoneda M, Tsuji T, Bannai O, Morisawa S (2014) Effect of particle size on risk assessment of direct soil ingestion and metals adhered to children’s hands at playgrounds. Risk Anal 34:1677–1687

    Article  Google Scholar 

  • Isley CF, Fry KL, Liu X, Filippelli GM, Entwistle JA, Martin AP, Kah M, Meza-Figueroa D, Shukle JT, Jabeen K, Famuyiwa AO, Wu L, Sharifi-Soltani N, Doyi INY, Argyraki A, Ho KF, Dong C, Gunkel-Grillon P, Aelion CM, Taylor MP (2022) International analysis of sources and human health risk associated with trace metal contaminants in residential indoor dust. Environ Sci Technol 56:1053–1068

    Article  CAS  Google Scholar 

  • Ivanova K, Stojanovska Z, Tsenova M, Badulin V, Kunovska B (2014) Measurement of indoor radon concentration in kindergartens in Sofia, Bulgaria. Radiat Prot Dosim 162:163–166

    Article  CAS  Google Scholar 

  • Ivanova K, Chobanova N, Kunovska B, Djounova J, Stojanovska Z (2022) Exposure due to indoor radon in Bulgarian schools. Aerosol Air Qual Res 22:220279

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and healtheffects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  Google Scholar 

  • Kang KW, Park WJ (2017) Lead poisoning at an indoor firing range. J Korean Med Sci 32:1713–1716

    Article  Google Scholar 

  • Kang CM, Liu M, Garshick E, Koutrakis P (2020) Indoor particle alpha radioactivity origins in occupied homes. Aerosol Air Qual Res 20. https://doi.org/10.4209/aaqr.2020.01.0037

  • Kellenbenz KR, Shakya KM (2021) Spatial and temporal variations in indoor radon concentrations in Pennsylvania, USA from 1988 to 2018. J Environ Radioact 233:106594

    Article  CAS  Google Scholar 

  • Kempken B, Butte W (2010) Concentrations of lead, cadmium, manganese and zinc in fractions of household dust. Gefahrst Reinh Luft 70:98–102. [in German]

    CAS  Google Scholar 

  • Khan SM, Gomes J, Krewski DR (2019) Radon interventions around the globe: a systematic review. Heliyon 5:e01737

    Article  Google Scholar 

  • Khan SM, Gomes J, Chreim S (2021) A mixed methods population health approach to explore radon-induced lung cancer risk perception in Canada. Cancer Control 28:10732748211039764

    Article  CAS  Google Scholar 

  • Komarnicki GJ (2005) Lead and cadmium in indoor air and the urban environment. Environ Pollut 136:47–61

    Article  CAS  Google Scholar 

  • Kropat G, Bochud F, Jaboyedoff M, Laedermann JP, Murith C, Palacios M, Baechler S (2014) Major influencing factors of indoor radon concentrations in Switzerland. J Environ Radioact 129:7–22

    Article  CAS  Google Scholar 

  • Kumar A, Kumar A, MMS C-P, Chaturvedi AK, Shabnam AA, Subrahmanyam G, Mondal R, Gupta DK, Malyan SK, Kumar SS, Khan SA, Yadav KK (2020) Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res Public Health 17:E2179

    Article  Google Scholar 

  • Kurkela O, Nevalainen J, Pätsi SM, Kojo K, Holmgren O, Auvinen A (2023) Lung cancer incidence attributable to residential radon exposure in Finland. Radiat Environ Biophys 62:35–49

    Article  CAS  Google Scholar 

  • Kurt-Karakus PB (2012) Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk. Environ Int 50:47–55

    Article  CAS  Google Scholar 

  • Lach K, Steer B, Gorbunov B, Micka V, Muir RB (2015) Evaluation of exposure to airborne heavy metals at gun shooting ranges. Ann Occup Hyg 59:307–323

    CAS  Google Scholar 

  • Laidlaw MA, Filippelli G, Mielke H, Gulson B, Ball AS (2017) Lead exposure at firing ranges – a review. Environ Health 16:34

    Article  Google Scholar 

  • Li X, Ke H, Ouyang C, Yu X, Liu Y, Wang F, Li W (2021) Investigation of the indoor 222Rn and 220Rn levels in the residential environment and estimation of the annual effective radiation dose for ordinary residents. PLoS One 16:e0253463

    Article  CAS  Google Scholar 

  • Li X, Fan L, Wang X, Yang Y, Zhu Y, Han X, Li L, Ge T, Liu H, Qi J, Gong S, Zhang Q, Guo W, Su L, Yao X, Wang X (2022) Characteristics, distribution, and children exposure assessment of 13 metals in household dust in China: a big data pilot study. Indoor Air 32:e12943

    Article  CAS  Google Scholar 

  • Liu B, Huang F, Yu Y, Li X, He Y, Gao L, Hu X (2021) Heavy metals in indoor dust across China: occurrence, sources and health risk assessment. Arch Environ Contam Toxicol 81(1):67–76

    Article  CAS  Google Scholar 

  • Loffredo F, Opoku-Ntim I, Meo G, Quarto M (2022) Indoor radon monitoring in kindergarten and primary schools in south Italy. Atmos 13:478

    Article  Google Scholar 

  • Lovaković BT, Jagić K, Dvoršćak M, Klinčić D (2022) Trace elements in indoor dust-Children’s health risk considering overall daily exposure. Indoor Air 32:e13104

    Google Scholar 

  • Lu X, Zhang X, Li LY, Chen H (2014) Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ Res 128:27–34

    Article  CAS  Google Scholar 

  • Lucas JP, Bellanger L, Le Strat Y, Le Tertre A, Glorennec P, Le Bot B, Etchevers A, Mandin C, Sébille V (2014) Source contributions of lead in residential floor dust and within-home variability of dust lead loading. Sci Total Environ 470–471:768–779

    Article  Google Scholar 

  • Ma C, Iwai-Shimada M, Tatsuta N, Nakai K, Isobe T, Takagi M, Nishihama Y, Nakayama SF (2020) Health risk assessment and source apportionment of mercury, lead, cadmium, selenium, and manganese in Japanese women: an adjunct study to the Japan Environment and Children’s Study. Int J Environ Res Public Health 17:2231

    Article  CAS  Google Scholar 

  • Mainka A, Fantke P (2022) Preschool children health impacts from indoor exposure to PM2.5 and metals. Environ Int 160:107062

    Article  CAS  Google Scholar 

  • Maringer FJ, Kaineder H, Nadschläger E, Sperker S (2008) Standards and experience in radon measurement and regulation of radon mitigation in Austria. Appl Radiat Isot 66:1644–1649

    Article  CAS  Google Scholar 

  • Martins V, Faria T, Diapouli E, Manousakas MI, Eleftheriadis K, Viana M, Almeida SM (2020) Relationship between indoor and outdoor size-fractionated particulate matter in urban microenvironments: levels, chemical composition and sources. Environ Res 183:109203

    Article  CAS  Google Scholar 

  • Matthaios VN, Liu M, Li L, Kang C-M, Vieira CLZ, Gold DR, Koutrakis P (2021) Sources of indoor PM2.5 gross α and β activities measured in 340 homes. Environ Res 197:111114

    Article  CAS  Google Scholar 

  • Menzler S, Piller G, Gruson M, Rosario AS, Wichmann HE, Kreienbrock L (2008) Population attributable fraction for lung cancer due to residential radon in Switzerland and Germany. Health Phys 95:179–189

    Article  CAS  Google Scholar 

  • Meyer W (2019) Impact of constructional energy-saving measures on radon levels indoors. Indoor Air 29:680–685

    CAS  Google Scholar 

  • Moon J, Yoo H (2021) Residential radon exposure and leukemia: a meta-analysis and dose-response meta-analyses for ecological, case-control, and cohort studies. Environ Res 202:111714

    Article  CAS  Google Scholar 

  • Mühle P, Schierl R, Nowak D (2010) Increased lead intake in indoor shooting ranges. Gefahrst Reinh Luft 70:464–468. [in German]

    Google Scholar 

  • NIOSH (National Institute for Occupational Safety and Health) (2009) Preventing occupational exposures to lead and noise at indoor firing ranges. https://www.cdc.gov/niosh/docs/2009-136/default.html

  • Nordberg GF, Fowler BA, Nordberg M (eds) (2015) Handbook on the toxicology of metals.4th edn. Academic Press

    Google Scholar 

  • NTP (2012) NTP Monograph on health effects of low-level lead. https://ntp.niehs.nih.gov/ntp/ohat/lead/final/monographhealtheffectslowlevellead_newissn_508.pdf

  • Olivero-Verbel J, Ropero-Vega J, Ortiz-Rivera W, Vera-Ospina P, Torres-Fuentes N, Montoya-Rodriguez N (2006) Air mercury levels in a pharmaceutical and chemical sciences school building. Bull Environ Contam Toxicol 76:1038–1043

    Article  CAS  Google Scholar 

  • Onishchenko A, Malinovsky G, Vasilyev A, Zhukovsky M (2017) Radon measurements in kindergartens in Ural region (Russia). Radiat Prot Dosim 177:112–115

    Article  CAS  Google Scholar 

  • OSHA (Occupational Safety & Health Administration) (2023). https://www.osha.gov/

  • Pacitto A, Stabile L, Viana M, Scungio M, Reche C, Querol X, Alastuey A, Rivas I, Álvarez-Pedrerol M, Sunyer J, van Drooge BL, Grimalt JO, Sozzi R, Vigo P, Buonanno G (2018) Particle-related exposure, dose and lung cancer risk of primary school children in two European countries. Sci Total Environ 616-617:720–729

    Article  CAS  Google Scholar 

  • Pagano G, Thomas PJ, Di Nunzio A, Trifuoggi M (2019) Human exposures to rare earth elements: present knowledge and research prospects. Environ Res 171:493–500

    Article  CAS  Google Scholar 

  • Pallarés S, Gómez ET, Martínéz A, Jordán MM (2019) The relationship between indoor and outdoor levels of PM10 and its chemical composition at schools in a coastal region in Spain. Heliyon ee2270

    Google Scholar 

  • Park TH, Kang DR, Park SH, Yoon DK, Lee CM (2018) Indoor radon concentration in Korea residential environments. Environ Sci Pollut Res Int 25:12678–12685

    Article  CAS  Google Scholar 

  • Petermann E, Bossew P, Hoffmann B (2023) Estimating national indoor radon exposure at a high spatial resolution – improvements by a machine learning based probabilistic approach. European Geosciences Union (EGU) General Assembly 2023, Vienna, Austria, 23–28 April 2023

    Google Scholar 

  • Plumejeaud S, Reis AP, Tassistro V, Patinha C, Noack Y, Orsière T (2018) Potentially harmful elements in house dust from Estarreja, Portugal: characterization and genotoxicity of the bioaccessible fraction. Environ Geochem Health 40:127–144

    Article  CAS  Google Scholar 

  • Poulin P, Leclerc JM, Dessau JC, Deck W, Gagnon F (2012) Radon measurement in schools located in three priority investigation areas in the province of Quebec, Canada. Radiat Prot Dosim 151:278–289

    Article  Google Scholar 

  • Prokopowicz A, Mniszek W (2005) Mercury vapour determination in hospitals. Environ Monit Assess 104:147–154

    Article  CAS  Google Scholar 

  • Rasmussen PE, Levesque C, Chénier M, Gardner HD, Jones-Otazo H, Petrovic S (2013) Canadian House Dust Study: population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Sci Total Environ 443:520–529

    Article  CAS  Google Scholar 

  • Rasmussen PE, Levesque C, Chenier M, Gardner HD (2018) Contribution of metals in resuspended dust to indoor and personal inhalation exposures: Relationships between PM10 and settled dust. Build Environ 143:513–522

    Article  Google Scholar 

  • Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119:157–184

    Article  CAS  Google Scholar 

  • Rehman A, Liu G, Yousaf B, Zia-ur-Rehman M, Ali MU, Rashid MS, Farooq MR, Javed Z (2020) Characterizing pollution indices and children health risk assessment of potentially toxic metal(oid)s in school dust of Lahore, Pakistan. Ecotoxicol Environ Saf 190:110059

    Article  CAS  Google Scholar 

  • Ruggieri S, Longo V, Perrino C, Canepari S, Drago G, L'Abbate L, Balzan M, Cuttitta G, Scaccianoce G, Minardi R, Viegi G, Cibella F (2019) Indoor air quality in schools of a highly polluted south Mediterranean area. Indoor Air 29:276–290

    Article  CAS  Google Scholar 

  • Salthammer T, Uhde E, Omelan A, Lüdecke A, Moriske H-J (2012) Estimating human indoor exposure to elemental mercury from broken compact fluorescent lamps (CFLs). Indoor Air 22:289–298

    Article  CAS  Google Scholar 

  • Sarigiannis DA, Karakitsios SP, Antonakopoulou MP, Gotti A (2012) Exposure analysis of accidental release of mercury from compact fluorescent lamps (CFLs). Sci Total Environ 435–436:306–315

    Article  Google Scholar 

  • Schenk L, Wingfors H, Skoog B, Forsgard N, Nyberg C, Taube F (2021) Exposures to lead during urban combat training. Int J Hyg Environ Health 235:113773

    Article  CAS  Google Scholar 

  • Schubert M, Musolff A, Weiss H (2018) Influences of meteorological parameters on indoor radon concentrations (222Rn) excluding the effects of forced ventilation and radon exhalation from soil and building materials. J Environ Radioact 192:81–85

    Article  CAS  Google Scholar 

  • Scott EE, Pavelchak N, DePersis R (2012) Impact of housekeeping on lead exposure in indoor law enforcement shooting ranges. J Occup Environ Hyg 9:D45–D51

    Article  Google Scholar 

  • Snow MA, Feigis M, Lei YD, Mitchell CPJ, Wania F (2021) Development, characterization, and testing of a personal passive sampler for measuring inhalation exposure to gaseous elemental mercury. Environ Int 146:106264

    Article  CAS  Google Scholar 

  • Stahler D, Ladner S, Jackson H. (2008) Maine Compact Fluorescent Lamp Study. Report of the Maine Department of Environmental Protection, Maine, USA. https://www.maine.gov/dep/homeowner/cflreport.html

    Google Scholar 

  • Su C, Pan M, Zhang Y, Kan H, Zhao Z, Deng F, Zhao B, Qian H, Zeng X, Sun Y, Liu W, Mo J, Guo J, Zheng X, Sun C, Zou Z, Li H, Huang C (2022a) Indoor exposure levels of radon in dwellings, schools, and offices in China from 2000 to 2020: a systematic review. Indoor Air 32:e12920

    CAS  Google Scholar 

  • Su HJ, Jung CC, Wang JH, Chen NT, Chang WH (2022b) Estimations of infiltration factors of diurnal PM2.5 and heavy metals in children’s bedrooms. Indoor Air 32:e13037

    Article  CAS  Google Scholar 

  • Suzuki G, Yamaguchi I, Ogata H, Sugiyama H, Yonehara H, Kasagi F, Fujiwara S, Tatsukawa Y, Mori I, Kimura S (2010) A nation-wide survey on indoor radon from 2007 to 2010 in Japan. J Radiat Res 51:683–689

    Article  Google Scholar 

  • Svensson B-G, Schiitz A, Nilsson A, Skerfving S (1992) Lead exposure in indoor firing ranges. Int Arch Occup Environ Health 64:219–221

    Article  CAS  Google Scholar 

  • Szabados M, Csákó Z, Kotlík B, Kazmarová H, Kozajda A, Jutraz A, Kukec A, Otorepec P, Dongiovanni A, Di Maggio A, Fraire S, Szigeti T (2021) Indoor air quality and the associated health risk in primary school buildings in Central Europe – The InAirQ study. Indoor Air 31:989–1003

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    Google Scholar 

  • Tripathi RK, Sherertz PC, Llewellyn GC, Armstrong CW (1991) Lead exposure in outdoor firearm instructors. Am J Public Health 81:753–755

    Article  CAS  Google Scholar 

  • Uhl M, Hohenblum P, Scharf S, Trimbacher C (2004) House dust - an indicator of indoor pollution. Report BE-258, Umweltbundesamt Österreich. https://www.umweltbundesamt.at/fileadmin/site/publikationen/BE258.pdf [in German]

  • UNEP (2019) Global Mercury Assessment 2018. Geneva, Switzerland. https://www.unep.org/resources/publication/global-mercury-assessment-2018

  • US DHHS (2012) U.S. Department of Health and Human Services. National Toxicology Program monograph on health effects of low-level lead. https://www.semanticscholar.org/paper/NTP-monograph-on-health-effects-of-low-level-lead./f765e1f6fc8e630289ce71515a5bf9b018e6495b

  • US EPA (2022) Basic Information about Mercury. https://www.epa.gov/mercury/basic-information-about-mercury

    Google Scholar 

  • Viana M, Rivas I, Querol X, Alastuey A, Sunyer J, Álvarez-Pedrerol M, Bouso L, Sioutas C (2014) Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools. Atmos Chem Phys 14:4459–4472

    Article  Google Scholar 

  • Vienneau D, Boz S, Forlin L, Flückiger B, de Hoogh K, Berlin C, Bochud M, Bulliard JL, Zwahlen M, Röösli M (2021) Residential radon – comparative analysis of exposure models in Switzerland. Environ Pollut 271:116356

    Article  CAS  Google Scholar 

  • Wang J, Li H, Bezerra ML (2017) Assessment of shooter’s task-based exposure to airborne lead and acidic gas at indoor and outdoor ranges. J Chem Health Saf:14–21

    Google Scholar 

  • Wang B, Gao F, Li Y, Lin C, Cheng H, Duan X (2022) Assessment of children’s metal exposure via handwipe, outdoor soil and indoor dust and their associations with blood biomarkers. Int J Environ Res Public Health 19:14614

    Article  CAS  Google Scholar 

  • Wang R, Ding X, Wang J, Dong Z, Xu H, Ma G, Gao B, Song H, Yang M, Cao J (2023) Trace elements in outdoor and indoor PM2.5 in urban schools in Xi’an, Western China: characteristics, sources identification and health risk assessment. Environ Geochem Health 45:1027–1044

    Article  CAS  Google Scholar 

  • Warwick D, Young M, Palmer J, Ermel RW (2019) Mercury vapor volatilization from particulate generated from dental amalgam removal with a high-speed dental drill – a significant source of exposure. J Occup Med Toxicol 14:22

    Article  Google Scholar 

  • Weber AK, Bannon DI, Abraham JH, Seymour RB, Passman PH, Lilley PH, Parks KK, Braybrooke G, Cook ND, Belden AL (2020) Reduction in lead exposures with lead-free ammunition in an advanced urban assault course. J Occup Environ Hyg 17:598–610

    Article  CAS  Google Scholar 

  • WHO (2009) WHO handbook on indoor radon: a public health perspective. Geneva, Switzerland. https://apps.who.int/iris/bitstream/handle/10665/44149/9789241547673_eng.pdf;jsessionid=9FF350618319D0694B3B7F24E1EF39B5?sequence=1

    Google Scholar 

  • WHO (2010) Guidelines for indoor air quality: selected pollutants. World Health Organization, Regional Office for Europe, Copenhagen (http://www.euro.who.int/en/what-we-do/health-topics/environmental-health/air-quality/publications/2010/who-guidelines-for-indoor-air-quality-selected-pollutants)

    Google Scholar 

  • Wilson E, Lafferty JS, Thiboldeaux R, Tomasallo C, Grajewski B, Wozniak R, Meiman J (2017) Occupational mercury exposure at a fluorescent lamp recycling facility – Wisconsin, 2017. Morb Mortal Wkly Rep 67:763–766

    Article  Google Scholar 

  • Wohlgemuth L, McLagan D, Flückiger B, Vienneau D, Osterwalder S (2020) Concurrently measured concentrations of atmospheric mercury in indoor (household) and outdoor air of Basel, Switzerland. Environ Sci Technol Lett 14:234–239

    Article  Google Scholar 

  • Zhao P, Liu X, Yin L, Tian D, Wang X (2022) Levels, distribution characteristics, and sources of heavy metals in indoor dust in Shijiazhuang, China. Environ Monit Assess 194:857

    Article  CAS  Google Scholar 

  • Zhu Z, Sun G, Bi X, Li Z, Yu G (2013) Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analyses. Atmos Environ 77:9–15

    Article  CAS  Google Scholar 

  • Zhukovsky M, Vasilyev A, Onishchenko A, Yarmoshenko I (2018) Review of idoor radon concentrations in schools and kindergartens. Rad Prot Dosimetry 181:6–10

    Article  CAS  Google Scholar 

  • Zota AR, Schaider LA, Ettinger AS, Wright RO, Shine JP, Spengler JD (2011) Metal sources and exposures in the homes of young children living near a miningimpacted superfund site. J Expo Sci Environ Epidemiol 21:495–505

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fromme, H. (2023). Radon and Metals. In: Indoor Air Quality. Springer, Cham. https://doi.org/10.1007/978-3-031-40078-0_8

Download citation

Publish with us

Policies and ethics