
11Closed Surfaces 

We define a closed surface as a surface .f : M → R3 whose boundary components 
have been matched in pairs in such a way that f as well as its unit normal N are 
continuous across the boundary. This allows us to prove an analog of the fact that the 
tangent winding number of a closed plane curve is an integer: The total Gaussian 
curvature .

⎧   
M

K det of a closed surface .f : M → R3 is equal to .2πχ(M) where 
.χ(M) is the Euler characteristic. 

11.1 History of Closed Surfaces 

Our goal here is to define “closed surfaces” in such a way that we are able to prove 
an analog of Theorem 3.8, which says that the turning number of a plane curve is an 
integer. Furthermore, in Sect. 13.1 we want to discuss for closed surfaces the analog 
of the total squared curvature of a curve. 

Our approach will be based on the very idea that was already at the heart of the 
1845 paper by Möbius where closed surfaces were studied for the first time: By 
cutting them into horizontal slices, Möbius decomposed closed surfaces into pieces 
each of which can be parametrized by a compact domain with smooth boundary in 
. R2. Figure 11.1 is adapted from the paper by Möbius. This very idea was already 
the motivation for us to allow for disconnected domains in the case of surfaces and 
will be formalized in Sect. 11.2. 

More details on the early history of surface theory can be found in an article by 
Peter Dombrowski [11]. 

A more advanced way to define closed surfaces in . Rn (that would not need to 
cut the surface into pieces that can be parametrized by planar domains) would be 
to define them in terms of smooth maps .f : M → Rn defined on 2-dimensional 
compact manifolds M . Such manifolds were first defined in 1910 by Hermann Weyl 
in a famous book with the title “Die Idee der Riemannschen Fläche” [44]. 
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Fig. 11.1 Möbius decomposed closed surfaces into pieces that can be parametrized by compact 
domains in . R2 with smooth boundary (modeled after Möbius’ original sketch in [29]) 

On the other hand, the fully developed version of the Gauss-Bonnet theorem 
(which we will prove in the next chapter) is already contained in the 1903 thesis of 
Werner Boy [8], that he did under the supervision of David Hilbert. 

Modern treatments of Differential Topology (like the books by Andrew Wallace 
[42] and Morris Hirsch [16]) often discuss surface topology in their last chapters. 
The main work there goes into proving (with the help of Morse theory) that indeed 
every compact 2-dimensional manifold can be decomposed into pieces each of 
which can be parametrized by a compact domain with smooth boundary in . R2. 
Therefore, the work that will be done in the next two chapters would not become 
obsolete even if we had manifolds at our disposal. 

11.2 Defining Closed Surfaces 

Suppose that for a surface .f : M → R3 the boundary components of M match up 
in pairs in such a way that, given suitable parametrizations of the boundary curves, 
corresponding points of .∂M are mapped to the same points in . R3. If in addition also 
the unit normals of f fit together up to sign on . ∂M , we consider f (together with a 
specification of the boundary matching) as a closed surface (Fig. 11.2):
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f 

Fig. 11.2 A closed surface f 

Definition 11.1 

Let .M ⊂ R2 be a compact domain with smooth boundary and .f : M → R3 a 
surface with unit normal N . We parametrize the boundary curves of M by closed 
curves 

. γ1, . . . , γn : [−π, π ] → R2

and define curves .γ̃1, . . . , γ̃n : [−π, π ] → R3 by 

. γ̃j := f ◦ γj .

As in Definition 10.1, we equip the closed space curves . γ̃j with unit normal fields 
.Ñj := N ◦ γj . Let  

. ρ : {1, . . . , n} → {1, . . . , n}

a bijective map such that 

. (ρ ◦ ρ)(j) = j

for all j . Then the pair .(f, ρ) is called a closed surface if there are signs 
. ɛ    1, . . . ,  ɛ    n ∈ {−1, 1} such that for all .j ∈ {1, . . . , n} we have: 

(i) If .ρ(j) /= j then 

.γ̃ρ(j)(x) = γ̃j ( ɛ    j x)

Ñρ(j)(x) = − ɛ    j Ñj ( ɛ    j x).
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f 

Fig. 11.3 The surface in Fig. 11.2 made into a non-closed surface by applying a small translation 
to each piece 

(ii) If .ρ(j) = j then . ɛ    j = 1 and 

. γ̃j (x) =
⎧

γ̃j (x + π) for x ∈ [−π, 0)

γ̃j (x − π) for x ∈ [0, π ]

Ñj (x) =
⎧

−Ñj (x + π) for x ∈ [−π, 0)

−Ñj (x − π) for x ∈ [0, π ].

It is easy to see that such . ɛ    1, . . . ,  ɛ    n are uniquely determined by f and . ρ. We say  
that a closed surface is oriented if . ɛ    j = −1 for all .j ∈ {1, . . . , n}. 

Figure 11.3 shows the shape of the individual pieces that are being glued in 
Fig. 11.2. It has .k = 6 components and .n = 18 boundary curves. 

Here is another example: M now consists of a disk with boundary . γ1 and an 
annulus with boundary curves . γ2 and . γ3. First, we tentatively define f on the disk 
bounded by . γ1 and obtain the cap on the upper right of Fig. 11.4. Postponing for the 
moment the task (indicated by the double-arrow on the right) of gluing . γ1 to . γ2, we  
first glue . γ3 to itself and obtain a Möbius band (on the bottom of the lower right of 
Fig. 11.4): 

By growing the Möbius band (see Fig. 11.5) we finally obtain the closed surface 
we wanted to construct: 

This surface (fully closed in Fig. 11.6) was found by Werner Boy in 1903 and is 
called the Boy surface. 

Figure 11.7 shows two surfaces which are obtained by gluing the boundary curve 
of an annulus to itself appropriately. Even though both compact domains have . k = 1
components and .n = 2 boundary loops, the distinct maps f , . f̃ lead to distinct closed 
surfaces. In particular, although the map . ρ is the same, they have opposite sign .  ɛ    .
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Fig. 11.4 The annulus part of the domain on the left has its red boundary component glued to 
itself. After growing the resulting Möbius strip, the other boundary component can be glued to the 
image of the disk part of the domain. The result is the so-called Boy surface 

11.3 Boy’s Theorem 

Definition 11.2 

We say that a surface f : M → R3 closes up if there is ρ such that (f, ρ) is a 
closed surface in the sense of Definition 11.1. 

Recall that for every closed plane curve γ : [a, b] →  R2 there was an integer 
n ∈ Z such that 

. 

⎧ b

a

κ ds = 2πn.

Surprisingly, the analog of this fact in the context of surfaces (cf. Theorem 11.3) 
does not involve any information about the specific way in which f closes up, but 
only depends on properties of the domain M . The theorem is a variant of the Gauss-
Bonnet Theorem 10.6. Usually, it would be called by the same name. However, 
historically this is not quite correct. This theorem was in fact the main result of the
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Fig. 11.5 A growing Möbius strip can be capped off to form a Boy surface 

thesis of Werner Boy [8], written in 1903 under the supervision of David Hilbert. 
For this reason, we name it after Boy: 

Theorem 11.3 (Boy’s Theorem) 
Let f : M → R3 be a surface that closes up. Then the Gaussian curvature K 
of f satisfies 

.

⎧

M

K det = 2π χ(M).
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Fig. 11.6 The Boy surface is a closed, non-oriented surface 

Fig. 11.7 After pushing the two boundary curves together, we obtain a closed surface which is 
oriented—a torus (left), or a closed surface that is not oriented—a so-called Klein bottle (right) 

Before we give the proof, we introduce the notion of an orientation cover of a 
closed surface. Given a closed surface (f, ρ) with f : M → R3, we can define an 
oriented closed surface ( f̃, ρ̃) in the following way: 

Let us use M−1 as another name for M and, using an orientation-reversing 
isometry g : R2 → R2, we place a second copy M1 = g(M) into R2 in such a 
way that M−1 and M1 are disjoint. Then we define 

.M̃ := M−1 ∪ M1
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and 

. f̃ : M̃ → R3, f̃ (p) =
⎧

f (p) if p ∈ M−1

(f ◦ g−1)(p) if p ∈ M1.

We can label the boundary curves of M̃ by the elements of {−1, 1} × {1, . . . , n} 
and parametrize them by maps 

. γ(i,j) : R → ∂M̃, γ(i,j) =
⎧

γj if i = −1

x |→ g ◦ γj (−x) if i = 1.

Finally, we define 

. ρ̃ : {−1, 1} × {1, . . . , n} → {−1, 1} × {1, . . . , n}, ρ̃(i, j) = (− ɛ    j i, ρ(j)).

We now leave it to the reader to check that ( f̃, ρ̃) is an oriented closed surface, i.e. 
we obtain a closed surface by setting  ̃ɛ    (i,j) = −1 for all (i, j) ∈ {−1, 1}×{1, . . . , n}. 

Definition 11.4 

The closed surface ( f̃, ρ̃) constructed above is called an orientation cover of f . 

Proof of Theorem 11.3—Boy’s Theorem If ρ has no fixed points (no boundary 
component is glued to itself), one just has to note that the existence of ρ (making 
(f, ρ) into a closed surface) implies that in Theorem 10.6 the total geodesic 
curvatures of the individual boundary curves cancel in pairs. If ρ has fixed points, 
we note that the ρ̃ of the orientation cover has no fixed points and therefore our 
theorem holds for f̃ . Dividing both sides of the resulting equation by two, we see 
that our theorem also holds for f .  ⨅⨆ 

11.4 The Genus of a Closed Surface 

The Euler characteristic of a closed surface was solely a property of its domain M , 
the specific way the various boundary curves are glued is irrelevant for the Euler 
characteristic. There is another number associated with a closed surface .(f, ρ), the  
so-called genus, that depends on the gluing correspondence . ρ: 

Suppose .M ⊂ R2 is a domain with k components and n boundary curves. 
Consider the map that assigns to each .j ∈ {1, . . . , n} the index .c(j) ∈ {1, . . . , k} of 
the component of M to which the j th boundary component belongs. Let us consider 
the graph G whose vertex set is .{1, . . . , k} and in which two vertices . l, l̃ with . l /= l̃

are connected by an edge if and only if there is an index .j ∈ {1, . . . , n} for which 
.c(j) = l and .c(ρ(j)) = l̃, which means that the components of M with indices j 
and . j̃ are glued via one (or more) of their respective boundary curves. We say that
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two vertices . l and . l̃ of G are connectable in G if it is possible to travel from . l to . l̃

by following edges. Connectability is an equivalence relation and the corresponding 
equivalence classes are called the connected components of G. 

Definition 11.5 

If .{l1, . . . , lk̃
} is a component of the graph G, then 

. f̃ = f |Ml1∪...∪Ml
k̃

closes up with boundary gluing . ρ̃ read off from .(f, ρ). We call the resulting 
closed surface .(f̃, ρ̃) a component of .(f, ρ). We call .(f, ρ) connected if it has 
only one component. 

So the components of a closed surface are in one-to-one correspondence with the 
components of its associated graph G. 

Definition 11.6 

Let M be a compact domain with k components and n boundary curves. Let 
.(f, ρ) be a closed surface with .f : M → R3. If  .(f, ρ) has m connected 
components, we define the genus of .(f, ρ) as 

. g := n

2
− k + m.

In terms of the genus, the Gauss-Bonnet formula takes the form 

. 

⎧

M

K det = 4π(m − g).

The first surface featured in Sect. 11.2 has genus .g = 4, the Klein bottle has 
genus .g = 1 und the Boy surface has genus .g = 1

2 . The two surfaces in Fig. 11.8 
have genus .g = 5

2 and genus .g = 2 respectively.
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Fig. 11.8 Non-oriented surfaces of genus .g = 5
2 (left) and .g = 2 (right). They are obtained by 

smoothly gluing handles onto a Boy surface or respectively a Klein bottle 
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