
1Curves in .Rn
 

Differential Geometry studies smoothly curved shapes, called manifolds. One-
dimensional shapes are called curves and two-dimensional shapes are called 
surfaces. In this chapter we look at curves in n-dimensional Euclidean space. The 
basic properties of curves in . Rn (length, tangent, bending energy) were explored 
right after the invention of calculus by Newton, Bernoulli and Euler. 

1.1 What is a Curve in Rn? 

Since many interesting curves (for example a figure eight) have self-intersections, it 
is not a good idea to define a curve as a special kind of subset in . Rn. Intuitively, a 
curve is something that can be traced out (“parametrized”) as the path of a moving 
point (cf. Fig. 1.1). 

Definition 1.1 

A curve in . Rn is a smooth map .γ : [a, b] → Rn such that its velocity vector 
.γ '(x) never vanishes, i.e. 

. γ '(x) /= 0

for all .x ∈ [a, b].

▶ Remark 1.2 If .M ⊂ Rn is an arbitrary subset, then a map .f : M → Rk is called 
smooth (or . C∞) if there is an open set .U ⊂ Rn with .M ⊂ U and an infinitely often 
differentiable map .f̃ : U → Rk such that .f = f̃ |M (cf. Appendix A.1). Instead of 
a closed interval .[a, b] one could also allow an open or semi-open interval (or even 
a finite union of intervals) as the domain of definition for a curve. The only problem 
that would arise is that then the integral of a smooth function would not always be 
defined. For all of our applications we can stick to closed intervals. 
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4 1 Curves in . Rn

Fig. 1.1 A curve can be described as the trajectory of a particle moving in space. The particles 
position at time x is given by . γ (x)

Definition 1.3 

A curve .γ : [a, b] → Rn is called closed if . γ can be extended to a smooth map 
.γ̃ : R → Rn with period .b − a, which means 

. γ̃ (x + (b − a)) = γ̃ (x)

for all .x ∈ R. 

Example 1.4 

(i) The quarter circle is a curve: 

. γ :
[
− 1√

2
, 1√

2

]
→ R2, γ (x) =

(
t√

1 − x2

)
.

(ii) Another version of the quarter circle is also a curve: 

. γ :
[

π
4 , 3π

4

]
→ R2, γ (x) =

(
cos x

sin x

)
.

(iii) The full circle 

. γ : [0, 2π ] → R2, γ (x) =
(
cos x

sin x

)

is a closed curve with period . 2π . It can be extended to 

.γ̃ : R → R2, γ (x) =
(
cos x

sin x

)
.
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Fig. 1.2 A circle  (left), the Cartesian leaf (middle) and Neil’s parabola (right) 

(iv) The Helix is a curve: 

. γ : [a, b] → R3, γ (x) =
⎛
⎝
cos x

sin x

x

⎞
⎠ .

(v) The Cartesian leaf (see Fig. 1.2) is a curve: 

. γ : [a, b] → R2, γ (t) =
(

x3 − 4x
x2 − 4

)

so that 

. γ '(t) =
(
3x2 − 4

2x

)
.

(vi) Neil’s parabola (see Fig. 1.2) is given  by  

. γ : [a, b] → R2, γ (t) =
(

x3

x2

)
.

It is not a curve if .0 ∈ [a, b], because at . t = 0

. γ '(0) =
(
0
0

)
.

For the purposes of geometry, the speed with which we run through a curve does 
not really matter, nor does the particular time interval .[a, b] that we use for the 
parametrization. However, we will always assume that our curves are oriented, so  
we want to keep track of the direction in which we run through the curve. This 
means that we are only interested in properties of a curve that do not change under 
orientation-preserving reparametrization (see Fig. 1.3):
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Fig. 1.3 A reparametrization 
of a curve is given by a 
strictly increasing function 
with nowhere vanishing 
derivative which maps . [c, d]
onto . [a, b]

a 

b 

dc 

Definition 1.5 

Let .γ : [a, b] → Rn and .γ̃ : [c, d] → Rn be two curves. Then . γ̃ is called an 
orientation-preserving reparametrization of . γ if there is a bijective smooth 
map .ϕ : [c, d] → [a, b] such that .ϕ'(x) > 0 for all .x ∈ [c, d] and .γ̃ = γ ◦ ϕ. 

Example 1.6 
For the two curves . γ from Example 1.4 (i) and . γ̃ from Example 1.4 (ii) we have .γ̃ = γ ◦ ϕ with 

.ϕ :
[

π
4 , 3π

4

]
→

[
− 1√

2
, 1√

2

]
, ϕ(x) = cos x.

▶ Remark 1.7 Orientation-preserving reparametrization is an equivalence relation 
on the set of curves in . Rn. Although we are ultimately only interested in properties 
shared by all curves in the same equivalence class, we will always work with a 
particular representative curve . γ . 

1.2 Length and Arclength 

The most simple numerical quantity that can be assigned to a curve as a whole is its 
length. 

Definition 1.8 

Let .γ : [a, b] → Rn be a curve. Then the function 

. v : [a, b] → R, t →׀ |γ '(t)|

is called the speed of . γ and 

. L(γ ) :=
∫ b

a

v

is called the length of . γ .
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The length of a curve does not change under reparametrization: 

Theorem 1.9 
Suppose .γ : [a, b] → Rn and .γ̃ : [c, d] → Rn are two curves such that 
.γ̃ = γ ◦ ϕ for some diffeomorphism .ϕ : [c, d] → [a, b]. Then . γ and . γ̃ have 
the same length. 

Proof. By the substitution rule, we have 

. L(γ̃ ) =
∫ d

c

|(γ ◦ ϕ)'| =
∫ d

c

|γ ' ◦ ϕ|ϕ' =
∫ b

a

|γ '| = L(γ ).

⨅⨆

Example 1.10 

(i) For the half circle .γ : [0, π ] → R2, 

. γ (x) =
(
cos x

sin x

)

we have .|γ '| = 1 and therefore .L(γ ) = π . 
(ii) The line segment .γ : [a, b] → R2, 

. γ (x) =
(

x

0

)

has length .L(γ ) = b − a. 

Definition 1.11 

A rigid motion of . Rn is a map .g : Rn → Rn of the form 

. g(y) = Ay + b

where .A ∈ O(n) is an orthogonal matrix and .b ∈ Rn is a vector. 

Rigid motions are those transformations of the ambient space . Rn which preserve 
distances between points. Two shapes that differ only by a rigid motion are said to 
be congruent. Matching the physical intuition for curves as trajectories of a particle 
moving in space, the length of a curve is invariant under rigid motions:
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Theorem 1.12 
Let .γ : [a, b] → Rn be a curve and .g : Rn → Rn a rigid motion. Then 

. L(g ◦ γ ) = L(γ ).

Proof. For .γ̃ = g ◦ γ we have .γ̃ = Aγ + b and .γ̃ ' = Aγ '. Therefore, 

. L(γ̃ ) =
∫ b

a

|Aγ '| =
∫ b

a

|γ '| = L(γ ).

⨅⨆

Definition 1.13 

Let .γ : [a, b] → Rn be a curve. Then the function 

. s : [a, b] → R, s(t) := L
(
γ |[a,t]

) =
∫ t

a

|γ '|

is called the arclength function (or arclength coordinate) of . γ . 

In most situations however, the arclength function s itself is less useful than its 
derivative, the speed .s' = v = |γ '|. Using only v, not s, we can define the derivative 
with respect to arclength: 

Definition 1.14 

Let .γ : [a, b] → Rn be a curve and .v = |γ '| its speed. Let .g : [a, b] → Rk be a 
smooth function. Then we define the derivative with respect to arclength of g 
as the function 

. 
dg

ds
:= g'

v

and the integral over arclength of g as 

.

∫ b

a

g ds :=
∫ b

a

g v.

▶ Remark 1.15 Once we have learned about 1-forms in Sect. 7.2, we will be able 
to interpret ds as a 1-form on .[a, b] and . dg

ds
as quotient of 1-forms, just as it had 

been the dream of Leibniz. For now, they are just .Rk-valued functions on .[a, b].
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Theorem 1.16 
The arclength fucnction .s : [a, b] → R of a curve .γ : [a, b] → Rn is an 
orientation-preserving diffeomorphism of the interval .[a, b] onto the interval 
.[0, L] where .L = L(γ ). The reparametrization 

. γ̃ : [0, L] → Rn, γ̃ = γ ◦ s−1

has unit speed, i.e. .|γ̃ '| = 1.

▶ Remark 1.17 It is common in the literature on curves to routinely assume that 
the curves under consideration have unit speed, usually expressed by saying that 
they are “parametrized by arclength”. We will not do this here, for the following 
reasons: 

(i) Making use of the derivative with respect to arclength defined in 1.14 gives 
us the same elegant formulas as they arise in the context of unit speed curves, 
without actually changing the parametrization. 

(ii) When dealing with one-parameter families .t →׀ γt of curves of varying length, 
one cannot assume that all curves . γt are parametrized by unit speed. Therefore, 
in this situation one has to resort anyway to formulas that remain valid for 
arbitrary curves. 

(iii) In the context of surfaces, there is no obvious analog for the unit speed 
parametrization of a curve. Therefore, habitual reliance on unit speed 
parametrizations makes the theory of surfaces look more different from the 
theory of curves than it actually is. 

1.3 Unit Tangent and Bending Energy 

Definition 1.18 

For a curve γ : [a, b] →  Rn, the normalized velocity vector field 

. T : [a, b] → Sn−1, T = dγ

ds
= γ '

|γ '|
is called the unit tangent field of γ .
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Next to the length, the most important numerical quantity that can be assigned to a 
curve as a whole is its bending energy: 

Definition 1.19 

Let T be the unit tangent field of a curve γ : [a, b] →  Rn. Then 

. B(γ ) = 1

2

∫ b

a

〈
dT

ds
,
dT

ds

〉
ds

is called the bending energy of γ . 

The bending energy is invariant under orientation-preserving reparametrization. 
The name comes from the following physical picture: 

Consider a rod manufactured out of some elastic material in the shape of a thin 
cylinder of length L and radius ϵ. Then we bend the cylinder into the shape of 
a curve γ of length L. While doing this, we make sure that we do not force any 
twisting on the cylinder, for example we place the cylinder in a hollow tube with 
shape γ , leaving it free to untwist itself within the tube (see Fig. 1.4). Then, in the 
limit of ϵ → 0, the energy needed to bring the initially straight rod into its new 
shape will be proportional to B(γ ). 

In later sections we will find out what curves we obtain if we hold a curve fixed 
near its end points but otherwise let it minimize bending energy (cf. Fig. 2.3). We 
also will find a way to deal with twisting. 

Fig. 1.4 A rod is bent into the shape of a curve. Then it is fixed in its position by a porcelain case 
within which it can untwist while staying in shape
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