
Lock-Free Bucketized Cuckoo Hashing

Wenhai Li, Zhiling Cheng(B), Yuan Chen, Ao Li,
and Lingfeng Deng

Wuhan University, Wuhan, China
chengzl@whu.edu.cn

Abstract. Concurrent hash tables are one of the fundamental building
blocks for cloud computing. In this paper, we introduce lock-free mod-
ifications to in-memory bucketized cuckoo hashing. We present a novel
concurrent strategy in designing a lock-free hash table, called LFBCH,
that paves the way towards scalability and high space efficiency. To the
best of our knowledge, this is the first attempt to incorporate lock-free
technology into in-memory bucketized cuckoo hashing, while still pro-
viding worst-case constant-scale lookup time and extremely high load
factor. All of the operations over LFBCH, such as get, put, “kick out”
and rehash, are guaranteed to be lock-free, without introducing notori-
ous problems like false miss and duplicated key. The experimental results
indicate that under mixed workloads with up to 64 threads, the through-
put of LFBCH is 14%–360% higher than other popular concurrent hash
tables.

Keywords: buckized cuckoo hashing · lock-free · data structure ·
multicore · parallel computing

1 Introduction

With the rapid growth of data volume in the Big Data era, the massive amount
of data puts increasing pressure on cloud computing systems [1,18]. As a key
component of these systems [3,7–9,15], a high-performance hash table is very
important for application usability. In step with Moore’s law, the improvement
in CPU performance has relied on the increase in the number of cores, leading
to higher demands for the scalability of hash tables [16]. Consequently, improv-
ing the concurrent performance of hash tables on multicore architectures has
become a crucial step in designing data-intensive platforms. In practice, the
open-addressing hash table is widely used due to its ability to limit the mem-
ory usage of the hash table. However, with the increase in application scale, it
is challenging to drive concurrent operations on a dense open-addressing hash
table.

As an open-addressing hash table, cuckoo hashing was first proposed in 2004
[14]. It utilizes two hash functions to guarantee a constant-time worst-case com-
plexity for the search operation. It introduces a critical step called “kick out”,
which will be invoked when other keys have occupied both of the positions cor-
responding to an insertion. The action involves kicking one of the occupying
c© The Author(s) 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 275–288, 2023.
https://doi.org/10.1007/978-3-031-39698-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39698-4_19&domain=pdf
https://doi.org/10.1007/978-3-031-39698-4_19


276 W. Li et al.

keys to its alternative position, creating space for the incoming insertion. This
process is similar to that of a cuckoo bird, which always kicks out the eggs of
other birds and places its eggs in the nest, hence the name cuckoo hash. If the
alternative location of the kicked key is also occupied, a cascade kick is trig-
gered. As the cascade kick could easily form a loop, in general, the load factor of
the primitive design cannot exceed 50%. The bucketized cuckoo-hashing scheme
introduces multiple slots per bucket for alleviating the kicking loops. This makes
the process applicable for use cases with a load factor exceeding 95% [10].

Another essential problem is concurrency. In cuckoo hashing, it could be
very difficult to efficiently prevent the kicking process from affecting readers and
writers. As a widespread implementation of bucketized cuckoo hashing, libcuckoo
[13] conducts a fine-grained locking approach to reduce the blocking overhead
of concurrent threads. It can be shown that the throughput of libcuckoo signifi-
cantly degrades as long as the number of worker threads continuously increases,
e.g., with more than 16 worker threads. Lock-free technique [2] has also been
applied to cuckoo hashing. Lfcuckoo [13] accelerates the primitive cuckoo hash-
ing using atomic primitives, such as LOAD, STORE, and Compare-and-Swap
(CAS). Two correctness issues, i.e., false miss and duplicated key, have been
addressed in the presence of lock-freedom by lfcuckoo. However, the solution
can hardly be applied to the bucketized use case, making it impractical.

To implement a concurrent hash table that can efficiently exploit the increas-
ing number of cores, we introduce lock-free techniques to in-memory bucketized
cuckoo hashing. We use single-word atomic primitives to optimize concurrent
operations over the bucketized data structure, with thorough consideration of
the kicking process for cuckoo hashing. We revise lfcuckoo’s helper mechanism
for the use case with bucketized data structure. For the false miss problem,
inspired by hazard pointers [12], we present a mechanism based on hazard hash
value that detects the conflicting hash values when performing “kick out”. If a
search operation gets a miss and detects the hash value derived from its required
key conflict with a key being kicked out, it will retry to ensure that it does not
return a false miss when the key is present in the hash table. As for the prob-
lem of duplicated keys, we generate a snapshot of the target bucket and delete
any duplicated keys within it when necessary. In addition to addressing the
two issues that affect correctness, we have also presented lock-free lazy rehash
which has never been addressed in the previous studies. To address the issue of
data hotspots [4], we have also implemented the hotspot detection and adjust-
ment mechanism, improving the performance of the hash table under a highly
skewed workload. Ultimately, we implemented lock-free bucketized cuckoo hash-
ing, which is functionally correct, space-efficient, and scalable.

The rest of this paper is organized as follows. Section 2 gives the basic con-
cepts of libcuckoo and lfcuckoo. Section 3 presents the data structure of LFBCH
followed by its basic operations. Section 4 shows the implementation details of
the lock-free hash table. Section 5 evaluates the hash table based on benchmark
workloads. The related works and the conclusion of this paper are given in Sect. 6
and Sect. 7, respectively.



Lock-Free Bucketized Cuckoo Hashing 277

2 Preliminaries

In this section, we present the basic concepts of bucketized cuckoo hashing and
the lock-free revision for primitive cuckoo hashing. Problems when driving lock-
free operations over a bucketized hash table are discussed.

2.1 Bucketized Cuckoo Hashing

Libcuckoo is a popular implementation of cuckoo hashing that supports lock-
based operations using a bucketized hash table. We will use it as an example to
illustrate the critical components of a bucketized hash table in the context of
cuckoo hashing.

Fig. 1. Demonstration of the kick-
ing process of libcuckoo, where a kick
path a → b → c → ∅ is found to
make free slot for a new insertion key
“x”. ∅ denotes an empty slot. The
three keys, i.e., c, b, a, will be moved
to their alternative slots following the
directions of the arrows.

Data Structure. Figure 1 demonstrates
the basic structure of libcuckoo by a typi-
cal configuration with two cuckoo-hashing
functions and a four-way set-associative
bucket. A key calculated by two hash func-
tions is mapped to two buckets, each con-
sisting of four set-associative slots. For con-
currency, libcuckoo employs a lock strip
technique. Each request first acquires locks
corresponding to both target buckets before
accessing them. Libcuckoo exhibits good
scalability when the user requests follow a
uniform distribution in their request keys.
However, due to the overhead incurred
by lock contention, the system perfor-
mance sharply degrades when the number
of worker threads increases on skewed work-
loads, even in read-only applications.

Kick Process. The kick process is divided into two stages, i.e., path search and
item movement along the kick path. The goal of the path search stage is to find
a path for cascade kicking out. For example, Fig. 1 shows how to kick item “a” to
make space for a new insertion “x”. Libcuckoo finds the kick path by evaluating
a BFS search, which guarantees the shortest path [10]. In the second stage, it
moves the keys reversely along the kick path. This will leave an empty slot in
the head of the kick path, which can be used to accommodate the new insertion
key. Rather than locking the entire kicking path, libcuckoo utilizes fine-grained
locks to ensure the correctness of the kicking process.

2.2 Difficulties when Supporting Lock-Free Operations

Next, we analyze the critical idea of introducing a lock-free technique into cuckoo
hashing. Based on a primitive revision, i.e., lfcuckoo, we highlight the difficulties
when considering lock freedom over bucketized cuckoo hashing.



278 W. Li et al.

Fig. 2. The introduction of lock-free techniques into cuckoo hashing can potentially
result in two errors: false miss and duplicated key. The gray rounded box in the illustra-
tion represents the hash table, and the white boxes indicate the two possible positions
of Key A within the hash table. (Color figure online)

Lock-Free Kick. Lfcuckoo is built on a single-slot cuckoo hashing structure,
where each hash function corresponds to a single slot. The slots are designed
as single words such that atomic primitives can be applied for lock-free pur-
poses. The single item movement in the kicking process is shown in Fig. 2(a).
Lfcuckoo marks the least significant bit (LSB) of the source slot pointer at the
first step of the kick process. Marking the LSB on the source slot helps to pre-
vent the kick operation from blocking write operations. Other write operations
call a helper function to help the “kick out” thread when they detect the kick
mark. The helper function encapsulates the processes of slot copy and source
clearance, making the kicking process lock-free. While this mechanism makes
sense in single-slot cuckoo hashing, it cannot be directly applied to bucketized
cuckoo hashing. As multiple target slots in each bucket can be selected as evictee
by each movement, a helper thread cannot determine to which slot the marked
key should be kicked to.

False Miss. As shown in Fig. 2(b), a false miss refers to the scenario that a key is
present in the hash table but a search operation fails to find it. Lfcuckoo resolves
false misses by detecting the interleaving kicks based on a kicking counter in the
highest 16 bits of the slot. The search operation must be evaluated twice to detect
the modifications to the counter on each slot. A false miss might occur if the
counter changes within any of the two rounds. It then restarts the search process
to make sure whether the key exists. However, using a counter is not entirely safe
as there is a risk of fatal errors resulting from short, recycling counters conflicting
with each other. Additionally, the presence of version numbers occupies the space
available for tags, which is an essential part of reducing memory access and
speeding up searches. On the other hand, version numbers are also inapplicable
to bucketized cuckoo hashing due to the expansion of slot numbers.



Lock-Free Bucketized Cuckoo Hashing 279

Duplicated Key. Figure 2(c) shows an example of the duplicated key caused by
three interleaved modifications. To address this issue, at any time a duplicated
key is found by a search process, lfcuckoo always removes the key in the later
slot of the search sequence. The solution of lfcuckoo makes sense since each
key has only two possible locations, both cannot be selected as evictees due to
the duplicate key in their alternative slot. However, in the bucketized cuckoo
hashing, a kicking process may be interleaved with the duplicated key check
process. It thus might cause the duplicated key check process to miss duplicated
keys or to get an intermediate state of the kicking out process.

3 Overview of LFBCH

In this section, we provide an overview of our bucketized cuckoo hashing, includ-
ing its data structure and fundamental operations.

3.1 Data Structure

Fig. 3. Data structure of LFBCH with the fine-grained division of its 64-bit slot espe-
cially for supporting lock-free operations.

The basic structure of LFBCH is an array-typed bucketized hash table with
two hash functions and four slots per bucket. Each slot is 64 bits wide and can
be manipulated by atomic primitives. The atomic LOAD result of the slot is
referred to as an entry.

As shown in Fig. 3, the entry can be divided into the following fields:

– Address. A 47-bit address is generally sufficient to locate a key-value pair for
purposes of alignment.

– Target. Used to identify the target slot index of an in-flight entry.
– Kick/Migrate. Mark that the entry is being kicked/rehash migrated.
– Hot. Identify whether an item is frequently accessed.
– Tag. A signature of the hash value for each key. Enhances query efficiency by

filtering out memory accesses to keys with different signatures.

The compact bucket structure of LFBCH is similar to that of libcuckoo,
enabling it to support a load factor of up to 95%. Additionally, with the intro-
duction of lock-free techniques, LFBCH offers significantly better scalability than
libcuckoo, which employs a lock strip for synchronization. Next, we show how
to drive lock-free operations based on the data structures.



280 W. Li et al.

3.2 Basic Operations

In this section, we consider three basic operations, i.e., Get, Put, and Delete.
We focus on the use cases without the kicking and rehash processes and leave
more details of the two processes in Sect. 4.

Get. Given two distinct hash functions, we can determine two target buckets
based on the two hash values of a Get key. We refer to the two hash functions as
the primary hash function and the secondary hash function, and the buckets they
map to as the primary bucket and the secondary bucket, respectively. Searches
always start from the primary bucket and traverse all eight slots across both
buckets. It in turn considers each slot by triggering an atomic LOAD to obtain
the entry thereon. If all of the eight comparisons have failed, a result of a miss
will return. It is worth noting that an interleaving kicking process may issue false
misses, as demonstrated in Fig. 2(b). We will detail the resolution in Algorithm 1.

Put. The semantic of the put operation is inserting when the key is missing and
updating when the key is hit. We will discuss the two cases separately. For an
update operation, only one slot returned from the search process is considered.
Two update strategies are employed. For items whose value length is less than
8 bytes, an in-place update is performed by directly updating the value through
a CAS operation in the value field of the item. For items with larger values, a
Read-Copy-Update (RCU) operation is employed. A new item containing the
new key-value pair is created, and then a CAS operation is used to replace the
old item with the new item. For insertion, if the search process can find an empty
slot, we can employ the RCU-based update to insert the new item. If no empty
slot is found, the kick-out algorithm kicks out a key within the target buckets
to make room for the insertion. After the kick-out algorithm finishes, an empty
slot will appear within the target bucket, and we can perform insertion on the
empty slot. After the insertion, the action to check and resolve the duplicated
key starts. The details are described in Sect. 4.2. Note that if we find a kick
mark on the entry of the target key during the search process. We need to call
the helper function to help kick out and re-execute the PUT operation from the
beginning. The details are covered in Sect. 4.1.

Delete. The Delete operation has similar logic to the Put. If the key is not
found, a failure will be returned. Otherwise, we perform a CAS operation to
replace the target slot with an empty entry atomically.

4 Detailed Algorithm Description

This section will detail the critical designs in lock-free bucketized cuckoo hashing,
including lock-free kicking, preventing duplicated key, lock-free rehashing, and
hotspot perception.

4.1 Lock-Free Kick on Bucketized Cuckoo Hashing

Our lock-free kicking algorithm has two primary components: path search and
item movement along the kick path.



Lock-Free Bucketized Cuckoo Hashing 281

Path Search. Regarding path search, we have adopted the BFS algorithm
employed by libcuckoo without locking. However, since other threads may mod-
ify the state of the hash table during the search process, the state of the hash
table may be modified by other threads during the path search process. For
example, the empty slot at the tail may be filled with a key after the search path
is formed. Any inconsistencies between the actual state and the kick path are
checked for in the following item movement along the kick path phase. If any
discrepancies are found, the kicking-out process is restarted from the beginning
to ensure correctness.

Item Movement Along Kick Path. Once a kick path is found, the items
need to be moved along the kick path. Proceeding from the tail towards the
head, the process moves one item at a time. The fundamental operations of the
single-item movement process are similar to those performed by lfcuckoo and can
be referred to in Fig. 2(a). We have added our method to prevent false misses
and improve the handling of bucketized environments. The specific method is
shown in Algorithm 1.

Meanings of the key variables adopted by the algorithm are as follows: The
table represents the entire hash table. The source bucket and source slot represent
the bucket and source slot indexes. We abbreviate the two variables as sb and
ss. Similarly, target bucket and target slot are respectively abbreviated as tb and
ts. The source entry represents the value of the uint64 t variable maintained on
the source slot. The kick marked entry is the kick-marked result of source entry.

Two global arrays are defined (lines 1–2) with lengths equal to the number of
global threads. Each thread is mapped to a specific position in the array accord-
ing to its thread id. Padding is used to avoid false sharing issues. The functions of
these global arrays are: hash record. The working thread stores the hazard hash
value of the key calculated by the primary hash function in the corresponding
position of the hash record array at the beginning of every operation, for conflict
detection performed by the kicking threads; retry flags. Once the hazard hash
value of another worker thread is found to conflict with the moving item, the
retry flag at the corresponding position of the reader will be set, indicating this
worker thread might be affected by movement.

The item move function (line 4) begins with two initial checks. The first “if”
statement (line 6) checks if the source slot is empty. If it is empty, the item move
function can return success directly. The second “if” statement (line 8) checks if
the source slot has been marked with a “kick mark” by other threads, indicating
that another thread is concurrently accessing it for an item move operation. A
helper function is then invoked to help the moving process and prevent blocking.
The target slot information has been added to the kick marked entry (line 11) for
a potential helper to obtain (line 18). Otherwise, other threads cannot determine
which slot they should help kick into. The helper will get the target bucket
information by calculating the two possible bucket locations of the intended key
based on the item associated with the kick marked entry. The bucket that differs
from the source bucket is identified as the target bucket.



282 W. Li et al.

Algorithm 1. Lock Free Single Item Movement
1: atomic < bool > retry flags[thread num]
2: atomic < uint64 t > hash record[thread num]
3:
4: function single item move(sb, ss, tb, ts)
5: source entry ← table[sb][ss].LOAD()
6: if source entry == empty entry then
7: return true
8: if is kick marked(source entry) then
9: helper(sb, ss, source entry) � source entry here is kick marked
10: return false

11: kick marked entry ← source entry, ts
12: if !table[sb][ss].CAS(source entry, kick marked entry) then
13: return false

14: return copy(sb, ss, tb, ts, kick marked entry)

15:
16: function helper(sb, ss, kick marked entry)
17: key, hash ← kick marked entry
18: tb ← hash, sb; ts ← kick marked entry
19: copy(sb, ss, tb, ts, kick marked entry)

20:
21: function copy(sb, ss, tb, ts, kick marked entry)
22: if table[tb][ts].CAS(empty entry, source entry) then
23: hash ← source entry
24: set retry if hazard(hash)
25: if table[sb][ss].CAS(kick marked entry, empty entry) then
26: return true
27: if key in(ss, sb) == key in(ts, tb) then
28: hash ← source entry
29: set retry if hazard(hash)
30: table[sb][ss].CAS(kick marked entry, empty entry)
31: return false

32: table[sb][ss].CAS(kick marked entry, source entry)
33: return false

34:
35: function set retry if hazard(hash)
36: for i = 0 → thread num − 1 do
37: if hash record[i].LOAD() == hash then � Check hazard value
38: retry flags[i].STORE(true)

39:
40: function search(key)
41: hash record[thread id].STORE(hash) � Store hazard value
42: while true do
43: bool hit ← search two buckets(key)
44: if hit then
45: return key hit
46: else if retry flags[thread id].LOAD() then
47: retry flags[thread id].STORE(false)
48: continue
49: else
50: return key miss

51:

In the copy function (line 21), a CAS operation is first used to update the
target slot with the source entry (line 22). If the CAS operation succeeds, a CAS
operation is then used to clear the source slot (line 25). If this clearing operation
succeeds, the copy operation is considered successful and the function returns
true.

Before clearing the source slot (line 25), the function set retry if hazard is
invoked to prevent other threads from returning false misses that may have been



Lock-Free Bucketized Cuckoo Hashing 283

affected by the item movement process. This function (line 35) traverses the
hash record array to determine if the hash value of the key being moved conflicts
with the hazard hash value of a key being operated on by another thread. If it
is, the retry flag of the corresponding thread is set, informing other threads that
the search may have been affected by the item movement process and a false
miss may have occurred. To avoid false misses, the search algorithm (line 40)
begins by storing the hash value of the target key in the corresponding position
of the hash record array. If it gets a miss and the corresponding retry flag is
set, it indicates that the miss may be a false miss. In this case, the retry flag is
cleared, and the search operation is performed again.

If either of the two CAS operations (line 22, line 25) fails, it indicates that
the state of the hash table has been modified by another thread, and failure
handling is required. Firstly, it is necessary to check whether the keys in the
target and source positions are the same. If they are the same, it means that
another thread has already completed the entry copying operation. In this case,
the source slot needs to be cleared (lines 28–30), and the function returns false. If
the keys are not the same, it means that either the target slot or the source slot
has already been modified by another thread. In either case, the copy operation
cannot succeed. At this point, a CAS operation is used to attempt to clear the
kick-out mark in the source slot (line 32) and restore it to its state before the
mark was set. The function then returns false.

4.2 Prevent Duplicated Key

Unlike the temporary duplicated keys that may arise during item movement, the
presence of duplicated keys resulting from distinct threads inserting the same
key into different empty slots can cause errors in the hash table. We conduct a
post-checking step after each insertion to solve this problem.

The specific methodology is shown in Algorithm 2. The check duplicate key
function is called after each successful insertion. The duplicated key check will
pass only when the number of target keys in the obtained snapshot equals 1.
Since in the vast majority of cases, post-checking only scans buckets that have
already been scanned during the search phase and passes the check without
introducing additional overhead, our post-checking mechanism is efficient.

4.3 Lock Free Rehash

When the load factor of the hash table is excessively high, rehash is necessary.
Similar to that of libcuckoo, our rehash mechanism employs a lazy rehash strat-
egy, whereby items are shallow-copied gradually from the old table to the newly
created table. However, unlike libcuckoo, we use a global atomic bitmap to iden-
tify whether each bucket has been migrated. Moreover, for each item migration
from the old table, we use a mechanism similar to the single item movement
within a table, but with migrate marks instead of kick marks. Therefore, the
guarantee of lock-free rehashing is ensured.



284 W. Li et al.

Algorithm 2. Post-checking Process for Duplicated Key
1: //b : bucket index, s : slot index
2:
3: function check duplicate key(key)
4: Start :
5: Initialize snapshot
6: for each slot in two buckets do
7: snapshot.append(〈b, s, slot.LOAD()〉) � 8 slots in total

8: if retry flag[thread id].LOAD() then
9: retry flag[threadid].STORE(false)
10: goto Start

11: count = 0
12: for 〈b, s, entry〉 in snapshot do
13: if is kick marked(entry) then
14: helper(b, s, entry)
15: goto Start

16: key extract ← entry
17: if key equals key extract then
18: task ← b, s, entry
19: count++

20: if count ≤ 1 then
21: return
22: else
23: table[task.b][task.s].CAS(entry, empty entry)
24: goto Start

4.4 Hot Key Perception and Adjustment

Although bucketized cuckoo hashing minimizes memory access and cache misses
due to its compact slot layout, queries on keys in the secondary bucket result
in one additional cache miss compared to the primary bucket. Additionally, due
to skewed key distribution in practice, when a hotspot key is placed in the
secondary bucket, accessing it incurs additional overhead. Therefore, we have
optimized our implementation by placing hotspot keys as far forward as possible
in the primary bucket to reduce the number of comparisons required for access.

The specific method of adjusting hotspots is to displace the first non-hotspot
key located before the hotspot key in the search sequence and subsequently place
itself in the vacated position. The process of displacing a key is the same as the
kicking process, except that there is no cascading displacement. If the secondary
bucket of a non-hotspot key is full, it is skipped. Hotspot keys are determined
based on whether the slot has a “hot” mark, which is applied the first time
the key is updated. Considering the scenarios with their hotspots frequently
evolving, the “hot” marks on all the slots in the bucket will be cleared after each
successful adjustment of a hotspot key. If all the keys before the search sequence
of a hotspot key are hotspot keys, no adjustment is performed.

5 Experiments

In this section, we evaluate the performance of LFBCH using YCSB benchmarks.
We compare the throughput and scalability of LFBCH with that of libcuckoo
and the hash table faster [3] use. We also provide the results with the hotspot
optimization.



Lock-Free Bucketized Cuckoo Hashing 285

Table 1. Load factor within differ-
ent slot number

Slot Per Bucket 1 2 4 8

Load Factor 50% 87% 95% 95%

Environment. We conducted experiments
on a machine comprising two AMD EPYC
7742 64-Core Processors with 1.50 GHz pro-
cessors. Each processor has two sockets, each
with 64 cores. The RAM capacity is 1024
GB. It runs Ubuntu 16.04.7 LTS OS with
Linux 4.4 kernel. Only 64 cores in one socket were utilized, and each thread was
bound to a specific core. Jemalloc library is used to allocate memory. All code
is compiled using gcc/g++−7.5.0 with parameter −O2. Memory reclamation
is not carried out to eliminate the influence of different memory reclamation
algorithms on the hash table throughput.

BaseLine and Workloads. We employed libcuckoo and the hash table faster
uses in contrast to LFBCH. As shown in Table 1, since each bucket in lfcuckoo

Fig. 4. The throughput under different load factors and different YCSB loads varies
with the worker threads.



286 W. Li et al.

only has a single slot, the load factor cannot exceed 50%, making it impractical
and thus not included in the comparison experiments. In each test, the number
of buckets for Libcuckoo and LFBCH was set at 227. Because of the batch chain
structure of the faster hash table, it has half as many buckets. We conduct exper-
iments using the YCSB core workloads A, B, and C [6]. The Zipfian distribution
parameter in YCSB is set to 0.99. For each item, we set both the key size and
the value size to be 8 bytes.

Results. The throughput test result is shown in Fig. 4. We observed that the
throughput of libcuckoo decreases when the number of threads exceeds 16 in all
cases. At 64 threads, the throughput is less than five million requests per second.
In contrast, the throughput of LFBCH increases linearly for all thread counts.
When the load type is the same, the performance of each hash table is better
when the load factor is low, compared to when the load factor is high.

Fig. 5. Hotspot adjustment result

We focus on the situation with a load
factor of 46% to reflect general conditions.
Under YCSB A load, LFBCH achieved the
highest throughput of 148 million requests
per second at 64 threads, while faster’s
throughput was only 41 million requests
per second. Faster and libcuckoo achieved
their highest throughputs at 40 and 8
threads respectively, but LFBCH was still
127% and 428% higher than their high-
est throughputs, respectively. The reason
for the performance degradation of faster
is the result of RCU update contention.
Under YCSB B load, LFBCH had the highest throughput of 168 million requests
per second, 14% higher than faster’s highest throughput and 360% higher than
libcuckoo’s highest throughput. Under YCSB C load, LFBCH had the highest
throughput of 18 million requests per second, 6% higher than faster’s highest
throughput and 350% higher than libcuckoo’s highest throughput. Faster and
LFBCH perform similarly under YCSB C loads because faster uses the same
atomic load and tag acceleration mechanisms for search as LFBCH.

We used YCSB C load with a Zipf coefficient of 1.22 to experiment with our
hotspot adjustment strategy in skew workload. LFBCH-A represents the results
obtained after enabling the hotspot adjustment. As shown in Fig. 5, The perfor-
mance of LFBCH improved by 19% after hotspot adjustment and optimization.

6 Related Works

Various hash tables based on cuckoo hashing have been widely addressed. The
primitive cuckoo hash algorithm was first proposed in 2004 [14] in which each key
is mapped to two positions using two hash functions, and insertion is guaranteed
by the use of a “kick out” operation. The primitive version has a low load factor
and no concurrency scheme.



Lock-Free Bucketized Cuckoo Hashing 287

Memc3 [8] allows multiple readers and a single writer concurrently access the
bucketized cuckoo hashing. Xiaozhou Li’s work [10] introduced HTM into bucke-
tized cuckoo hashing. It has inherent limitations of HTM, which can lead to sig-
nificant performance degradation when transactions fail frequently. As a widely
used cuckoo-based hash table, libcuckoo [11] employs a bucketized structure and
utilizes fine-grained locks to control concurrent access. However, the performance
degradation caused by the competition when the number of threads increases
cannot be avoided. Lfcuckoo [13] made a Lock-free improvement to the primi-
tive cuckoo hashing, but it has not been extended to bucketized cuckoo hashing,
leading to low space utilization efficiency. Level hash [5] has also employed a lock-
free technique in bucketized cuckoo hashing, but it is designed for the scenario
of persistent memory.

The work of hotspot adjustment for our hash table is inspired by hotring [4].
It speeds up the performance of the chained hash table in the case of data skew
by pointing the linked list header pointer to the hotspot key.

7 Conclusion

We introduced lock-free techniques into bucketized cuckoo hashing and proposed
LFBCH, which paves the way toward scalability and high space efficiency. All
of the operations over LFBCH are guaranteed to be lock-free, without intro-
ducing notorious problems like false miss and duplicated key. Lock-free rehash
and hotspot adjustment are also implemented in LFBCH. The throughput of
LFBCH is 14%–360% higher than other popular concurrent hash tables.

Accessing the same shared data structure introduces additional latency when
the working threads are distributed across CPU sockets. In the future, optimiza-
tions can be made to improve the performance of LFBCH in scenarios where it
is distributed across CPU sockets.

Acknowledgment and Data Availability Statement. This work was sponsored
by the National Science Foundation, grant 61572373. Besides the reviewers, we would
like to thank High Performance Computing Center at the Computer School of Wuhan
University. The Code is available in the Figshare repository: https://doi.org/10.6084/
m9.figshare.23550111 [17]

References

1. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

2. Barnes, G.: A method for implementing lock-free shared-data structures. In: Pro-
ceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, pp. 261–270 (1993)

3. Chandramouli, B., Prasaad, G., Kossmann, D., Levandoski, J., Hunter, J., Barnett,
M.: Faster: a concurrent key-value store with in-place updates. In: Proceedings of
the 2018 International Conference on Management of Data, pp. 275–290 (2018)

https://doi.org/10.6084/m9.figshare.23550111
https://doi.org/10.6084/m9.figshare.23550111


288 W. Li et al.

4. Chen, J., et al.: Hotring: a hotspot-aware in-memory key-value store. In: FAST,
pp. 239–252 (2020)

5. Chen, Z., Hua, Y., Ding, B., Zuo, P.: Lock-free concurrent level hashing for persis-
tent memory. In: Proceedings of the 2020 USENIX Conference on USENIX Annual
Technical Conference, pp. 799–812 (2020)

6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154 (2010)

7. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood,
D.A.: Implementation techniques for main memory database systems. In: Proceed-
ings of the 1984 ACM SIGMOD International Conference on Management of Data,
pp. 1–8 (1984)

8. Fan, B., Andersen, D.G., Kaminsky, M.: MemC3: compact and concurrent Mem-
Cache with dumber caching and smarter hashing. In: Presented as part of the
10th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 13), pp. 371–384 (2013)

9. Garcia-Molina, H., Salem, K.: Main memory database systems: an overview. IEEE
Trans. Knowl. Data Eng. 4(6), 509–516 (1992)

10. Li, X., Andersen, D.G., Kaminsky, M., Freedman, M.J.: Algorithmic improvements
for fast concurrent cuckoo hashing. In: Proceedings of the Ninth European Con-
ference on Computer Systems, pp. 1–14 (2014)

11. M, K.: libcuckoo. https://github.com/efficient/libcuckoo
12. Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects.

IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)
13. Nguyen, N., Tsigas, P.: Lock-free cuckoo hashing. In: 2014 IEEE 34th International

Conference on Distributed Computing Systems, pp. 627–636. IEEE (2014)
14. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
15. Ghemawat, S., Dean, D.: levelDB. https://github.com/google/leveldb
16. Shalf, J.: The future of computing beyond Moore’s law. Phil. Trans. R. Soc. A

378(2166), 20190061 (2020)
17. Li, W., Cheng, Z., Chen, Y., Li, A., Deng, L.: Artifact and instructions to generate

experimental results for euro-par 23 paper: Lock-free bucketized cuckoo hashing
(2023). https://doi.org/10.6084/m9.figshare.23550111

18. Wu, S., Li, F., Mehrotra, S., Ooi, B.C.: Query optimization for massively parallel
data processing. In: Proceedings of the 2nd ACM Symposium on Cloud Computing,
pp. 1–13 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://github.com/efficient/libcuckoo
https://github.com/google/leveldb
https://doi.org/10.6084/m9.figshare.23550111
http://creativecommons.org/licenses/by/4.0/

	Lock-Free Bucketized Cuckoo Hashing
	1 Introduction
	2 Preliminaries
	2.1 Bucketized Cuckoo Hashing
	2.2 Difficulties when Supporting Lock-Free Operations

	3 Overview of LFBCH
	3.1 Data Structure
	3.2 Basic Operations

	4 Detailed Algorithm Description
	4.1 Lock-Free Kick on Bucketized Cuckoo Hashing
	4.2 Prevent Duplicated Key
	4.3 Lock Free Rehash
	4.4 Hot Key Perception and Adjustment

	5 Experiments
	6 Related Works
	7 Conclusion
	References


