Skip to main content

Ferroptosis and Infectious Diseases

  • Chapter
  • First Online:
Ferroptosis in Health and Disease
  • 299 Accesses

Abstract

Ferroptosis is a newly recognized form of regulated cell death characterized by oxidative stress, iron dependency, and lipid peroxidation. The importance of ferroptosis has been appreciated in various pathological conditions, such as cancer, neurodegeneration, and ischemia injury. Interestingly, there is emerging evidence that ferroptosis may play an important and multifaceted role in the infection of various pathogens, including bacteria, viruses, and parasites. Here, we wish to summarize the several distinct ways that ferroptosis may play in host–pathogen interactions. First, the infected host cells may undergo ferroptosis, which may trigger damage-associated molecular pattern (DAMP) molecules to be recognized by immune cells for clearance and immune activation. Second, certain pathogens may modulate ferroptosis response by interacting with ferroptosis machinery to promote their propagation. Third, ferroptosis may also contribute to organ injuries during uncontrolled infection and sepsis. Importantly, since multiple compounds are available to enhance or inhibit ferroptosis, it is possible to modulate ferroptosis for therapeutic gain. Therefore, a detailed understanding will allow us to modulate ferroptosis to eliminate pathogens and ameliorate the acute and chronic adverse outcomes of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agbor TA, Demma Z, Mrsny RJ, Castillo A, Boll EJ, McCormick BA (2014) The oxido-reductase enzyme glutathione peroxidase 4 (GPX4) governs S almonella T yphimurium-induced neutrophil transepithelial migration. Cell Microbiol 16(9):1339–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral EP, Namasivayam S (2021) Emerging role for ferroptosis in infectious diseases. In: Florez AF, Alborzinia H (eds) Ferroptosis: mechanism and diseases. Springer, Cham, pp 59–79

    Chapter  Google Scholar 

  • Amaral EP, Costa DL, Namasivayam S, Riteau N, Kamenyeva O, Mittereder L, Mayer-Barber KD, Andrade BB, Sher A (2019) A major role for ferroptosis in Mycobacterium tuberculosis–induced cell death and tissue necrosis. J Exp Med 216(3):556–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral EP, Namasivayam S, Costa DL, Fisher L, Bomfim CCB, Andrade BB, Sher A (2020) The transcription factor BACH1 promotes tissue damage and host susceptibility in Mycobacterium tuberculosis infection by reducing expression of Gpx4, a major negative regulator of ferroptosis, vol 204. Am Assoc Immnol, p 227.16

    Google Scholar 

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:1

    Article  CAS  Google Scholar 

  • Azenabor AA, Mahony JB (2000) Generation of reactive oxygen species and formation of membrane lipid peroxides in cells infected with Chlamydia trachomatis. Int J Infect Dis 4(1):46–50

    Article  CAS  PubMed  Google Scholar 

  • Bagayoko S, Leon-Icaza SA, Pinilla M, Hessel A, Santoni K, Péricat D, Bordignon P-J, Moreau F, Eren E, Boyancé A (2021) Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology. PLoS Pathog 17(9):e1009927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boelaert JR, Vandecasteele SJ, Appelberg R, Gordeuk VR (2007) The effect of the host's iron status on tuberculosis. J Infect Dis 195(12):1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Britigan BE, Edeker B (1991) Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation. J Clin Invest 88(4):1092–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CW, Amante JJ, Goel HL, Mercurio AM (2017) The α6β4 integrin promotes resistance to ferroptosis. J Cell Biol 216(12):4287–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton EM, Voyer J, Gewurz BE (2022) Epstein–Barr virus latency programs dynamically sensitize B cells to ferroptosis. Proc Natl Acad Sci 119(11):e2118300119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caseys C (2019) Ferroptosis: a companion of ROS in fighting Magnaporthe in rice, vol 31. American Society of Plant Biologists, p 13

    Google Scholar 

  • Cavezzi A, Troiani E, Corrao S (2020) COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clinics and Practice 10(2):1271

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen PH, Chi JT (2021) Unexpected zinc dependency of ferroptosis: what is in a name? Oncotarget 12(12):1126–1127. https://doi.org/10.18632/oncotarget.27951

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen P-H, Wu J, Ding C-KC, Lin C-C, Pan S, Bossa N, Xu Y, Yang W-H, Mathey-Prevot B, Chi J-T (2020a) Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ 27(3):1008–1022

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yu C, Kang R, Tang D (2020b) Iron metabolism in ferroptosis. Front Cell Dev Biol 8:590226

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen PH, Wu J, Xu Y, Ding CC, Mestre AA, Lin CC, Yang WH, Chi JT (2021a) Zinc transporter ZIP7 is a novel determinant of ferroptosis. Cell Death Dis 12(2):198. https://doi.org/10.1038/s41419-021-03482-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Su X, Luo H, Mai Z, Yu X, Zeng L, Pan Y, Liao Y, Xu Q, Zhao W (2021b) P131 Chlamydia trachomatis induces ferroptosis to promote its own dissemination by inhibiting SLC7A11/GPx4 signaling. BMJ Publishing Group Ltd

    Book  Google Scholar 

  • Chen X, Kang R, Kroemer G, Tang D (2021c) Ferroptosis in infection, inflammation, and immunity. J Exp Med 218(6):e20210518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Huang J, Yu C, Liu J, Gao W, Li J, Song X, Zhou Z, Li C, Xie Y, Kroemer G, Liu J, Tang D, Kang R (2022a) A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis. Nat Commun 13(1):6318. https://doi.org/10.1038/s41467-022-34096-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wang J, Nguyen NK, Hwang BK, Jwa NS (2022b) The NIN-like protein OsNLP2 negatively regulates ferroptotic cell death and immune responses to Magnaporthe oryzae in rice. Antioxidants 11(9):1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xu Y, Zhang K, Shen L, Deng M (2022c) Ferroptosis in COVID-19-related liver injury: a potential mechanism and therapeutic target. Front Cell Dev Biol 12:1058

    Google Scholar 

  • Christgen S, Place DE, Kanneganti T-D (2020) Toward targeting inflammasomes: insights into their regulation and activation. Cell Res 30(4):315–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Christgen S, Tweedell RE, Kanneganti T-D (2022) Programming inflammatory cell death for therapy. Pharmacol Ther 232:108010

    Article  CAS  PubMed  Google Scholar 

  • Colafrancesco S, Alessandri C, Conti F, Priori R (2020) COVID-19 gone bad: a new character in the spectrum of the hyperferritinemic syndrome? Autoimmun Rev 19(7):102573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ, Zeh HJ, Kang R, Wang J, Tang D (2020a) Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 16(11):2069–2083. https://doi.org/10.1080/15548627.2020.1714209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai E, Meng L, Kang R, Wang X, Tang D (2020b) ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem Biophys Res Commun 522(2):415–421. https://doi.org/10.1016/j.bbrc.2019.11.110

    Article  CAS  PubMed  Google Scholar 

  • Dangol S, Chen Y, Hwang BK, Jwa N-S (2019) Iron-and reactive oxygen species-dependent ferroptotic cell death in rice-Magnaporthe oryzae interactions. Plant Cell 31(1):189–209

    Article  CAS  PubMed  Google Scholar 

  • Dar HH, Tyurina YY, Mikulska-Ruminska K, Shrivastava I, Ting H-C, Tyurin VA, Krieger J, Croix CMS, Watkins S, Bayir E (2019) Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest 128(10):4639–4653

    Article  Google Scholar 

  • Dar HH, Anthonymuthu TS, Ponomareva LA, Souryavong AB, Shurin GV, Kapralov AO, Tyurin VA, Lee JS, Mallampalli RK, Wenzel SE (2021) A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO• sabotage of theft-ferroptosis. Redox Biol 45:102045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar HH, Epperly MW, Tyurin VA, Amoscato AA, Anthonymuthu TS, Souryavong AB, Kapralov AA, Shurin GV, Samovich SN, Croix CMS (2022) P. aeruginosa augments irradiation injury via 15-lipoxygenase–catalyzed generation of 15-HpETE-PE and induction of theft-ferroptosis. JCI insight 7(4):e156013

    Article  PubMed  PubMed Central  Google Scholar 

  • Das BS, Nanda NK (1999) Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans R Soc Trop Med Hyg 93(1):58–62

    Article  CAS  PubMed  Google Scholar 

  • Ding C-KC, Rose J, Sun T, Wu J, Chen P-H, Lin C-C, Yang W-H, Chen K-Y, Lee H, Xu E (2020) MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nat Metab 2(3):270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ, Stockwell BR (2019) The hallmarks of ferroptosis. Annu Rev Cancer Biol 3(1):35–54. https://doi.org/10.1146/annurev-cancerbio-030518-055844

    Article  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296

    Article  CAS  PubMed  Google Scholar 

  • Drakesmith H, Prentice AM (2012) Hepcidin and the iron-infection axis. Science 338(6108):768–772

    Article  CAS  PubMed  Google Scholar 

  • Du K, Maeso-Díaz R, Oh SH, Wang E, Chen T, Pan C, Xiang K, Dutta RK, Wang XF, Chi JT, Diehl AM (2023) Targeting YAP-mediated hepatic stellate cell death susceptibility and senescence for treatment of liver fibrosis. Hepatology 77:1998. https://doi.org/10.1097/hep.0000000000000326

    Article  PubMed  Google Scholar 

  • Eagle H, Piez KA, Oyama VI (1961) The biosynthesis of cystine in human cell cultures. J Biol Chem 236(5):1425–1428

    Article  CAS  PubMed  Google Scholar 

  • Fankem GO, Tagne MAF, Noubissi PA, Fondjo AF, Kamtchouing I, Ngwewondo A, Wambe H, Mukam JN, Kamgang RJ (2019) Antioxidant activity of dichloromethane fraction of Dichrocephala integrifolia in salmonella typhi-infected rats. J Integr Med 17(6):438–445

    Article  PubMed  Google Scholar 

  • Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A (2014) Molecular mechanisms of regulated necrosis. In: Seminars in cell & developmental biology, vol 35. Elsevier, pp 24–32

    Google Scholar 

  • Ganz T (2019) Erythropoietic regulators of iron metabolism. Free Radic Biol Med 133:69–74

    Article  CAS  PubMed  Google Scholar 

  • Ganz T, Nemeth E (2012) Hepcidin and iron homeostasis. Biochim Biophys Acta, Mol Cell Res 1823(9):1434–1443

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wang Q, Tang Y-D, Zhai J, Hu W, Zheng C (2022) When ferroptosis meets pathogenic infections. Trends in Microbiol 31(5):468–479

    Article  Google Scholar 

  • Gross N, Hultenby K, Mengarelli S, Camner P, Jarstrand C (2000) Lipid peroxidation by alveolar macrophages challenged with Cryptococcus neoformans, Candida albicans or Aspergillus fumigatus. Med Mycol 38(6):443–449

    Article  CAS  PubMed  Google Scholar 

  • Habib HM, Ibrahim S, Zaim A, Ibrahim WH (2021) The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 136:111228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He R, Liu B, Xiong R, Geng B, Meng H, Lin W, Hao B, Zhang L, Wang W, Jiang W (2022) Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. Cell Death Discov 8(1):1–11

    Article  Google Scholar 

  • Hirota K (2019) An intimate crosstalk between iron homeostasis and oxygen metabolism regulated by the hypoxia-inducible factors (HIFs). Free Radic Biol Med 133:118–129

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Yin Y, Jiang J, Yan C, Wang Y, Wang D, Li L (2022) Exosomal miR-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression. J Gastrointest Oncol 13(2):754

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwai K (2019) Regulation of cellular iron metabolism: iron-dependent degradation of IRP by SCFFBXL5 ubiquitin ligase. Free Radic Biol Med 133:64–68

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Yadav PP, Gill V, Vasudeva N, Singla N (2009) Terminalia arjuna a sacred medicinal plant: phytochemical and pharmacological profile. Phytochem Rev 8(2):491–502

    Article  CAS  Google Scholar 

  • Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonscher E, Flemming S, Schmitt M, Sabitzki R, Reichard N, Birnbaum J, Bergmann B, Höhn K, Spielmann T (2019) PfVPS45 is required for host cell cytosol uptake by malaria blood stage parasites. Cell Host and Microbe 25(1):166–173.e165

    Article  CAS  PubMed  Google Scholar 

  • Kain HS, Glennon EK, Vijayan K, Arang N, Douglass AN, Fortin CL, Zuck M, Lewis AJ, Whiteside SL, Dudgeon DR (2020) Liver stage malaria infection is controlled by host regulators of lipid peroxidation. Cell Death Differ 27(1):44–54

    Article  CAS  PubMed  Google Scholar 

  • Kalebic T, Kinter A, Poli G, Anderson ME, Meister A, Fauci AS (1991) Suppression of human immunodeficiency virus expression in chronically infected monocytic cells by glutathione, glutathione ester, and N-acetylcysteine. Proc Natl Acad Sci 88(3):986–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran D, Podell BK, Chambers M, Basaraba RJ (2016) Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. In: Seminars in immunopathology, vol 2. Springer, pp 167–183

    Google Scholar 

  • Komissarov AA, Karaseva MA, Roschina MP, Shubin AV, Lunina NA, Kostrov SV, Demidyuk IV (2021) Individual expression of hepatitis A virus 3C protease induces ferroptosis in human cells in vitro. Int J Mol Sci 22(15):7906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft VA, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J (2019) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 6(1):41–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VNJS (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Kuang F, Liu J, Tang D, Kang R (2020) Oxidative damage and antioxidant defense in Ferroptosis. Front Cell Dev Biol 8:586578. https://doi.org/10.3389/fcell.2020.586578

    Article  PubMed  PubMed Central  Google Scholar 

  • Kung Y-A, Chiang H-J, Li M-L, Gong Y-N, Chiu H-P, Hung C-T, Huang P-N, Huang S-Y, Wang P-Y, Hsu T-A (2022) Acyl-coenzyme a synthetase long-chain family member 4 is involved in viral replication organelle formation and facilitates virus replication via ferroptosis. MBio 13(1):e02717–e02721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labbe K, Saleh M (2008) Cell death in the host response to infection. Cell Death Differ 15(9):1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Lei X, Zhao G, Guo R, Cui N (2022) Ferroptosis in sepsis: the mechanism, the role and the therapeutic potential. Front Immunol 13:956361

    Article  CAS  Google Scholar 

  • Li J, Cao F, Yin H-l, Huang Z-j, Lin Z-t, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D (2021) Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy 17(4):948–960

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li M, Li L, Ma J, Yao C, Yao S (2022) Hydrogen sulfide attenuates ferroptosis and stimulates autophagy by blocking mTOR signaling in sepsis-induced acute lung injury. Mol Immunol 141:318–327

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Zhang X, Yang M, Dong X (2019) Recent progress in ferroptosis inducers for cancer therapy. Adv Mater 31(51):1904197

    Article  CAS  Google Scholar 

  • Liang J, Shen Y, Wang Y, Huang Y, Wang J, Zhu Q, Tong G, Yu K, Cao W, Wang Q (2022a) Ferroptosis participates in neuron damage in experimental cerebral malaria and is partially induced by activated CD8+ T cells. Mol Brain 15(1):1–12

    Article  Google Scholar 

  • Liang N-N, Zhao Y, Guo Y-Y, Zhang Z-H, Gao L, Yu D-X, Xu D-X, Xu S (2022b) Mitochondria-derived reactive oxygen species are involved in renal cell ferroptosis during lipopolysaccharide-induced acute kidney injury. Int Immunopharmacol 107:108687

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Yang J, Luo L, Zhang X, Deng S, Chen X, Li Y, Bekhit AE-DA, Xu B, Huang R (2022) Ferroptosis related immunomodulatory effect of a novel extracellular polysaccharides from marine fungus Aureobasidium melanogenum. Mar Drugs 20(5):332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Feng Y, Li H, Chen X, Wang G, Xu S, Li Y, Zhao L (2020) Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett 25(1):1–14

    Article  Google Scholar 

  • Liu G-Z, Xu X-W, Tao S-H, Gao M-J, Hou Z-H (2021) HBx facilitates ferroptosis in acute liver failure via EZH2 mediated SLC7A11 suppression. J Biomed 28(1):1–13

    Google Scholar 

  • Luo K, Stocker R, Britton WJ, Kikuchi K, Oehlers SH (2022) Haem oxygenase limits Mycobacterium marinum infection-induced detrimental ferrostatin-sensitive cell death in zebrafish. FEBS J 289(3):671–681

    Article  CAS  PubMed  Google Scholar 

  • Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509(7498):105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin CJ, Booty MG, Rosebrock TR, Nunes-Alves C, Desjardins DM, Keren I, Fortune SM, Remold HG, Behar SM (2012) Efferocytosis is an innate antibacterial mechanism. Cell Host and Microbe 12(3):289–300

    Article  CAS  PubMed  Google Scholar 

  • Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M (2015) T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J Exp Med 212(4):555–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molloy A, Laochumroonvorapong P, Kaplan G (1994) Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guérin. J Exp Med 180(4):1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Moroishi T, Nishiyama M, Takeda Y, Iwai K, Nakayama K (2011) The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell Metab 14(3):339–351

    Article  CAS  PubMed  Google Scholar 

  • Nisa A, Kipper FC, Panigrahy D, Tiwari S, Kupz A, Subbian S (2022) Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Phys Cell Phys 323(5):C1444–C1474

    CAS  Google Scholar 

  • Nishizawa H, Matsumoto M, Shindo T, Saigusa D, Kato H, Suzuki K, Sato M, Ishii Y, Shimokawa H, Igarashi K (2020) Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J Biol Chem 295(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Nössing C, Ryan KM (2022) 50 years on and still very much alive: ‘apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics’. Br J Cancer 128:1–6

    Google Scholar 

  • Oddo M, Renno T, Attinger A, Bakker T, MacDonald HR, Meylan PR (1998) Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol 160(11):5448–5454

    Article  CAS  PubMed  Google Scholar 

  • Pajuelo D, Gonzalez-Juarbe N, Tak U, Sun J, Orihuela CJ, Niederweis M (2018) NAD+ depletion triggers macrophage necroptosis, a cell death pathway exploited by Mycobacterium tuberculosis. Cell Rep 24(2):429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan H, Yan B-S, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, Higgins DE, Daly MJ, Bloom BR, Kramnik I (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434(7034):767–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi S, Briken V (2022) Interaction of mycobacteria with host cell inflammasomes. Front Immunol 13:791136–791136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy VP, Chinta KC, Saini V, Glasgow JN, Hull TD, Traylor A, Rey-Stolle F, Soares MP, Madansein R, Rahman MA (2018) Ferritin H deficiency in myeloid compartments dysregulates host energy metabolism and increases susceptibility to Mycobacterium tuberculosis infection. Front Immunol 9:860

    Article  PubMed  PubMed Central  Google Scholar 

  • Riendeau CJ, Kornfeld H (2003) THP-1 cell apoptosis in response to Mycobacterial infection. Infect Immun 71(1):254–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JCF, Dal-Pizzol F (2004) Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 32(2):342–349

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Sanuy F, Mateluna-Cuadra R, Tomita K, Okada K, Sacchi GA, Campo S, San Segundo B (2022) Iron induces resistance against the Rice blast fungus Magnaporthe oryzae through potentiation of immune responses. Rice 15(1):68

    Article  PubMed  PubMed Central  Google Scholar 

  • Schauser K, Olsen JE, Larsson L-I (2005) Salmonella Typhimurium infection in the porcine intestine: evidence for caspase-3-dependent and-independent programmed cell death. Histochem Cell Biol 123(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Sfera A, Thomas KG, Andronescu CV, Jafri N, Sfera DO, Sasannia S, Del Campo CMZ-M, Maldonado J (2022) Bromodomains in human-immunodeficiency virus-associated neurocognitive disorders: a model of ferroptosis-induced neurodegeneration. Front Neurosci 16:904816

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan Y, Yang G, Huang H, Zhou Y, Hu X, Lu Q, Guo P, Hou J, Cao L, Tian F (2020) Ubiquitin-like modifier activating enzyme 1 as a novel diagnostic and prognostic indicator that correlates with ferroptosis and the malignant phenotypes of liver cancer cells. Front Oncol 10:592413

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Liang M, Yang F, Deng YZ, Naqvi NI (2020) Ferroptosis contributes to developmental cell death in rice blast. New Phytol 227(6):1831–1846

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Li C, Cheng L, Ullah H, Sha S, Kang J, Ma X, Ma Y (2023) Mycobacterium tuberculosis Rv1324 protein contributes to mycobacterial persistence and causes pathological lung injury in mice by inducing ferroptosis, vol 11. Microbiology Spectrum, pp e02526–e02522

    Google Scholar 

  • Shimizu S, Khan MZ, Hippensteel RL, Parkar A, Raghupathi R, Meucci O (2007) Role of the transcription factor E2F1 in CXCR4-mediated neurotoxicity and HIV neuropathology. Neurobiol Dis 25(1):17–26

    Article  CAS  PubMed  Google Scholar 

  • Singh KS, Leu JI-J, Barnoud T, Vonteddu P, Gnanapradeepan K, Lin C, Liu Q, Barton JC, Kossenkov AV, George DL (2020) African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nat Commun 11(1):1–14

    Google Scholar 

  • Song X, Zhu S, Xie Y, Liu J, Sun L, Zeng D, Wang P, Ma X, Kroemer G, Bartlett DL, Billiar TR, Lotze MT, Zeh HJ, Kang R, Tang D (2018) JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154(5):1480–1493. https://doi.org/10.1053/j.gastro.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  • Sui S, Zhang J, Xu S, Wang Q, Wang P, Pang D (2019) Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis 10(5):331

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227

    Article  CAS  PubMed  Google Scholar 

  • Swanson KV, Deng M, Ting JP-Y (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19(8):477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Wu J, Ding CK, Lu M, Keenan MM, Lin CC, Lin CA, Wang CC, George D, Hsu DS, Chi JT (2016) Cystine deprivation triggers programmed necrosis in VHL-deficient renal cell carcinomas. Cancer Res 76(7):1892–1903. https://doi.org/10.1158/0008-5472.CAN-15-2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Ding CK, Wu J, Sjol J, Wardell S, Spasojevic I, George D, McDonnell DP, Hsu DS, Chang JT, Chi JT (2017) Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling. Oncogene 36(30):4235–4242. https://doi.org/10.1038/onc.2016.394

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364. https://doi.org/10.1038/s41422-019-0164-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Chen W, Liu H, Liu N, Chen D, Tian D, Wang J (2022) Research progress on SLC7A11 in the regulation of cystine/cysteine metabolism in tumors. Oncol Lett 23(2):1–9

    Google Scholar 

  • Tauber SC, Djukic M, Gossner J, Eiffert H, Brück W, Nau R (2021) Sepsis-associated encephalopathy and septic encephalitis: an update. Expert Rev Anti-Infect Ther 19(2):215–231

    Article  CAS  PubMed  Google Scholar 

  • Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 152:175–185

    Article  CAS  PubMed  Google Scholar 

  • Vaid A, Ranjan R, Smythe WA, Hoppe HC, Sharma P (2010) PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. Blood 115(12):2500–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valnier Steckert A, Alves de Castro A, Quevedo J, Dal-Pizzol F (2014) Sepsis in the central nervous system and antioxidant strategies with nacetylcysteine, vitamins and statins. Curr Neurovasc Res 11(1):83–90

    Article  PubMed  Google Scholar 

  • Vlahakos D, Arkadopoulos N, Kostopanagiotou G, Siasiakou S, Kaklamanis L, Degiannis D, Demonakou M, Smyrniotis V (2012) Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs. Artif Organs 36(4):400–408

    Article  CAS  PubMed  Google Scholar 

  • Vorobjeva N, Chernyak B (2020) NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry 85(10):1178–1190

    CAS  PubMed  Google Scholar 

  • Wang Y, Tian Q, Hao Y, Yao W, Lu J, Chen C, Chen X, Lin Y, Huang Q, Xu L (2022) The kinase complex mTORC2 promotes the longevity of virus-specific memory CD4+ T cells by preventing ferroptosis. Nat Immunol 23(2):303–317

    Article  PubMed  Google Scholar 

  • Wei S, Bi J, Yang L, Zhang J, Wan Y, Chen X, Wang Y, Wu Z, Lv Y, Wu R (2020) Serum irisin levels are decreased in patients with sepsis, and exogenous irisin suppresses ferroptosis in the liver of septic mice. Clin Transl Med 10(5):e173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, Chen Z-N, Jiang X (2019) Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature 572(7769):402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia H, Zhang Z, You F (2021) Inhibiting ACSL1-related ferroptosis restrains murine coronavirus infection. Viruses 13(12):2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Kong B, Fang J, Qin T, Dai C, Shuai W, Huang H (2021) Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered 12(2):9367–9376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Q, Yan L, Han J, Yang S, Tang Y, Li Q, Lao X, Chen Z, Xiao J, Zhao H (2022) Metabolism-dependent ferroptosis promotes mitochondrial dysfunction and inflammation in CD4+ T lymphocytes in HIV-infected immune non-responders. EBioMedicine 86:104382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie SC, Ralph SA, Tilley L (2020) K13, the cytostome, and artemisinin resistance. Trends Parasitol 36(6):533–544

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Xu M, Xie J, Liu T, Xu X, Gao W, Li Z, Bai X, Liu X (2022) Inhibition of Ferroptosis attenuates glutamate excitotoxicity and nuclear autophagy in a CLP septic mouse model. Shock 57(5):694–702

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Wang H, Chen Z (2021) Puerarin inhibits ferroptosis and inflammation of lung injury caused by sepsis in LPS induced lung epithelial cells. Front Pediatr 9:9

    Article  Google Scholar 

  • Xu X-Q, Xu T, Ji W, Wang C, Ren Y, Xiong X, Zhou X, Lin S-H, Xu Y, Qiu Y (2022) Herpes simplex virus 1-induced Ferroptosis contributes to viral encephalitis. Mbio 14:e0237022

    Article  PubMed  Google Scholar 

  • Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface J (2007) RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447(7146):865–869

    Article  CAS  Google Scholar 

  • Yamane D, Hayashi Y, Matsumoto M, Nakanishi H, Imagawa H, Kohara M, Lemon SM, Ichi I (2022) FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication. Cell Chem Biol 29(5):799–810.e794

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Zheng W, Jiang Y, Zhou P, Lai Y, Liu C, Wu P, Zhuang H, Huang H, Li G (2023) Transcriptomic reveals the ferroptosis features of host response in a mouse model of Zika virus infection. J Med Virol 95(1):e28386

    Article  CAS  PubMed  Google Scholar 

  • Yanatori I, Kishi F (2019) DMT1 and iron transport. Free Radic Biol Med 133:55–63

    Article  CAS  PubMed  Google Scholar 

  • Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W-H, Ding C-KC, Sun T, Rupprecht G, Lin C-C, Hsu D, Chi J-T (2019a) The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep 28(10):2501–2508.e2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WH, Huang Z, Wu J, Ding C-KC, Murphy SK, Chi J-T (2019b) A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. Mol Cancer Res 18(1):79–90. https://doi.org/10.1158/1541-7786.Mcr-19-0691

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Chen Z, Zhang H, Chen C, Zeng M, Yunis J, Wei Y, Wan Y, Wang N, Zhou M (2021) Selenium–GPX4 axis protects follicular helper T cells from ferroptosis. Nat Immunol 22(9):1127–1139

    Article  CAS  PubMed  Google Scholar 

  • Yao W, Liao H, Pang M, Pan L, Guan Y, Huang X, Hei Z, Luo C, Ge M (2022) Inhibition of the NADPH oxidase pathway reduces ferroptosis during septic renal injury in diabetic mice. Oxidative Med Cell Longev 2022:1

    Article  CAS  Google Scholar 

  • Yaqoob C, Shahid S, Khaliq A, Un Nisa Z, Khan IH, Akhtar MW (2022) Designing fusion molecules from antigens of Mycobacterium tuberculosis to enhance Serodiagnostic sensitivity in latent TB infection and active TB state. Int J Pept Res Ther 28(1):30

    Article  CAS  Google Scholar 

  • Yi L, Hu Y, Wu Z, Li Y, Kong M, Kang Z, Zuoyuan B, Yang Z (2022) TFRC upregulation promotes ferroptosis in CVB3 infection via nucleus recruitment of Sp1. Cell Death Dis 13(7):592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111(10):5944–5972

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Li S, Chen Q, Xia T, Luo D, Li L, Liu S, Guo S, Liu L, Du C (2022) EBV infection-induced GPX4 promotes chemoresistance and tumor progression in nasopharyngeal carcinoma. Cell Death Differ 29:1–15

    Article  Google Scholar 

  • Zhang D-L, Wu J, Shah BN, Greutélaers KC, Ghosh MC, Ollivierre H, Su X-z, Thuma PE, Bedu-Addo G, Mockenhaupt FP (2018) Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk. Science 359(6383):1520–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Qu Y, Zhang Q, Li F, Li B, Li Z, Dong Y, Lu L, Cai X (2022a) Exosomes derived from hepatitis B virus-infected hepatocytes promote liver fibrosis via miR-222/TFRC axis. Cell Biol Toxicol 39:1–15

    Article  PubMed  Google Scholar 

  • Zhang R, Sun C, Chen X, Han Y, Zang W, Jiang C, Wang J (2022b) COVID-19-related brain injury: the potential role of ferroptosis. J Inflamm Res 15:2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zheng L, Deng H, Feng D, Hu S, Zhu L, Xu W, Zhou W, Wang Y, Min K (2022c) Electroacupuncture alleviates LPS-induced ARDS through α7 nicotinic acetylcholine receptor-mediated inhibition of Ferroptosis. Front Immunol 1:13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Tsan Chi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Chi, JT. (2023). Ferroptosis and Infectious Diseases. In: Tang, D. (eds) Ferroptosis in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-39171-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39171-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39170-5

  • Online ISBN: 978-3-031-39171-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics