Skip to main content

Polarization Structured Illumination Microscopy

  • Chapter
  • First Online:
Coded Optical Imaging
  • 585 Accesses

Abstract

Fluorescence polarization microscopy (FPM) images both the intensity and orientation of fluorescent dipoles, which play a vital role in studying the molecular structures and dynamics of biocomplexes. However, current techniques have difficulty resolving the dipole assemblies on subcellular structures and their dynamics at the super-resolution (SR) scale. Structured illumination microscopy (SIM) is usually favored for long-term SR imaging of live cells due to its high spatiotemporal resolution, moderate labeling requirements and low photon budget. Moreover, perfect linear polarization light is required in SIM to obtain a high-contrast illumination pattern, making the SIM system an inherent FPM. In this chapter, we will introduce polarized structured illumination microscopy (pSIM), which achieves SR imaging of dipoles by interpreting the dipoles in spatio-angular hyperspace. We demonstrate the application of pSIM on a series of biological filamentous systems, such as cytoskeleton networks, and report the dynamics of short actin sliding across a myosin-coated surface. Furthermore, pSIM reveals the side-by-side organization of the actin ring structures in the membrane-associated periodic skeleton of hippocampal neurons and records the dipole dynamics of microtubules in live U2OS cells. pSIM is compatible with existing commercial and home-built SIM systems with various imaging modes, without hardware modification requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhanghao, K., Gao, J., Jin, D., Zhang, X. & Xi, P. Super-resolution fluorescence polarization microscopy. Journal of Innovative Optical Health Sciences 11, 1730002 (2018).

    Article  Google Scholar 

  2. Mocz, G. Information content of fluorescence polarization and anisotropy. Journal of fluorescence 16, 511–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Jameson, D.M. & Ross, J.A. Fluorescence polarization/anisotropy in diagnostics and imaging. Chemical reviews 110, 2685–2708 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shroder, D.Y., Lippert, L.G. & Goldman, Y.E. Single molecule optical measurements of orientation and rotations of biological macromolecules. Methods and applications in fluorescence 4, 042004 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kress, A. et al. Mapping the Local Organization of Cell Membranes Using Excitation-Polarization-Resolved Confocal Fluorescence Microscopy. Biophysical journal 105, 127–136 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lazar, J., Bondar, A., Timr, S. & Firestein, S.J. Two-photon polarization microscopy reveals protein structure and function. Nature methods 8, 684–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, X., Kress, A., Brasselet, S. & Ferrand, P. High frame-rate fluorescence confocal angle-resolved linear dichroism microscopy. Review of Scientific Instruments 84, 053708 (2013).

    Article  PubMed  Google Scholar 

  8. Vrabioiu, A.M. & Mitchison, T.J. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466–469 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Zhanghao, K. et al. Super-resolution dipole orientation mapping via polarization demodulation. Light: Science & Applications 5, e16166–e16166 (2016).

    Article  CAS  Google Scholar 

  10. Strack, R. Orientation mapping in super-resolution. Nature methods 13, 902–902 (2016).

    Article  CAS  Google Scholar 

  11. Hafi, N. et al. Reply to “Polarization modulation adds little additional information to super-resolution fluorescence microscopy”. Nature methods 13, 8–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Hafi, N. et al. Fluorescence nanoscopy by polarization modulation and polarization angle narrowing. Nature methods 11, 579–584 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Frahm, L. & Keller, J. Polarization modulation adds little additional information to super-resolution fluorescence microscopy. Nature methods 13, 7–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Backer, A.S., Lee, M.Y. & Moerner, W.E. Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements. Optica 3, 3–6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fourkas, J.T. Rapid determination of the three-dimensional orientation of single molecules. Optics letters 26, 211–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Forkey, J.N., Quinlan, M.E., Alexander Shaw, M., Corrie, J.E.T. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Mehta, S.B. et al. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc Natl Acad Sci U S A. 113, E6352–E6361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yengo, C.M. & Berger, C.L. Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment. Current opinion in pharmacology 10, 731–737 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Böhmer, M. & Enderlein, J. Orientation imaging of single molecules by wide-field epifluorescence microscopy. Journal of the Optical Society of America B 20, 554–559 (2003).

    Article  Google Scholar 

  20. Toprak, E. et al. Defocused orientation and position imaging (DOPI) of myosin V. Proceedings of the National Academy of Sciences of the United States of America 103, 6495–6499 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gould, T.J. et al. Nanoscale imaging of molecular positions and anisotropies. Nature methods 5, 1027–1030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng, C. et al. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF. Optics letters 43, 1423–1426 (2018).

    Article  PubMed  Google Scholar 

  23. Wazawa, T. et al. Highly biocompatible super-resolution fluorescence imaging using the fast photoswitching fluorescent protein Kohinoor and SPoD-ExPAN with Lp-regularized image reconstruction. Microscopy (Oxford, England) 67, 89–98 (2018).

    CAS  PubMed  Google Scholar 

  24. Cole, F.J. Alle de brieven van Antoni van Leeuwenhoek. Nature 144, 956–958 (1939).

    Article  Google Scholar 

  25. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9, 413–468 (1873).

    Article  Google Scholar 

  26. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science (New York, N.Y.) 313, 1642–1645 (2006).

    Google Scholar 

  27. Betzig, E., Trautman, J.K., Harris, T.D., Weiner, J.S. & Kostelak, R.L.J.S. Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale. Science (New York, N.Y.) 251, 1468–1470 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Hess, S.T., Girirajan, T.P. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical journal 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods 3, 793–795 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sharonov, A. & Hochstrasser, R.M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proceedings of the National Academy of Sciences of the United States of America 103, 18911–18916 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics letters 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Klar, T.A. & Hell, S.W. Subdiffraction resolution in far-field fluorescence microscopy. Optics letters 24, 954–956 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences of the United States of America 97, 8206–8210 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of microscopy 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Gustafsson, M.G.L. et al. Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy by Structured Illumination. Biophysical journal 94, 4957–4970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heintzmann, R. & Cremer, C. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. in European Conference on Biomedical Optics (1999).

    Google Scholar 

  37. Lal, A., Shan, C. & Xi, P. Structured Illumination Microscopy Image Reconstruction Algorithm. IEEE Journal of Selected Topics in Quantum Electronics 22, 50–63 (2016).

    Article  Google Scholar 

  38. Demmerle, J. et al. Strategic and practical guidelines for successful structured illumination microscopy. Nature Protocols 12, 988–1010 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Schaefer, L.H., Schuster, D. & Schaffer, J. Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach. Journal of microscopy 216, 165–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Hirvonen, L.M., Wicker, K., Mandula, O. & Heintzmann, R. Structured illumination microscopy of a living cell. European Biophysics Journal 38, 807–812 (2009).

    Article  PubMed  Google Scholar 

  41. Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. & Gustafsson, M.G.L. Super-resolution video microscopy of live cells by structured illumination. Nature methods 6, 339–342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shao, L., Kner, P., Rego, E.H. & Gustafsson, M.G.L. Super-resolution 3D microscopy of live whole cells using structured illumination. Nature methods 8, 1044–1046 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Li, M. et al. Structured illumination microscopy using digital micro-mirror device and coherent light source. Applied Physics Letters 116, 233702 (2020).

    Article  CAS  Google Scholar 

  44. York, A.G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nature methods 9, 749–754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wicker, K., Mandula, O., Best, G., Fiolka, R. & Heintzmann, R. Phase optimisation for structured illumination microscopy. Opt Express 21, 2032–2049 (2013).

    Article  PubMed  Google Scholar 

  46. Shroff, S.A., Fienup, J.R. & Williams, D.R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. Journal of the Optical Society of America. A, Optics, image science, and vision 26, 413–424 (2009).

    Article  PubMed  Google Scholar 

  47. Shroff, S.A., Fienup, J.R. & Williams, D.R. Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results. J. Opt. Soc. Am. A 27, 1770–1782 (2010).

    Article  Google Scholar 

  48. Wicker, K. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space. Opt Express 21, 24692–24701 (2013).

    Article  PubMed  Google Scholar 

  49. Zhou, X. et al. Image recombination transform algorithm for superresolution structured illumination microscopy. Journal of biomedical optics 21, 96009 (2016).

    Article  PubMed  Google Scholar 

  50. Cao, R. et al. Inverse matrix based phase estimation algorithm for structured illumination microscopy. Biomed Opt Express 9, 5037–5051 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sahl, S.J. et al. Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”. Science (New York, N.Y.) 352, 527 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Chu, K. et al. Image reconstruction for structured–illumination microscopy with low signal level. Opt Express 22, 8687–8702 (2014).

    Article  PubMed  Google Scholar 

  53. Lukeš, T. et al. Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation. Opt. Express 22, 29805–29817 (2014).

    Article  PubMed  Google Scholar 

  54. Krizek, P., Lukes, T., Ovesny, M., Fliegel, K. & Hagen, G.M. SIMToolbox: a MATLAB toolbox for structured illumination fluorescence microscopy. Bioinformatics 32, 318–320 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Huang, X. et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nature Biotechnology 36, 451–459 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Boulanger, J., Pustelnik, N., Condat, L., Sengmanivong, L. & Piolot, T. Nonsmooth Convex Optimization for Structured Illumination Microscopy Image Reconstruction. Inverse problems 34, 095004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yu, W. et al. Second-order optimized regularized structured illumination microscopy (sorSIM) for high-quality and rapid super resolution image reconstruction with low signal level. Opt Express 28, 16708–16724 (2020).

    Article  PubMed  Google Scholar 

  58. Zhao, W. et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nature Biotechnology 40, 606–617 (2021).

    Article  PubMed  Google Scholar 

  59. Smith, C.S. et al. Structured illumination microscopy with noise-controlled image reconstructions. Nature methods 18, 821–828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perez, V., Chang, B.-J. & Stelzer, E.H.K. Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution. Scientific reports 6, 37149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ingaramo, M. et al. Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths. Chemphyschem : a European journal of chemical physics and physical chemistry 15, 794–800 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Wen, G. et al. High-fidelity structured illumination microscopy by point-spread-function engineering. Light: Science & Applications 10, 70 (2021).

    Article  CAS  Google Scholar 

  63. Mudry, E. et al. Structured illumination microscopy using unknown speckle patterns. Nature Photonics 6, 312–315 (2012).

    Article  CAS  Google Scholar 

  64. Ayuk, R. et al. Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm. Optics letters 38, 4723–4726 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Dong, S., Nanda, P., Shiradkar, R., Guo, K. & Zheng, G. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography. Opt Express 22, 20856–20870 (2014).

    Article  PubMed  Google Scholar 

  66. Ströhl, F. & Kaminski, C.F. A joint Richardson-Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data. in 2015 Conference on Lasers and Electro-Optics (CLEO) 1–2 (2015).

    Google Scholar 

  67. Samanta, K. et al. Blind Super-Resolution Approach for Exploiting Illumination Variety in Optical-Lattice Illumination Microscopy. ACS Photonics (2021).

    Google Scholar 

  68. Sarkar, S., Samanta, K. & Joseph, J. Method for single-shot fabrication of chiral woodpile photonic structures using phase-controlled interference lithography. Opt Express 28, 4347–4361 (2020).

    Article  PubMed  Google Scholar 

  69. Agarwal, K. & Macháň, R. Multiple signal classification algorithm for super-resolution fluorescence microscopy. Nature communications 7, 13752 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Orieux, F., Sepulveda, E., Loriette, V., Dubertret, B. & Olivo-Marin, J.C. Bayesian Estimation for Optimized Structured Illumination Microscopy. IEEE Transactions on Image Processing 21, 601–614 (2012).

    Article  PubMed  Google Scholar 

  71. Dong, S. et al. Resolution doubling with a reduced number of image acquisitions. Biomed Opt Express 6, 2946–2952 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ströhl, F. & Kaminski, C.F. Speed limits of structured illumination microscopy. Optics letters 42, 2511–2514 (2017).

    Article  PubMed  Google Scholar 

  73. Lal, A. et al. A Frequency Domain SIM Reconstruction Algorithm Using Reduced Number of Images. IEEE Transactions on Image Processing 27, 4555–4570 (2018).

    Article  PubMed  Google Scholar 

  74. Zeng, H., Liu, G. & Zhao, R. SIM reconstruction framework for high-speed multi-dimensional super-resolution imaging. Opt Express 30, 10877–10898 (2022).

    Article  PubMed  Google Scholar 

  75. Tu, S. et al. Fast reconstruction algorithm for structured illumination microscopy. Optics letters 45, 1567–1570 (2020).

    Article  PubMed  Google Scholar 

  76. Dan, D. et al. Rapid Image Reconstruction of Structured Illumination Microscopy Directly in the Spatial Domain. IEEE Photonics Journal 13, 1–11 (2021).

    Article  Google Scholar 

  77. Wang, Z. et al. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy. Advanced Photonics 4 (2022).

    Google Scholar 

  78. Ma, Y., Li, D., Smith, Z.J., Li, D. & Chu, K. Structured illumination microscopy with interleaved reconstruction (SIMILR). J. Biophotonics. 11, e201700090 (2018).

    Article  Google Scholar 

  79. Guo, Y. et al. Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales. Cell 175, 1430–1442.e1417 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nature methods 5, 159–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Gong, H., Guo, W. & Neil, M.A.A. GPU-accelerated real-time reconstruction in Python of three-dimensional datasets from structured illumination microscopy with hexagonal patterns. Philos Trans A Math Phys Eng Sci 379, 20200162 (2021).

    PubMed  PubMed Central  Google Scholar 

  82. Lin, S., Edn. https://github.com/iandobbie/CUDA SIMrecon (2015).

  83. Markwirth, A. et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nature communications 10, 4315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Müller, M., Mönkemöller, V., Hennig, S., Hübner, W. & Huser, T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nature communications 7, 10980 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ball, G. et al. SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy. Scientific reports 5, 15915 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Culley, S. et al. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nature methods 15, 263–266 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Saxton, W.O. & Baumeister, W. The correlation averaging of a regularly arranged bacterial cell envelope protein. Journal of microscopy 127, 127–138 (1982).

    Article  CAS  PubMed  Google Scholar 

  88. Banterle, N., Bui, K.H., Lemke, E.A. & Beck, M. Fourier ring correlation as a resolution criterion for super-resolution microscopy. Journal of structural biology 183, 363–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Nieuwenhuizen, R.P. et al. Measuring image resolution in optical nanoscopy. Nature methods 10, 557–562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tortarolo, G., Castello, M., Diaspro, A., Koho, S. & Vicidomini, G. Evaluating image resolution in stimulated emission depletion microscopy. Optica 5, 32 (2018).

    Article  CAS  Google Scholar 

  91. Koho, S. et al. Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nature communications 10, 3103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Descloux, A., Grußmayer, K.S. & Radenovic, A. Parameter-free image resolution estimation based on decorrelation analysis. Nature methods 16, 918–924 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Chandler, T., Shroff, H., Oldenbourg, R. & La Rivière, P. Spatio-angular fluorescence microscopy I Basic theory. Journal of the Optical Society of America. A, Optics, image science, and vision 36, 1334–1345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhanghao, K. et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nature communications 10, 4694 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science (New York, N.Y.) 349 (2015).

    Google Scholar 

  96. Medalia, O. et al. Organization of Actin Networks in Intact Filopodia. Current Biology 17, 79–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Eghiaian, F., Rigato, A. & Scheuring, S. Structural, Mechanical, and Dynamical Variability of the Actin Cortex in Living Cells. Biophysical journal 108, 1330–1340 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xu, K., Zhong, G. & Zhuang, X. Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons. Science (New York, N.Y.) 339, 452–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Han, B., Zhou, R., Xia, C. & Zhuang, X. Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons. Proceedings of the National Academy of Sciences of the United States of America 114, E6678–e6685 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. D’Este, E., Kamin, D., Göttfert, F., El-Hady, A. & Hell, S.W. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell reports 10, 1246–1251 (2015).

    Article  PubMed  Google Scholar 

  101. Leite, S.C. et al. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter. Cell reports 15, 490–498 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Dan, D. et al. DMD-based LED-illumination Super-resolution and optical sectioning microscopy. Scientific reports 3, 1116 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. York, A.G. et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nature methods 10, 1122–1126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang, H.C., Chang, B.J., Chou, L.J. & Chiang, S.Y. Three-beam interference with circular polarization for structured illumination microscopy. Opt Express 21, 23963–23977 (2013).

    Article  PubMed  Google Scholar 

  105. Zhanghao, K. et al. High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes. Nature communications 11, 5890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, X., Zhong, S., Hou, Y. et al. Superresolution structured illumination microscopy reconstruction algorithms: a review. Light Sci Appl 12, 172 (2023).

    Google Scholar 

  107. Li, N. et al. Structural basis of membrane skeleton organization in red blood cells. Cell 186, 1912–1929.e1918 (2023).

    Google Scholar 

  108. Cao, R. et al. Open-3DSIM: an open-source three-dimensional structured illumination microscopy reconstruction platform. Nature Methods 20, 1183–1186 (2023).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meiqi Li or Peng Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X., Wang, W., Li, M., Xi, P. (2024). Polarization Structured Illumination Microscopy. In: Liang, J. (eds) Coded Optical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-39062-3_35

Download citation

Publish with us

Policies and ethics