Skip to main content

Fringe Projection Profilometry

  • Chapter
  • First Online:
Coded Optical Imaging

Abstract

Driven by industrial needs, medical applications, and entertainment, three-dimensional (3D) surface measurement techniques have received extensive studies. As one of the most popular techniques for non-contact 3D surface measurement, fringe projection profilometry (FPP) has been growing rapidly over the past decades. By leveraging the structured light illumination with triangulation, FPP has demonstrated its uniqueness with high measurement accuracy, fast speed, easy implementation, and robustness with imaging complex shapes of multiple objects. This chapter presents an overview of the mainstream methods for fringe generation and analysis. Typical error sources in FPP are discussed, and corresponding solutions are reviewed. In addition, representative applications of FPP in both industry and scientific studies are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Geng, "Structured-light 3D surface imaging: a tutorial," Advances in Optics and Photonics 3, 128–160 (2011).

    Article  CAS  Google Scholar 

  2. X. Su and Q. Zhang, "Dynamic 3-D shape measurement method: a review," Optics and Lasers in Engineering 48, 191–204 (2010).

    Article  Google Scholar 

  3. J. Molleda, R. Usamentiaga, D. F. García, F. G. Bulnes, A. Espina, B. Dieye, and L. N. Smith, "An improved 3D imaging system for dimensional quality inspection of rolled products in the metal industry," Computers in Industry 64, 1186–1200 (2013).

    Article  Google Scholar 

  4. G. Sansoni, S. Corini, S. Lazzari, R. Rodella, and F. Docchio, "Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications," Applied Optics 36, 4463–4472 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. G. Sansoni, M. Trebeschi, and F. Docchio, "State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation," Sensors 9, 568–601 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. G. Sansoni and F. Docchio, "Three-dimensional optical measurements and reverse engineering for automotive applications," Robotics and Computer-Integrated Manufacturing 20, 359–367 (2004).

    Article  Google Scholar 

  7. L. Li, N. Schemenauer, X. Peng, Y. Zeng, and P. Gu, "A reverse engineering system for rapid manufacturing of complex objects," Robotics and Computer-Integrated Manufacturing 18, 53–67 (2002).

    Article  Google Scholar 

  8. S. Motavalli, "Review of reverse engineering approaches," Flexible Automation and Integrated Manufacturing 1999 (1999).

    Google Scholar 

  9. U. Buck, S. Naether, B. Räss, C. Jackowski, and M. J. Thali, "Accident or homicide–virtual crime scene reconstruction using 3D methods," Forensic Science International 225, 75–84 (2013).

    Article  PubMed  Google Scholar 

  10. D. A. Komar, S. Davy-Jow, and S. J. Decker, "The use of a 3-D laser scanner to document ephemeral evidence at crime scenes and postmortem examinations," Journal of Forensic Sciences 57, 188–191 (2012).

    Article  PubMed  Google Scholar 

  11. D. Raneri, "Enhancing forensic investigation through the use of modern three-dimensional (3D) imaging technologies for crime scene reconstruction," Australian Journal of Forensic Sciences 50, 697–707 (2018).

    Google Scholar 

  12. C. Jiang, P. Kilcullen, X. Liu, J. Gribben, A. Boate, T. Ozaki, and J. Liang, "Real-time high-speed three-dimensional surface imaging using band-limited illumination profilometry with a CoaXPress interface," Optics Letters 45, 964–967 (2020).

    Article  PubMed  Google Scholar 

  13. S. Banerjee, B. S. Connell, and D. K. Yue, "Three-dimensional effects on flag flapping dynamics," Journal of Fluid Mechanics 783, 103–136 (2015).

    Article  Google Scholar 

  14. M. J. Shelley and J. Zhang, "Flapping and bending bodies interacting with fluid flows," Annual Review of Fluid Mechanics 43, 449–465 (2011).

    Article  Google Scholar 

  15. B. Albouy, Y. Lucas, and S. Treuillet, "3D modeling from uncalibrated color images for a complete wound assessment tool," in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2007), 3323–3326.

    Google Scholar 

  16. C. Ozturk, S. Dubin, M. E. Schafer, W.-Y. Shi, and M.-C. Chou, "A new structured light method for 3-D wound measurement," in Proceedings of the IEEE 22nd Annual Northeast Bioengineering Conference, (IEEE, 1996), 70–71.

    Google Scholar 

  17. E. Sirazitdinova and T. M. Deserno, "System design for 3D wound imaging using low-cost mobile devices," in Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications, (SPIE, 2017), 258–264.

    Google Scholar 

  18. J. D. Claverley and R. K. Leach, "Development of a three-dimensional vibrating tactile probe for miniature CMMs," Precision Engineering 37, 491–499 (2013).

    Article  Google Scholar 

  19. A. W. Knoll, D. Pires, O. Coulembier, P. Dubois, J. L. Hedrick, J. Frommer, and U. Duerig, "Probe-based 3-D nanolithography using self-amplified depolymerization polymers," Advanced Materials 22, 3361–3365 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. J. RenéMayer, A. Ghazzar, and O. Rossy, "3D characterisation, modelling and compensation of the pre-travel of a kinematic touch trigger probe," Measurement 19, 83–94 (1996).

    Article  Google Scholar 

  21. M. A.-B. Ebrahim, "3D laser scanners’ techniques overview," International Journal of Science and Research 4, 323–331 (2015).

    Google Scholar 

  22. E. Lally, J. Gong, and A. Wang, "Method of multiple references for 3D imaging with Fourier transform interferometry," Optics Express 18, 17591–17596 (2010).

    Article  PubMed  Google Scholar 

  23. A. Schutz, A. Ferrari, D. Mary, É. Thiébaut, and F. Soulez, "Large scale 3D image reconstruction in optical interferometry," in 2015 23rd European Signal Processing Conference (EUSIPCO), (IEEE, 2015), 474–478.

    Chapter  Google Scholar 

  24. Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, "3D shape scanning with a time-of-flight camera," in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (IEEE, 2010), 1173–1180.

    Google Scholar 

  25. M. Hansard, S. Lee, O. Choi, and R. P. Horaud, Time-of-flight cameras: principles, methods and applications (Springer Science & Business Media, 2012).

    Google Scholar 

  26. L. Li, "Time-of-flight camera–an introduction," Technical White Paper (2014).

    Google Scholar 

  27. S. May, D. Droeschel, S. Fuchs, D. Holz, and A. Nüchter, "Robust 3D-mapping with time-of-flight cameras," in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IEEE, 2009), 1673–1678.

    Google Scholar 

  28. S. May, B. Werner, H. Surmann, and K. Pervolz, "3D time-of-flight cameras for mobile robotics," in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, (Ieee, 2006), 790–795.

    Google Scholar 

  29. J.-J. Aguilar, F. Torres, and M. Lope, "Stereo vision for 3D measurement: accuracy analysis, calibration and industrial applications," Measurement 18, 193–200 (1996).

    Article  Google Scholar 

  30. S.-Y. Park and M. Subbarao, "A multiview 3D modeling system based on stereo vision techniques," Machine Vision and Applications 16, 148–156 (2005).

    Article  Google Scholar 

  31. S. Sengupta, E. Greveson, A. Shahrokni, and P. H. Torr, "Urban 3d semantic modelling using stereo vision," in 2013 IEEE International Conference on robotics and Automation, (IEEE, 2013), 580–585.

    Chapter  Google Scholar 

  32. Y. Sumi, Y. Kawai, T. Yoshimi, and F. Tomita, "3D object recognition in cluttered environments by segment-based stereo vision," International Journal of Computer Vision 46, 5–23 (2002).

    Article  Google Scholar 

  33. N. Uchida, T. Shibahara, T. Aoki, H. Nakajima, and K. Kobayashi, "3D face recognition using passive stereo vision," in IEEE International Conference on Image Processing 2005, (IEEE, 2005), II-950.

    Google Scholar 

  34. B. Billiot, F. Cointault, L. Journaux, J.-C. Simon, and P. Gouton, "3D image acquisition system based on shape from focus technique," Sensors 13, 5040–5053 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. R. Minhas, A. A. Mohammed, Q. Wu, and M. A. Sid-Ahmed, "3D shape from focus and depth map computation using steerable filters," in International conference image analysis and recognition, (Springer, 2009), 573–583.

    Google Scholar 

  36. Y. Hu, Q. Chen, S. Feng, and C. Zuo, "Microscopic fringe projection profilometry: A review," Optics and Lasers in Engineering 135, 106192 (2020).

    Article  Google Scholar 

  37. N. Tornero-Martínez, G. Trujillo-Schiaffino, M. Anguiano-Morales, P. G. Mendoza-Villegas, D. P. Salas-Peimbert, and L. Corral-Martínez, "Color profilometry techniques: A review," Measurement 45, 0136021 (2006).

    Google Scholar 

  38. S. Zhang, "High-speed 3D shape measurement with structured light methods: A review," Optics and Lasers in Engineering 106, 119–131 (2018).

    Article  Google Scholar 

  39. C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, "Phase shifting algorithms for fringe projection profilometry: A review," Optics and Lasers in Engineering 109, 23–59 (2018).

    Article  Google Scholar 

  40. J. Xu and S. Zhang, "Status, challenges, and future perspectives of fringe projection profilometry," Optics and Lasers in Engineering 135, 106193 (2020).

    Article  Google Scholar 

  41. S. Van der Jeught and J. J. Dirckx, "Real-time structured light profilometry: a review," Optics and Lasers in Engineering 87, 18–31 (2016).

    Article  Google Scholar 

  42. S. Zhang, High-speed 3D imaging with digital fringe projection techniques (CRC Press, 2018).

    Book  Google Scholar 

  43. S. S. Gorthi and P. Rastogi, "Fringe projection techniques: whither we are?," Optics and Lasers in Engineering 48, 133–140 (2010).

    Article  Google Scholar 

  44. Z. Wang, D. A. Nguyen, and J. C. Barnes, "Some practical considerations in fringe projection profilometry," Optics and Lasers in Engineering 48, 218–225 (2010).

    Article  Google Scholar 

  45. B. Li, Y. Wang, J. Dai, W. Lohry, and S. Zhang, "Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques," Optics and Lasers in Engineering 54, 236–246 (2014).

    Article  Google Scholar 

  46. E. Li, X. Peng, J. Xi, J. F. Chicharo, J. Yao, and D. Zhang, "Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3D profilometry," Optics Express 13, 1561–1569 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. D. J. Bone, "Fourier fringe analysis: the two-dimensional phase unwrapping problem," Applied Optics 30, 3627–3632 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. S. Feng, Q. Chen, G. Gu, T. Tao, L. Zhang, Y. Hu, W. Yin, and C. Zuo, "Fringe pattern analysis using deep learning," Advanced Photonics 1, 025001 (2019).

    Article  Google Scholar 

  49. T. R. Judge and P. Bryanston-Cross, "A review of phase unwrapping techniques in fringe analysis," Optics and Lasers in Engineering 21, 199–239 (1994).

    Article  Google Scholar 

  50. W. W. Macy, "Two-dimensional fringe-pattern analysis," Applied Optics 22, 3898–3901 (1983).

    Article  PubMed  Google Scholar 

  51. M. Takeda, "Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review," Applied Optics 52, 20–29 (2013).

    Article  PubMed  Google Scholar 

  52. P. S. Huang and S. Zhang, "Fast three-step phase-shifting algorithm," Applied Optics 45, 5086–5091 (2006).

    Article  PubMed  Google Scholar 

  53. S. Zhang and S.-T. Yau, "High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method," Optics Express 14, 2644–2649 (2006).

    Article  PubMed  Google Scholar 

  54. C. Jiang, P. Kilcullen, Y. Lai, S. Wang, T. Ozaki, and J. Liang, "Multi-scale band-limited illumination profilometry for robust three-dimensional surface imaging at video rate," Optics Express 30, 19824–19838 (2022).

    Google Scholar 

  55. J.-Y. Bouguet, "Camera calibration toolbox for matlab," http://www. vision. caltech. edu/bouguetj/calib_doc/index. html (2004).

    Google Scholar 

  56. S. Zhang and P. S. Huang, "Novel method for structured light system calibration," Optical Engineering 45, 083601 (2006).

    Article  Google Scholar 

  57. H. Zhang, Q. Zhang, Y. Li, and Y. Liu, "High speed 3D shape measurement with temporal Fourier transform profilometry," Applied Sciences 9, 4123 (2019).

    Article  Google Scholar 

  58. M. Lu, X. Su, Y. Cao, Z. You, and M. Zhong, "Modulation measuring profilometry with cross grating projection and single shot for dynamic 3D shape measurement," Optics and Lasers in Engineering 87, 103–110 (2016).

    Article  Google Scholar 

  59. J. Xu, J. Xu, and X. Yu, "Design to phase measurement profilometry on grating projection system," in 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), (IEEE, 2012), 1069–1071.

    Google Scholar 

  60. M. Neil, R. Juškaitis, and T. Wilson, "Real time 3D fluorescence microscopy by two beam interference illumination," Optics Communications 153, 1–4 (1998).

    Article  CAS  Google Scholar 

  61. C. Chu, L. Wang, H. Yang, X. Tang, and Q. Chen, "An optimized fringe generator of 3D pavement profilometry based on laser interference fringe," Optics and Lasers in Engineering 136, 106142 (2021).

    Article  Google Scholar 

  62. B. Li, P. Ou, and S. Zhang, "High-speed 3D shape measurement with fiber interference," in Interferometry XVII: Techniques and Analysis, (SPIE, 2014), 270–278.

    Google Scholar 

  63. M. Schaffer, M. Große, B. Harendt, and R. Kowarschik, "Coherent two-beam interference fringe projection for highspeed three-dimensional shape measurements," Applied Optics 52, 2306–2311 (2013).

    Article  PubMed  Google Scholar 

  64. D. Xiao-jie, D. Fa-jie, and L. Chang-rong, "Phase stabilizing method based on PTAC for fiber-optic interference fringe projection profilometry," Optics & Laser Technology 47, 137–143 (2013).

    Article  Google Scholar 

  65. L.-C. Chen and C.-C. Huang, "Miniaturized 3D surface profilometer using digital fringe projection," Measurement Science and Technology 16, 1061 (2005).

    Article  Google Scholar 

  66. S. Zhang, "Recent progresses on real-time 3D shape measurement using digital fringe projection techniques," Optics and Lasers in Engineering 48, 149–158 (2010).

    Article  Google Scholar 

  67. H. Zhao, X. Liang, X. Diao, and H. Jiang, "Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector," Optics and Lasers in Engineering 54, 170–174 (2014).

    Article  Google Scholar 

  68. F. Lü, S. Xing, and H. Guo, "Self-correction of projector nonlinearity in phase-shifting fringe projection profilometry," Applied Optics 56, 7204–7216 (2017).

    Article  PubMed  Google Scholar 

  69. J. Liang, R. N. Kohn Jr, M. F. Becker, and D. J. Heinzen, "High-precision laser beam shaping using a binary-amplitude spatial light modulator," Applied Optics 49, 1323–1330 (2010).

    Article  PubMed  Google Scholar 

  70. D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications," in MOEMS display and imaging systems, (SPIE, 2003), 14–25.

    Google Scholar 

  71. Y. X. Ren, R. D. Lu, and L. Gong, "Tailoring light with a digital micromirror device," Annalen der Physik 527, 447–470 (2015).

    Article  Google Scholar 

  72. J. B. Sampsell, "Digital micromirror device and its application to projection displays," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 12, 3242–3246 (1994).

    Article  CAS  Google Scholar 

  73. C. Chang, J. Liang, D. Hei, M. F. Becker, K. Tang, Y. Feng, V. Yakimenko, C. Pellegrini, and J. Wu, "High-brightness X-ray free-electron laser with an optical undulator by pulse shaping," Optics Express 21, 32013–32018 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. L. J. Hornbeck, "Digital light processing for high-brightness high-resolution applications," in Projection Displays III, (SPIE, 1997), 27–40.

    Google Scholar 

  75. B. Li and S. Zhang, "Microscopic structured light 3D profilometry: Binary defocusing technique vs. sinusoidal fringe projection," Optics and Lasers in Engineering 96, 117–123 (2017).

    Article  Google Scholar 

  76. S. Lei and S. Zhang, "Digital sinusoidal fringe pattern generation: Defocusing binary patterns VS focusing sinusoidal patterns," Optics and Lasers in Engineering 48, 561–569 (2010).

    Article  Google Scholar 

  77. Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, "Phase error compensation for three-dimensional shape measurement with projector defocusing," Applied Optics 50, 2572–2581 (2011).

    Article  PubMed  Google Scholar 

  78. C. Jiang, P. Kilcullen, Y. Lai, T. Ozaki, and J. Liang, "High-speed dual-view band-limited illumination profilometry using temporally interlaced acquisition," Photonics Research 8, 1808–1817 (2020).

    Article  Google Scholar 

  79. C. Jiang, P. Kilcullen, X. Liu, Y. Lai, T. Ozaki, and J. Liang, "High-speed three-dimensional surface measurement using band-limited illumination profilometry (BLIP)," in Emerging Digital Micromirror Device Based Systems and Applications XIII, (SPIE, 2021), 165–181.

    Google Scholar 

  80. C. Jiang and J. Liang, "High-speed band-limited illumination profilometry (BLIP)," in 3D Image Acquisition and Display: Technology, Perception and Applications, (Optica Publishing Group, 2022), 3Th5A. 3.

    Google Scholar 

  81. J. Liang, S.-Y. Wu, R. N. Kohn, M. F. Becker, and D. J. Heinzen, "Grayscale laser image formation using a programmable binary mask," Optical Engineering 51, 108201 (2012).

    Article  Google Scholar 

  82. J. Liang, M. F. Becker, R. N. Kohn, and D. J. Heinzen, "Homogeneous one-dimensional optical lattice generation using a digital micromirror device-based high-precision beam shaper," Journal of Micro/Nanolithography, MEMS, and MOEMS 11, 023002 (2012).

    Article  Google Scholar 

  83. W. Purgathofer, R. F. Tobler, and M. Geiler, "Forced random dithering: improved threshold matrices for ordered dithering," in Proceedings of 1st International Conference on Image Processing, (IEEE, 1994), 1032–1035.

    Google Scholar 

  84. B. E. Bayer, "An optimum method for two-level rendition of continuous-tone pictures," in Ineternl. Conf. on Comm., 1976), 69–77.

    Google Scholar 

  85. T. D. Kite, B. L. Evans, and A. C. Bovik, "Modeling and quality assessment of halftoning by error diffusion," IEEE Transactions on Image Processing 9, 909–922 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. S. Lei and S. Zhang, "Flexible 3-D shape measurement using projector defocusing," Optics Letters 34, 3080–3082 (2009).

    Article  PubMed  Google Scholar 

  87. Y. Wang, H. Zhao, H. Jiang, and X. Li, "Defocusing parameter selection strategies based on PSF measurement for square-binary defocusing fringe projection profilometry," Optics Express 26, 20351–20367 (2018).

    Article  PubMed  Google Scholar 

  88. J.-S. Hyun, B. Li, and S. Zhang, "High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method," Optical Engineering 56, 074102 (2017).

    Article  Google Scholar 

  89. J. Liang, R. N. Kohn Jr, M. F. Becker, and D. J. Heinzen, "1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator," Applied Optics 48, 1955–1962 (2009).

    Article  PubMed  Google Scholar 

  90. I. Ishii, K. Yamamoto, K. Doi, and T. Tsuji, "High-speed 3D image acquisition using coded structured light projection," in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IEEE, 2007), 925–930.

    Google Scholar 

  91. R. J. Valkenburg and A. M. McIvor, "Accurate 3D measurement using a structured light system," Image and Vision Computing 16, 99–110 (1998).

    Article  Google Scholar 

  92. C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, "Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second," Optics and Lasers in Engineering 102, 70–91 (2018).

    Article  Google Scholar 

  93. X. Su and W. Chen, "Fourier transform profilometry:: a review," Optics and lasers in Engineering 35, 263–284 (2001).

    Google Scholar 

  94. X. Mao, W. Chen, and X. Su, "Improved Fourier-transform profilometry," Applied Optics 46, 664–668 (2007).

    Article  PubMed  Google Scholar 

  95. J. Li, X. Su, and L. Guo, "Improved Fourier transform profilometry for the automatic measurement of 3D object shapes," Optical Engineering 29, 1439–1444 (1990).

    Article  Google Scholar 

  96. H. Guo and P. S. Huang, "3-D shape measurement by use of a modified Fourier transform method," in Two-and Three-Dimensional Methods for Inspection and Metrology VI, (SPIE, 2008), 104–111.

    Google Scholar 

  97. G. M. Andrés, P. Jesús, A. R. Lenny, V. Raúl, and M. Jaime, "Fourier Transform Profilometry in LabVIEW," in Digital Systems (IntechOpen, Rijeka, 2018).

    Google Scholar 

  98. H. Guo, "3-D shape measurement based on Fourier transform and phase shifting method," ((Doctoral dissertation, 2011).

    Google Scholar 

  99. Q. Kemao, "Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations," Optics and Lasers in Engineering 45, 304–317 (2007).

    Article  Google Scholar 

  100. Q. Kemao, "Windowed Fourier transform for fringe pattern analysis," Applied Optics 43, 2695–2702 (2004).

    Article  PubMed  Google Scholar 

  101. Q. Kemao, H. Wang, and W. Gao, "Windowed Fourier transform for fringe pattern analysis: theoretical analyses," Applied Optics 47, 5408–5419 (2008).

    Article  PubMed  Google Scholar 

  102. F. Berryman, P. Pynsent, and J. Cubillo, "The effect of windowing in Fourier transform profilometry applied to noisy images," Optics and Lasers in Engineering 41, 815–825 (2004).

    Article  Google Scholar 

  103. D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980 (2014).

    Google Scholar 

  104. C. Zuo, J. Qian, S. Feng, W. Yin, Y. Li, P. Fan, J. Han, K. Qian, and Q. Chen, "Deep learning in optical metrology: a review," Light: Science & Applications 11, 39 (2022).

    Article  CAS  Google Scholar 

  105. J. Qian, S. Feng, Y. Li, T. Tao, J. Han, Q. Chen, and C. Zuo, "Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry," Optics Letters 45, 1842–1845 (2020).

    Article  PubMed  Google Scholar 

  106. M. Takeda, Q. Gu, M. Kinoshita, H. Takai, and Y. Takahashi, "Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations," Applied Optics 36, 5347–5354 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Y. Li, J. Qian, S. Feng, Q. Chen, and C. Zuo, "Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement," Opto-Electronics Advances 5, 210021 (2022).

    Article  CAS  Google Scholar 

  108. D. C. Ghiglia and M. D. Pritt, "Two-dimensional phase unwrapping: theory, algorithms, and software," A Wiley Interscience Publication (1998).

    Google Scholar 

  109. T. J. Flynn, "Two-dimensional phase unwrapping with minimum weighted discontinuity," Journal of the Optical Society of America A 14, 2692–2701 (1997).

    Article  Google Scholar 

  110. D. C. Ghiglia and L. A. Romero, "Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods," Journal of the Optical Society of America A 11, 107–117 (1994).

    Article  Google Scholar 

  111. K. Chen, J. Xi, and Y. Yu, "Quality-guided spatial phase unwrapping algorithm for fast three-dimensional measurement," Optics Communications 294, 139–147 (2013).

    Article  CAS  Google Scholar 

  112. C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, "Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review," Optics and Lasers in Engineering 85, 84–103 (2016).

    Article  Google Scholar 

  113. M. Zhang, Q. Chen, T. Tao, S. Feng, Y. Hu, H. Li, and C. Zuo, "Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection," Optics Express 25, 20381–20400 (2017).

    Article  PubMed  Google Scholar 

  114. H. Li, Y. Hu, T. Tao, S. Feng, M. Zhang, Y. Zhang, and C. Zuo, "Optimal wavelength selection strategy in temporal phase unwrapping with projection distance minimization," Applied Optics 57, 2352–2360 (2018).

    Article  PubMed  Google Scholar 

  115. H. Zhao, W. Chen, and Y. Tan, "Phase-unwrapping algorithm for the measurement of three-dimensional object shapes," Applied Optics 33, 4497–4500 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. L. Kinell and M. Sjödahl, "Robustness of reduced temporal phase unwrapping in the measurement of shape," Applied Optics 40, 2297–2303 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. W. Osten, W. Nadeborn, and P. Andrae, "General hierarchical approach in absolute phase measurement," in Laser Interferometry VIII: Techniques and Analysis, (SPIE, 1996), 2–13.

    Google Scholar 

  118. W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, "High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping," Optics and Lasers in Engineering 115, 21–31 (2019).

    Article  Google Scholar 

  119. Y. An, J.-S. Hyun, and S. Zhang, "Pixel-wise absolute phase unwrapping using geometric constraints of structured light system," Optics Express 24, 18445–18459 (2016).

    Article  PubMed  Google Scholar 

  120. C. Bräuer-Burchardt, P. Kühmstedt, and G. Notni, "Phase unwrapping using geometric constraints for high-speed fringe projection based 3D measurements," in Modeling Aspects in Optical Metrology IV, (SPIE, 2013), 51–61.

    Google Scholar 

  121. J. Qian, S. Feng, T. Tao, Y. Hu, Y. Li, Q. Chen, and C. Zuo, "Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement," APL Photonics 5, 046105 (2020).

    Article  Google Scholar 

  122. S. Feng, L. Zhang, C. Zuo, T. Tao, Q. Chen, and G. Gu, "High dynamic range 3d measurements with fringe projection profilometry: a review," Measurement Science and Technology 29, 122001 (2018).

    Article  Google Scholar 

  123. S. Zhang and S.-T. Yau, "High dynamic range scanning technique," Optical Engineering 48, 033604 (2009).

    Article  Google Scholar 

  124. C. Waddington and J. Kofman, "Saturation avoidance by adaptive fringe projection in phase-shifting 3D surface-shape measurement," in 2010 international symposium on optomechatronic technologies, (IEEE, 2010), 1–4.

    Google Scholar 

  125. S. Ri, M. Fujigaki, and Y. Morimoto, "Intensity range extension method for three-dimensional shape measurement in phase-measuring profilometry using a digital micromirror device camera," Applied Optics 47, 5400–5407 (2008).

    Article  PubMed  Google Scholar 

  126. S. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, "General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique," Optics and Lasers in Engineering 59, 56–71 (2014).

    Article  Google Scholar 

  127. L. Ekstrand and S. Zhang, "Autoexposure for three-dimensional shape measurement using a digital-light-processing projector," Optical Engineering 50, 123603 (2011).

    Article  Google Scholar 

  128. L. Rao and F. Da, "High dynamic range 3D shape determination based on automatic exposure selection," Journal of Visual Communication and Image Representation 50, 217–226 (2018).

    Article  Google Scholar 

  129. S. Feng, Q. Chen, C. Zuo, and A. Asundi, "Fast three-dimensional measurements for dynamic scenes with shiny surfaces," Optics Communications 382, 18–27 (2017).

    Article  CAS  Google Scholar 

  130. D. Li and J. Kofman, "Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement," Optics Express 22, 9887–9901 (2014).

    Article  PubMed  Google Scholar 

  131. H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, "Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement," Optics Express 24, 7703–7718 (2016).

    Article  PubMed  Google Scholar 

  132. T. Chen, H. P. Lensch, C. Fuchs, and H.-P. Seidel, "Polarization and phase-shifting for 3D scanning of translucent objects," in 2007 IEEE conference on computer vision and pattern recognition, (IEEE, 2007), 1–8.

    Google Scholar 

  133. B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, "Multi-polarization fringe projection imaging for high dynamic range objects," Optics Express 22, 10064–10071 (2014).

    Article  PubMed  Google Scholar 

  134. Z. Cai, X. Liu, X. Peng, Y. Yin, A. Li, J. Wu, and B. Z. Gao, "Structured light field 3D imaging," Optics Express 24, 20324–20334 (2016).

    Article  PubMed  Google Scholar 

  135. Y. Yin, Z. Cai, H. Jiang, X. Meng, J. Xi, and X. Peng, "High dynamic range imaging for fringe projection profilometry with single-shot raw data of the color camera," Optics and Lasers in Engineering 89, 138–144 (2017).

    Article  Google Scholar 

  136. C. Jiang, T. Bell, and S. Zhang, "High dynamic range real-time 3D shape measurement," Optics Express 24, 7337–7346 (2016).

    Article  PubMed  Google Scholar 

  137. M. Wang, G. Du, C. Zhou, C. Zhang, S. Si, H. Li, Z. Lei, and Y. Li, "Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm," Optics Communications 385, 43–53 (2017).

    Article  CAS  Google Scholar 

  138. E. Hu, Y. He, and Y. Chen, "Study on a novel phase-recovering algorithm for partial intensity saturation in digital projection grating phase-shifting profilometry," Optik 121, 23–28 (2010).

    Article  Google Scholar 

  139. B. Chen and S. Zhang, "High-quality 3D shape measurement using saturated fringe patterns," Optics and Lasers in Engineering 87, 83–89 (2016).

    Article  Google Scholar 

  140. Y. Chen, Y. He, and E. Hu, "Phase deviation analysis and phase retrieval for partial intensity saturation in phase-shifting projected fringe profilometry," Optics Communications 281, 3087–3090 (2008).

    Article  CAS  Google Scholar 

  141. B. Pan, Q. Kemao, L. Huang, and A. Asundi, "Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry," Optics Letters 34, 416–418 (2009).

    Article  PubMed  Google Scholar 

  142. Z. Lei, C. Wang, and C. Zhou, "Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation," Optics and Lasers in Engineering 66, 249–257 (2015).

    Article  Google Scholar 

  143. L. Lu, V. Suresh, Y. Zheng, Y. Wang, J. Xi, and B. Li, "Motion induced error reduction methods for phase shifting profilometry: A review," Optics and Lasers in Engineering 141, 106573 (2021).

    Article  Google Scholar 

  144. Y. Wang, V. Suresh, and B. Li, "Motion-induced error reduction for binary defocusing profilometry via additional temporal sampling," Optics Express 27, 23948–23958 (2019).

    Article  PubMed  Google Scholar 

  145. Y. Gong and S. Zhang, "Ultrafast 3-D shape measurement with an off-the-shelf DLP projector," Optics Express 18, 19743–19754 (2010).

    Article  PubMed  Google Scholar 

  146. L. Lu, J. Xi, Y. Yu, and Q. Guo, "New approach to improve the accuracy of 3-D shape measurement of moving object using phase shifting profilometry," Optics Express 21, 30610–30622 (2013).

    Article  PubMed  Google Scholar 

  147. L. Lu, Y. Yin, Z. Su, X. Ren, Y. Luan, and J. Xi, "General model for phase shifting profilometry with an object in motion," Applied Optics 57, 10364–10369 (2018).

    Article  PubMed  Google Scholar 

  148. M. Duan, Y. Jin, C. Xu, X. Xu, C. Zhu, and E. Chen, "Phase-shifting profilometry for the robust 3-D shape measurement of moving objects," Optics Express 27, 22100–22115 (2019).

    Article  PubMed  Google Scholar 

  149. A. Breitbarth, P. Kühmstedt, G. Notni, and J. Denzler, "Motion compensation for three-dimensional measurements of macroscopic objects using fringe projection," in DGaO Proceedings, 2012), A11.

    Google Scholar 

  150. T. Weise, B. Leibe, and L. V. Gool, "Fast 3D Scanning with Automatic Motion Compensation," in 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007), 1–8.

    Google Scholar 

  151. L. Huang, P. S. K. Chua, and A. Asundi, "Least-squares calibration method for fringe projection profilometry considering camera lens distortion," Applied Optics 49, 1539–1548 (2010).

    Article  PubMed  Google Scholar 

  152. S. Yang, M. Liu, J. Song, S. Yin, Y. Ren, J. Zhu, and S. Chen, "Projector distortion residual compensation in fringe projection system," Optics and Lasers in Engineering 114, 104–110 (2019).

    Article  Google Scholar 

  153. S. Xing and H. Guo, "Iterative calibration method for measurement system having lens distortions in fringe projection profilometry," Optics Express 28, 1177–1196 (2020).

    Article  PubMed  Google Scholar 

  154. L. Zhou, J. Gan, X. Liu, L. Xu, and W. Lu, "Speckle-noise-reduction method of projecting interferometry fringes based on power spectrum density," Applied Optics 51, 6974–6978 (2012).

    Article  PubMed  Google Scholar 

  155. H. Liu, G. Lu, S. Wu, S. Yin, and F. T. S. Yu, "Speckle-induced phase error in laser-based phase-shifting projected fringe profilometry," Journal of the Optical Society of America A 16, 1484–1495 (1999).

    Article  Google Scholar 

  156. J. Burke, T. Bothe, W. Osten, and C. Hess, Reverse engineering by fringe projection, International Symposium on Optical Science and Technology (SPIE, 2002), Vol. 4778.

    Google Scholar 

  157. Y. H. Liao, J. S. Hyun, M. Feller, T. Bell, I. Bortins, J. Wolfe, D. Baldwin, and S. Zhang, "Portable high-resolution automated 3D imaging for footwear and tire impression capture," Journal of Forensic Sciences 66, 112–128 (2021).

    Article  PubMed  Google Scholar 

  158. E. Checcucci, D. Amparore, C. Fiori, M. Manfredi, M. Ivano, M. Di Dio, G. Niculescu, F. Piramide, G. Cattaneo, P. Piazzolla, G. E. Cacciamani, R. Autorino, and F. Porpiglia, "3D imaging applications for robotic urologic surgery: an ESUT YAUWP review," World Journal of Urology 38, 869–881 (2020).

    Article  PubMed  Google Scholar 

  159. B. Li, Y. An, D. Cappelleri, J. Xu, and S. Zhang, "High-accuracy, high-speed 3D structured light imaging techniques and potential applications to intelligent robotics," International Journal of Intelligent Robotics and Applications 1, 86–103 (2017).

    Article  Google Scholar 

  160. N. Blanc, T. Oggier, G. Gruener, J. Weingarten, A. Codourey, and P. Seitz, "Miniaturized smart cameras for 3D-imaging in real-time [mobile robot applications]," Sensors, 2004 IEEE, vol.471.

    Google Scholar 

  161. Z. Zhang, G. Nejat, H. Guo, and P. Huang, "A novel 3D sensory system for robot-assisted mapping of cluttered urban search and rescue environments," Intelligent Service Robotics 4, 119–134 (2011).

    Article  Google Scholar 

  162. G. Rao, G. Wang, X. Yang, J. Xu, and K. Chen, "Normal Direction Measurement and Optimization With a Dense Three-Dimensional Point Cloud in Robotic Drilling," IEEE/ASME Transactions on Mechatronics 23, 986–996 (2018).

    Article  Google Scholar 

  163. W.-X. Huang and H. J. Sung, "Three-dimensional simulation of a flapping flag in a uniform flow," Journal of Fluid Mechanics 653, 301–336 (2010).

    Article  Google Scholar 

  164. S. Alben and M. J. Shelley, "Flapping States of a Flag in an Inviscid Fluid: Bistability and the Transition to Chaos," Physical Review Letters 100, 074301 (2008).

    Article  PubMed  Google Scholar 

  165. M. Argentina and L. Mahadevan, "Fluid-flow-induced flutter of a flag," Proceedings of the National Academy of Sciences 102, 1829–1834 (2005).

    Article  CAS  Google Scholar 

  166. J. Paul Siebert and S. J. Marshall, "Human body 3D imaging by speckle texture projection photogrammetry," Sensor Review 20, 218–226 (2000).

    Article  Google Scholar 

  167. G. R. J. Swennen, W. Mollemans, and F. Schutyser, "Three-Dimensional Treatment Planning of Orthognathic Surgery in the Era of Virtual Imaging," Journal of Oral and Maxillofacial Surgery 67, 2080–2092 (2009).

    Article  PubMed  Google Scholar 

  168. M. R. Markiewicz and R. B. Bell, "The Use of 3D Imaging Tools in Facial Plastic Surgery," Facial Plastic Surgery Clinics 19, 655–682 (2011).

    Article  PubMed  Google Scholar 

  169. S. Blair, M. Garcia, T. Davis, Z. Zhu, Z. Liang, C. Konopka, K. Kauffman, R. Colanceski, I. Ferati, B. Kondov, S. Stojanoski, M. B. Todorovska, N. T. Dimitrovska, N. Jakupi, D. Miladinova, G. Petrusevska, G. Kondov, W. L. Dobrucki, S. Nie, and V. Gruev, "Hexachromatic bioinspired camera for image-guided cancer surgery," Science Translational Medicine 13, eaaw7067 (2021).

    Google Scholar 

  170. Y. Yin, M. Wang, B. Z. Gao, X. Liu, and X. Peng, "Fringe projection 3D microscopy with the general imaging model," Optics Express 23, 6846–6857 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zuo or Jinyang Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, C. et al. (2024). Fringe Projection Profilometry. In: Liang, J. (eds) Coded Optical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-39062-3_14

Download citation

Publish with us

Policies and ethics